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Introduction
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Cryptography

@ Modern cryptography relies on complex mathematical structures.
e RSA: 2048-bit modulo computation

e elliptic curves: complex group operations based on large finite fields
e lattices: polynomial rings with finite coefficients of high degrees

and their inverse operations.

arithmetic.

@ In Ed25519, we have
o the finite field F, = 2%°° — 19;

o the curve —x* + y* =1 —

@ A field (such as Q) has addition and multiplication

@ Each point is represented by two field elements.

o A finite (prime) field is obtained by modulo

o F,={0,1,...,9g — 1} with a prime q.

121665 2 2
121666

X“y*.
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Computer Cryptography

@ Mathematically, all operations in cryptography have simple representation.

e RSA: m°® mod pg where p and g are 1024-bit prime numbers.

e elliptic curves: P + Q where P and @ are points on an elliptic curve.
o lattices: f(X) x g(X) mod X**° + 1 where f(X) and g(X) are in the ring F3329[X].

@ A ring (such as Z) has addition, its inverse operation, and multiplication.
@ However, no computer can perform such complex operations with simple instructions.

@ To employ modern cryptography, all operations must be implemented by programs on
different (say, 32- or 64-bit) architectures.
@ How many programmers have written multi-precision arithmetic programs?

o the GNU multi-precision arithmetic library (gmp)
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Real World Computer Cryptography

@ Complex operations (multi-precision arithmetic and polynomial multiplication) are only
small steps in computer cryptography.

@ Advanced algorithms are implemented to improve performance.

e Karatsuba multiplication, Montgomery reduction, Number theoretic transform, etc.
@ In the real world, even advanced algorithms are not good enough.

@ The OpenSSL project has many assembly programs for such operations.

@ How many programmers are comfortable writing multi-precision arithmetic in assembly?

@ And the story began in 20009...
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Cryptographic Primitives

@ We want to verify assembly implementations of such primitive operations in real-world
cryptography.
@ Specifically, we want to verify the following operations

o field arithmetic over large finite fields
@ group operations on elliptic curves
e polynomial multiplication in large finite rings
@ We want to show programs compute corresponding mathematical functions correctly.

@ [his is called functional correctness.

e We are not verifying security properties.
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Problems and Difficulties

@ Non-linear computation is hard to verify.

o SAT/SMT solvers do not work.

e If they did, RSA would be broken already.
@ more about this later.

@ Cryptographic programs are succinct.

e Every bit counts.

@ There are many cryptographic assembly programs.

@ 32 bits: x86 and armv7

e 04 bits: x86_64 and aarch64
@ and more: avx, avx2, avxbl2, and neon
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Algebraic Abstraction
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SMT QF_BV

@ SMT (Satisfiability Modulo Theories) solvers support different theories.
@ Quantifier-Free Bit-Vector logic in SMT can model computation at bit level.
e SMT QF_BV solvers translate QF_BV queries to SAT queries through bit blasting.

@ In 2014, we use BOOLECTOR to verify an academic assembly program for the field
multiplication in F, where g = 2%°°> — 19.

e about 200 instructions
e without annotation: fail to verify, with LOTS of annotation: 4 days
e COQ is needed to prove a simple algebraic property.

@ Not useful!
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gfverif

@ In 2015, the gfverif project uses the computer algebra system SAGE to verify algebraic
oroperties in C program.

@ Instead of crunching bits, computer algebra systems support arithmetic natively.
e Consider proving x -y = y - x by bits and by algebra.

@ Lesson: it is better to verify non-linear computation algebraically than logically.
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Montgomery Reduction

Algorithm Code
(*R=2%0<T < R? *) (*T=2%Ty+ T, *)
(* N-N' +1=0mod R *) ASSUME N x N’ + 1 = 0 mod [2°%¢]
m < ((T mod R)-N") mod R dc :m <~ MuULL T N’
t <~ (T+m-N)/R mNy : mNp <« ™MuLL m N
carry -t < ADDS T; mN;
c:t < ADCS Ty mNy carry

ASSERT t; = 0 mod [2°4]

ASSUME t; = 0
(*t-R=T mod N *) ASSERT (cx2%% 4 t) x 2% = T x 2% 4+ T; mod [N]

@ In the code, ¢ and carry are bit variables; others are 64-bit variables.

o Given a 128-bit number Ty - 2% 4+ T, and two 64-bit constants N - N’ 4+ 1 = 0 mod [2%4],
it computes a 65-bit number 2% . (¢ -2%* +t) = (Ty - 2°* + T,) mod [N] without division.

@ BOOLECTOR fails to verify it in 7 days.
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Montgomery Reduction
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Polynomial Equations

@ ldea: translate programs into polynomial equations.

Code Equations
ASSUME N x N’ + 1 = 0 mod [2°¢] NxN +1 = 0mod [2%]
dc:m — MULL T; N/ dc- 2%+ m = T, -N
mNy : mN; <+ MULL m N mNy -2+ mN, = m-N
carry - (carry —1) = 0
-t — ADDS T; mN
cany - u LT carry - 204 4 tt = T;+ mN,
c-(c—1) = 0
-t <~ ADCS Ty mN
¢ H M carty c- 2%+t = Ty+ mNy—+ carry

ASSERT t; = 0 mod [2%4]

@ To ensure soundness, all program traces must be solutions to all equations.

@ No overflow, no underflow, etc.

@ Soundness conditions are checked by SMT QF_BV solvers.
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Root Entailment Problem

@ ldea: verify assertions by checking roots.

Equations Root Entailment
VYN, N, m, T;, Ty, mN;, mNy, t;, t, dc, carry, c.
NxN+1 = 0mod[2%] ( N x N4+ 1 =0 mod [2%] A
dc-2%4+m = T, -N dc -2+ m—T;, -N =0 A
mNy -2+ mN, = m-N mNy -2+ mN, —m-N =0 A
carry - (carry —1) = 0 carry - (carry — 1) =0 A
carry - 2% +t, = T+ mN, carry - 2°* +t, — (T, +mN,) =0 A
c-(c—1) = 0 c-(c—1)=0 A
c- 2%+t = Ty+ mNy+ carry c-2%+t—(Ty+mNy+carry) =0 )
ASSERT t; = 0 mod [2%4] — t; = 0 mod [2°*]

@ The root entailment problem: given a system X of polynomial equations, verify whether
all solutions to 2 are also solutions to the assertion.
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Root Entailment Problem

f=g wip f—g=0
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Ideal Membership Problem

Root Entailment ldeal Membership
VN, N' . m, T, T/H, mN;, mNy, tL,6:, dc, carry, c. N N' 41— k.26
( N x N"+1 =0 mod [2°] A 64 ,
64 , dc-2>*+m—1T;-N
dc -2+ m—1T;-N'" =0 /N\ No - 264 = mN N
m o — .
mNy -2+ mN, —m-N =0 A & -
carry - (carry — 1)
carry - (carry —1) =0 A t € carry - 2% + t, — (T, + mN,)
rr . —
carry-264—|—tL—(TL—|—mNL) = /N\ Y - - -
(c—1)=0 A c-le=1)
c-(c—1)=
c-2% 4+t —(Ty+ mNy + carr
c-2% 4+t — (Ty + mNy + carry) =0 ) ( 564 " )

— t;, = 0 mod [2%]

@ f C <go,g1,...,gn> iff:ho°go—|—h1'g1—|—°”hn'gn for some hg, hy, ..., h,.
o Given f, go, &1, ..., &n, the ideal membership problem checks if f € (go, g1,...,8&n)-

@ The ideal membership problem is solved by computing Grobner bases.
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Ideal Membership Problem

Root Entailment ldeal Membership
VI, /V/, m, Ty, Ty, MmN, mNy, t;, t, dc, carry, C.

NxN +1—k-2%

N x N +1=0 mod [2% A
( ><64+ mo /[ ] de- 2% o m— T, -\
dc-2°"4+m—T;,-N =0 A N2 N
mNH°264—|—mNL—m.N:O A H L
carry - (carry — 1)
carry - (carry —1) =0 A tLE< carry - 24 1 ¢ (T, + mN,) >
carry - 2%+t — (TL + mN ) =0 A c (Z l)L L
c-(c—1)=0 A
2% 4+t — (T N
c-2% 4t — (Ty+ mNy+ carry) =0 ) c 2+t —( g&jm H + carry)

— t; = 0 mod [264]

f E <go g1, > 'f f = ho go + h1 g1 + h gn for some ho,hl, ‘}3
o leen go g1 g,, the |deaI membershlp problem checks |f f c (go g1 g ).

@ The ideal membership problem is solved by computing Grobner bases.
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@ CRYPTOLINE is a formal verification tool for cryptographic assembly programs.

CRYPTOLINE

@ |t has two verification cores:

e The algebraic core implements algebraic abstraction and employs computer algebra systems.

e The range core employs SMT QF_BV solvers.

@ CRYPTOLINE verifies Montgomery reduction in 1 second.
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Section 3

Certified Verification
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Bugs in Verification?

@ Verification tools are very complex programs themselves.

@ A typical verification tool has the following phases:

e A reduction phase transforms verification problems to well-established problems.
e A proof phase employs efficient provers to solve well-established problems.

@ Any mistake can lead to incorrect verification results.

@ Many provers are known to have bugs.

@ How much do you trust your verification tools?

@ "'Model checkers are nice tools, but their results may be dubious.”
Prof. Jean-Francois Monin, VERIMAG

@ Besides, our competitors always complain our trusted computing base is large.
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Formally Verified Algorithm

@ CRYPTOLINE has several reduction phases:

e It reduces CRYPTOLINE assertions to the ideal membership problem.

t reduces soundness conditions to SMT QF_BV queries.
t moreover reduces SMT QF_BV queries to SAT queries (bit blasting).

@ to avoid bugs in SMT QF_BV solvers

@ All these reduction algorithms are specified and proven in COQ.

o For example, consider bit_blast(¢) where ¢ is an SMT QF_BV query.
e We give a formal COQ proof for the following theorem:

For all SMT QF_BV query ¢, ¢ is satisfiable if and only if the SAT query bit_blast(¢) is satisfiable.
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Certified Results

@ To ensure our queries are solved correctly, we ask external efficient provers to provide a
certificate for each query.

e Formally verified provers would be too inefficient.
e SAT competition requires certificates since 2013.

@ Two types of certificates are needed: one for ideal membership and the other for SAT.

@ Each certificate is validated by an independent certificate checker.

e To further improve assurance, we develop a formally verified certificate checker for ideal
membership and use a formally verified certificate checker for SAT.
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COQQFBYV and COQCRYPTOLINE

@ We build two formally verified verification tools.

@ COQQFBYV is a formally verified SMT QF_BV solver.

e It is based on OCAML programs automatically extracted from COQ bit blasting algorithms.
e It employs the formally verified SAT certificate checker GRAT.

@ COQCRYPTOLINE is a formally verified verification tool for cryptographic assembly
programs.

o It is based on OCAML programs automatically extracted from our reduction algorithms.
e It employs our formally verified certificate checker for the ideal membership problem.

@ Model checkers can be trustful if we build them right.
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Experiments
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Classical Cryptography

@ We verify field arithmetic and group operations in two different curves from four different
security libraries:

e secp256kl: bitcoin
e curve25519: boringSSL, nss, and OpenSSL.

@ 47 cryptographic C programs are verified in experiments.
e We obtain their GCC Gimple IR and translate them to CRYPTOLINE.

@ Experiments are running on an Ubuntu 22.04 server with 4x 1.5 GHz AMD EPYC 7763
64-core CPUs.
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Results i

Function LCL TCCI_ TCL Function LCI_ TCCI_ TCL
bitcoin/asm/secp256k1_fe_*
mul_inner 269 91.58 4.46 sqr-inner 226 39.22 2.64
bitcoin /field /secp256k1_fe_*
add 35 0.09 0.02 cmov 95 3.14 0.03
mul_inner 172 76.81 3.26 mul_int 26 1.15 0.02
negate 31 0.62 0.03 sqr-inner 155 46.85 1.90
from_storage 100 0.14 0.03 normalize_weak 36 0.30 0.05
bitcoin/group/
secp256kl_ge_neg 51 0.32 0.04
secp256kl_ge_from_storage 100 0.20 0.04
LCL: lines of Cryptol_ine instructions secp256kl_gej_double_var.part.14 1347 1578.91 30.37
bitcoin/scalar /secp256k1_scalar_*
add 152 2.95 0.12 mul_512 478 55.60 3.61
TCCL: time took by CoquyptoLine mul 1232 310.87 11.83 reduce 147 2.01 0.11
sqr 1193 249.39 9.46 sqr-512 439 40.09 4.00
secp256k1_scalar_reduce_512 754 86.16 3.56
: : boringssl /fiat_curve25519 /fe_*
TCL: time took by CryptoLine add 35 0.08 0.02/ muI_im/pI 152 71.25 3.44
sub 40 0.10 0.03 sqr-impl 124 36.69 1.88
fe_mul121666 74 1.40 0.14
x25519_scalar_mult_generic 1530 1257.98 346.05
boringssl/fiat_curve25519_x86 /fe_*
add 70 0.16 0.03 mul_impl 435 109.97 3.05
sqr-impl 339 41.12 1.68 sub 80 0.23 0.06
fe_mul121666 136 2.35 0.15
x25519_scalar_mult_generic 4247 5305.38 305.46
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Results |

Al e = oy Sops
. L € 4B il sl e i i

bltcom/asm/secp256k1_fe_

mul_inner 01.58 4.46 sqr-inner : : ;4 Field Operations

bitcoin /field /secp256k1_fe_*

add 0.09 0.02 cmov
mul_inner 76.81 3.26 mul_int
negate 0.62 0.03 sqr-inner
from_storage 0.14 0.03 normalize_weak
bitcoin/group/
secp256kl_ge_neg
LCL: lines of Cryptol_ine instructions | - secp256k1_gej_doublevar part 14 1347 | 178.91 3037

“bitcoin/scalar/secp2bbk1_scalar->
2.95 0.12 mul_512
1232 310.87 11.83 reduce
1193 249.39 9.46 sqr-512
secp256k1_scalar_reduce_512

boringssl /fiat_curve25519 /fe_*
35 0.08 0.02 mul_impl
40 0.10 0.03 sqr-impl
 femull2l666 | 74 | 140 | _ =
x25519_scalar ultgenerlc » o 1530 | 1257.98 34605 1

mul_impl

sqr-impl

x25519_scalar mult_generic 4247 5305.38 305.46
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L lines of CryptoLine instructions

T'c ;- time took by CoqCryptoLine

T~ : time took by CryptoLine

Results 1i

Function LCI_ TCCL TCI_ Function LCL TCCL TCL
nss/Hacl_Curve25519.51/
faddO 20 0.11 0.03 fsubO 25 0.15 0.04
fmulO 146 165.11 32.84 fmull 81 15.09 0.57
fsqrO 112 69.36 5.17 fsqr20 224 124.89 5.11
fmul20 276 230.15 37.69
point_add_and_double 1483 3240.20 465.32
point_double 729 1352.25 24.55
openssl/curve25519 /feb1_*
add 35 0.10 0.03 sub 50 0.09 0.03
mul 147 59.98 2.63 sq 119 34.53 1.50
fe51_mul121666 75 1.16 0.13
x25519_scalar_mult 1481 1598.86 306.86

@ CRYPTOLINE finishes all cases within 10 minutes.

e Field arithmetic is verified in a minute. Point addition is verified in 10 minutes.

@ COQCRYPTOLINE finishes all cases within 90 minutes.

o Field arithmetic is verified in 5 minutes. Point addition is verified in 90 minutes.

@ Some point addition programs are verified but not fully certified (missing 1 out of 3).
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Post Quantum Cryptography

@ Classical cryptography will be broken by large-scale quantum computers.

e RSA and elliptic curve cryptography

@ To retain security on classical computers, post quantum cryptography is developed to
prevent quantum attacks.

e Note that post quantum cryptography is running on classical computers.
@ NIST called for PQC competition in 2016 and announced winners in 2022.

@ Three (Kyber for KEM, Dilithium, SPHINCS+ for DSA) have been standardized, and one
(FALCON for DSA) will be standardized in a few months.

: - ' ' ' TAIWAN
December 27, 2024 National Taiwan University of Science and Technology QTECH 21/26



@ Kyber is a lattice-based PQC

@ |t uses the polynomial ring If,
@ Each f ¢ IF‘C,[X]/<X256 +1) is of the form 3. ¢; X' with ¢; € Fy for all /.
o Let fF =72 X g =322 diX € F[X]/ (X% +1). Define

@ f:: :(f::g) modqzzz%(c,_
° fXg:hmodX256+1whereh_(f-g)modq.

KEM.

Results

d; mod q) - X'.

X]/{X?° + 1) with g = 3329.

@ To compute f X g, Kyber specification uses a discrete Fourier transform called Number

Theoretic Transform (NTT).

o F [X]/(X%° +1) 2 F,[X]/(X*® —1729) x F,[X]/(X**® +1729) (1729 = —1 mod 3329)

Function

Leg

TccL

TcL

PQClean/kyber/NTT

PQCLEAN_KYBER512_CLEAN_ ntt 10375

2641.49

02.22

PQCLEAN_KYBER768_AVX2_ntt 8975

1047.99

92.23
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Hash Block Functions

@ Hash functions are widely used in cryptography.

@ Typical hash functions compute by blocks.

@ Such hash block functions need be very efficient.
e OpenSSL has 6 assembly implementations for SHA-256 and 5 for SHA-3.

@ We also develop techniques to verify them.

@ Our technique converts assembly and reference implementations to logic circuits and applies

logic equivalence checking.
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Has Any Bug Been Found?

@ Microsoft Research also entered the NIST PQC competition.
@ SIDH is an isogeny-based PQC.
@ lIts source code is available at PQCrypto-SIDH.

@ CRYPTOLINE found an error in the aarch64 implementation of the field multiplication.
@ SIDH was broken in 2022.
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Conclusion

@ Real-world cryptographic assembly programs are formally verified in reasonable time.
o CRYPTOLINE: 10 minutes (uncertified) or COQCRYPTOLINE: 90 minutes (certified)

@ An effective high-assurance formal verification tool is built.

e verification + certification

@ We are actively verifying PQC assembly implementations.
e Both avx2 and aarch64 implementations for Dilithium NTT are verified in July 2024.

@ Hopefully, we will have correct and efficient PQC libraries in a few years.

: : ' ' : TAIWAN
December 27, 2( National Taiwan University of Science and Technology QTECH 25/26



Thank you for your attention.

Question?
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