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Cryptography

Modern cryptography relies on complex mathematical structures.

RSA: 2048-bit modulo computation

elliptic curves: complex group operations based on large finite fields

lattices: polynomial rings with finite coe!cients of high degrees

x

y
y2 = x3 → 2x

P

Q

R

P + Q

A field (such as Q) has addition and multiplication

and their inverse operations.

Each point is represented by two field elements.

A finite (prime) field is obtained by modulo

arithmetic.

Fq = {0, 1, ... , q → 1} with a prime q.

In Ed25519, we have

the finite field Fq = 2255 → 19;

the curve →x2 + y 2 = 1→ 121665
121666x

2y 2.
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Computer Cryptography

Mathematically, all operations in cryptography have simple representation.

RSA: me mod pq where p and q are 1024-bit prime numbers.

elliptic curves: P + Q where P and Q are points on an elliptic curve.
lattices: f (X )→ g(X ) mod X 256 + 1 where f (X ) and g(X ) are in the ring F3329[X ].

A ring (such as Z) has addition, its inverse operation, and multiplication.

However, no computer can perform such complex operations with simple instructions.

To employ modern cryptography, all operations must be implemented by programs on

di!erent (say, 32- or 64-bit) architectures.

How many programmers have written multi-precision arithmetic programs?

the GNU multi-precision arithmetic library (gmp)
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Real World Computer Cryptography

Complex operations (multi-precision arithmetic and polynomial multiplication) are only

small steps in computer cryptography.

Advanced algorithms are implemented to improve performance.

Karatsuba multiplication, Montgomery reduction, Number theoretic transform, etc.

In the real world, even advanced algorithms are not good enough.

The OpenSSL project has many assembly programs for such operations.

How many programmers are comfortable writing multi-precision arithmetic in assembly?

And the story began in 2009...
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Cryptographic Primitives

We want to verify assembly implementations of such primitive operations in real-world

cryptography.

Specifically, we want to verify the following operations

field arithmetic over large finite fields

group operations on elliptic curves

polynomial multiplication in large finite rings

We want to show programs compute corresponding mathematical functions correctly.

This is called functional correctness.

We are not verifying security properties.
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Problems and Di!culties

Non-linear computation is hard to verify.
SAT/SMT solvers do not work.

If they did, RSA would be broken already.

more about this later.

Cryptographic programs are succinct.

Every bit counts.

There are many cryptographic assembly programs.

32 bits: x86 and armv7

64 bits: x86 64 and aarch64

and more: avx, avx2, avx512, and neon

December 27, 2024 Ming-Hsien Tsai
6/26



National Taiwan University of Science and Technology

Problems and Di!culties

Non-linear computation is hard to verify.
SAT/SMT solvers do not work.

If they did, RSA would be broken already.

more about this later.

Cryptographic programs are succinct.

Every bit counts.

There are many cryptographic assembly programs.

32 bits: x86 and armv7

64 bits: x86 64 and aarch64

and more: avx, avx2, avx512, and neon

December 27, 2024 Ming-Hsien Tsai
6/26

SAT formula: p ∧ (q ∨ ¬r)



National Taiwan University of Science and Technology

Problems and Di!culties

Non-linear computation is hard to verify.
SAT/SMT solvers do not work.

If they did, RSA would be broken already.

more about this later.

Cryptographic programs are succinct.

Every bit counts.

There are many cryptographic assembly programs.

32 bits: x86 and armv7

64 bits: x86 64 and aarch64

and more: avx, avx2, avx512, and neon

December 27, 2024 Ming-Hsien Tsai
6/26

SAT formula: p ∧ (q ∨ ¬r)

SMT formula: 3 ≤ i ≤ 7 ∧ a[i] = n



National Taiwan University of Science and Technology

Problems and Di!culties

Non-linear computation is hard to verify.
SAT/SMT solvers do not work.

If they did, RSA would be broken already.

more about this later.

Cryptographic programs are succinct.

Every bit counts.

There are many cryptographic assembly programs.

32 bits: x86 and armv7

64 bits: x86 64 and aarch64

and more: avx, avx2, avx512, and neon

December 27, 2024 Ming-Hsien Tsai
6/26

SAT formula: p ∧ (q ∨ ¬r)

SMT formula: 3 ≤ i ≤ 7 ∧ a[i] = n

integer theory



National Taiwan University of Science and Technology

Problems and Di!culties

Non-linear computation is hard to verify.
SAT/SMT solvers do not work.

If they did, RSA would be broken already.

more about this later.

Cryptographic programs are succinct.

Every bit counts.

There are many cryptographic assembly programs.

32 bits: x86 and armv7

64 bits: x86 64 and aarch64

and more: avx, avx2, avx512, and neon

December 27, 2024 Ming-Hsien Tsai
6/26

SAT formula: p ∧ (q ∨ ¬r)

SMT formula: 3 ≤ i ≤ 7 ∧ a[i] = n

integer theory array theory



National Taiwan University of Science and Technology

Section 2

Algebraic Abstraction



National Taiwan University of Science and Technology

SMT QF BV

SMT (Satisfiability Modulo Theories) solvers support di!erent theories.

Quantifier-Free Bit-Vector logic in SMT can model computation at bit level.

SMT QF BV solvers translate QF BV queries to SAT queries through bit blasting.

In 2014, we use BOOLECTOR to verify an academic assembly program for the field
multiplication in Fq where q = 2255 → 19.

about 200 instructions

without annotation: fail to verify, with LOTS of annotation: 4 days

COQ is needed to prove a simple algebraic property.

Not useful!
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gfverif

In 2015, the gfverif project uses the computer algebra system SAGE to verify algebraic

properties in C program.

Instead of crunching bits, computer algebra systems support arithmetic natively.

Consider proving x · y = y · x by bits and by algebra.

Lesson: it is better to verify non-linear computation algebraically than logically.
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Montgomery Reduction

Algorithm Code

(* R = 264, 0 → T < R2 *) (* T = 264TH + TL *)

(* N · N → + 1 ↑ 0 mod R *) ASSUME N ↓ N → + 1 ↑ 0 mod [264]

m ↔ ((T mod R) · N →) mod R dc : m ↔ MULL TL N →

t ↔ (T +m · N)/R mNH : mNL ↔ MULL m N

carry : tL ↔ ADDS TL mNL

c : t ↔ ADCS TH mNH carry

ASSERT tL ↑ 0 mod [264]

ASSUME tL = 0

(* t · R ↑ T mod N *) ASSERT (c↓264 + t)↓ 264 ↑ TH↓264 + TL mod [N]

In the code, c and carry are bit variables; others are 64-bit variables.

Given a 128-bit number TH · 264 + TL and two 64-bit constants N · N → + 1 ↑ 0 mod [264],

it computes a 65-bit number 264 · (c · 264 + t) ↑ (TH · 264 + TL) mod [N] without division.

BOOLECTOR fails to verify it in 7 days.
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Polynomial Equations

Idea: translate programs into polynomial equations.

Code Equations

ASSUME N → N → + 1 ↑ 0 mod [264] N → N → + 1 ↑ 0 mod [264]

dc : m ↓ MULL TL N → dc · 264 +m = TL · N →

mNH : mNL ↓ MULL m N mNH · 264 +mNL = m · N

carry : tL ↓ ADDS TL mNL

carry · (carry ↔ 1) = 0

carry · 264 + tL = TL +mNL

c : t ↓ ADCS TH mNH carry
c · (c ↔ 1) = 0

c · 264 + t = TH +mNH + carry

ASSERT tL ↑ 0 mod [264]

To ensure soundness, all program traces must be solutions to all equations.

No overflow, no underflow, etc.

Soundness conditions are checked by SMT QF BV solvers.
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Root Entailment Problem

Idea: verify assertions by checking roots.

Equations Root Entailment

→N,N →,m,TL,TH ,mNL,mNH , tL, t, dc , carry , c .

N ↑ N → + 1 ↓ 0 mod [264] ( N ↑ N → + 1 ↓ 0 mod [264] ↔
dc · 264 +m = TL · N → dc · 264 +m ↗ TL · N → = 0 ↔

mNH · 264 +mNL = m · N mNH · 264 +mNL ↗m · N = 0 ↔
carry · (carry ↗ 1) = 0 carry · (carry ↗ 1) = 0 ↔

carry · 264 + tL = TL +mNL carry · 264 + tL ↗ (TL +mNL) = 0 ↔
c · (c ↗ 1) = 0 c · (c ↗ 1) = 0 ↔
c · 264 + t = TH +mNH + carry c · 264 + t ↗ (TH +mNH + carry) = 0 )

ASSERT tL ↓ 0 mod [264] =↘ tL ↓ 0 mod [264]

The root entailment problem: given a system ! of polynomial equations, verify whether

all solutions to ! are also solutions to the assertion.
December 27, 2024 Ming-Hsien Tsai
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Ideal Membership Problem

Root Entailment Ideal Membership

→N,N →,m,TL,TH ,mNL,mNH , tL, t, dc , carry , c .

( N ↑ N → + 1 ↓ 0 mod [264] ↔
dc · 264 +m ↗ TL · N → = 0 ↔

mNH · 264 +mNL ↗m · N = 0 ↔
carry · (carry ↗ 1) = 0 ↔

carry · 264 + tL ↗ (TL +mNL) = 0 ↔
c · (c ↗ 1) = 0 ↔

c · 264 + t ↗ (TH +mNH + carry) = 0 )

=↘ tL ↓ 0 mod [264]

tL ≃
〈

N ↑ N → + 1↗ k · 264

dc · 264 +m ↗ TL · N →

mNH · 264 +mNL ↗m · N
carry · (carry ↗ 1)

carry · 264 + tL ↗ (TL +mNL)

c · (c ↗ 1)

c · 264 + t ↗ (TH +mNH + carry)

264

〉

f ≃ ⇐g0, g1, ... , gn⇒ if f = h0 · g0 + h1 · g1 + · · · hn · gn for some h0, h1, ... , hn.

Given f , g0, g1, ... , gn, the ideal membership problem checks if f → ↑g0, g1, ... , gn↓.

The ideal membership problem is solved by computing Gröbner bases.
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CRYPTOLINE

CRYPTOLINE is a formal verification tool for cryptographic assembly programs.

It has two verification cores:

The algebraic core implements algebraic abstraction and employs computer algebra systems.

The range core employs SMT QF BV solvers.

CRYPTOLINE verifies Montgomery reduction in 1 second.

{P
alg

→→Prng}
C

{Q
alg

→→Qrng}

{P
alg

}
C

{Q
alg

}

{Prng}
C

{Qrng}

SINGULAR

BOOLECTOR
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Certified Verification
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Bugs in Verification?

Verification tools are very complex programs themselves.

A typical verification tool has the following phases:

A reduction phase transforms verification problems to well-established problems.

A proof phase employs e!cient provers to solve well-established problems.

Any mistake can lead to incorrect verification results.

Many provers are known to have bugs.

How much do you trust your verification tools?

“Model checkers are nice tools, but their results may be dubious.”

Prof. Jean-François Monin, VERIMAG

Besides, our competitors always complain our trusted computing base is large.
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Formally Verified Algorithm

CRYPTOLINE has several reduction phases:

It reduces CRYPTOLINE assertions to the ideal membership problem.

It reduces soundness conditions to SMT QF BV queries.
It moreover reduces SMT QF BV queries to SAT queries (bit blasting).

to avoid bugs in SMT QF BV solvers

All these reduction algorithms are specified and proven in COQ.

For example, consider bit blast(ω) where ω is an SMT QF BV query.

We give a formal COQ proof for the following theorem:

Theorem

For all SMT QF BV query ω, ω is satisfiable if and only if the SAT query bit blast(ω) is satisfiable.
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Certified Results

To ensure our queries are solved correctly, we ask external e!cient provers to provide a
certificate for each query.

Formally verified provers would be too ine!cient.

SAT competition requires certificates since 2013.

Two types of certificates are needed: one for ideal membership and the other for SAT.

Each certificate is validated by an independent certificate checker.

To further improve assurance, we develop a formally verified certificate checker for ideal

membership and use a formally verified certificate checker for SAT.
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COQQFBV and COQCRYPTOLINE

We build two formally verified verification tools.

COQQFBV is a formally verified SMT QF BV solver.

It is based on OCAML programs automatically extracted from COQ bit blasting algorithms.

It employs the formally verified SAT certificate checker GRAT.

COQCRYPTOLINE is a formally verified verification tool for cryptographic assembly
programs.

It is based on OCAML programs automatically extracted from our reduction algorithms.

It employs our formally verified certificate checker for the ideal membership problem.

Model checkers can be trustful if we build them right.
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Classical Cryptography

We verify field arithmetic and group operations in two di!erent curves from four di!erent
security libraries:

secp256k1: bitcoin

curve25519: boringSSL, nss, and OpenSSL.

47 cryptographic C programs are verified in experiments.

We obtain their GCC Gimple IR and translate them to CRYPTOLINE.

Experiments are running on an Ubuntu 22.04 server with 4x 1.5 GHz AMD EPYC 7763

64-core CPUs.
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Results i
Function L

CL
T
CCL

T
CL

Function L
CL

T
CCL

T
CL

bitcoin/asm/secp256k1 fe *

mul inner 269 91.58 4.46 sqr inner 226 39.22 2.64

bitcoin/field/secp256k1 fe *

add 35 0.09 0.02 cmov 95 3.14 0.03

mul inner 172 76.81 3.26 mul int 26 1.15 0.02

negate 31 0.62 0.03 sqr inner 155 46.85 1.90

from storage 100 0.14 0.03 normalize weak 36 0.30 0.05

bitcoin/group/

secp256k1 ge neg 51 0.32 0.04

secp256k1 ge from storage 100 0.20 0.04

secp256k1 gej double var.part.14 1347 1578.91 30.37

bitcoin/scalar/secp256k1 scalar *

add 152 2.95 0.12 mul 512 478 55.60 3.61

mul 1232 310.87 11.83 reduce 147 2.01 0.11

sqr 1193 249.39 9.46 sqr 512 439 40.09 4.00

secp256k1 scalar reduce 512 754 86.16 3.56

boringssl/fiat curve25519/fe *

add 35 0.08 0.02 mul impl 152 71.25 3.44

sub 40 0.10 0.03 sqr impl 124 36.69 1.88

fe mul121666 74 1.40 0.14

x25519 scalar mult generic 1530 1257.98 346.05

boringssl/fiat curve25519 x86/fe *

add 70 0.16 0.03 mul impl 435 109.97 3.05

sqr impl 339 41.12 1.68 sub 80 0.23 0.06

fe mul121666 136 2.35 0.15

x25519 scalar mult generic 4247 5305.38 305.46
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fe mul121666 74 1.40 0.14

x25519 scalar mult generic 1530 1257.98 346.05

boringssl/fiat curve25519 x86/fe *

add 70 0.16 0.03 mul impl 435 109.97 3.05

sqr impl 339 41.12 1.68 sub 80 0.23 0.06

fe mul121666 136 2.35 0.15

x25519 scalar mult generic 4247 5305.38 305.46
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Results ii

Function L
CL

T
CCL

T
CL

Function L
CL

T
CCL

T
CL

nss/Hacl Curve25519 51/

fadd0 20 0.11 0.03 fsub0 25 0.15 0.04

fmul0 146 165.11 32.84 fmul1 81 15.09 0.57

fsqr0 112 69.36 5.17 fsqr20 224 124.89 5.11

fmul20 276 230.15 37.69

point add and double 1483 3240.20 465.32

point double 729 1352.25 24.55

openssl/curve25519/fe51 *

add 35 0.10 0.03 sub 50 0.09 0.03

mul 147 59.98 2.63 sq 119 34.53 1.50

fe51 mul121666 75 1.16 0.13

x25519 scalar mult 1481 1598.86 306.86

CRYPTOLINE finishes all cases within 10 minutes.

Field arithmetic is verified in a minute. Point addition is verified in 10 minutes.

COQCRYPTOLINE finishes all cases within 90 minutes.

Field arithmetic is verified in 5 minutes. Point addition is verified in 90 minutes.

Some point addition programs are verified but not fully certified (missing 1 out of 3).
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Post Quantum Cryptography

Classical cryptography will be broken by large-scale quantum computers.

RSA and elliptic curve cryptography

To retain security on classical computers, post quantum cryptography is developed to
prevent quantum attacks.

Note that post quantum cryptography is running on classical computers.

NIST called for PQC competition in 2016 and announced winners in 2022.

Three (Kyber for KEM, Dilithium, SPHINCS+ for DSA) have been standardized, and one

(FALCON for DSA) will be standardized in a few months.
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Results

Kyber is a lattice-based PQC KEM.

It uses the polynomial ring Fq[X ]/→X 256 + 1↑ with q = 3329.

Each f ↓ Fq[X ]/→X 256 + 1↑ is of the form
∑255

i=0 ciX
i with ci ↓ Fq for all i .

Let f =
∑255

i=0 ciX
i , g =

∑255
i=0 diX

i ↓ Fq[X ]/→X 256 + 1↑. Define
f ± g = (f ± g) mod q =

∑255
i=0(ci ± di mod q) · X i .

f → g = h mod X 256 + 1 where h = (f · g) mod q.

To compute f ↔ g , Kyber specification uses a discrete Fourier transform called Number
Theoretic Transform (NTT).

Fq[X ]/↑X 256 + 1↓ ↔= Fq[X ]/↑X 128 ↗ 1729↓ → Fq[X ]/↑X 128 + 1729↓ (17292 ↘ ↗1 mod 3329)

Function L
CL

T
CCL

T
CL

PQClean/kyber/NTT

PQCLEAN KYBER512 CLEAN ntt 10375 2641.49 92.22

PQCLEAN KYBER768 AVX2 ntt 8975 1047.99 92.23
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Hash Block Functions

Hash functions are widely used in cryptography.

Typical hash functions compute by blocks.

Such hash block functions need be very e!cient.

OpenSSL has 6 assembly implementations for SHA-256 and 5 for SHA-3.

We also develop techniques to verify them.

Our technique converts assembly and reference implementations to logic circuits and applies

logic equivalence checking.
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Has Any Bug Been Found?

Microsoft Research also entered the NIST PQC competition.

SIDH is an isogeny-based PQC.

Its source code is available at PQCrypto-SIDH.

CRYPTOLINE found an error in the aarch64 implementation of the field multiplication.

SIDH was broken in 2022.
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Conclusion

Real-world cryptographic assembly programs are formally verified in reasonable time.

CRYPTOLINE: 10 minutes (uncertified) or COQCRYPTOLINE: 90 minutes (certified)

An e!ective high-assurance formal verification tool is built.

verification + certification

We are actively verifying PQC assembly implementations.

Both avx2 and aarch64 implementations for Dilithium NTT are verified in July 2024.

Hopefully, we will have correct and e”cient PQC libraries in a few years.
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Thank you for your attention.
Question?
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