

Lattice Cryptosystems (III)

Kyber, Saber, NTRU Prime, Dilithium, Falcon

楊柏因 Bo-Yin Yang

Sinica/CCoE/IACR PQCrypto Mini-School, July 13, 2022

LWE Story

Institute of Information Science, Academia Sinica

Stories of Historical (Hysterical?) Interest

- 1996, Ajtai article describing theoretical construction of lattice crypto
- 1996, Hoffstein-Pipher-Silverman article circulated (after provisional patent) A section specifically mentions distinguishing (a, as + e) from random
- 2005, Regev article re-introduces Learning with Errors problem/systems
- 2010, Gaborit/Aguilar-Melchor patent filed
- 2010, Lybashevsky-Peikert-Regev article, just after the G/AM patent.
- 2012, Ding article on Ring-LWE key exchange and patent
- 2014, Peikert article on Ring-LWE cryptosystems.
- 2016, NewHope key exchange by Alkim, Ducas, Pöppelman, Schwabe.
- 2017, Crystals-Kyber, Saber, NewHope KEMs as NIST-PQC submissions
- 2018, Kyber is modified to use incomplete NTT.
- 2020, Kyber is modified again, NewHope eliminated.
- 2022, Kyber selected as future standard

What is usually called "R-LWE based Encryption"

Source of the Random Looking Distribution (everything is a polynomial) NTRU "Ring-LWE-based" Lattice Encryption

- h = g/f, g, f ternary b = as + e, s, e discrete Gaussian, a random
- $h \sim U$, U means uniform $(a, b) \sim U \times U$, U means uniform
- 1. c = (a, b + m) obviously does not secure m.
- 2. c = (ra, rb + m) still insecure, because we can compute r.
- 3. c = (ra + e', rb + m) look secure but not semantically secure Semantically secure: ciphertexts leak no information, in particular, we shouldn't be able to tell that ciphertexts point to the same plaintext. Which is because $b^{-1}((r'b + m) - (rb + m)) = (r' - r)$ is small.
- 4. c = (ra + e', rb + e'' + m) is really provably secure if Ring-LWE is.

Procedures of R-LWE over \mathbb{Z}_q

KeyGen

Generate random uniform a, (small) discrete Gaussian s, e, s is the secret key, and the pubkey is (a, b), b = as + e.

Encrypt *m* **using** $pk = (a, b), m \in \{0, 1\}^n$ Generate discrete Gaussian *r*, *e*', *e*", *c* = (*ra* + *e*', *rb* + *e*" + $\lfloor \frac{q}{2} \rfloor m$)

Decrypt from
$$c = (u, v)$$
 using $sk = s$
compute $v - us = rb + e'' + \lfloor \frac{q}{2} \rfloor m - ras - e's = \lfloor \frac{q}{2} \rfloor m + \underbrace{re + e'' - e's}_{small}$

Each component (bit) is 1 if the number is closer to q/2 than 0, else 0.

When Implemented

c = (u, v) rounded down to powers of 2 before transmission. Use not Discrete Gaussian but centered Binomial. Sample NTT(a) for speed. Maybe error-correct.

Gaborit/Aguilar-Melchior/Lyubashevsky/Peikert/Regev (2010, Ring-LWE case)

s, e
$$\leftarrow \chi^*$$
(discrete Gaussian) A uniform random
 $SK = s, PK = t = As + e$ globally fixed
 $t \longrightarrow$
r, e', e'' $\leftarrow \chi^*$
 $u = Ar + e'$
 $v = tr + e'' + \lfloor \frac{q}{2} \rfloor M$
 $\leftarrow u, v$
 $M' = \lfloor \frac{2}{q} (v - su) \rfloor$

Note $\mathbf{v} - \mathbf{su} = \mathbf{er} - \mathbf{se'} + \mathbf{e''} + \left\lfloor \frac{q}{2} \right\rfloor \mathbf{M}$. This is *not* sufficient to ensure that $\mathbf{M'} = \mathbf{M}$. This is in the G/AM patent (Feb. 2010) and May 2010 talk @PQC, not in LPR Eurocrypt 2010 paper (deadline Feb. 2010), but in LPR Apr. and May 2010 talks.

2022.07.13 B.-Y. Yang

"Games" for the Gaborit–Aguilar-Melchor/LPR construction

1. Distinguishing (a, \vec{b}) and (u, v) from Random. R-LWE says we can replace b = as + e with a (uniform) random Y.

- 2. Distinguishing (a, Y) and $\begin{pmatrix} ra+e' & rY+e''+m \\ \widehat{u} & , & \widehat{v} \end{pmatrix}$ from random R-LWE says we can replace u = ra + e' and rb + e'' with random Ψ, Φ .
- 3. Distinguishing (a, Y), $(\Psi, \Phi + m)$ from random but the sum of a uniform random and anything is uniform random
- 4. Distinguishing (*a*, Y), (Ψ, Ξ) from random where Y, Ψ, Ξ are random, and we see that (GAM)LPR is secure.

We don't talk "IND-CCA2 conversions" here, but Cf. Prof. Kai-Min Chung's lectures.

Ding's Key (Diffie-Hellman-like) Exchange (2012)

Note: at nearly 1/2 the transmission size

Party iParty jPublic Key:
$$p_i = as_i + 2e_i \in R_q$$
Public Key: $p_j = as_j + 2e_j \in R_q$ a is uniform random, publicSecret Key: $s_i \in R_q$ Secret Key: $s_j \in R_q$ $keys$ are ephemeral!where $s_i, e_i \leftarrow_r \chi_a$ $k_j = s_j p_i \in R_q$ $(ha(x) = 1 \text{ if } -\frac{q}{2} < x \mod {}^{\pm}q < \frac{q}{2})$ $k_i = s_i p_j \in R_q$ $w_j = Cha(k_j) \in \{0, 1\}^n$ $Cha(x) = 0 \text{ otherwise}$ $k_i = s_i p_j \in R_q$ $\sigma_j = Mod_2(k_j, w_j) \in \{0, 1\}^n$ $k_i - k_j = 2(s_i e_j - s_j e_i)$ $sk_i = H_2(i, j, w_j, \sigma_i)$ $sk_j = H_2(i, j, w_j, \sigma_j)$ $((x + y \cdot \frac{q-1}{2}) \mod q) \mod 2$

- \mathbb{Z} := integers, $R := \mathbb{Z}[x]/(x^n + 1)$, $R_q : \mathbb{Z}_q[x]/(x^n + 1)$
- $\leftarrow_r \chi_{\alpha}$ denotes a random choice from χ_{α} (discrete Gaussian distribution centered at 0, std.= α).

Ding's Authenticated Key Exchange

Party i Party i Public Key: $p_i = as_i + 2e_i \in R_a$ Public Key: $p_i = as_i + 2e_i \in R_a$ Secret Key: $s_i \in R_a$ Secret Key: $s_i \in R_a$ where $s_i, e_i \leftarrow_r \chi_{\alpha}$ where $s_i, e_i \leftarrow_r \chi_a$ $x_i = ar_i + 2f_i \in R_a$ $y_i = ar_i + 2f_i \in R_a$ where $r_i, f_i \leftarrow_r \chi_\beta$ where $r_i, f_i \leftarrow_r \chi_\beta$ x_i,p_i $k_i = (p_i c + x_i)(s_i d + r_i) + 2g_i \in R_a$ where $g_i \leftarrow_r \chi_{\beta}$ $w_i = \text{Cha}(k_i) \in \{0, 1\}^n$ y_j,w_j,p_j $k_i = (p_i d + y_i)(s_i c + r_i) + 2g_i$ where $g_i \leftarrow_r \chi_\beta$ $\sigma_i = \operatorname{Mod}_2(k_i, w_i) \in \{0, 1\}^n$ $\sigma_i = \operatorname{Mod}_2(k_i, w_i) \in \{0, 1\}^n$ $sk_i = H_2(i, j, x_i, y_i, w_i, \sigma_i)$ $sk_i = H_2(i, j, x_i, y_i, w_i, \sigma_i)$

2022.07.13 B.-Y. Yan

"Peikert's Version of Ding's Key Exchange (2014)"

Achieves nearly the same thing as Ding, and is what is usually known as "R-LWE" today

Parameters: q, n, χ			Pr(e = 0)	=	$\frac{1}{2}$, Pr(e = 1) = Pr(e = -1) = $\frac{1}{4}$,
KEM.Setup():					- $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
$\mathbf{a} \stackrel{\$}{\leftarrow} \mathscr{R}_q$			abi(v, e)	:=	$2v - e, \langle v \rangle_2 := \lfloor \frac{-}{q} \cdot v \rfloor \mod 2,$
Alice (server)		Bob (client)	171	•-	1^2 , yl mod 2
$KEM.Gen(\mathbf{a})$:		$KEM.Encaps(\mathbf{a},\mathbf{b}):$	L ^v I ₂		q
$\mathbf{s}, \mathbf{e} \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} \boldsymbol{\chi}$		$\mathbf{s}', \mathbf{e}', \mathbf{e}'' \stackrel{s}{\leftarrow} \boldsymbol{\chi}$	realize b		$\begin{bmatrix} 0, & \text{if } w \in I_b + E \pmod{q} \end{bmatrix}$
$\mathbf{b} \leftarrow \mathbf{as} + \mathbf{e}$	$\xrightarrow{\mathbf{b}}$	$\mathbf{u} \leftarrow \mathbf{as'} + \mathbf{e'}$	rec(w, b)	:=	1, else
		$\mathbf{v} \leftarrow \mathbf{b} \mathbf{s}' + \mathbf{e}''$,		(0, 1, 1, 9, 1)
		$\mathbf{\bar{v}} \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} dbl(\mathbf{v})$	¹ 0	.=	$\{0, 1, \dots, \lfloor \frac{1}{2} \rfloor = 1\},\$
KEM.Decaps(s,(u,v')):	$\xleftarrow{u,v'}$	$\mathbf{v}'=\langlear{\mathbf{v}} angle_2$	I ₁	:=	$\{-\lfloor \frac{q}{2} \rfloor,, -1\},$
$\mu \leftarrow rec(2\mathbf{us},\mathbf{v}')$		$\mu \leftarrow \lfloor ar{\mathbf{v}} ceil_2$	F		$q q_{\lambda}$
			E	•=	$L^{-}\overline{4}, \overline{4}$

2022.07.13 B.-Y. Yang

Bos, Costello, Naehrig, Stebila (2015)

			dbl(v,e)	:=	2v - e,
Public parameters			Pr(e = 0)	=	$\frac{1}{2}$, Pr(e = 1) = Pr(e = -1) = $\frac{1}{4}$
Decision R-LWE parameter $a \stackrel{\$}{\leftarrow} \mathcal{U}(R_q)$	s q, n, j	X	$\langle v \rangle_{q,2}$:=	$\lfloor \frac{4}{a} \cdot v \rfloor \mod 2,$
Alice		Bob			2
$s, e \xleftarrow{\$} \chi$		$s', e' \stackrel{\$}{\leftarrow} \chi$	[v] _{q,2}	:=	$\left[\frac{2}{a} \cdot v\right] \mod 2,$
$b \leftarrow as + e \in R_q$	\xrightarrow{b}	$b' \leftarrow as' + e' \in R_q$ $e'' \stackrel{\$}{\leftarrow} \chi$ $v \leftarrow bs' + e'' \in R_q$	X	:=	$\psi^n, \psi(x) = D_{\mathbb{Z}, 8/\sqrt{2\pi}}(x) = \frac{1}{8}e^{-\pi x^2/32}$
	$\overleftarrow{b',c}$	$\overline{v} \stackrel{\$}{\leftarrow} \mathrm{dbl}(v) \in R_{2q}$ $c \leftarrow \langle \overline{v} \rangle_{2q,2} \in \{0,1\}^n$	rec(w,b)	:=	$\begin{cases} 0, & \text{if } w \in I_b + E \pmod{q}, \\ 1, & \text{else;} \end{cases}$
$k_A \leftarrow \operatorname{rec}(2b's, c) \in \{0, 1\}^n$		$k_B \leftarrow \lfloor \overline{v} \rfloor_{2q,2} \in \{0,1\}^n$	n	=	1024, $q = 2^{32} - 1$.

2022.07.13 B.-Y. Yang

Institute of Information Science, Academia Sinica

NewHope (Alkim, Ducas, Pöppelman, Schwabe, 2015)

Parameters: $q = 12289 < 2^{14}$, n	= 1024				
Error distribution: ψ_{16}			ψ_{16}	:=	Centered Binomial, 16 fair coins
Alice (server)		Bob (client)			lar
seed $\stackrel{s}{\leftarrow} \{0,1\}^{256}$			HelpRec(x; b)	:=	$\text{CVP}_{\tilde{p}_{i}}\left(\frac{2}{2}(\mathbf{x}+b\mathbf{g})\right) \mod 2^{r},$
$\mathbf{a} \leftarrow Parse(SHAKE-128(seed))$					$-4 \langle q \rangle$
$\mathbf{s}, \mathbf{e} \leftarrow \psi_{16}^n$	(b seed)	$\mathbf{s}', \mathbf{e}', \mathbf{e}'' \leftarrow \psi_{16}^n$	ם	•_	$\mathbb{Z}[1, 1, 1, 1] \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
b←as+e	$\xrightarrow{(\mathbf{b},seea)}$	$\mathbf{a} \leftarrow Parse(SHAKE-128(\mathit{seed}))$	D ₄	•-	$\mathbb{Z}[\mathbf{u}_{0}^{\prime},\mathbf{u}_{1}^{\prime},\mathbf{u}_{2}^{\prime},(\overline{2}^{\prime},\overline{2}^{\prime},\overline{2}^{\prime},\overline{2}^{\prime},\overline{2}^{\prime})]$
		$\mathbf{u} \leftarrow \mathbf{a}\mathbf{s}' + \mathbf{e}'$			/1 1_)
	(u r)	$\mathbf{v} \leftarrow \mathbf{b}\mathbf{s} + \mathbf{e}^{*}$	Rec(x, r)	:=	Decode $\left(\frac{1}{2}\mathbf{x} - \frac{1}{2r}\mathbf{Br}\right)$,
v′←us	\leftarrow	$\mathbf{r} HelpRec(\mathbf{v})$			(q 2')
$\mathbf{v} \leftarrow Rec(\mathbf{v}', \mathbf{r})$		$v \leftarrow Rec(\mathbf{v}, \mathbf{r})$			$\begin{bmatrix} 0 & x - x \\ closer to (0, 0, 0, 0) \end{bmatrix}$
$\mu \leftarrow$ SHA3-256(v)		$\mu \leftarrow SHA3-256(v)$	Decode(x)	:=	
					[1, x - [x] closer to $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

A similar version without rings (Frodo) was proposed; it was much larger and not very competitive.

B.-Y. Yang

Procedures of M-LWE (Kyber) over \mathbb{Z}_q

KeyGen

Generate random uniform matrix A, (small) centered binomial vector s, e, s is the secret key, and the pubkey is (A, b), b = As + e.

Encrypt *m* **using** *pk* = (*A*, *b*), *m* Generate error (note: not discrete Gaussian) *r*, *e'*, *e*", *c* = (*Ar* + *e'*, *r* · *b* + *e*" + $\lfloor \frac{q}{2} \rfloor m$)

Decrypt from
$$c = (u, v)$$
 using $sk = s$
compute $v - u \cdot s = rb + e'' + \lfloor \frac{q}{2} \rfloor m - r^T As - e's = \lfloor \frac{q}{2} \rfloor m + \underbrace{re + e'' - e's}_{small}$

Each component (bit) is 1 if the number is closer to q/2 than 0, else 0.

In Actual Implementation Neither u nor v in c = (u, v) is transmitted in its entirety. They are rounded to a power of two. We sample NTT(A) and not A to faciliate fast multiplication.

Crystals-Kyber, a Module LWE Cryptosystem (NIST Submission 2017)

Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe, Seiler, Stehlé

Compress_q(x, d) :=
$$\lfloor (2^d/q)x \rfloor \mod 2^d$$
; Decomp_q(x, d) := $\lfloor (q/2^d)x \rfloor \mod q$
 R_q := $\mathbb{Z}_{3329}[X]/(X^{256} + 1)$, $\mathbf{A} \in R_q^{k \times k}$
 χ^* := $(\Pr(\chi^* = \pm 1) = 5/16, \Pr(\chi^* = 0) = 3/8)$, U := uniform $\in R_q^{k \times k}$

 $s, e \leftarrow \chi^{*} \qquad A \leftarrow U(public)$ SK = s, PK = t = As + e $t \longrightarrow$ $s, t, u, e, e' \in R_{q}^{k}$ $u = Compress_{q}(A^{T}r + e', d_{u})$ $v = Compress_{q}(t^{T}r + e'' + \lfloor \frac{q}{2} \rfloor M, d_{v})$ $\leftarrow u, v$ $M' = \lfloor \frac{2}{q} \left(Decomp_{q}(v, d_{v}) - s^{T} Decomp_{q}(u, d_{u}) \right) \rfloor$ check M' components for proximity to 0, q/2

Procedures of R-LWR over \mathbb{Z}_q and \mathbb{Z}_p

KeyGen

Generate random uniform a, (small) discrete Gaussian s, which is the secret key, and the pubkey is (a, b), $b = \lceil as \rceil$.

Encrypt *m* **using** $pk = (a, b), m \in \{0, 1\}^n$ Generate error (note: not discretee Gaussian) *r*, *c* = ([*ra*], [*rb* + $\lfloor \frac{q}{2} \rfloor m$])

Decrypt from
$$c = (u, v)$$
 using $sk = s$
Can write $[as] = as + e, [ra] = ra + e', [rb + \lfloor \frac{q}{2} \rfloor m] = rb + \lfloor \frac{q}{2} \rfloor m + e''.$
compute $v - us = rb + e'' + \lfloor \frac{q}{2} \rfloor m - ras - e's = \lfloor \frac{q}{2} \rfloor m + \underbrace{re + e'' - e's}_{small}$

Each component (bit) is 1 if the number is closer to q/2 then 0, else 0.

We compress *u*, *v* again in practice.

Procedures of M-LWR (Saber) over \mathbb{Z}_q and \mathbb{Z}_p

KeyGen

Generate random uniform $l \times l$ matrix of ring elements A, (small) centered binomial vector s, (the secret key), and the pubkey is (A, b), $b = \lceil As \rceil$.

Encrypt *m* **using** $pk = (A, b), m \in \{0, 1\}^n$ Generate centered binomial vector *r*, $c = ([Ar], [r \cdot b + \lfloor \frac{q}{2} \rfloor m])$

Decrypt from
$$c = (u, v)$$
 using $sk = s$
Can write $[As] = As + e, [Ar] = Ar + e', [r \cdot b + \lfloor \frac{q}{2} \rfloor m] = r \cdot b + \lfloor \frac{q}{2} \rfloor m + e''.$
compute $v - u \cdot s = r \cdot b + e'' + \lfloor \frac{q}{2} \rfloor m - r^T As - e's = \lfloor \frac{q}{2} \rfloor m + \underbrace{r \cdot e + e'' - e' \cdot s}_{small}$

Each component (bit) is 1 if the number is closer to q/2 than 0, else 0. We compress u, v again in practice.

SABER, a Module LWR (D'Anvers, Karmakar, Roy, Vercautern)

 $\begin{aligned} \chi^* &:= \text{CenteredBinomial(8, 1/2)} \\ R_q &:= \mathbb{Z}_{8192}[X]/(X^{256} + 1), \ \mathbf{A} \in R_q^{k \times k} \end{aligned}$

s, e
$$\leftarrow \chi^*$$
 A $\leftarrow U(\text{public})$
 $SK = s, PK = b = \left\lfloor \frac{p}{q} As \right\rfloor$
s, s', b, b' $\in R_q^k$ A, b \longrightarrow
 $s, s', b, b' \in R_q^k$ b' $= \left\lfloor \frac{1}{8} A^T s' \right\rfloor$: coefficients mod 1024
 $v' = \left\lfloor \frac{1}{128} b^T s' + 4M \right\rfloor$: coefficients mod 8
 $\leftarrow b', v'$
 $M = \left\lfloor \frac{1}{4096} \left(1024v' - 8b'^T s \right) \right\rfloor$

2022.07.13 B.-Y. Yang

Some Misunderstandings about (M,R)-LWE i

Regev first suggested the LWE problem

Hoffstein-Pipher-Silverman noted (1996) LWE has to be hard for NTRU to exist.

SVP has been studied since Gauss

Gauss reduced dim-2 lattices; the Gaussian Heuristic is not endorsed by him.

NTRU has been studied for 1/4-century, power-of-2-cyclotomic rings much less.

There are no known attacks exploiting the ideal structure The S-Unit attack against cyclotomic rings ideal-SVP is being ignored or denied.

M-LWE has easier scaling of security

Compared to 2-power-cyclotomic Ring-LWE, yes, but not using

2-power-cyclotomic rings has much better scaling of security.

Some Misunderstandings about (M,R)-LWE ii

M-LWE is more (or "no less") secure than R-LWE $\mathbb{Z}_q[X]/\langle X^{2^k} + 1 \rangle$ is a module over $\mathbb{Z}_q[X]/\langle X^{2^l} + 1 \rangle$ if $\ell < k$, so if M-LWEs on all dimension $2^{k-\ell}$ modules over $\mathbb{Z}_q[X]/\langle X^{2^l} + 1 \rangle$ are insecure, naturally an R-LWE over $\mathbb{Z}_q[X]/\langle X^{2^k} + 1 \rangle$ is insecure. But there are no reductions from an M-LWE over $\mathbb{Z}_q[X]/\langle X^{256} + 1 \rangle$ to an R-LWE over $\mathbb{Z}_q[X]/\langle X^{1020} + X^{1019} + \dots + X + 1 \rangle$.

NTRU doesn't have a security reduction like (R,M)-LWE

There are larger (Stehlè-Steinfeld) NTRU instances with perfectly fine and meaningful security reductions, the same way that there are larger M-LWE instances with valid security reductions.

(R,M)-LWE is protected by a worst-case-to-average-case reduction theorem Practical instances much too small compared to the dimensions in the theorem.

Some Misunderstandings about (M,R)-LWE iii

M-LWE (Kyber) is more efficient than R-LWE (NewHope)

No, a matrix-to-vector multiplication over a module takes time that is square in the module dimension; a polynomial multiplication over an equally-sized ring takes time that is linearithmic in the ring size.

Kyber is faster than NewHope because NewHope picked its parameters (e.g., error width) more conservatively where Kyber did not.

Kyber's security analysis is thorough No, it failed to include "hybrid attacks".

Some Misunderstandings about (M,R)-LWE iv

NewHope picked its parameters in accordance with security theorems What NewHope did (without logically connecting the dots):

- pointing at worst-to-average-case reductions on continuous Gaussians;
- saying that those trivially also cover rounded Gaussians;
- giving a Renyi-divergence proof that the NewHope distribution is about as good as a rounded-Gaussian distribution

Kyber is more secure than NewHope

No, Kyber's much narrower error distribution makes it probably less secure than NewHope at each corresponding security level, due to hybrid attacks.

NTRU Prime

Institute of Information Science, Academia Sinica

Streamlined NTRU Prime (NTRU Variation), the Public Key Encryption

The Ring is $R/q = \mathbb{F}_q[x]/(x^p - x - 1)$, a field

- p, q primes, w posint, $2p \ge 3w, q \ge 16w + 1$.
- **small** is a polynomial with coefficients in {0, ±1}.
- **short** is small and has exactly *w* non-zero coefficients.
- **rounded** is each coefficient normalized and divisible by 3.

KeyGen: Take small $g \in R/3 = \mathbb{F}_3[x]/(x^p - x - 1)$ until invertible and compute $1/g \in R/3$. Take short $f \in R/3$. SecKey is $(f, 1/g) \in (R/3) \times (R/3)$. Pubkey $h = g^{\dagger}/(3f^{\dagger}) \in R/q$. Here $\cdot^{\dagger} : R/3 \to R/q$ is a "centerlift".

Encrypt: Input short *r*, ciphertext *c* = round(*hr*).

Decrypt: Take SecKey (f, v), compute $a = 3f^{\dagger}c \in R/q$, consider as in R. Then compute $r = av \in R/3$, answer is correct if it is short.

Streamlined NTRU Prime, The Key Establishment Method

Note: Most of this talk omitted KEM conversion details; Kyber, and SABER used the same transformations

KeyGen

Generate keys as before, but with an extra short ρ in the secret key.

Encapsulation Take a random short *r*, compute *c* = round(*hr*) Compute *C* = (*c*, hash(*r*, *h*)). Key is hash'(1, *r*, *C*), Send *C*.

Decapsulation

Decrypt c using secret key to find r'. Check to see if hash(r', h) matches. If so output hash'(1, r, C), else output $hash'(0, \rho, C)$.

NTRU LPRime (GAMLPRime?), a R-LWR system

 $(\chi^* = \text{ternary, fixed-weight}), (R_a := \mathbb{Z}_{4591}[X]/(X^{761} - X - 1), A \in R_a)$ $G \leftarrow U. a \leftarrow \chi^*$ $SK = a, PK = \{G, A\}, A = Round_{2}(aG)$ $G.A \longrightarrow$ $a, b \in R_a$ $\mathbf{b} \leftarrow \mathbf{x}^*$ $B = \text{Round}_3(bG)$ $T = \left| \frac{16}{a} \text{Round}_{a/16} \left(\text{Truncate}_{256}(bA) + \frac{q}{2}M \right) \right|$ ← B.T $M = \text{Round}_2 \left(\frac{q}{r_c} T - aB \right)$

Institute of Information Science, Academia Sinica

B.-Y. Yang

23/46

Digital Signature Schemes

Institute of Information Science, Academia Sinica

About Digital Signature Schemes

Succinct Non-Interactive Zero-Knowledge Proof of Secret Key

- Signature is (reasonably) short
- Signing a message needs no interaction; otherwise called an "ID Scheme"
- Signature establishes that (s)he owns private key
- Signature does not leak information about private key

The Secret Knowledge

RSA (Pre-Quantum): Knows factorization of public key N = pq **Discrete Logarithm (Pre-Quantum):** Knows x such that $a = g^{x}$ (or A = xP) **Lattices (Post-Quantum):** Knows short s such that $b = As + e \approx As$ **Multivariates (Post-Quantum):** Knows S, T such that $P = T \cdot Q \cdot S$

Summary of NISTPQC Signatures (Skylake)

scheme	security	privkey	pubkey	signature	keygen	sign	verify
SPHINCS+128s	NIST I	64 B	32 B	7856 B	85M cc	645M cc	861k cc
SPHINCS+128f	NIST I	64 B	32 B	17088 B	1.3M cc	33M cc	2150k cc
SPHINCS+192s	NIST III	96 B	48 B	16224 B	125M cc	1246M cc	1444k cc
SPHINCS+192f	NIST III	96 B	48 B	35664 B	1.9M cc	55M cc	3492k cc
SPHINCS+256s	NIST V	128 B	64 B	29792 B	192M cc	1025M cc	1987k cc
SPHINCS+256f	NIST V	128 B	64 B	49856 B	5.0M cc	109M cc	2559k cc
Falcon-512	NIST I	1281 B	897 B	666 B	≈ 20M cc	≈ 387k cc	≈ 82k cc
Falcon-1024	NIST V	2305 B	1793 B	1280 B	≈ 63M cc	≈ 790k cc	≈ 168k cc
Dilithium2	NIST II	2528 B	1312 B	2420 B	124k cc	333k cc	118k cc
Dilithium3	NIST III	4000 B	1952 B	3293 B	256k cc	529k cc	179k cc
Dilithium5	NIST V	4864 B	2592 B	4595 B	298k cc	642k cc	280k cc
UOV-16-160-64	NIST I	378404 B	412160 B	96 B	11.3 M cc	2.3M cc	861k cc
Ed25519(ref.)	≈ 0	32 B	32 B	64 B	≈ 55k cc	≈ 60k cc	≈ 200k cc

Lattice Signatures

Institute of Information Science, Academia Sinica

Ideas Behind Lattice Signatures

Earliest Methods: Unknown Good Basis

Public key is a known, bad basis; private key an unknown, good basis. Signature is a point that is close to (some hash of) the message. The hard problem is the (approximate) Closest Vector Problem (CVP) in a given class of lattice.

Later came Small Integer Solutions and (Ring) Learning with Errors (Product NTRU)

Private key are small vectors s and s', the public key is a matrix A and b = As + s'. The hard problems are SIS and LWE variants.

Overview

Falcon (Lattices)

Reasonably fast signing and verifying on big CPUs, smaller (897B pubkey, 666B signature), very complex (hard to program correctly), slow on microcontrollers.

Dilithium (Lattices)

Reasonably fast signing and verifying, larger (1312B pubkey, 2420B signature).

Security Concerns: Recent Attacks

• "S-Unit Attacks" by Daniel J. Bernstein *et al* might affect Falcon/Dilithium security. Back in the early 1990s it was similarly unclear what impact NFS would have on RSA security.

Early Lattice Signatures

GGH (Goldreich-Goldwasser-Halevi): CVP for random lattice

 $S = \{s_1, s_2, ..., s_n\}$ secret (good) basis, $B = \{b_1, b_2, ..., b_n\}$ equivalent public (bad) basis, such that $\mathbb{Z}[s_1, s_2, ..., s_n] = \mathbb{Z}[b_1, b_2, ..., b_n]$. The message M is a point in space. Then the signature σ is a lattice point very close to M, constructed by Babai's algorithm: let $M = \sum_{i=1}^{n} a_i s_i$, then $\sigma = \sum_{i=1}^{n} [a_i] s_i$, transformed into a linear combination of the b_i . Verification: $M - \sigma$ is small.

Approximate CVP Signatures and Leakage

Signatures leak information

Since $M - \sigma = \sum_{i=1}^{n} (a_i - [a_i]) s_i M - \sigma$ for any M is in a parallelpiped $\{\sum_{i=1}^{n} \alpha_i s_i, -\frac{1}{2} < \alpha_1, \alpha_2, ..., \alpha_n < \frac{1}{2}\}$. We can learn this parallelpiped from sufficiently many samples by first transforming it into a hypercube.

Can do hypercube transformation as distribution's covariance matrix $\propto S^T S$.

2022.07.13 B.-Y. Ya

Institute of Information Science, Academia Sinica

Rejection Sampling

Bright Idea: Make the Distribution Something Known

Suppose in a lattice and CVP-based signature there is some randomness in the signing process, and we discard the results and restart on any attempts in which the error vector $m - \sigma$ doesn't fit a given (publicly known) distribution. Then the signature will no longer leak any information about the key.

Generally, this public distribution used to be a discrete Gaussian, and is (in Dilithium) uniform over a standard hypercube or a hypersphere, and presumably the number of expected retries is not too high.

This is called *rejection sampling* and is now standard in lattice-based digital signatures.

NTRUMLS (pqNTRUSign): Uses $R_q := \mathbb{Z}_q[x]/\langle x^{2^{\ell}} + 1 \rangle (\ell = 9, 10), q = 65537, p = 2$

KeyGen

f, g ternary with fixed weights, $h = g/(pf) \in R_q$

Sign: find $(s, t) \equiv (s_p, t_p) \pmod{p}$ and t = hs and not too large

- 1. hash $(M \parallel h)$ (via XOF) uniform (mod p) polynomials s_p and t_p .
- 2. get random polynomial r (via XOF or PRF) with ||r|| < q/(2p)

3.
$$s_0 := pr + s_p, t_0 := s_0 h, a := g^{-1} ((t_p - t_0) \mod p), s := s_0 + paf, t := t_0 + ag$$

4. $sig := s_1 = (s - s_p)/p$ if $||s|| < q/2 - B_s, ||t|| < q/2 - B_t, ||af|| < B_s, ||ag|| < B_t$.

Verify

1. hash $(M \parallel h)$ to obtain digest and uniform (mod p) polynomials s_p and t_p .

2. $s := s_p + ps_1$, t = sh, check $t = t_p \pmod{p}$, $||s|| < q/2 - B_s$ and $||t|| < q/2 - B_t$.

Crystals-Dilithium

Institute of Information Science, Academia Sinica

"Fiat-Shamir" Transforms an ID scheme to a Signature Scheme

An Identification Scheme based on ECC

KeyGen: Public Key A = *aB*, *B* base point, *a* is Secret key.

Commit: Peter (Prover) picks random nonce *r*, computes, sends *R* = *rB*

Challenge: Vera (Verifier) picks and sends random *c*.

```
Response: Peter sends s = r + ac.
```

Verify: Vera checks that sB = R + cA.

Digital Signature Scheme (Ed25519, (a, a') = H(secret), H =**SHA-512)**

KeyGen: Public Key A = aB, B base point, a is Secret key.

Sign: "Nonce" r = H(a', M), $c = H^{\dagger}(R, A, M)$, sig is (R = rB, s = r + ac).

Verify: On receiving (R, s), check that sB = R + cA.

A Corresponding "Fiat-Shamir" Almost Lattice Signature Scheme

An Almost-Identification Scheme based on Ring-LWE/SIS

KeyGen: Public Key $t \approx As$, s is Secret key.

Commit: Peter (Prover) picks random y, computes, sends $x \approx Ay$.

Challenge: Vera (Verifier) picks and sends random c.

Response: Peter sends z = y + sc.

Verify: Vera checks that $Az \approx x + ct$.

Corresponding almost Digital Signature Scheme

KeyGen: Public Key $t \approx As$, s is Secret key.

Sign: Random y, $x \approx Ay$, $c = H^{\dagger}(x, M)$, sig is (c, z = y + sc).

Verify: On receiving (z, c), check that $c = H^{\dagger}(Az-ct, M)$.

A Corresponding "Fiat-Shamir" Almost Lattice Signature Scheme

An Almost-Identification Scheme based on Ring-LWE/SIS

KeyGen: Public Key $t \approx As$, s is Secret key.

Commit: Peter (Prover) picks random y, computes, sends $x \approx Ay$.

Challenge: Vera (Verifier) picks and sends random c.

Response: Peter sends *z* = *y* + *sc*.

Verify: Vera checks that $Az \approx x + ct$.

Corresponding almost Digital Signature Scheme

KeyGen: Public Key $t \approx As$, s is Secret key.

• Use Rejection Sampling

• Need Exact Equality — Use Only High Part of *Ay*, Send Adjustment Hint

Sign: Random y, $x \approx Ay$, $c = H^{\dagger}(x, M)$, sig is (c, z = y + sc).

Verify: On receiving (z, c), check that $c = H^+(Az-ct, M)$.

Dilithium (Ducas, Kiltz, Lepoint, Lyubashevsky, Schwabe, Seiler, Stehlé)

Dilit	hium2 Algorithms					
KeyGen() A $\leftarrow R^{4 \times 4}$; $s_1 \leftarrow [-5, 5]^4$, $s_2 \leftarrow [-5, 5]^4$ A $s_1+s_2 = t = low(t)+high(t)$ SK: (s_1, s_2) , PK: $(A \leftarrow R^{4 \times 4}, high(t))$						
$\begin{aligned} & \textbf{Sign}(\mu) \\ & \textbf{y} \leftarrow [-\gamma, \gamma]^4 \\ & \textbf{c} := H(high(Ay), \mu) \\ & \textbf{z} := \textbf{y} + \textbf{cs}_1 \end{aligned}$	$\label{eq:Verify(z, c, h, \mu)} \\ Use h and Az - c high(t) to reconstruct \\ high(Az - ct) \\ Verify: \ z\ \leq \gamma - \beta \text{ and } c=H(high(Az - ct), \mu) \\ \end{aligned}$					
Restart if $ z > \gamma - \beta$ or $ low(Ay - cs_2) > \gamma - \beta$ Create a small carry bit hint vector h Signature = (z, c, h)	Makes the distribution of z independent of s ₁ = high(Ay) Carry bits caused by ignoring c-low(t)					

- A sampled in NTT (Number Theoretic Transform) domain
- high() and low() split a value in Z_q into top and bottom parts
- H hashes into short ball: w of the coefficients are
 - ±1, and the rest are 0
- h ("hint") marks where high(Az – c · high(t)) ≠ high(Az – ct)

Institute of Information Science, Academia Sinica

Falcon (Sketch)

Institute of Information Science, Academia Sinica

Original Idea — NTRU Sign

(Original) NTRU Signatures, an analogue of GGH

Private Key: short f, g, Public Key: h = g/f. From message M, pick nonce r, compute hash m = H(M||r), Sig= (r, σ) where $\sigma = [-(1/q)mg]f + [(1/q)mf]g$ (Babai). Verification: let m = H(M||r) check that $(\sigma, \sigma h - m)$ is small (mod q).

This is a CVP problem because we have a private basis $\begin{bmatrix} f & g \\ F & G \end{bmatrix}$ for the public basis $\begin{bmatrix} 1 & h \\ 0 & q \end{bmatrix}$, where fG - gF = q, and there is a X such that $[\sigma X] \begin{bmatrix} 1 & h \\ 0 & q \end{bmatrix}$ is close to $\begin{bmatrix} 0 \\ m \end{bmatrix}$.

Changes toward Falcon

- Rejection Sampling
- Fast Fourier Transforms
- Babai's nearest-plane algorithm (not Babai's original algorithm)

Falcon, Most Complex Selection, Uses Double-Precision Floats

The GPV over NTRU Lattices framework

• Public Basis A = $[1|h^*]$ where $(\sum_{i=0}^{n-1} h_i x^i)^* = a_0 - \sum_{i=1}^{n-1} a_i x^{n-i}$.

• Secret Basis
$$B = \left[\begin{array}{c|c} g & -f \\ \hline G & -F \end{array} \right]$$
. $B \times A^* = 0 \pmod{q}$, $h = g/f \pmod{q}$.

• Signature of message $M \longrightarrow (r, s_2)$ where we have small $s_1 + s_2 h = H(r || M)$. Don't send s_1 (computable from r, s_2), To verify, check $||(s_1, s_2)||$ small.

Reason to Use DP Floats: Fast Fourier Transforms (not NTT) Representation

- Generation of F, G from f, g (in $\mathbb{Z}[x]$, big integer RNS arithmetic)
- *LDL** Decomposition of *BB** into a tree-form
- Trapdoor Sampling and Nearest-Plane Algorithm using the tree-form

Summary of NISTPQC Signatures (recap, Skylake))

scheme	security	privkey	pubkey	signature	keygen	sign	verify
SPHINCS+128s	NIST I	64 B	32 B	7856 B	85M cc	645M cc	861k cc
SPHINCS+128f	NIST I	64 B	32 B	17088 B	1.3M cc	33M cc	2150k cc
SPHINCS+192s	NIST III	96 B	48 B	16224 B	125M cc	1246M cc	1444k cc
SPHINCS+192f	NIST III	96 B	48 B	35664 B	1.9M cc	55M cc	3492k cc
SPHINCS+256s	NIST V	128 B	64 B	29792 B	192M cc	1025M cc	1987k cc
SPHINCS+256f	NIST V	128 B	64 B	49856 B	5.0M cc	109M cc	2559k cc
Falcon-512	NIST I	1281 B	897 B	666 B	≈ 20M cc	≈ 387k cc	≈ 82k cc
Falcon-1024	NIST V	2305 B	1793 B	1280 B	≈ 63M cc	≈ 790k cc	≈ 168k cc
Dilithium2	NIST II	2528 B	1312 B	2420 B	124k cc	333k cc	118k cc
Dilithium3	NIST III	4000 B	1952 B	3293 B	256k cc	529k cc	179k cc
Dilithium5	NIST V	4864 B	2592 B	4595 B	298k cc	642k cc	280k cc
UOV-16-160-64	NIST I	378404 B	412160 B	96 B	11.3 M cc	2.3M cc	861k cc
Ed25519 (ref.)	≈ 0	32 B	32 B	64 B	≈ 55k cc	≈ 60k cc	≈ 200k cc

Thank you for Listening

That's it Folks!

Appendix

Institute of Information Science, Academia Sinica

Obtaining (f, g, F, G) such that $fG - gF = q \pmod{x^{2^k} + 1}$ Fast Fourier Transform NTRU Solve in Falcon

Discrete Gaussian Samples for f, g **coefficients** Sample f, g, ensure: f^{-1} exists, $\|(f,g)\|$, $\|\frac{qg}{ff^*+gg^*}, \frac{qf}{ff^*+gg^*}\|$ are small

A Recursive Process

If k = 0: find af + bg = 1 using extended GCD variant, F = -bq, G = aqIf k > 0: recursively find F', G' where $f'G' - g'F' = q \pmod{x^{2^{k-1}} + 1}$, with $f'(x^2) = f(x)f(-x), g'(x^2) = g(x)g(-x)$, then $F(x) = g(-x)F'(x^2), G(x) = f(-x)G'(x^2)$.

Things to Note

- Entire computation is in $\mathbb{Z}[x]$ with thousands-of-bits coefficients.
- Uses Residual Number System with multiple (2048k + 1) primes < 2³¹.

Computing the Falcon (*LDL****) Tree from** *G* = *BB**

Algorithm 9 ffLDL $^{*}(\mathbf{G})$

Require: A full-rank Gram matrix $\mathbf{G} \in FFT (\mathbb{Q}[x]/(x^n + 1))^{2 \times 2}$ Ensure: A binary tree T Format: All polynomials are in FFT representation.

 $\triangleright \mathbf{L} = \begin{vmatrix} 1 & 0 \\ \hline L_{10} & 1 \end{vmatrix}, \mathbf{D} = \begin{vmatrix} D_{00} & 0 \\ \hline 0 & D_{11} \end{vmatrix}$ 1: $(\mathbf{L}, \mathbf{D}) \leftarrow \mathsf{LDL}^*(\mathbf{G})$ 2: T.value $\leftarrow L_{10}$ 3: if (n = 2) then T.leftchild $\leftarrow D_{00}$ 4: T.rightchild $\leftarrow D_{11}$ 5. return T 6 7: else $\triangleright d_{ii} \in \mathsf{FFT}\left(\mathbb{Q}[x]/(x^{n/2}+1)\right)$ $d_{00}, d_{01} \leftarrow \text{splitfft}(D_{00})$ 8. $d_{10}, d_{11} \leftarrow \text{splitfft}(D_{11})$ 9. $\mathbf{G}_0 \leftarrow \begin{bmatrix} \frac{d_{00} & d_{01}}{d_{01}^*} \\ \frac{d_{10}}{d_{01}^*} \end{bmatrix}, \mathbf{G}_1 \leftarrow \begin{bmatrix} \frac{d_{10} & d_{11}}{d_{11}^*} \\ \frac{d_{11}}{d_{11}^*} \\ \frac{d_{10}}{d_{10}^*} \end{bmatrix} \qquad \triangleright \text{ Since } D_{00}, D_{11} \text{ are self-adjoint, (3.30) applies}$ 10: T.leftchild \leftarrow ffLDL*(G₀) ▷ Recursive calls 11: T.rightchild \leftarrow ffLDL*(G₁) 12: 13: return T

2022.07.13 B.-Y. Yang

Fast Fourier Transform Trapdoor Sampling

Algorithm 11 ffSampling $_{n}(t, T)$

Require: $\mathbf{t} = (t_0, t_1) \in \mathsf{FFT}\left(\mathbb{Q}[x]/(x^n+1)\right)^2$, a Falcon tree T Ensure: $\mathbf{z} = (z_0, z_1) \in \text{FFT} (\mathbb{Z}[x]/(x^n + 1))^2$ Format: All polynomials are in FFT representation. 1: if n = 1 then $\sigma' \leftarrow \mathsf{T.value}$ \triangleright It is always the case that $\sigma' \in [\sigma_{\min}, \sigma_{\max}]$ 2: $z_0 \leftarrow \text{SamplerZ}(t_0, \sigma') \qquad \triangleright \text{ Since } n = 1, t_i = \text{invFFT}(t_i) \in \mathbb{Q} \text{ and } z_i = \text{invFFT}(z_i) \in \mathbb{Z}$ 3: 4: $z_1 \leftarrow \text{SamplerZ}(t_1, \sigma')$ 5: return $\mathbf{z} = (z_0, z_1)$ 6: $(\ell, T_0, T_1) \leftarrow (T.value, T.leftchild, T.rightchild)$ $\triangleright \mathbf{t}_0, \mathbf{t}_1 \in \mathsf{FFT}\left(\mathbb{Q}[x]/(x^{n/2}+1)\right)^2$ 7: $\mathbf{t}_1 \leftarrow \text{splitfft}(t_1)$ \triangleright First recursive call to ffSampling n/28: $\mathbf{z}_1 \leftarrow \text{ffSampling}_{n/2}(\mathbf{t}_1, \mathsf{T}_1)$ $\triangleright \mathbf{z}_0, \mathbf{z}_1 \in \mathsf{FFT}\left(\mathbb{Z}[x]/(x^{n/2}+1)\right)^2$ 9: $z_1 \leftarrow \text{mergefft}(\mathbf{z}_1)$ 10: $t'_0 \leftarrow t_0 + (t_1 - z_1) \odot \ell$ 11: $\mathbf{t}_0 \leftarrow \text{splitfft}(t'_0)$ 12: $\mathbf{z}_0 \leftarrow \text{ffSampling}_{n/2}(\mathbf{t}_0, \mathsf{T}_0)$ \triangleright Second recursive call to ffSampling n/213: $z_0 \leftarrow \text{mergefft}(\mathbf{z}_0)$ 14: return $\mathbf{z} = (z_0, z_1)$

Signing with Assistance from Fast Fourier Transform Trapdoor

Algorithm 10 Sign (m, sk, $|\beta^2|$) Require: A message m, a secret key sk, a bound $|\beta^2|$ Ensure: A signature sig of m 1: $\mathbf{r} \leftarrow \{0, 1\}^{320}$ uniformly 2: $c \leftarrow \text{HashToPoint}(\mathbf{r} || \mathbf{m}, q, n)$ 3: $\mathbf{t} \leftarrow \left(-\frac{1}{a}\mathsf{FFT}(c) \odot \mathsf{FFT}(F), \frac{1}{a}\mathsf{FFT}(c) \odot \mathsf{FFT}(f)\right)$ $\triangleright \mathbf{t} = (\mathsf{FFT}(c), \mathsf{FFT}(0)) \cdot \hat{\mathbf{B}}^{-1}$ 4: do 5. do $\mathbf{z} \leftarrow \text{ffSampling}_n(\mathbf{t},\mathsf{T})$ 6: $\mathbf{s} = (\mathbf{t} - \mathbf{z})\hat{\mathbf{B}}$ \triangleright At this point, \mathbf{s} follows a Gaussian distribution: $\mathbf{s} \sim D_{(c,0)+\Lambda(\mathbf{B}),\sigma,0}$ 7: while $\|\mathbf{s}\|^2 > |\beta^2|$ \triangleright Since s is in FFT representation, one may use (3.8) to compute $||s||^2$ 8: $(s_1, s_2) \leftarrow invFFT(s)$ $\triangleright s_1 + s_2 h = c \mod (\phi, q)$ 9. $s \leftarrow Compress(s_2, 8 \cdot sbytelen - 328)$ \triangleright Remove 1 byte for the header, and 40 bytes for r 10: 11: while $(s = \bot)$ 12: return sig = (r, s)

2022.07.13 B.-Y. Yang

Babai's Nearest Plane Algorithm

Babai's original algorithm for short basis (s_i) Let $M = \sum_{i=1}^{n} a_i s_i$, then $\sigma = \sum_{i=1}^{n} [a_i] s_i$,

Nearest Plane Algorithm

- 1. Let $\delta \leftarrow M$, find the Gram-Schmidt orthogonalization (\hat{s}_i) of lattice basis (s_i) .
- 2. for j = n downto 1 do
- 3. $\delta \leftarrow \delta c_j s_j$, where $c_j = [\langle \delta, \hat{s}_j \rangle / \| \hat{s}_j \|^2]$, this basically finds recursively integers c_j such that the hyperplane $c_j s_j + \text{span}(s_1, s_2, ..., s_{j-1})$ is closest to δ .
- 4. end do
- 5. output $\sigma = M \delta$.

Pieces of the Puzzle of NTRU Prime: Deterministic Encode/Decode

Let $M = (m_0, ..., m_{n-1})$ and $R = (r_0, ..., r_{n-1})$ be int sequences with $0 \le r_i < m_i < 2^{14}, \forall i$. Length of S = Encode(R, M) depends only on M. **Encoding**

- If n = 0 then S is the empty sequence ().
- If n = 1 then S is r_0 in little-endian (if $m_0 > 2^8$, 2 bytes, if $2^8 \ge m_0 > 1$, 1 byte)
- If $n \ge 2$ then S is a prefix then $Encode(R_0, M_0)$. Each pair r_i, r_{i+1} modulo m_i, m_{i+1} for even *i* is merged into $r = r_i + m_i r_{i+1}$ modulo $m = m_i m_{i+1}$, and then r, m are reduced to r_0, m_0 with $0 < r_0 < m_0 < 2^{14}$, producing an entry for R_0 and an entry for M_0 respectively. For odd n, include $(r_{n-1}, m_{n-1} \text{ in } (R_0, M_0)$.
- Reduction: if $m \ge 2^{14}$ then $r \mod 2^8$ is appended to the prefix while r, m are replaced by $\lfloor r/2^8 \rfloor$, $\lceil m/2^8 \rceil$, repeat 0–2 times to reduce m to the correct range.

Pieces of the Puzzle of NTRU Prime: Decoding

```
def Decode(S,M):
  if len(M) == 0: return []
  if len(M) == 1: return [sum(S[i]*256**i \text{ for } i \text{ in } range(len(S)))M[0]]
 k = 0: bottom.M2 = [].[]
  for i in range(0.len(M)-1.2):
    m.r.t = M[i] * M[i+1].0.1
    while m >= limit:
      r,t,k,m = r+S[k]*t,t*256,k+1,(m+255)//256
    bottom += [(r,t)]; M2 += [m]
  if len(M)&1: M2 += [M[-1]]
  R2 = Decode(S[k:].M2): R = []
  for i in range(0, len(M)-1, 2):
    r,t = bottom[i//2]; r += t*R2[i//2]
    R += [r%M[i]]: R += [(r//M[i])%M[i+1]]
  if len(M)&1: R += [R2[-1]]
  return R
```


Pieces of the Puzzle of NTRU Prime

Other Encodings and Hashing

- Encoding of polynomial: center-lift coefficients and add (q 1)/2, apply Encode with M = p copies of q
- Encoding of rounded polynomial: center-lift coefficients, divide by 3, add $\frac{q-1}{6}$ ($q \equiv 1 \pmod{6}$), Encode with M = p copies of $\frac{q+2}{3}$.
- Encoding of Small polynomial: add 1, pack as 2 bits, small-endian.
- (f, v = 1/g) are encoded as two small polynomials.
- Hash is SHA-512 cut to 256 bits. Hash_b(x) is Hash(b||x) for byte b. hash(r, h) = Hash₂(Hash₃(r), Hash₄(h)) (Hash₄(h) is cached after first use); hash'(b, y, z) = Hash_b(Hash₃(y), z).

