More on Fast Constant-Time GCD

Computation and Modular Inversion

Daniel J. Bernstein Han-Ting Chen John R. Harrison
Gregory Maxwell Bow-Yaw Wang Pieter Wuille Bo-Yin Yang

PQC Needing Inversions

NTRU Key generation (where n is prime)
« Find inverse in Z,[X]/(X" - 1)
+ Find inverse in Zq[X]/(X” - 1), which (for g = 2%) depends on finding inverse
in ZZ[X]/(X” -1).

NTRU Prime Key generation (where n is prime)
« Find inverse in Z, ., [X]/(X" - X - 1) (= a field).
« Find inverse in Z,[X]/(X" - X - 1)

Numerical Modular Inversions in CSIDH (similarly, SQlsign)
Needs inverse modulo p = 4p,p,p, - p,3p,, - 1, where p, - p_, are the smallest

73 odd primes and p,, = 587.

Institute of Information Science, Academia Sinica

~Er>,
3

2/24

Then and Now: Fast, Safe GCD and Inversions

Pre-2019: Fermat’s Little Theorem: Compute 1/xinF as xP2,

n3+°() bit ops using schoolbook multiplication
n%58-+0(1) hit ops | using Karatsuba multiplication
n%+°(" bit ops using FFT-based multiplication
Post-2019: safegcd (or other constant time variations on Euclid’s algorithm
n%+°() bit ops using schoolbook multiplication
n'-58-+0(1) bit ops | using Karatsuba multiplication
n'*°(" bit ops using FFT-based multiplication
safegcd
safegcd is constant-time; n'*°(") bit ops;

simpler than previous variable-time algorithms.
No division subroutine between recursive calls.

<IN,

Institute of Information Science, Academia Sinica

3/24

Cryptographic Constant-Time Algorithms

What is Constant-Time?

« No Conditional Branches depending on secrets

« No Variable Indices Memory Reads.

« Why? Otherwise cache-timing attacks leaks information.

A Vari-time Euclid-Stevins runin Z,[X]: seeR, —» R, R, = R,

“Ideal” Euclidean step has degdividend - degdivisor = deg divisor - degremainder = 1.

Ry

b= o I v I- v - v B= v = o B
F A N g

N o w»v

2y + 7y +y° + 8y + 2y + 8y’ +y + 8
3y°P+y®w byt 4y 45249y 42

Ry - (3y +6)R, = 4y> +2y" +2y° + 4y + 3
1= (6y +6)R, = y* +3y> +2y? + 2y + 5
- (4y + 4)Ry =3y + 5y + hy + 4
-(5y+2)R, =2y +4

-(5y?+3y +3)R, = 6

-(5y +3)R, =0

Institute of Information Science, Academia Sinica {{

4[24

#Subtractions = #Coeffs. - 1 - #Skips

15 coefficients to start, 1to end = 14 steps?
RO = 2y7+7y6+y5+8y4+2y3+8y2+y+8
R1 = 3y6+y5+4y4+y3+5y2+9y+2
Ry -3YR, = 4y® +3y> +5y* + y> + 22 + 2y + 1

R, = Ry-(By+6)R, =4y +2y* +2y> + 4y +3
R1—6yR2=3y5+6y‘*+y3+2y2+5y+2
Ry = R,-(by+6)R, =yt +3y +2y2+2y+5
2 - 4yR, =4y* +y3 +6y? + 5y + 3
R, = R,-(4y+4)R, =3y +5y2 + 4y + 4
3—5yR =6y>+3y2+3y+5
Re = R;-(Sy+2)R, =2y+4
R4—5yR =6yl +hy+ 4
- (5y? +3y)R, = 6y + 4
Ry = R4—(5y2+3y+3)R5=6
R, - 5yR, = 4
R, = R;-(5y+3)R,=0

v
[}
~Er>,

Institute of Information Science, Academia Sinica

5/24

The Subtraction Stage in safegcd
To Start

+ Reverse polynomials, start bigger poly as “Divisor” to ensure lead term = 0!
« Track the degree difference 6 = deg Divisor - deg Dividend.

Our Subtraction Stage: “divstep”
- Iff & positive, and Dividend lead (constant) term # 0, then Swap, negate 6.
« Take linear combination of Divisor and Dividend to eliminate lead term.
- Divide by x (shift the array) and increment 6.

From “Divisor” f = x?R (1/x), “Dividend” g = x"'R,(1/x), “Degree Diff” & = 1
divstep : Z x R[[x]]" x k’[[X]] — Z x R[[X]]" x R[[x]], d|vstep(6 f,9) »

(1-6,9,(9(0)f - f(0)g)/x) if6>0andg(0)=#0
(1+6,f,(f(0)g - g(0)f)/x) otherwise.

<IN,

Institute of Information Science, Academia Sinica

6/24

5

-1

2
3
4
5
6

10
11

12
13
14
15
16
17
18
19

F,6=1,

= divstep”(§, f, g) for k =
2+7x+1x2+8x3+2x*+8x> +1x +8x7,and g

Iterates (6,,f,,9,)

Table 1
f

3+ 1x+4x%+1x3 +5x% + 9% + 2x5,

Line 8 with a leading 0 is the irregular remainder R; 9-12 are the irregular division

0, 1 usually represents a regular division.

; two divsteps with &

R. » R

Institute of Information Science, Academia Sinica

<IN,
3

What is special about divstep?

. 1 0 0 1 .
- divstep : (;) > T(6,f,g)(£), T-= (L(O) M)' (@ ﬂ) if 5> 0, g(0) # 0.

X X X X
- Can compute transition matrix of divstep” from bottom n f, g coefficients.

- n divsteps only takes constant time O(n log?*°" n), and data flow is regular
A 5 0] _glol S ol fl2) g2l f131 gl3)

AN
/ 7 R R
N === ~ | =
-6 swap | \ N NAN S -
AN RN VAV ~
Ve ~ ~ ~

B: 6 Fog'to] 01 o' ff21 g'l2] fB81 ¢'[3]
A Ay
v N
\ N /
AN XN
C 1+8 frIor g”fol £l g”[11 fU[21 g"[2] f[3]

Figure 1: Data flow in an x-adic division step decomposed as conditional swap A to B
and elimination B to C. The swap bit is set if 6 > 0 and g[0] # 0. The g outputs are

f'10lg’[1]1 - g’[01f"[1], f'[0]g’[2] - g'[O]f [2], f'[0]g"[3] - g’[O]f [3], etc.

Institute of Information Science, Academia Sinica

8/24

Time-Constant divstep

- first half (6, f,g) = (6, f',9"),

-1 if6>0andg(0) =0,

swap = 0 otherwise.
mask = (f xor g) and swap
f" = fxormask
g’ = gxormask
6" = 6 xor((6 xor-6) and swap)

(equivalent vector instructions are available).
- second half:

(61 fi g) - (1 + 61 fr (f(O)g —g(O)f)/x)

Institute of Information Science, Academia Sinica

<IN,

9/24

~Er>,

Main Theorem (for Polynomials)

Let k be a field. Let d be a positive integer. Let Ry, R, be elements of the
polynomial ring k[x] with degR, = d > degR,. Define G = gcd{R,, R, }, and let V be
the unique polynomial of degree < d - degG such that VR, = G (mod R,). Define
f=xRy(1/x); g = xR, (1/x); (8, f., 9,) = divstep” (1, f, g); T, = T(5,, f,, g,,); and
un vn = oo
(qn ’n) =T, T, Then
degG=06,,,/2;
G = x980f, , (1/X)]f,q.,(0);
V= X_d+1+degGV2d_1 (1/X)] f34-4(0)-

Institute of Information Science, Academia Sinica 10/24

Jumping Through divsteps

Sub-Quadratic GCD and Inversions

To compute (6,, f,,g,) and transition matrix T, _, - T:

« If n <1, use the definition of divstep and stop.
« Choosej e{1,2,...,n-1}.

* Jump j steps from 6, f,g to 6,f,9; Specifically, using only the first j
coefficients, compute the j-step transition matrix T,y Ty and then

multiply into (f) to obtain f’ .
g 9;
« Similarly jump n - j steps from 6j,f.,gj tod,,f., 9,

So an (n, t) problem (n steps, t terms) becomes a (j,j) problem plus an (n-j,n -j)
problem, plus O(1) polynomial multiplications with O(t + n) coefficients.

Institute of Information Science, Academia Sinica

~Er>,
3

11/24

Jumping divsteps for divstep" (5, f, g)
from divstepsx import divstepsx
def jumpdivstepsx(n,t,delta,f,g):

assert t >= n and n >= 0
kx = f.truncate(t).parent()

if n <= 1: return divstepsx(n,t,delta,f,g)

j =n//2

delta,f1,g1,P1 = jumpdivstepsx(j,j,delta,f,g)

f,g = Plxvector((f,g))

f,g = kx(f).truncate(t-j),kx(g).truncate(t-j)
delta,f2,g2,P2 = jumpdivstepsx(n-j,n-j,delta,f,g)
f,g = P2xvector((f,g))

f,g = kx(f).truncate(t-n+1),kx(g).truncate(t-n)

return delta,f,g,P2+P1
Figure 2: Algorithm jumpdivstepsx, Same inputs and outputs.

Institute of Information Science, Academia Sinica

12/24

How to Invert R, (x)in Z,.,,[x]/(x"*" - x - 1) today

1. Set f =1-x7%0-x7%1, g = x"%R.(1/x).

2. Then R;" = x7%%(1/x)/ f,5,,(0)

Institute of Information Science, Academia Sinica

11

1.2

1.3

14

sheared jumpdivsteps track
polynomials u,,v,,q,,r,
scaled by x"1, x"1, x", x".

unsaturated jumpsteps has
u,v,,q,,r, all scaled by x"

recursively split divstep'™?’

using sheared + unsaturated.

From unsaturated 7 and
sheared 8 divsteps use jumps
result

to assemble divstep'>?'

13/24

Why sheared and unsaturated, and multiplicationsin Z, . [x]/(x"®" - x - 1)

Computing with sheared [uq/,x vr{x] (because unsaturated is easy)
. [f’/’x] . [u/x v/x
g

xf 1[%] Uy]x[X =U, 71x v1'
g r | |9] q r

2. Multiply f'/x by x. 2. Multiply & 7, 7 by x for unsaturated result.

Small polymals = Karatsuba: 8 x8 (or 8 x 7), 16 x 16 (or 16 x 15), 32 x 32 (or 32 x 31)
Big polymuls = T(runcated)Rader-17: 64 x 64, 128 x 128 (and slightly smaller)

Biggest Polymuls = TRader-17 + Good-3: 256 x 256, 256 x 512, 768 x 768 (!)
Table 2: Cycle counts for key generation in sntrup761, currently being verified

sntrup761 Cortex-A53 Cortex-A72 Cortex-A76 M1
ref from supercop 33,504,035 23,837,956 16,958,229 13,449,469
divstep [eprint:2023/1580] 6,547,768 5,517,692 3,047,956 1,051,392
jump divstep 2,569,555 1,969,656 1,429,813 471,571
jump divstep/ref 7.66% 8.26% 8.43% 3.5%
jump divstep 39.24% 35.69% 46.91% 44.85%

Institute of Information Science, Academia Sinica 14/24

Radix-2 divstep for Integers case (Bernstein-Yang 2019): no top-down version

(1-6,9,(g-f)/2), if6>0andgis odd

divstep onZxZ; xZ, : (6,f,g) = ((1+8,f,(g +(g mod 2)f)/2), otherwise.

1 1 0 .
divstep (5) = T(g), T(6,f,9) = (_Ol 1) ifé6>0andgis odd,(g mod 2 1)0therW|se
2 2 2 2

2-adic divstep Split in Two Halves
+ Conditional Swap: (6, f,g) = (-6,9,-f) iffgmod2=1and 6 >0
« Eliminate: 6 » 6 +1, g = (g + (g mod 2)f)/2).

Theorem (Thm 11.2, Bernstein-.Yang %019, in part via exhaustive search)
f (odd), g: int., (6,,f,,g,) := divstep"(1,f,g); T, :=T(5,,f,.9,)]If
f2+4g% <5-2%9, m: posint; m 2 |(49d + 80)/17] if d < 46, and

m 2 |(49d + 57)/17]if d 2 46. Then if ("7 'n|:=T _..T, we haveg, = 0;

n rn

f, =+gcd{f, gy 2™ v, €z and 2™ v, g =2""'f (mod f).

Institute of Information Science, Academia Sinica 15/24

>,

Invert a 255-bit x Modulo p = 2%°° - 19 in 2019 (copying polynomial safegcd)

1. Setf=p,g=x,6=1,i=1.
2. Set f, = f (mod 2%), g, = g (mod 2%).
3. Compute (6',f,,9,) = divstep®(5, fo19,) and obtain a scaled transition matrix T, s.t.
2%(50) = (;1) 63-bit signed entries of T fit into 64-bit registers. (jump64divsteps2)
0 1
4. Compute (f,g) « T,(f,9)/2%. Set6=6".
5. Seti « i+ 1. Go back to step 3ifi<12.

6. Compute v mod p where v is top-right entry of T, T,, - T,:
6.1 Compute (126-bit signed integers) pair-products T,,T,. ,
6.2 Compute (252-bit signed) 4-products T,;T,. ,T,. ,T,; 5
6.3 Convert 4-products to unsigned ints modulo p (4 x 64-bit limbs).

6.4 Compute final vector x matrix times vector modulo p.
7. Compute x" = sgn(f)-v-27% (mod p) where 277%* is precomputed.

Results on Intel CPUs, p = 22°° - 19
+ 10050, 8778, and 8543 cycles on Haswell, Skylake, and Kaby Lake;
+ Nath-Sarkar 2018: 11854, 9301, and 8971 cycles (resp.)

Institute of Information Science, Academia Sinica 16/24

Jump Strategies (picture from 2019)

Left strategy: j = 1; i.e., computing each di-
vstep in turn to full precision. Middle strat-
egy: j = 1 for <62 requested iterations, else
j =62; i.e., using 62 bottom bits to compute
62 iterations, jJumping 62 iterations, using 62
new bottom bits to compute 62 more iter-
ations, etc. Right strategy: j = 1 for 2 re-
quested iterations, j = 2 for 3 or 4 requested
iterations, j = 4 for 5 or 6 or 7 or 8 requested
iterations, etc.

Figure 3: Three jump strategies for 744 divstep iterations on 255-bit ints

Vertical axis, 0 on top through 744 on bottom: number of iterations. Horizontal axis
(within each strategy), 0 on left through 254 on right: bit positions used in computation.

Institute of Information Science, Academia Sinica {| ,

Questions and More Recent Results

Pornin eprint 2020/972
- report 7490 cycles on Intel Coffee Lake (~ Kaby Lake) via another algorithm.
« reported proof bug in ver.2020.08.23, and updates to 6253 Coffee Lake cycles

- “the algorithm, and the revised proof, are believed correct”

Obvious Questions

- Is [Bernstein-Yang 2019, Theorem 11.2] — which relies on a large exhaustive
search computation — correct? Is there a simpler proof?

+ how quickly can the resulting modular-inversion software run?
- Can the software, with many speed-induced complications, be correct?

- are divsteps are the best approach in the first place?

~Er>,

Institute of Information Science, Academia Sinica 18/24

Questions and More Recent Results

Pornin eprint 2020/972
- report 7490 cycles on Intel Coffee Lake (~ Kaby Lake) via another algorithm.
« reported proof bug in ver.2020.08.23, and updates to 6253 Coffee Lake cycles

- “the algorithm, and the revised proof, are believed correct”

Obvious Questions

- Is [Bernstein-Yang 2019, Theorem 11.2] — which relies on a large exhaustive
search computation — correct? Is there a simpler proof? Yes.

+ how quickly can the resulting modular-inversion software run? See below.
- Can the software, with many speed-induced complications, be correct? Yes.
- are divsteps are the best approach in the first place? As far as we know.

~Er>,

Institute of Information Science, Academia Sinica 18/24

Easier (and Better) Proof: Convex Hulls
Reducing 744 divsteps to 720

Considerallreal f >g >0

- Start{(1,0,0),(1,1,0),(1,1, 1)} T
 Perforce, take all 3 branches — —
1. (6,f,9) = (1+6,£,9/2) T
2. (6,f,9)» (1+6,f,(f+9)/2) A@@% —
3. (6,f,9)» (1-6,9,(9-1)/2) e e
« Brute-force shows that either A o = 1 i o @ o
coordinate goes below 272%° ™~ t ol
after 720 (later 719) iterations. 5 i i i ¥
- A stable 42-point hull for 6 = 1 i 1
shrinking by a constant factor ! T

every 14 iterations exist.

Institute of Information Science, Academia Sinica

~Er>,
3

19/24

Even Better: Divsteps starting with 6 = 2 (hddivsteps)

A stable 102-point hull for 6 = 1 shrinking by S2185137:202385300312537 eyery 54 iterations exist.

255

HOL Light Proof exists for 255-bit numbers and 588 hddivsteps

Considerallreal f>g >0
- Start{(3,0,0),(3,1,0),(3,1, 1)}

— Perforce, take all 3 branches

N 1.(6,f,9)» (1+6,f,9/2)
— —— == = 2. ((Srfvg)'_)(1+61fr(f+g)/2)

A A e - 3. (6rfrg)'_>(1_6rgy(g_f)/2)
R - R .
A g mE e e e Brute-force shows that either
™~ ¢ & g i s coordinate goes below 272°°
5ot T after 588 iterations.
! ¥ ¥ - 2.304n hddivsteps suffices
i for n-bit numbers

T

Institute of Information Science, Academia Sinica

J 20/24

Faster Assembly Language Routines for Single-Limb divsteps
Parallel Processing inside a single limb!

« Running divsteps requires us to evaluate two flags and update f, g, u,v,q,r.

« To do n iterations, we need the bottom n bits of f,g; 1 2u,v>-1and
1>r,s>-1(renaming) are multiples of 27", so we scale them by -2".

« We can merge (f, u,v) and (g, r, s) each into a 64-bit limb for 30 iterations
with fuv = 233(f mod 2/) - 23"y - 2'v and grs = 233(g mod 2/) - 2/*3'r - 2's

- Actually used (fuv, grs) = (f, g) - 2'**%(u, r) - 22"*i(v, s) for 20 iterations.

« We completely unroll and the code cache gets trampled with > 20 iterations.

One iteration looks like this (inside ghasm code verified by Han-Ting Chen):

z=-1 grs -= fuv
oldg = grs (int64) grs >>=1
h = grs + fuv (int64) h >>= 1

=?2grs & 1 m= -m

signed<? z - 0

z=m if ! fuv = oldg if !signed<
h = grs if grs = h if signed<
mnew = m + 1 m = mnew if signed<

Institute of Information Science, Academia Sinica

Parallelized Bigint Update Every 60 divsteps (also Verified by Han-Ting)

Limbs of F,V, G, S in a vector register, signed, radix 23° in 64 bits, lazy reductions

. . u v||F V
- Use Montgomery modular arithmetic to compute rslle s
 Input u,v,r,s in two 30-bit limbs.
- Update F,V,G,S in 9 30-bit limbs.
- add suitable multiple of the modulus to zero out bottom two limbs.

- free division by 2°° every loop.
« jumpdivsteps inner loop strictly uses integer registers only
- bigint update uses vector registers only

- We can interleave the vector and integer arithmetic
+ Use Genetic algorithm to compute best interleaving (speed up: 20%)

T

Institute of Information Science, Academia Sinica

22/24

Recent Developments

In 1ib25519 on x86 after we interleave int and vector loops

+ 25519: 5908 cycles (Haswell), 3880 cycles (Skylake)

- 256 bit arbitrary prime invmod: 6418 cycles (Haswell), 4028 cycles (Skylake)
« long arbitrary prime invmod on skylake:

 512-bit: 9091 cycles
1024 bit: 21671 cycles
- 2048 bit: 64053 cycles

+ Key components verified in CRYPTOLINE

John Harrison/Amazons2n bignum library. Verified in HOL Light
- provide verified x86 code
« provide verified ARMv8 Neon code

Future Applications? (25519, Pairings, CSIDH, SQISign ...)

T

Institute of Information Science, Academia Sinica

23/24

Questions?

T

Institute of Information Science, Academia Sinica

24[24

