

More on Fast Constant-Time GCD Computation and Modular Inversion

Daniel J. Bernstein Han-Ting Chen John R. Harrison Gregory Maxwell Bow-Yaw Wang Pieter Wuille **Bo-Yin Yang**

PQC Needing Inversions

NTRU Key generation (where *n* is prime)

- Find inverse in $\mathbb{Z}_3[X]/(X^n-1)$
- Find inverse in $\mathbb{Z}_{q}[X]/(X^{n}-1)$, which (for $q=2^{k}$) depends on finding inverse in $\mathbb{Z}_2[X]/(X^n-1)$.

NTRU Prime Key generation (where n is prime)

- Find inverse in $\mathbb{Z}_{4591}[X]/(X^n X 1)$ (= a field).
- Find inverse in $\mathbb{Z}_3[X]/(X^n X 1)$

Numerical Modular Inversions in CSIDH (similarly, SQIsign)

Needs inverse modulo $p = 4p_1p_2p_3 \cdots p_{73}p_{74} - 1$, where $p_1 \cdots p_{73}$ are the smallest 73 odd primes and $p_{7/2} = 587$.

Then and Now: Fast, Safe GCD and Inversions

Pre-2019: Fermat's Little Theorem: Compute 1/x **in** \mathbf{F}_p **as** x^{p-2} .

$n^{3+o(1)}$ bit ops	using schoolbook multiplication
$n^{2.58+o(1)}$ bit ops	using Karatsuba multiplication
$n^{2+o(1)}$ bit ops	using FFT-based multiplication

Post-2019: safegcd (or other constant time variations on Euclid's algorithm

$n^{2+o(1)}$ bit ops	using schoolbook multiplication
$n^{1.58+o(1)}$ bit ops	using Karatsuba multiplication
$n^{1+o(1)}$ bit ops	using FFT-based multiplication

safegcd

safegcd is constant-time; $n^{1+o(1)}$ bit ops; simpler than previous variable-time algorithms.

No division subroutine between recursive calls.

Cryptographic Constant-Time Algorithms

What is Constant-Time?

- No Conditional Branches depending on secrets
- No Variable Indices Memory Reads.
- Why? Otherwise cache-timing attacks leaks information.

A Vari-time Euclid-Stevins run in $\mathbb{Z}_7[X]$: see $R_4 \to R_5$, $R_5 \to R_6$ "Ideal" Euclidean step has deg dividend - deg divisor = deg divisor - deg remainder = 1.

$$R_0 = 2y^7 + 7y^6 + y^5 + 8y^4 + 2y^3 + 8y^2 + y + 8$$

$$R_1 = 3y^6 + y^5 + 4y^4 + y^3 + 5y^2 + 9y + 2$$

$$R_2 = R_0 - (3y + 6)R_1 = 4y^5 + 2y^4 + 2y^3 + 4y + 3$$

$$R_3 = R_1 - (6y + 6)R_2 = y^4 + 3y^3 + 2y^2 + 2y + 5$$

$$R_4 = R_2 - (4y + 4)R_3 = 3y^3 + 5y^2 + 4y + 4$$

$$R_5 = R_3 - (5y + 2)R_4 = 2y + 4$$

$$R_6 = R_4 - (5y^2 + 3y + 3)R_5 = 6$$

$$R_7 = R_5 - (5y + 3)R_6 = 0$$

#Subtractions = #Coeffs. - 1 - #Skips

15 coefficients to start, 1 to end = 14 steps?

$$R_{0} = 2y^{7} + 7y^{6} + y^{5} + 8y^{4} + 2y^{3} + 8y^{2} + y + 8$$

$$R_{1} = 3y^{6} + y^{5} + 4y^{4} + y^{3} + 5y^{2} + 9y + 2$$

$$R_{0} - 3yR_{1} = 4y^{6} + 3y^{5} + 5y^{4} + y^{3} + 2y^{2} + 2y + 1$$

$$R_{2} = R_{0} - (3y + 6)R_{1} = 4y^{5} + 2y^{4} + 2y^{3} + 4y + 3$$

$$R_{1} - 6yR_{2} = 3y^{5} + 6y^{4} + y^{3} + 2y^{2} + 5y + 2$$

$$R_{3} = R_{1} - (6y + 6)R_{2} = y^{4} + 3y^{3} + 2y^{2} + 2y + 5$$

$$R_{2} - 4yR_{3} = 4y^{4} + y^{3} + 6y^{2} + 5y + 3$$

$$R_{4} = R_{2} - (4y + 4)R_{3} = 3y^{3} + 5y^{2} + 4y + 4$$

$$R_{3} - 5yR_{4} = 6y^{3} + 3y^{2} + 3y + 5$$

$$R_{5} = R_{3} - (5y + 2)R_{4} = 2y + 4$$

$$R_{4} - 5y^{2}R_{5} = 6y^{2} + 4y + 4$$

$$R_{4} - (5y^{2} + 3y)R_{5} = 6y + 4$$

$$R_{6} = R_{4} - (5y^{2} + 3y + 3)R_{5} = 6$$

$$R_{5} - 5yR_{6} = 4$$

$$R_{7} = R_{5} - (5y + 3)R_{6} = 0$$

The Subtraction Stage in safeged

To Start

- Reverse polynomials, start bigger poly as "Divisor" to ensure lead term ≠ 0!
- Track the degree difference δ = deg Divisor deg Dividend.

Our Subtraction Stage: "divstep"

- Iff δ positive, and Dividend lead (constant) term \neq 0, then Swap, negate δ .
- Take linear combination of Divisor and Dividend to eliminate lead term.
- Divide by x (shift the array) and increment δ .

From "Divisor"
$$f = x^d R_0(1/x)$$
, "Dividend" $g = x^{d-1} R_1(1/x)$, "Degree Diff" $\delta = 1$ divstep : $\mathbb{Z} \times k[[x]]^* \times k[[x]] \to \mathbb{Z} \times k[[x]]^* \times k[[x]]$, divstep $(\delta, f, g) \mapsto$

$$\begin{cases} (1-\delta,g,(g(0)f-f(0)g)/x) & \text{if } \delta > 0 \text{ and } g(0) \neq 0, \\ (1+\delta,f,(f(0)g-g(0)f)/x) & \text{otherwise.} \end{cases}$$

n	δ_n	$\int_{x^0} f_n$	x ¹	x ²	<i>x</i> ³	x ⁴	x ⁵	х ⁶	x ⁷	x ⁸	x ⁹		g_n	x ¹	x ²	<i>x</i> ³	x ⁴	x ⁵	<i>x</i> ⁶	x ⁷	x ⁸	x ⁹	
0	1	2	0	1	1	2	1	1	1	0	0		3	1	4	1	5	2	2	0	0	0	
1	0	3	1	4	1	5	2	2	0	0	0		5	2	1	3	6	6	3	0	0	0	
2	1	3	1	4	1	5	2	2	0	0	0		1	4	4	0	1	6	0	0	0	0	
3	0	1	4	4	0	1	6	0	0	0	0	•••	3	6	1	2	5	2	0	0	0	0	
4	1	1	4	4	0	1	6	0	0	0	0	•••	1	3	2	2	5	0	0	0	0	0	•••
5	0	1	3	2	2	5	0	0	0	0	0	•••	1	2	5	3	6	0	0	0	0	0	•••
			3				-							3							0		•••
6	1	1	-	2	2	5	0	0	0	0	0	•••	6		1	1	0	0	0	0	-	0	•••
7	0	6	3	1	1	0	0	0	0	0	0		1	4	4	2	0	0	0	0	0	0	•••
8	1	6	3	1	1	0	0	0	0	0	0		0	2	4	0	0	0	0	0	0	0	
9	2	6	3	1	1	0	0	0	0	0	0		5	3	0	0	0	0	0	0	0	0	
10	-1	5	3	0	0	0	0	0	0	0	0		4	5	5	0	0	0	0	0	0	0	
11	0	5	3	0	0	0	0	0	0	0	0		6	4	0	0	0	0	0	0	0	0	
12	1	5	3	0	0	0	0	0	0	0	0		2	0	0	0	0	0	0	0	0	0	
13	0	2	0	0	0	0	0	0	0	0	0		6	0	0	0	0	0	0	0	0	0	
14	1	2	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	
15	2	2	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	
16	3	2	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	
17	4	2	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	
18	5	2	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	•••
19	6	2	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	•••
19	0	-	U	U	U	U	U	U	U	U	U		"	U	U	U	U	U	U	U	U	U	•••
:	:	;	:	:	:	:	:	:	:	:	:	٠.	:	:	:	:	:	:	:	:	:	:	٠.

Table 1: Iterates (δ_n, f_n, g_n) = divstepⁿ (δ, f, g) for $k = \mathbf{F}_7$, $\delta = 1$, $f = 2 + 7x + 1x^2 + 8x^3 + 2x^4 + 8x^5 + 1x^6 + 8x^7$, and $g = 3 + 1x + 4x^2 + 1x^3 + 5x^4 + 9x^5 + 2x^6$. Line 8 with a leading 0 is the irregular remainder R_5 ; 9-12 are the irregular division $R_5 \to R_6$; two divsteps with $\delta = 0$, 1 usually represents a regular division.

What is special about divstep?

• divstep:
$$\binom{f}{g} \mapsto T(\delta, f, g) \binom{f}{g}$$
, $T = \begin{pmatrix} 1 & 0 \\ \frac{-g(0)}{x} & \frac{f(0)}{x} \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ \frac{g(0)}{x} & \frac{-f(0)}{x} \end{pmatrix}$. if $\delta > 0$, $g(0) \neq 0$.

- Can compute transition matrix of divstepⁿ from bottom n f, q coefficients.
- n divsteps only takes constant time $O(n \log^{2+O(1)} n)$, and data flow is regular

Figure 1: Data flow in an x-adic division step decomposed as conditional swap A to B and elimination B to C. The swap bit is set if $\delta > 0$ and $q[0] \neq 0$. The q outputs are f'[0]q'[1] - q'[0]f'[1], f'[0]g'[2] - g'[0]f'[2], f'[0]g'[3] - g'[0]f'[3], etc.

Time-Constant divstep

• first half $(\delta, f, g) \rightarrow (\delta', f', g')$,

$$swap = \begin{cases} -1 & \text{if } \delta > 0 \text{ and } g(0) \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$mask = (f \text{ xor } g) \text{ and } swap$$

$$f' = f \text{ xor } mask$$

$$g' = g \text{ xor } mask$$

$$\delta' = \delta \text{ xor } ((\delta \text{ xor } -\delta) \text{ and } swap)$$

(equivalent vector instructions are available).

second half:

$$(\delta,f,g)\to (1+\delta,f,(f(0)g-g(0)f)/x).$$

Main Theorem (for Polynomials)

Let k be a field. Let d be a positive integer. Let R_0 , R_1 be elements of the polynomial ring k[x] with deg $R_0 = d > \deg R_1$. Define $G = \gcd\{R_0, R_1\}$, and let V be the unique polynomial of degree $< d - \deg G$ such that $VR_1 \equiv G \pmod{R_0}$. Define $f = x^d R_0(1/x); g = x^{d-1} R_1(1/x); (\delta_n, f_n, g_n) = \text{divstep}^n(1, f, g); T_n = T(\delta_n, f_n, g_n); \text{ and } f = x^d R_0(1/x); g = x^{d-1} R_1(1/x); (\delta_n, f_n, g_n) = \text{divstep}^n(1, f, g); T_n = T(\delta_n, f_n, g_n); \text{ and } f = x^d R_0(1/x); g = x^{d-1} R_1(1/x); (\delta_n, f_n, g_n) = \text{divstep}^n(1, f, g); T_n = T(\delta_n, f_n, g_n); \text{ and } f = x^d R_0(1/x); f = x^d R_$ $\begin{pmatrix} u_n & v_n \\ q_n & r_n \end{pmatrix} = T_{n-1} \cdots T_0$. Then

$$\begin{split} \deg G &= \delta_{2d-1}/2; \\ G &= x^{\deg G} f_{2d-1}(1/x)/f_{2d-1}(0); \\ V &= x^{-d+1+\deg G} v_{2d-1}(1/x)/f_{2d-1}(0). \end{split}$$

Jumping Through divsteps

Sub-Quadratic GCD and Inversions

To compute (δ_n, f_n, g_n) and transition matrix $T_{n-1} \cdots T_0$:

- If $n \le 1$, use the definition of divstep and stop.
- Choose $i \in \{1, 2, ..., n-1\}$.
- Jump j steps from δ , f, g to δ_i , f_i , g_i . Specifically, using only the first jcoefficients, compute the j-step transition matrix $T_{i-1} \cdots T_0$, and then multiply into $\binom{f}{q}$ to obtain $\binom{f_j}{a}$.
- Similarly jump n-j steps from δ_i , f_i , g_i to δ_n , f_n , g_n .

So an (n, t) problem (n steps, t terms) becomes a (j, j) problem plus an (n - j, n - j)problem, plus O(1) polynomial multiplications with O(t + n) coefficients.

Jumping divsteps for divstep (δ, f, q)

```
from divstepsx import divstepsx
def jumpdivstepsx(n,t,delta,f,g):
  assert t >= n and n >= 0
 kx = f.truncate(t).parent()
  if n <= 1: return divstepsx(n,t,delta,f,g)</pre>
  i = n//2
  delta,f1,g1,P1 = jumpdivstepsx(j,j,delta,f,g)
  f,g = P1*vector((f,g))
  f,g = kx(f).truncate(t-j),kx(g).truncate(t-j)
  delta,f2,g2,P2 = jumpdivstepsx(n-j,n-j,delta,f,g)
  f,g = P2*vector((f,g))
  f,g = kx(f).truncate(t-n+1),kx(g).truncate(t-n)
  return delta, f, g, P2*P1
```

Figure 2: Algorithm jumpdivstepsx, Same inputs and outputs.

How to Invert $R_1(x)$ in $\mathbf{Z}_{4591}[x]/(x^{761} - x - 1)$ today

1. Set
$$f = 1 - x^{760} - x^{761}$$
, $g = x^{760}R_1(1/x)$.

2. Then $R_1^{-1} = x^{-760}v(1/x)/f_{1521}(0)$

- 1.1 sheared jumpdivsteps track polynomials u_n, v_n, q_n, r_n scaled by $x^{n-1}, x^{n-1}, x^n, x^n$.
- 1.2 unsaturated jumpsteps has u_n, v_n, q_n, r_n all scaled by x^n
- 1.3 recursively split divstep¹⁵²¹ using sheared + unsaturated.
- 1.4 From unsaturated 7 and sheared 8 divsteps use jumps to assemble divstep 1521 result

Why sheared and unsaturated, and multiplications in $\mathbf{Z}_{A=0.1}[x]/(x^{761}-x-1)$

Computing with sheared $\begin{vmatrix} u'/x & v'/x \\ a' & r' \end{vmatrix}$ (because unsaturated is easy)

1.
$$\begin{bmatrix} f'/x \\ g' \end{bmatrix} = x^{-n} \times \begin{bmatrix} u/x & v/x \\ q & r \end{bmatrix} \times \begin{bmatrix} f \\ g \end{bmatrix}$$

1.
$$\begin{bmatrix} f'/x \\ g' \end{bmatrix} = x^{-n} \times \begin{bmatrix} u/x & v/x \\ q & r \end{bmatrix} \times \begin{bmatrix} f \\ g \end{bmatrix}.$$
 1.
$$\begin{bmatrix} \frac{u'}{x} & \frac{v'}{x} \\ q' & r' \end{bmatrix} = \begin{bmatrix} \frac{u_2}{x} & \frac{v_2}{x} \\ q_2 & r_2 \end{bmatrix} \times \begin{bmatrix} \frac{u_1}{x} \cdot x = u_1 & \frac{v_1}{x} \cdot x = v_1 \\ q_1 & r_1 \end{bmatrix}.$$

2. Multiply f'/x by x.

2. Multiply $\frac{u'}{x}$, $\frac{v'}{x}$ by x for unsaturated result.

Small polymals = Karatsuba: 8×8 (or 8×7), 16×16 (or 16×15), 32×32 (or 32×31)

Big polymuls = T(runcated)Rader-17: 64 × 64, 128 × 128 (and slightly smaller)

Biggest Polymuls = TRader-17 + Good-3: 256 × 256, 256 × 512, 768 × 768 (!!)

Table 2: Cycle counts for key generation in sntrup761, currently being verified

sntrup761	Cortex-A53	Cortex-A72	Cortex-A76	M1
ref from supercop	33,504,035	23,837,956	16,958,229	13,449,469
divstep [eprint:2023/1580]	6,547,768	5,517,692	3,047,956	1,051,392
jump divstep	2,569,555	1,969,656	1,429,813	471,571
jump divstep/ref	7.66%	8.26%	8.43%	3.5%
<i>jump</i> divstep	39.24%	35.69%	46.91%	44.85%

Radix-2 divstep for Integers case (Bernstein-Yang 2019): no top-down version

divstep on
$$\mathbf{Z} \times \mathbf{Z}_2^* \times \mathbf{Z}_2 : (\delta, f, g) \mapsto \begin{cases} (1 - \delta, g, (g - f)/2), & \text{if } \delta > 0 \text{ and } g \text{ is odd} \\ (1 + \delta, f, (g + (g \text{ mod } 2)f)/2), & \text{otherwise.} \end{cases}$$

divstep
$$\binom{f}{g} = T\binom{f}{g}$$
, $T(\delta, f, g) = \begin{pmatrix} 0 & 1 \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$ if $\delta > 0$ and g is odd, $\begin{pmatrix} 1 & 0 \\ \frac{g \mod 2}{2} & \frac{1}{2} \end{pmatrix}$ otherwise

2-adic divstep Split in Two Halves

- Conditional Swap: $(\delta, f, g) \rightarrow (-\delta, g, -f)$ iff $g \mod 2 = 1$ and $\delta > 0$
- Eliminate: $\delta \rightarrow \delta + 1$, $g = (g + (g \mod 2)f)/2)$.

Theorem (Thm 11.2, Bernstein-Yang 2019, in part via exhaustive search)

$$f(odd), g: int., (\delta_n, f_n, g_n) := divstep^n(1, f, g); T_n := T(\delta_n, f_n, g_n).] If f^2 + 4g^2 \le 5 \cdot 2^{2d}, m: posint.; m \ge [(49d + 80)/17] if d < 46, and$$

$$m \ge \lfloor (49d + 57)/17 \rfloor$$
 if $d \ge 46$. Then if $\begin{pmatrix} u_n & v_n \\ q_n & r_n \end{pmatrix} := T_{n-1} \cdots T_0$, we have $g_m = 0$;

$$f_m = \pm \gcd\{f,g\}; 2^{m-1}v_m \in \mathbf{Z}; and 2^{m-1}v_mg \equiv 2^{m-1}f_m \pmod{f}.$$

Invert a 255-bit x Modulo $p = 2^{255} - 19$ in 2019 (copying polynomial safeged)

- 1. Set f = p, q = x, $\delta = 1$, i = 1.
- 2. Set $f_0 = f \pmod{2^{64}}$, $g_0 = g \pmod{2^{64}}$.
- 3. Compute (δ', f_1, g_1) = divstep⁶² (δ, f_0, g_0) and obtain a scaled transition matrix T_i s.t.

$$\frac{T_i}{2^{62}} \begin{pmatrix} f_0 \\ g_0 \end{pmatrix} = \begin{pmatrix} f_1 \\ g_1 \end{pmatrix}$$
. 63-bit signed entries of T_i fit into 64-bit registers. (jump64divsteps2)

- 4. Compute $(f,g) \leftarrow T_i(f,g)/2^{62}$. Set $\delta = \delta'$.
- 5. Set $i \leftarrow i + 1$. Go back to step 3 if $i \le 12$.
- 6. Compute $v \mod p$ where v is top-right entry of $T_{12}T_{11} \cdots T_{1}$:
 - 6.1 Compute (126-bit signed integers) pair-products $T_{2i}T_{2i-1}$
 - 6.2 Compute (252-bit signed) 4-products $T_{i}T_{i-1}T_{i-1}T_{i-1}T_{i-1}$
 - 6.3 Convert 4-products to unsigned ints modulo p (4 × 64-bit limbs).
 - 6.4 Compute final vector x matrix times vector modulo p.
- 7. Compute $x^{-1} = \operatorname{sgn}(f) \cdot v \cdot 2^{-744} \pmod{p}$ where 2^{-744} is precomputed.

Results on Intel CPUs. $p = 2^{255} - 19$

- 10050, 8778, and 8543 cycles on Haswell, Skylake, and Kaby Lake;
- Nath-Sarkar 2018: 11854, 9301, and 8971 cycles (resp.)

Jump Strategies (picture from 2019)

Figure 3: Three jump strategies for 744 divstep iterations on 255-bit ints

Vertical axis, 0 on top through 744 on bottom: number of iterations. Horizontal axis (within each strategy), 0 on left through 254 on right: bit positions used in computation.

Questions and More Recent Results

Pornin eprint 2020/972

- report 7490 cycles on Intel Coffee Lake (~ Kaby Lake) via another algorithm.
- reported proof bug in ver.2020.08.23, and updates to 6253 Coffee Lake cycles
- "the algorithm, and the revised proof, are believed correct"

Obvious Questions

- Is [Bernstein-Yang 2019, Theorem 11.2] which relies on a large exhaustive search computation — correct? Is there a simpler proof?
- how quickly can the resulting modular-inversion software run?
- Can the software, with many speed-induced complications, be correct?
- are divsteps are the best approach in the first place?

Questions and More Recent Results

Pornin eprint 2020/972

- report 7490 cycles on Intel Coffee Lake (~ Kaby Lake) via another algorithm.
- reported proof bug in ver.2020.08.23, and updates to 6253 Coffee Lake cycles
- "the algorithm, and the revised proof, are believed correct"

Obvious Questions

- Is [Bernstein-Yang 2019, Theorem 11.2] which relies on a large exhaustive search computation — correct? Is there a simpler proof? Yes.
- how quickly can the resulting modular-inversion software run? See below.
- Can the software, with many speed-induced complications, be correct? Yes.
- are divsteps are the best approach in the first place? As far as we know.

Easier (and Better) Proof: Convex Hulls

Reducing 744 divsteps to 720

Consider all real f > g > 0

- Start {(1, 0, 0), (1, 1, 0), (1, 1, 1)}.
- Perforce, take all 3 branches

1.
$$(\delta, f, g) \mapsto (1 + \delta, f, g/2)$$

2.
$$(\delta, f, g) \mapsto (1 + \delta, f, (f + g)/2)$$

3.
$$(\delta, f, g) \mapsto (1 - \delta, g, (g - f)/2)$$

- Brute-force shows that either coordinate goes below 2⁻²⁵⁵ after 720 (later 719) iterations.
- A stable 42-point hull for δ = 1 shrinking by a constant factor every 14 iterations exist.

Even Better: Divsteps starting with $\delta = \frac{1}{2}$ (hddivsteps)

A stable 102-point hull for $\delta = \frac{1}{2}$ shrinking by $\frac{1591853137+3\sqrt{273548757304312537}}{255}$ every 54 iterations exist.

HOL Light Proof exists for 255-bit numbers and 588 hddivsteps

Consider all real f > q > 0

- Start $\{(\frac{1}{2}, 0, 0), (\frac{1}{2}, 1, 0), (\frac{1}{2}, 1, 1)\}.$
- · Perforce, take all 3 branches

1.
$$(\delta, f, g) \mapsto (1 + \delta, f, g/2)$$

2.
$$(\delta, f, g) \mapsto (1 + \delta, f, (f + g)/2)$$

3.
$$(\delta, f, g) \mapsto (1 - \delta, g, (g - f)/2)$$

- Brute-force shows that either coordinate goes below 2⁻²⁵⁵ after 588 iterations.
- 2.304*n* hddivsteps suffices for *n*-bit numbers

Faster Assembly Language Routines for Single-Limb divsteps

Parallel Processing inside a single limb!

- Running divsteps requires us to evaluate two flags and update f, g, u, v, q, r.
- To do *n* iterations, we need the bottom *n* bits of f, g; $1 \ge u, v > -1$ and 1 > r, s > -1 (renaming) are multiples of 2^{-n} , so we scale them by -2^n .
- We can merge (f, u, v) and (g, r, s) each into a 64-bit limb for 30 iterations with fuv = $2^{33}(f \mod 2^i) 2^{i+31}u 2^i v$ and grs = $2^{33}(g \mod 2^i) 2^{i+31}r 2^i s$
- Actually used (fuv, grs) = $(f,g) 2^{i+42}(u,r) 2^{21+i}(v,s)$ for 20 iterations.
- We completely unroll and the code cache gets trampled with > 20 iterations.

One iteration looks like this (inside ghasm code verified by Han-Ting Chen):

Parallelized BigInt Update Every 60 divsteps (also Verified by Han-Ting)

Limbs of F, V, G, S in a vector register, signed, radix 2^{30} in 64 bits, lazy reductions

- Use Montgomery modular arithmetic to compute $\begin{vmatrix} u & v & F & V \\ r & s & G & S \end{vmatrix}$
 - Input u, v, r, s in two 30-bit limbs.
 - Update F, V, G, S in 9 30-bit limbs.
 - add suitable multiple of the modulus to zero out bottom two limbs.
 - free division by 2⁶⁰ every loop.
- jumpdivsteps inner loop strictly uses integer registers only
- bigint update uses vector registers only
- We can interleave the vector and integer arithmetic
 - Use Genetic algorithm to compute best interleaving (speed up: 20%)

Recent Developments

In lib25519 on x86 after we interleave int and vector loops

- 25519: 5908 cycles (Haswell), 3880 cycles (Skylake)
- 256 bit arbitrary prime invmod: 6418 cycles (Haswell), 4028 cycles (Skylake)
- · long arbitrary prime invmod on skylake:
 - 512-bit: 9091 cycles
 - 1024 bit: 21671 cycles
 - 2048 bit: 64053 cycles
- Key components verified in CRYPTOLINE

John Harrison/Amazons2n bignum library. Verified in HOL Light

- provide verified x86 code
- provide verified ARMv8 Neon code

Future Applications? (25519, Pairings, CSIDH, SQISign ...)

Questions?

