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PQC Needing Inversions

NTRU Key generation (where n is prime)
« Find inverse in Z,[X]/(X" - 1)
+ Find inverse in Zq[X]/(X” - 1), which (for g = 2%) depends on finding inverse
in ZZ[X]/(X” -1).

NTRU Prime Key generation (where n is prime)
« Find inverse in Z, ., [X]/(X" - X - 1) (= a field).
« Find inverse in Z,[X]/(X" - X - 1)

Numerical Modular Inversions in CSIDH (similarly, SQlsign)
Needs inverse modulo p = 4p,p,p, - p,3p,, - 1, where p, - p_, are the smallest

73 odd primes and p,, = 587.
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Then and Now: Fast, Safe GCD and Inversions

Pre-2019: Fermat’s Little Theorem: Compute 1/xinF  as xP2,

n3+°() bit ops using schoolbook multiplication
n%58-+0(1) hit ops | using Karatsuba multiplication
n%+°(" bit ops using FFT-based multiplication
Post-2019: safegcd (or other constant time variations on Euclid’s algorithm
n%+°() bit ops using schoolbook multiplication
n'-58-+0(1) bit ops | using Karatsuba multiplication
n'*°(" bit ops using FFT-based multiplication
safegcd
safegcd is constant-time; n'*°(") bit ops;

simpler than previous variable-time algorithms.
No division subroutine between recursive calls.
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Cryptographic Constant-Time Algorithms

What is Constant-Time?

« No Conditional Branches depending on secrets

« No Variable Indices Memory Reads.

« Why? Otherwise cache-timing attacks leaks information.

A Vari-time Euclid-Stevins runin Z,[X]: seeR, —» R, R, = R,

“Ideal” Euclidean step has degdividend - degdivisor = deg divisor - degremainder = 1.

Ry

b= o I v I- v - v B= v = o B
F A N g

N o w»v

2y + 7y +y° + 8y  + 2y + 8y’ +y + 8
3y°P+y®w byt 4y 45249y 42

Ry - (3y +6)R, = 4y> +2y" +2y° + 4y + 3
1= (6y +6)R, = y* +3y> +2y? + 2y + 5
- (4y + 4)Ry =3y + 5y + hy + 4
-(5y+2)R, =2y +4

-(5y?+3y +3)R, = 6

-(5y +3)R, =0
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#Subtractions = #Coeffs. - 1 - #Skips

15 coefficients to start, 1to end = 14 steps?
RO = 2y7+7y6+y5+8y4+2y3+8y2+y+8
R1 = 3y6+y5+4y4+y3+5y2+9y+2
Ry -3YR, = 4y® +3y> +5y* + y> + 22 + 2y + 1

R, = Ry-(By+6)R, =4y +2y* +2y> + 4y +3
R1—6yR2=3y5+6y‘*+y3+2y2+5y+2
Ry = R,-(by+6)R, =yt +3y +2y2+2y+5
2 - 4yR, =4y* +y3 +6y? + 5y + 3
R, = R,-(4y+4)R, =3y +5y2 + 4y + 4
3—5yR =6y>+3y2+3y+5
Re = R;-(Sy+2)R, =2y+4
R4—5yR =6yl +hy+ 4
- (5y? +3y)R, = 6y + 4
Ry = R4—(5y2+3y+3)R5=6
R, - 5yR, = 4
R, = R;-(5y+3)R,=0

v
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The Subtraction Stage in safegcd
To Start

+ Reverse polynomials, start bigger poly as “Divisor” to ensure lead term = 0!
« Track the degree difference 6 = deg Divisor - deg Dividend.

Our Subtraction Stage: “divstep”
- Iff & positive, and Dividend lead (constant) term # 0, then Swap, negate 6.
« Take linear combination of Divisor and Dividend to eliminate lead term.
- Divide by x (shift the array) and increment 6.

From “Divisor” f = x?R (1/x), “Dividend” g = x"'R,(1/x), “Degree Diff” & = 1
divstep : Z x R[[x]]" x k’[[X]] — Z x R[[X]]" x R[[x]], d|vstep(6 f,9) »

(1-6,9,(9(0)f - f(0)g)/x) if6>0andg(0)=#0
(1+6,f,(f(0)g - g(0)f)/x) otherwise.
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F,6=1,

= divstep”(§, f, g) for k =
2+7x+1x2+8x3+2x*+8x> +1x +8x7,and g

Iterates (6,,f,,9,)

Table 1
f

3+ 1x+4x%+1x3 +5x% + 9% + 2x5,

Line 8 with a leading 0 is the irregular remainder R; 9-12 are the irregular division

0, 1 usually represents a regular division.

; two divsteps with &

R. » R
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What is special about divstep?

. 1 0 0 1 .
- divstep : (;) > T(6,f,g)(£), T-= (L(O) M)' (@ ﬂ) if 5> 0, g(0) # 0.

X X X X
- Can compute transition matrix of divstep” from bottom n f, g coefficients.

- n divsteps only takes constant time O(n log?*°" n), and data flow is regular
A 5 0] _glol S ol fl2) g2l f131 gl3)

AN
/ 7 R R
N === ~ | =
-6 swap | \ N NAN S -
AN RN VAV ~
Ve ~ ~ ~

B: 6 Fog'to] 01 o' ff21 g'l2] fB81 ¢'[3]
A Ay
v N
\ N /
AN XN
C 1+8 frIor g”fol £l g”[11 fU[21 g"[2] f[3]

Figure 1: Data flow in an x-adic division step decomposed as conditional swap A to B
and elimination B to C. The swap bit is set if 6 > 0 and g[0] # 0. The g outputs are

f'10lg’[1]1 - g’[01f"[1], f'[0]g’[2] - g'[O]f [2], f'[0]g"[3] - g’[O]f [3], etc.
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Time-Constant divstep

- first half (6, f,g) = (6, f',9"),

-1 if6>0andg(0) =0,

swap = 0 otherwise.
mask = (f xor g) and swap
f" = fxormask
g’ = gxormask
6" = 6 xor((6 xor-6) and swap)

(equivalent vector instructions are available).
- second half:

(61 fi g) - (1 + 61 fr (f(O)g —g(O)f)/x)
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Main Theorem (for Polynomials)

Let k be a field. Let d be a positive integer. Let Ry, R, be elements of the
polynomial ring k[x] with degR, = d > degR,. Define G = gcd{R,, R, }, and let V be
the unique polynomial of degree < d - degG such that VR, = G (mod R,). Define
f=xRy(1/x); g = xR, (1/x); (8, f., 9,) = divstep” (1, f, g); T, = T(5,, f,, g,,); and
un vn = oo
(qn ’n) =T, T, Then
degG=06,,,/2;
G = x980f, ,  (1/X)]f,q.,(0);
V= X_d+1+degGV2d_1 (1/X)] f34-4(0)-
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Jumping Through divsteps

Sub-Quadratic GCD and Inversions

To compute (6,, f,,g,) and transition matrix T, _, - T:

« If n <1, use the definition of divstep and stop.
« Choosej e{1,2,...,n-1}.

* Jump j steps from 6, f,g to 6,f,9; Specifically, using only the first j
coefficients, compute the j-step transition matrix T,y Ty and then

multiply into (f) to obtain f’ .
g 9;
« Similarly jump n - j steps from 6j,f.,gj tod,,f., 9,

So an (n, t) problem (n steps, t terms) becomes a (j,j) problem plus an (n-j,n -j)
problem, plus O(1) polynomial multiplications with O(t + n) coefficients.
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Jumping divsteps for divstep" (5, f, g)
from divstepsx import divstepsx
def jumpdivstepsx(n,t,delta,f,g):

assert t >= n and n >= 0
kx = f.truncate(t).parent()

if n <= 1: return divstepsx(n,t,delta,f,g)

j =n//2

delta,f1,g1,P1 = jumpdivstepsx(j,j,delta,f,g)

f,g = Plxvector((f,g))

f,g = kx(f).truncate(t-j),kx(g).truncate(t-j)
delta,f2,g2,P2 = jumpdivstepsx(n-j,n-j,delta,f,g)
f,g = P2xvector((f,g))

f,g = kx(f).truncate(t-n+1),kx(g).truncate(t-n)

return delta,f,g,P2+P1
Figure 2: Algorithm jumpdivstepsx, Same inputs and outputs.

Institute of Information Science, Academia Sinica

12/24



How to Invert R, (x)in Z,.,,[x]/(x"*" - x - 1) today

1. Set f =1-x7%0-x7%1, g = x"%R.(1/x).

2. Then R;" = x7%%(1/x)/ f,5,,(0)

Institute of Information Science, Academia Sinica
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sheared jumpdivsteps track
polynomials u,,v,,q,,r,
scaled by x"1, x"1, x", x".

unsaturated jumpsteps has
u,v,,q,,r, all scaled by x"

recursively split divstep'™?’

using sheared + unsaturated.

From unsaturated 7 and
sheared 8 divsteps use jumps
result

to assemble divstep'>?'
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Why sheared and unsaturated, and multiplicationsin Z, . [x]/(x"®" - x - 1)

Computing with sheared [uq/,x vr{x] (because unsaturated is easy)
. [f’/’x] . [u/x v/x
g

xf 1[% ] Uy ]x[ X =U, 71x v1'
g r | |9] q r

2. Multiply f'/x by x. 2. Multiply & 7, 7 by x for unsaturated result.

Small polymals = Karatsuba: 8 x8 (or 8 x 7), 16 x 16 (or 16 x 15), 32 x 32 (or 32 x 31)
Big polymuls = T(runcated)Rader-17: 64 x 64, 128 x 128 (and slightly smaller)

Biggest Polymuls = TRader-17 + Good-3: 256 x 256, 256 x 512, 768 x 768 (!)
Table 2: Cycle counts for key generation in sntrup761, currently being verified

sntrup761 Cortex-A53 Cortex-A72 Cortex-A76 M1
ref from supercop 33,504,035 23,837,956 16,958,229 13,449,469
divstep [eprint:2023/1580] 6,547,768 5,517,692 3,047,956 1,051,392
jump divstep 2,569,555 1,969,656 1,429,813 471,571
jump divstep/ref 7.66% 8.26% 8.43% 3.5%
jump divstep 39.24% 35.69% 46.91% 44.85%
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Radix-2 divstep for Integers case (Bernstein-Yang 2019): no top-down version

(1-6,9,(g-f)/2), if6>0andgis odd

divstep onZxZ; xZ, : (6,f,g) = ( (1+8,f,(g +(g mod 2)f)/2), otherwise.

1 1 0 .
divstep (5) = T(g), T(6,f,9) = (_Ol 1) ifé6>0andgis odd,(g mod 2 1)0therW|se
2 2 2 2

2-adic divstep Split in Two Halves
+ Conditional Swap: (6, f,g) = (-6,9,-f) iffgmod2=1and 6 >0
« Eliminate: 6 » 6 +1, g = (g + (g mod 2)f)/2).

Theorem (Thm 11.2, Bernstein-.Yang %019, in part via exhaustive search)
f (odd), g: int., (6,,f,,g,) := divstep"(1,f,g); T, :=T(5,,f,.9,)]If
f2+4g% <5-2%9, m: posint; m 2 |(49d + 80)/17] if d < 46, and

m 2 |(49d + 57)/17]if d 2 46. Then if ("7 'n|:=T _..T, we haveg, = 0;

n rn

f, =+gcd{f, gy 2™ v, €z and 2™ v, g =2""'f (mod f).

Institute of Information Science, Academia Sinica 15/24
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Invert a 255-bit x Modulo p = 2%°° - 19 in 2019 (copying polynomial safegcd)

1. Setf=p,g=x,6=1,i=1.
2. Set f, = f (mod 2%), g, = g (mod 2%).
3. Compute (6',f,,9,) = divstep®(5, fo19,) and obtain a scaled transition matrix T, s.t.
2%( 50 ) = (;1 ) 63-bit signed entries of T fit into 64-bit registers. (jump64divsteps2)
0 1
4. Compute (f,g) « T,(f,9)/2%. Set6=6".
5. Seti « i+ 1. Go back to step 3ifi<12.

6. Compute v mod p where v is top-right entry of T, T,, - T,:
6.1 Compute (126-bit signed integers) pair-products T,,T,. ,
6.2 Compute (252-bit signed) 4-products T,;T,. ,T,. ,T,; 5
6.3 Convert 4-products to unsigned ints modulo p (4 x 64-bit limbs).

6.4 Compute final vector x matrix times vector modulo p.
7. Compute x" = sgn(f)-v-27% (mod p) where 277%* is precomputed.

Results on Intel CPUs, p = 22°° - 19
+ 10050, 8778, and 8543 cycles on Haswell, Skylake, and Kaby Lake;
+ Nath-Sarkar 2018: 11854, 9301, and 8971 cycles (resp.)
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Jump Strategies (picture from 2019)

Left strategy: j = 1; i.e., computing each di-
vstep in turn to full precision. Middle strat-
egy: j = 1 for <62 requested iterations, else
j =62; i.e., using 62 bottom bits to compute
62 iterations, jJumping 62 iterations, using 62
new bottom bits to compute 62 more iter-
ations, etc. Right strategy: j = 1 for 2 re-
quested iterations, j = 2 for 3 or 4 requested
iterations, j = 4 for 5 or 6 or 7 or 8 requested
iterations, etc.

Figure 3: Three jump strategies for 744 divstep iterations on 255-bit ints

Vertical axis, 0 on top through 744 on bottom: number of iterations. Horizontal axis
(within each strategy), 0 on left through 254 on right: bit positions used in computation.
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Questions and More Recent Results

Pornin eprint 2020/972
- report 7490 cycles on Intel Coffee Lake (~ Kaby Lake) via another algorithm.
« reported proof bug in ver.2020.08.23, and updates to 6253 Coffee Lake cycles

- “the algorithm, and the revised proof, are believed correct”

Obvious Questions

- Is [Bernstein-Yang 2019, Theorem 11.2] — which relies on a large exhaustive
search computation — correct? Is there a simpler proof?

+ how quickly can the resulting modular-inversion software run?
- Can the software, with many speed-induced complications, be correct?

- are divsteps are the best approach in the first place?

~Er>,
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Questions and More Recent Results

Pornin eprint 2020/972
- report 7490 cycles on Intel Coffee Lake (~ Kaby Lake) via another algorithm.
« reported proof bug in ver.2020.08.23, and updates to 6253 Coffee Lake cycles

- “the algorithm, and the revised proof, are believed correct”

Obvious Questions

- Is [Bernstein-Yang 2019, Theorem 11.2] — which relies on a large exhaustive
search computation — correct? Is there a simpler proof? Yes.

+ how quickly can the resulting modular-inversion software run? See below.
- Can the software, with many speed-induced complications, be correct? Yes.
- are divsteps are the best approach in the first place? As far as we know.
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Easier (and Better) Proof: Convex Hulls
Reducing 744 divsteps to 720

Considerallreal f >g >0

- Start{(1,0,0),(1,1,0),(1,1, 1)} T
 Perforce, take all 3 branches — —
1. (6,f,9) = (1+6,£,9/2) T
2. (6,f,9)» (1+6,f,(f+9)/2) A@@% —
3. (6,f,9)» (1-6,9,(9-1)/2) e e
« Brute-force shows that either A o = 1 i o @ o
coordinate goes below 272%° ™~ t ol
after 720 (later 719) iterations. 5 i i i ¥
- A stable 42-point hull for 6 = 1 i 1
shrinking by a constant factor ! T

every 14 iterations exist.
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Even Better: Divsteps starting with 6 = 2 (hddivsteps)

A stable 102-point hull for 6 = 1 shrinking by S2185137:202385300312537 eyery 54 iterations exist.

255

HOL Light Proof exists for 255-bit numbers and 588 hddivsteps

Considerallreal f>g >0
- Start{(3,0,0),(3,1,0),(3,1, 1)}

—  Perforce, take all 3 branches

N 1.(6,f,9)» (1+6,f,9/2)
— —— == = 2. ((Srfvg)'_)(1+61fr(f+g)/2)

A A e - 3. (6rfrg)'_>(1_6rgy(g_f)/2)
R - R .
A g mE e e e  Brute-force shows that either
™~ ¢ & g i s coordinate goes below 272°°
5ot T after 588 iterations.
! ¥ ¥ - 2.304n hddivsteps suffices
i for n-bit numbers

T
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Faster Assembly Language Routines for Single-Limb divsteps
Parallel Processing inside a single limb!

« Running divsteps requires us to evaluate two flags and update f, g, u,v,q,r.

« To do n iterations, we need the bottom n bits of f,g; 1 2u,v>-1and
1>r,s>-1(renaming) are multiples of 27", so we scale them by -2".

« We can merge (f, u,v) and (g, r, s) each into a 64-bit limb for 30 iterations
with fuv = 233(f mod 2/) - 23"y - 2'v and grs = 233(g mod 2/) - 2/*3'r - 2's

- Actually used (fuv, grs) = (f, g) - 2'**%(u, r) - 22"*i(v, s) for 20 iterations.

« We completely unroll and the code cache gets trampled with > 20 iterations.

One iteration looks like this (inside ghasm code verified by Han-Ting Chen):

z=-1 grs -= fuv
oldg = grs (int64) grs >>=1
h = grs + fuv (int64) h >>= 1

=?2grs & 1 m= -m

signed<? z - 0

z=m if ! fuv = oldg if !signed<
h = grs if grs = h if signed<
mnew = m + 1 m = mnew if signed<

Institute of Information Science, Academia Sinica




Parallelized Bigint Update Every 60 divsteps (also Verified by Han-Ting)

Limbs of F,V, G, S in a vector register, signed, radix 23° in 64 bits, lazy reductions

. . u v||F V
- Use Montgomery modular arithmetic to compute rslle s
 Input u,v,r,s in two 30-bit limbs.
- Update F,V,G,S in 9 30-bit limbs.
- add suitable multiple of the modulus to zero out bottom two limbs.

- free division by 2°° every loop.
« jumpdivsteps inner loop strictly uses integer registers only
- bigint update uses vector registers only

- We can interleave the vector and integer arithmetic
+ Use Genetic algorithm to compute best interleaving (speed up: 20%)

T
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Recent Developments

In 1ib25519 on x86 after we interleave int and vector loops

+ 25519: 5908 cycles (Haswell), 3880 cycles (Skylake)

- 256 bit arbitrary prime invmod: 6418 cycles (Haswell), 4028 cycles (Skylake)
« long arbitrary prime invmod on skylake:

 512-bit: 9091 cycles
1024 bit: 21671 cycles
- 2048 bit: 64053 cycles

+ Key components verified in CRYPTOLINE

John Harrison/Amazons2n bignum library. Verified in HOL Light
- provide verified x86 code
« provide verified ARMv8 Neon code

Future Applications? ( 25519, Pairings, CSIDH, SQISign ...)

T
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Questions?

T
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