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Stories of Historical (Hysterical?) Interest
• 1996, Ajtai article describing theoretical construction of lattice crypto
• 1996, Hoffstein-Pipher-Silverman article circulated (after provisional patent)
A section specifically mentions distinguishing (𝑎, 𝑎𝑠 + 𝑒) from random

• 2005, Regev article re-introduces Learning with Errors problem/systems
• 2010, Gaborit/Aguilar-Melchor patent filed
• 2010, Lybashevsky-Peikert-Regev article, just after the G/AM patent.
• 2012, Ding article on Ring-LWE key exchange and patent
• 2014, Peikert article on Ring-LWE cryptosystems.
• 2016, NewHope key exchange by Alkim, Ducas, Pöppelman, Schwabe.
• 2017, Crystals-Kyber, Saber, NewHope KEMs as NIST-PQC submissions
• 2018, Kyber is modified to use incomplete NTT.
• 2020, Kyber is modified again, NewHope eliminated.
• 2022, Kyber selected as future standard
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What is usually called “R-LWE based Encryption”

Source of the Random Looking Distribution (everything is a polynomial)
NTRU “Ring-LWE-based” Lattice Encryption
ℎ = 𝑔/𝑓 , 𝑔, 𝑓 ternary 𝑏 = 𝑎𝑠 + 𝑒, 𝑠, 𝑒 discrete Gaussian, 𝑎 random
ℎ ∼ 𝑈, 𝑈 means uniform (𝑎, 𝑏) ∼ 𝑈 × 𝑈, 𝑈 means uniform

1. 𝑐 = (𝑎, 𝑏 + 𝑚) obviously does not secure 𝑚.
2. 𝑐 = (𝑟𝑎, 𝑟𝑏 + 𝑚) still insecure, because we can compute 𝑟.
3. 𝑐 = (𝑟𝑎 + 𝑒′, 𝑟𝑏 + 𝑚) look secure but not semantically secure

Semantically secure: ciphertexts leak no information, in particular, we
shouldn’t be able to tell that ciphertexts point to the same plaintext. Which
is because 𝑏−1 ((𝑟′𝑏 + 𝑚) − (𝑟𝑏 + 𝑚)) = (𝑟′ − 𝑟) is small.

4. 𝑐 = (𝑟𝑎 + 𝑒′, 𝑟𝑏 + 𝑒" + 𝑚) is really provably secure if Ring-LWE is.

2022.07.13 B.-Y. Yang 3/46



Institute of Information Science, Academia Sinica

Procedures of R-LWE over ℤ𝑞
KeyGen
Generate random uniform 𝑎, (small) discrete Gaussian 𝑠, 𝑒, 𝑠 is the secret key,
and the pubkey is (𝑎, 𝑏), 𝑏 = 𝑎𝑠 + 𝑒.
Encrypt𝑚 using 𝑝𝑘 = (𝑎, 𝑏),𝑚 ∈ {0, 1}𝑛
Generate discrete Gaussian 𝑟, 𝑒′, 𝑒", 𝑐 = (𝑟𝑎 + 𝑒′, 𝑟𝑏 + 𝑒" + ⌊𝑞2 ⌋𝑚)
Decrypt from 𝑐 = (𝑢, 𝑣) using 𝑠𝑘 = 𝑠
compute 𝑣 − 𝑢𝑠 = 𝑟𝑏 + 𝑒" + ⌊𝑞2 ⌋𝑚 − 𝑟𝑎𝑠 − 𝑒′𝑠 = ⌊𝑞2 ⌋𝑚 + 𝑟𝑒 + 𝑒" − 𝑒′𝑠⏟

small

Each component (bit) is 1 if the number is closer to 𝑞/2 than 0, else 0.
When Implemented
𝑐 = (𝑢, 𝑣) rounded down to powers of 2 before transmission. Use not Discrete
Gaussian but centered Binomial. Sample 𝑁𝑇𝑇(𝑎) for speed. Maybe error-correct.
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Gaborit/Aguilar-Melchior/Lyubashevsky/Peikert/Regev (2010, Ring-LWE case)

s, e ← 𝜒∗(discrete Gaussian) A uniform random
𝑆𝐾 = s, 𝑃𝐾 = t = As + e globally fixed

t ⟶
r, e′, e″ ← 𝜒∗
u = Ar + e′

v = tr + e″ + ⌊𝑞2 ⌉M
⟵ u,v

M′ = ⌊ 2𝑞 (v − su)⌉

Note v − su = er − se′ + e″ + ⌊𝑞2 ⌉M. This is not sufficient to ensure that M′ = M.
This is in the G/AM patent (Feb. 2010) and May 2010 talk @PQC, not in LPR
Eurocrypt 2010 paper (deadline Feb. 2010), but in LPR Apr. and May 2010 talks.
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“Games” for the Gaborit–Aguilar-Melchor/LPR construction

1. Distinguishing (𝑎,
𝑎𝑠+𝑒
⏞𝑏 ) and (𝑢, 𝑣) from Random.

R-LWE says we can replace 𝑏 = 𝑎𝑠 + 𝑒 with a (uniform) random Υ.

2. Distinguishing (𝑎, Υ) and (
𝑟𝑎+𝑒′
⏞𝑢 ,

𝑟Υ+𝑒"+𝑚
⏞𝑣 ) from random

R-LWE says we can replace 𝑢 = 𝑟𝑎 + 𝑒′ and 𝑟𝑏 + 𝑒" with random Ψ,Φ.
3. Distinguishing (𝑎, Υ), (Ψ,Φ + 𝑚) from random

but the sum of a uniform random and anything is uniform random
4. Distinguishing (𝑎, Υ), (Ψ, Ξ) from random

where Υ, Ψ, Ξ are random, and we see that (GAM)LPR is secure.

We don’t talk “IND-CCA2 conversions” here, but Cf. Prof. Kai-Min Chung’s lectures.
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Ding’s Key (Diffie-Hellman-like) Exchange (2012)
Note: at nearly 1/2 the transmission size

Party i Party j
Public Key: 𝑝𝑖 = 𝑎𝑠𝑖 + 2𝑒𝑖 ∈ 𝑅𝑞 Public Key: 𝑝𝑗 = 𝑎𝑠𝑗 + 2𝑒𝑗 ∈ 𝑅𝑞 𝑎 is uniform random, public
Secret Key: 𝑠𝑖 ∈ 𝑅𝑞 Secret Key: 𝑠𝑗 ∈ 𝑅𝑞 Keys are ephemeral!

where 𝑠𝑖 , 𝑒𝑖 ←𝑟 𝜒𝛼 where 𝑠𝑗 , 𝑒𝑗 ←𝑟 𝜒𝛼
𝑝𝑖−−→
𝑘𝑗 = 𝑠𝑗𝑝𝑖 ∈ 𝑅𝑞 Cha(𝑥) = 1 if − 𝑞2 < 𝑥 mod

±𝑞 < 𝑞
2

𝑤𝑗 = Cha(𝑘𝑗) ∈ {0, 1}𝑛 Cha(𝑥) = 0 otherwise
𝑤𝑗 ,𝑝𝑗←−−−−−−

𝑘𝑖 = 𝑠𝑖𝑝𝑗 ∈ 𝑅𝑞 𝑘𝑖 − 𝑘𝑗 = 2(𝑠𝑖𝑒𝑗 − 𝑠𝑗𝑒𝑖)
𝜎𝑖 = Mod2(𝑘𝑖 , 𝑤𝑗) ∈ {0, 1}𝑛 𝜎𝑗 = Mod2(𝑘𝑗 , 𝑤𝑗) ∈ {0, 1}𝑛 Mod2(𝑥, 𝑦) =
𝑠𝑘𝑖 = H2(𝑖, 𝑗, 𝑤𝑗 , 𝜎𝑖) 𝑠𝑘𝑗 = H2(𝑖, 𝑗, 𝑤𝑗 , 𝜎𝑗) ((𝑥 + 𝑦 ⋅ 𝑞−12 ) mod 𝑞) mod 2

• ℤ:= integers, 𝑅 ∶= ℤ[𝑥]/(𝑥𝑛 + 1), 𝑅𝑞 ∶ ℤ𝑞[𝑥]/(𝑥𝑛 + 1)
• ←𝑟 𝜒𝛼 denotes a random choice from 𝜒𝛼 (discrete Gaussian distribution centered at 0, std.= 𝛼).
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Ding’s Authenticated Key Exchange
Party i Party j
Public Key: 𝑝𝑖 = 𝑎𝑠𝑖 + 2𝑒𝑖 ∈ 𝑅𝑞 Public Key: 𝑝𝑗 = 𝑎𝑠𝑗 + 2𝑒𝑗 ∈ 𝑅𝑞
Secret Key: 𝑠𝑖 ∈ 𝑅𝑞 Secret Key: 𝑠𝑗 ∈ 𝑅𝑞

where 𝑠𝑖 , 𝑒𝑖 ←𝑟 𝜒𝛼 where 𝑠𝑗 , 𝑒𝑗 ←𝑟 𝜒𝛼
𝑥𝑖 = 𝑎𝑟𝑖 + 2𝑓𝑖 ∈ 𝑅𝑞 𝑦𝑗 = 𝑎𝑟𝑗 + 2𝑓𝑗 ∈ 𝑅𝑞

where 𝑟𝑖 , 𝑓𝑖 ←𝑟 𝜒𝛽 where 𝑟𝑗 , 𝑓𝑗 ←𝑟 𝜒𝛽
𝑥𝑖 ,𝑝𝑖−−−−−→
𝑘𝑗 = (𝑝𝑖𝑐 + 𝑥𝑖)(𝑠𝑗𝑑 + 𝑟𝑗) + 2𝑔𝑗 ∈ 𝑅𝑞

where 𝑔𝑗 ←𝑟 𝜒𝛽
𝑤𝑗 = Cha(𝑘𝑗) ∈ {0, 1}𝑛

𝑦𝑗 ,𝑤𝑗 ,𝑝𝑗←−−−−−−−−−
𝑘𝑖 = (𝑝𝑗𝑑 + 𝑦𝑗)(𝑠𝑖𝑐 + 𝑟𝑖) + 2𝑔𝑖

where 𝑔𝑖 ←𝑟 𝜒𝛽
𝜎𝑖 = Mod2(𝑘𝑖 , 𝑤𝑗) ∈ {0, 1}𝑛 𝜎𝑗 = Mod2(𝑘𝑗 , 𝑤𝑗) ∈ {0, 1}𝑛
𝑠𝑘𝑖 = H2(𝑖, 𝑗, 𝑥𝑖 , 𝑦𝑗 , 𝑤𝑗 , 𝜎𝑖) 𝑠𝑘𝑗 = H2(𝑖, 𝑗, 𝑥𝑖 , 𝑦𝑗 , 𝑤𝑗 , 𝜎𝑗)

𝑐 = H1(𝑖, 𝑗, 𝑥𝑖) ∈ 𝑅, 𝑑 = H1(𝑗, 𝑖, 𝑦𝑗 , 𝑥𝑖) ∈ 𝑅2022.07.13 B.-Y. Yang 8/46
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“Peikert’s Version of Ding’s Key Exchange (2014)”
Achieves nearly the same thing as Ding, and is what is usually known as “R-LWE” today

Pr(𝑒 = 0) = 1
2 , Pr(𝑒 = 1) = Pr(𝑒 = −1) =

1
4 ,

dbl(𝑣, 𝑒) ∶= 2𝑣 − 𝑒, ⟨𝑣⟩2 ∶= ⌊
4
𝑞 ⋅ 𝑣⌉ mod 2,

⌊𝑣⌉2 ∶= ⌊ 2𝑞 ⋅ 𝑣⌉ mod 2,

rec(𝑤, 𝑏) ∶= { 0, if 𝑤 ∈ 𝐼𝑏 + 𝐸 (mod 𝑞)
1, else

𝐼0 ∶= {0, 1, … , ⌊ 𝑞2 ⌉ − 1},

𝐼1 ∶= {−⌊ 𝑞2 ⌋, … , −1},

𝐸 ∶= [−𝑞4 ,
𝑞
4 )
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Bos, Costello, Naehrig, Stebila (2015)

dbl(𝑣, 𝑒) ∶= 2𝑣 − 𝑒,
Pr(𝑒 = 0) = 1

2 , Pr(𝑒 = 1) = Pr(𝑒 = −1) =
1
4

⟨𝑣⟩𝑞,2 ∶= ⌊ 4𝑞 ⋅ 𝑣⌉ mod 2,

⌊𝑣⌉𝑞,2 ∶= ⌊ 2𝑞 ⋅ 𝑣⌉ mod 2,

𝜒 ∶= 𝜓𝑛, 𝜓(𝑥) = 𝐷ℤ,8/√2𝜋(𝑥) =
1
8𝑒

−𝜋𝑥2/32

rec(𝑤, 𝑏) ∶= { 0, if 𝑤 ∈ 𝐼𝑏 + 𝐸 (mod 𝑞),
1, else;

𝑛 = 1024, 𝑞 = 232 − 1.
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NewHope (Alkim, Ducas, Pöppelman, Schwabe, 2015)

∶= Centered Binomial, 16 fair coins

HelpRec(x; 𝑏) ∶= CVP𝐷̃4 (
2𝑟
𝑞 (x + 𝑏g)) mod 2𝑟 ,

𝐷4 ∶= ℤ[u0,u1,u2, (
1
2 ,
1
2 ,
1
2 ,
1
2 )]

Rec(x, r) ∶= Decode ( 1𝑞x − 1
2𝑟 Br) ,

Decode(x) ∶= { 0, x − ⌊x⌋ closer to (0, 0, 0, 0)
1, x − ⌊x⌋ closer to ( 12 ,

1
2 ,

1
2 ,

1
2 )

A similar version without rings (Frodo) was proposed; it was much larger and not very competitive.
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Procedures of M-LWE (Kyber) over ℤ𝑞
KeyGen
Generate random uniform matrix 𝐴, (small) centered binomial vector 𝑠, 𝑒, 𝑠 is the
secret key, and the pubkey is (𝐴, 𝑏), 𝑏 = 𝐴𝑠 + 𝑒.
Encrypt𝑚 using 𝑝𝑘 = (𝐴, 𝑏),𝑚
Generate error (note: not discrete Gaussian) 𝑟, 𝑒′, 𝑒", 𝑐 = (𝐴𝑟 + 𝑒′, 𝑟 ⋅ 𝑏 + 𝑒" + ⌊𝑞2 ⌋𝑚)
Decrypt from 𝑐 = (𝑢, 𝑣) using 𝑠𝑘 = 𝑠
compute 𝑣 − 𝑢 ⋅ 𝑠 = 𝑟𝑏 + 𝑒" + ⌊𝑞2 ⌋𝑚 − 𝑟𝑇𝐴𝑠 − 𝑒′𝑠 = ⌊𝑞2 ⌋𝑚 + 𝑟𝑒 + 𝑒" − 𝑒′𝑠⏟

small

Each component (bit) is 1 if the number is closer to 𝑞/2 than 0, else 0.
In Actual Implementation
Neither 𝑢 nor 𝑣 in 𝑐 = (𝑢, 𝑣) is transmitted in its entirety. They are rounded to a
power of two. We sample 𝑁𝑇𝑇(𝐴) and not 𝐴 to faciliate fast multiplication.
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Crystals-Kyber, a Module LWE Cryptosystem (NIST Submission 2017)
Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe, Seiler, Stehlé

Compress𝑞(𝑥, 𝑑) ∶= ⌊(2𝑑/𝑞)𝑥⌉ mod 2𝑑 ; Decomp𝑞(𝑥, 𝑑) ∶= ⌊(𝑞/2𝑑)𝑥⌉ mod 𝑞
𝑅𝑞 ∶= ℤ3329[𝑋]/(𝑋256 + 1), A ∈ 𝑅𝑘×𝑘𝑞

𝜒∗ ∶= (Pr(𝜒∗ = ±1) = 5/16, Pr(𝜒∗ = 0) = 3/8), 𝑈 ∶= uniform ∈ 𝑅𝑘×𝑘𝑞

s, e ← χ∗ A ← 𝑈(public)
𝑆𝐾 = s, 𝑃𝐾 = t = As + e

t ⟶
s, t,u, e, e′ ∈ 𝑅𝑘𝑞 r, e′, 𝑒″ ← 𝜒∗

u = Compress𝑞(A𝑇r + e′, 𝑑𝑢)
𝑣 = Compress𝑞(t𝑇 𝑟 + 𝑒″ + ⌊

𝑞
2 ⌉𝑀, 𝑑𝑣)

⟵ u, 𝑣
𝑀′ = ⌊ 2𝑞 (Decomp𝑞(𝑣, 𝑑𝑣) − s𝑇Decomp𝑞(u, 𝑑𝑢))⌉ check 𝑀′ components for proximity to 0, 𝑞/2

2022.07.13 B.-Y. Yang 13/46



Institute of Information Science, Academia Sinica

Procedures of R-LWR over ℤ𝑞 and ℤ𝑝
KeyGen
Generate random uniform 𝑎, (small) discrete Gaussian 𝑠, which is the secret key,
and the pubkey is (𝑎, 𝑏), 𝑏 = ⌈𝑎𝑠⌋.

Encrypt𝑚 using 𝑝𝑘 = (𝑎, 𝑏),𝑚 ∈ {0, 1}𝑛
Generate error (note: not discretee Gaussian) 𝑟, 𝑐 = (⌈𝑟𝑎⌋, ⌈𝑟𝑏 + ⌊𝑞2 ⌋𝑚⌋)

Decrypt from 𝑐 = (𝑢, 𝑣) using 𝑠𝑘 = 𝑠
Can write ⌈𝑎𝑠⌋ = 𝑎𝑠 + 𝑒, ⌈𝑟𝑎⌋ = 𝑟𝑎 + 𝑒′, ⌈𝑟𝑏 + ⌊𝑞2 ⌋𝑚⌋ = 𝑟𝑏 + ⌊

𝑞
2 ⌋𝑚 + 𝑒".

compute 𝑣 − 𝑢𝑠 = 𝑟𝑏 + 𝑒" + ⌊𝑞2 ⌋𝑚 − 𝑟𝑎𝑠 − 𝑒′𝑠 = ⌊𝑞2 ⌋𝑚 + 𝑟𝑒 + 𝑒" − 𝑒′𝑠⏟
small

Each component (bit) is 1 if the number is closer to 𝑞/2 then 0, else 0.
We compress 𝑢, 𝑣 again in practice.
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Procedures of M-LWR (Saber) over ℤ𝑞 and ℤ𝑝
KeyGen
Generate random uniform ℓ × ℓ matrix of ring elements 𝐴, (small) centered
binomial vector 𝑠, (the secret key), and the pubkey is (𝐴, 𝑏), 𝑏 = ⌈𝐴𝑠⌋.

Encrypt𝑚 using 𝑝𝑘 = (𝐴, 𝑏),𝑚 ∈ {0, 1}𝑛
Generate centered binomial vector 𝑟, 𝑐 = (⌈𝐴𝑟⌋, ⌈𝑟 ⋅ 𝑏 + ⌊𝑞2 ⌋𝑚⌋)

Decrypt from 𝑐 = (𝑢, 𝑣) using 𝑠𝑘 = 𝑠
Can write ⌈𝐴𝑠⌋ = 𝐴𝑠 + 𝑒, ⌈𝐴𝑟⌋ = 𝐴𝑟 + 𝑒′, ⌈𝑟 ⋅ 𝑏 + ⌊𝑞2 ⌋𝑚⌋ = 𝑟 ⋅ 𝑏 + ⌊

𝑞
2 ⌋𝑚 + 𝑒".

compute 𝑣 − 𝑢 ⋅ 𝑠 = 𝑟 ⋅ 𝑏 + 𝑒" + ⌊𝑞2 ⌋𝑚 − 𝑟𝑇𝐴𝑠 − 𝑒′𝑠 = ⌊𝑞2 ⌋𝑚 + 𝑟 ⋅ 𝑒 + 𝑒" − 𝑒′ ⋅ 𝑠⏟⏟⏟⏟⏟⏟⏟
small

Each component (bit) is 1 if the number is closer to 𝑞/2 than 0, else 0.
We compress 𝑢, 𝑣 again in practice.
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SABER, a Module LWR (D’Anvers, Karmakar, Roy, Vercautern)

𝜒∗ ∶= CenteredBinomial(8, 1/2)
𝑅𝑞 ∶= ℤ8192[𝑋]/(𝑋256 + 1), A ∈ 𝑅𝑘×𝑘𝑞

s, e ← χ∗ A ← 𝑈(public)
𝑆𝐾 = s, 𝑃𝐾 = b = ⌊ 𝑝𝑞As⌉

A,b ⟶
s, s′,b,b′ ∈ 𝑅𝑘𝑞 s′ ← 𝜒∗

b′ = ⌊ 18A𝑇s′⌉ : coefficients mod 1024
𝑣′ = ⌊ 1

128b𝑇𝑠′ + 4𝑀⌉ : coefficients mod 8
⟵ b′, 𝑣′

𝑀 = ⌊ 1
4096 (1024𝑣

′ − 8b′𝑇s)⌉
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Some Misunderstandings about (M,R)-LWE i

Regev first suggested the LWE problem
Hoffstein-Pipher-Silverman noted (1996) LWE has to be hard for NTRU to exist.

SVP has been studied since Gauss
Gauss reduced dim-2 lattices; the Gaussian Heuristic is not endorsed by him.

NTRU has been studied for 1/4-century, power-of-2-cyclotomic rings much less.

There are no known attacks exploiting the ideal structure
The S-Unit attack against cyclotomic rings ideal-SVP is being ignored or denied.

M-LWE has easier scaling of security
Compared to 2-power-cyclotomic Ring-LWE, yes, but not using
2-power-cyclotomic rings has much better scaling of security.
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Some Misunderstandings about (M,R)-LWE ii

M-LWE is more (or “no less”) secure than R-LWE
ℤ𝑞[𝑋]/⟨𝑋2

𝑘 + 1⟩ is a module over ℤ𝑞[𝑋]/⟨𝑋2
ℓ + 1⟩ if ℓ < 𝑘, so if M-LWEs on all

dimension 2𝑘−ℓ modules over ℤ𝑞[𝑋]/⟨𝑋2
ℓ + 1⟩ are insecure, naturally an R-LWE

over ℤ𝑞[𝑋]/⟨𝑋2
𝑘 + 1⟩ is insecure. But there are no reductions from an M-LWE over

ℤ𝑞[𝑋]/⟨𝑋256 + 1⟩ to an R-LWE over ℤ𝑞[𝑋]/⟨𝑋1020 + 𝑋1019 + ⋯ + 𝑋 + 1⟩ .

NTRU doesn’t have a security reduction like (R,M)-LWE
There are larger (Stehlè-Steinfeld) NTRU instances with perfectly fine and
meaningful security reductions, the same way that there are larger M-LWE
instances with valid security reductions.

(R,M)-LWE is protected by a worst-case-to-average-case reduction theorem
Practical instances much too small compared to the dimensions in the theorem.
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Some Misunderstandings about (M,R)-LWE iii

M-LWE (Kyber) is more efficient than R-LWE (NewHope)
No, a matrix-to-vector multiplication over a module takes time that is square in
the module dimension; a polynomial multiplication over an equally-sized ring
takes time that is linearithmic in the ring size.

Kyber is faster than NewHope because NewHope picked its parameters (e.g.,
error width) more conservatively where Kyber did not.

Kyber’s security analysis is thorough
No, it failed to include “hybrid attacks”.

2022.07.13 B.-Y. Yang 19/46



Institute of Information Science, Academia Sinica

Some Misunderstandings about (M,R)-LWE iv

NewHope picked its parameters in accordance with security theorems
What NewHope did (without logically connecting the dots):

• pointing at worst-to-average-case reductions on continuous Gaussians;
• saying that those trivially also cover rounded Gaussians;
• giving a Renyi-divergence proof that the NewHope distribution is about as
good as a rounded-Gaussian distribution

Kyber is more secure than NewHope
No, Kyber’s much narrower error distribution makes it probably less secure than
NewHope at each corresponding security level, due to hybrid attacks.
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Streamlined NTRU Prime (NTRU Variation), the Public Key Encryption

The Ring is 𝑅/𝑞 = 𝔽𝑞[𝑥]/(𝑥𝑝 − 𝑥 − 1), a field

• 𝑝, 𝑞 primes, 𝑤 posint, 2𝑝 ≥ 3𝑤, 𝑞 ≥ 16𝑤 + 1.
• small is a polynomial with coefficients in {0, ±1}.
• short is small and has exactly 𝑤 non-zero coefficients.
• rounded is each coefficient normalized and divisible by 3.

KeyGen: Take small 𝑔 ∈ 𝑅/3 = 𝔽3[𝑥]/(𝑥𝑝 − 𝑥 − 1) until invertible and compute
1/𝑔 ∈ 𝑅/3. Take short 𝑓 ∈ 𝑅/3. SecKey is (𝑓, 1/𝑔) ∈ (𝑅/3) × (𝑅/3).
Pubkey ℎ = 𝑔†/(3𝑓†) ∈ 𝑅/𝑞. Here ⋅† ∶ 𝑅/3 → 𝑅/𝑞 is a “centerlift”.

Encrypt: Input short 𝑟, ciphertext 𝑐 = round(ℎ𝑟).
Decrypt: Take SecKey (𝑓, 𝑣), compute 𝑎 = 3𝑓†𝑐 ∈ 𝑅/𝑞, consider as in 𝑅. Then

compute 𝑟 = 𝑎𝑣 ∈ 𝑅/3, answer is correct if it is short.
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Streamlined NTRU Prime, The Key Establishment Method
Note: Most of this talk omitted KEM conversion details; Kyber, and SABER used the same transformations

KeyGen
Generate keys as before, but with an extra short 𝜌 in the secret key.

Encapsulation
Take a random short 𝑟, compute 𝑐 = round(ℎ𝑟) Compute 𝐶 = (𝑐,hash(𝑟, ℎ)). Key is
hash′(1, 𝑟, 𝐶), Send 𝐶.

Decapsulation
Decrypt 𝑐 using secret key to find 𝑟′. Check to see if hash(𝑟′, ℎ) matches. If so
output hash′(1, 𝑟, 𝐶), else output hash′(0, 𝜌, 𝐶).

2022.07.13 B.-Y. Yang 22/46



Institute of Information Science, Academia Sinica

NTRU LPRime (GAMLPRime?), a R-LWR system

(𝜒∗ = ternary, fixed-weight), (𝑅𝑞 ∶= ℤ4591[𝑋]/(𝑋761 − 𝑋 − 1), 𝐴 ∈ 𝑅𝑞)
𝐺 ← 𝑈, 𝑎 ← 𝜒∗

𝑆𝐾 = 𝑎, 𝑃𝐾 = {𝐺, 𝐴}, 𝐴 = Round3(𝑎𝐺)
𝐺, 𝐴⟶

𝑎,𝑏 ∈ 𝑅𝑞 b ← 𝜒∗
𝐵 = Round3(𝑏𝐺)

𝑇 = ⌊ 16𝑞 Round𝑞/16 (Truncate256(𝑏𝐴) +
𝑞
2𝑀)⌉

⟵ 𝐵, 𝑇
𝑀 = Round2 (

𝑞
16𝑇 − 𝑎𝐵)
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About Digital Signature Schemes

Succinct Non-Interactive Zero-Knowledge Proof of Secret Key
• Signature is (reasonably) short
• Signing a message needs no interaction; otherwise called an “ID Scheme”
• Signature establishes that (s)he owns private key
• Signature does not leak information about private key

The Secret Knowledge
RSA (Pre-Quantum): Knows factorization of public key 𝑁 = 𝑝𝑞
Discrete Logarithm (Pre-Quantum): Knows 𝑥 such that 𝑎 = 𝑔𝑥 (or 𝐴 = 𝑥𝑃)
Lattices (Post-Quantum): Knows short 𝑠 such that 𝑏 = 𝐴𝑠 + 𝑒 ≈ 𝐴𝑠
Multivariates (Post-Quantum): Knows 𝑆, 𝑇 such that 𝑃 = 𝑇 ∘ 𝑄 ∘ 𝑆

2022.07.13 B.-Y. Yang 24/46



Institute of Information Science, Academia Sinica

Summary of NISTPQC Signatures (Skylake)

scheme security privkey pubkey signature keygen sign verify
SPHINCS+128s NIST I 64 B 32 B 7856 B 85M cc 645M cc 861k cc
SPHINCS+128f NIST I 64 B 32 B 17088 B 1.3M cc 33M cc 2150k cc
SPHINCS+192s NIST III 96 B 48 B 16224 B 125M cc 1246M cc 1444k cc
SPHINCS+192f NIST III 96 B 48 B 35664 B 1.9M cc 55M cc 3492k cc
SPHINCS+256s NIST V 128 B 64 B 29792 B 192M cc 1025M cc 1987k cc
SPHINCS+256f NIST V 128 B 64 B 49856 B 5.0M cc 109M cc 2559k cc
Falcon-512 NIST I 1281 B 897 B 666 B ≈ 20M cc ≈ 387k cc ≈ 82k cc
Falcon-1024 NIST V 2305 B 1793 B 1280 B ≈ 63M cc ≈ 790k cc ≈ 168k cc
Dilithium2 NIST II 2528 B 1312 B 2420 B 124k cc 333k cc 118k cc
Dilithium3 NIST III 4000 B 1952 B 3293 B 256k cc 529k cc 179k cc
Dilithium5 NIST V 4864 B 2592 B 4595 B 298k cc 642k cc 280k cc

UOV-16-160-64 NIST I 378404 B 412160 B 96 B 11.3 M cc 2.3M cc 861k cc
Ed25519(ref.) ≈ 0 32 B 32 B 64 B ≈ 55k cc ≈ 60k cc ≈ 200k cc
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Ideas Behind Lattice Signatures

Earliest Methods: Unknown Good Basis
Public key is a known, bad basis; private key an unknown, good basis. Signature
is a point that is close to (some hash of) the message. The hard problem is the
(approximate) Closest Vector Problem (CVP) in a given class of lattice.
Later came Small Integer Solutions and (Ring) Learning with Errors (Product
NTRU)
Private key are small vectors 𝑠 and 𝑠′, the public key is a matrix 𝐴 and 𝑏 = 𝐴𝑠 + 𝑠′.
The hard problems are SIS and LWE variants.
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Overview

Falcon (Lattices)
Reasonably fast signing and verifying on big CPUs, smaller (897B pubkey, 666B
signature), very complex (hard to program correctly), slow on microcontrollers.

Dilithium (Lattices)
Reasonably fast signing and verifying, larger (1312B pubkey, 2420B signature).

Security Concerns: Recent Attacks
• “S-Unit Attacks” by Daniel J. Bernstein et al might affect Falcon/Dilithium
security. Back in the early 1990s it was similarly unclear what impact NFS
would have on RSA security.
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Early Lattice Signatures

GGH (Goldreich-Goldwasser-Halevi): CVP for random lattice
𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛} secret (good) basis, 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑛} equivalent public (bad)
basis, such that ℤ[𝑠1, 𝑠2, … , 𝑠𝑛] = ℤ[𝑏1, 𝑏2, … , 𝑏𝑛]. The message 𝑀 is a point in
space. Then the signature 𝜎 is a lattice point very close to 𝑀, constructed by
Babai’s algorithm: let 𝑀 = ∑𝑛𝑖=1 𝑎𝑖𝑠𝑖, then 𝜎 = ∑

𝑛
𝑖=1⌈𝑎𝑖⌋𝑠𝑖, transformed into a linear

combination of the 𝑏𝑖. Verification: 𝑀 − 𝜎 is small.
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Approximate CVP Signatures and Leakage

Signatures leak information
Since 𝑀 − 𝜎 = ∑𝑛𝑖=1 (𝑎𝑖 − ⌈𝑎𝑖⌋) 𝑠𝑖 𝑀 − 𝜎 for any 𝑀 is in a parallelpiped
{∑𝑛𝑖=1 𝛼𝑖𝑠𝑖, −

1
2 < 𝛼1, 𝛼2, … , 𝛼𝑛 <

1
2 }. We can learn this parallelpiped from

sufficiently many samples by first transforming it into a hypercube.

Can do hypercube transformation as distribution’s covariance matrix ∝ 𝑆𝑇𝑆.
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Rejection Sampling

Bright Idea: Make the Distribution Something Known
Suppose in a lattice and CVP-based signature there is some randomness in the
signing process, and we discard the results and restart on any attempts in which
the error vector 𝑚 − 𝜎 doesn’t fit a given (publicly known) distribution. Then the
signature will no longer leak any information about the key.

Generally, this public distribution used to be a discrete Gaussian, and is (in
Dilithium) uniform over a standard hypercube or a hypersphere, and
presumably the number of expected retries is not too high.

This is called rejection sampling and is now standard in lattice-based digital
signatures.
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NTRUMLS (pqNTRUSign): Uses 𝑅𝑞 ∶= ℤ𝑞[𝑥]/⟨𝑥2
ℓ + 1⟩(ℓ = 9, 10), 𝑞 = 65537, 𝑝 = 2

KeyGen
𝑓, 𝑔 ternary with fixed weights, ℎ = 𝑔/(𝑝𝑓) ∈ 𝑅𝑞
Sign: find (𝑠, 𝑡) ≡ (𝑠𝑝, 𝑡𝑝) (mod 𝑝) and 𝑡 = ℎ𝑠 and not too large

1. hash (𝑀‖ℎ) (via XOF) uniform (mod 𝑝) polynomials 𝑠𝑝 and 𝑡𝑝.
2. get random polynomial r (via XOF or PRF) with ‖𝑟‖ < 𝑞/(2𝑝)
3. 𝑠0 ∶= 𝑝𝑟 + 𝑠𝑝, 𝑡0 ∶= 𝑠0ℎ, 𝑎 ∶= 𝑔−1 ((𝑡𝑝 − 𝑡0) mod 𝑝), 𝑠 ∶= 𝑠0 + 𝑝𝑎𝑓 , 𝑡 ∶= 𝑡0 + 𝑎𝑔
4. 𝑠𝑖𝑔 ∶= 𝑠1 = (𝑠 − 𝑠𝑝)/𝑝 if ‖𝑠‖ < 𝑞/2 − 𝐵𝑠, ‖𝑡‖ < 𝑞/2 − 𝐵𝑡, ‖𝑎𝑓‖ < 𝐵𝑠, ‖𝑎𝑔‖ < 𝐵𝑡.

Verify
1. hash (𝑀‖ℎ) to obtain digest and uniform (mod 𝑝) polynomials 𝑠𝑝 and 𝑡𝑝.
2. 𝑠 ∶= 𝑠𝑝 + 𝑝𝑠1, 𝑡 = 𝑠ℎ, check 𝑡 = 𝑡𝑝 (mod 𝑝), ‖𝑠‖ < 𝑞/2 − 𝐵𝑠 and ‖𝑡‖ < 𝑞/2 − 𝐵𝑡.
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“Fiat-Shamir” Transforms an ID scheme to a Signature Scheme

An Identification Scheme based on ECC
KeyGen: Public Key 𝐴 = 𝑎𝐵, 𝐵 base point, 𝑎 is Secret key.
Commit: Peter (Prover) picks random nonce 𝑟, computes, sends 𝑅 = 𝑟𝐵

Challenge: Vera (Verifier) picks and sends random 𝑐.
Response: Peter sends 𝑠 = 𝑟 + 𝑎𝑐.

Verify: Vera checks that 𝑠𝐵 = 𝑅 + 𝑐𝐴.

Digital Signature Scheme (Ed25519, (𝑎, 𝑎′) = 𝐻(𝑠𝑒𝑐𝑟𝑒𝑡), 𝐻 =SHA-512)
KeyGen: Public Key 𝐴 = 𝑎𝐵, 𝐵 base point, 𝑎 is Secret key.

Sign: “Nonce” 𝑟 = 𝐻(𝑎′, 𝑀), 𝑐 = 𝐻†(𝑅, 𝐴,𝑀), sig is (𝑅 = 𝑟𝐵, 𝑠 = 𝑟 + 𝑎𝑐).
Verify: On receiving (𝑅, 𝑠), check that 𝑠𝐵 = 𝑅 + 𝑐𝐴.
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A Corresponding “Fiat-Shamir” Almost Lattice Signature Scheme

An Almost-Identification Scheme based on Ring-LWE/SIS
KeyGen: Public Key 𝑡 ≈ 𝐴𝑠, 𝑠 is Secret key.
Commit: Peter (Prover) picks random 𝑦, computes, sends 𝑥 ≈ 𝐴𝑦.

Challenge: Vera (Verifier) picks and sends random 𝑐.
Response: Peter sends 𝑧 = 𝑦 + 𝑠𝑐.

Verify: Vera checks that 𝐴𝑧 ≈ 𝑥 + 𝑐𝑡.

Corresponding almost Digital Signature Scheme
KeyGen: Public Key 𝑡 ≈ 𝐴𝑠, 𝑠 is Secret key.

Sign: Random 𝑦, 𝑥 ≈ 𝐴𝑦, 𝑐 = 𝐻†(𝑥, 𝑀), sig is (𝑐, 𝑧 = 𝑦 + 𝑠𝑐).
Verify: On receiving (𝑧, 𝑐), check that 𝑐 = 𝐻†( Az-ct , 𝑀).
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A Corresponding “Fiat-Shamir” Almost Lattice Signature Scheme

An Almost-Identification Scheme based on Ring-LWE/SIS
KeyGen: Public Key 𝑡 ≈ 𝐴𝑠, 𝑠 is Secret key.
Commit: Peter (Prover) picks random 𝑦, computes, sends 𝑥 ≈ 𝐴𝑦.

Challenge: Vera (Verifier) picks and sends random 𝑐.
Response: Peter sends 𝑧 = 𝑦 + 𝑠𝑐.

Verify: Vera checks that 𝐴𝑧 ≈ 𝑥 + 𝑐𝑡.

Corresponding almost Digital Signature Scheme
KeyGen: Public Key 𝑡 ≈ 𝐴𝑠, 𝑠 is Secret key.

Sign: Random 𝑦, 𝑥 ≈ 𝐴𝑦, 𝑐 = 𝐻†(𝑥, 𝑀), sig is (𝑐, 𝑧 = 𝑦 + 𝑠𝑐).
Verify: On receiving (𝑧, 𝑐), check that 𝑐 = 𝐻†( Az-ct , 𝑀).

• Use Rejection Sampling
• Need Exact Equality — Use
Only High Part of 𝐴𝑦, Send
Adjustment Hint
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Dilithium (Ducas, Kiltz, Lepoint, Lyubashevsky, Schwabe, Seiler, Stehlé)

Sign(μ)

y [-γ, γ]4

c := H(high(Ay), μ)
z := y + cs1
Restart if |z| > γ - β or
|low(Ay - cs2)|> γ - β
Create a small carry bit 

hint vector h
Signature = (z, c, h)

Verify(z, c, h, μ)

Use h and Az - c∙high(t) to reconstruct  
high(Az - ct) 

Verify: |z| ≤ γ – β and c=H(high(Az - ct), μ)

Dilithium2 Algorithms
KeyGen()

A ßR4 x 4; s1ß[-5, 5]4 , s2 ß[-5, 5]4 

As1+s2 = t = low(t)+high(t)
SK: (s1, s2), PK: (A ßR4 x 4 , high(t))

Carry bits caused by 
ignoring c∙low(t)

Makes the distribution 
of z independent of si = high(Ay)

• A sampled in NTT
(Number Theoretic
Transform) domain

• high() and low() split a
value in ℤ𝑞 into top and
bottom parts

• H hashes into short ball:
𝑤 of the coefficients are
±1, and the rest are 0

• h (“hint”) marks where
ℎ𝑖𝑔ℎ(𝐴𝑧 − 𝑐 ⋅ ℎ𝑖𝑔ℎ(𝑡)) ≠
ℎ𝑖𝑔ℎ(𝐴𝑧 − 𝑐𝑡)
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Original Idea — NTRU Sign

(Original) NTRU Signatures, an analogue of GGH
Private Key: short 𝑓, 𝑔, Public Key: ℎ = 𝑔/𝑓 . From message 𝑀, pick nonce 𝑟,
compute hash 𝑚 = 𝐻(𝑀‖𝑟), Sig= (𝑟, 𝜎) where 𝜎 = ⌈−(1/𝑞)𝑚𝑔⌋𝑓 + ⌈(1/𝑞)𝑚𝑓⌋𝑔
(Babai). Verification: let 𝑚 = 𝐻(𝑀‖𝑟) check that (𝜎, 𝜎ℎ − 𝑚) is small (mod 𝑞).
This is a CVP problem because we have a private basis [ 𝑓 𝑔𝐹 𝐺 ] for the public basis
[ 1 ℎ0 𝑞 ], where 𝑓𝐺 − 𝑔𝐹 = 𝑞, and there is a 𝑋 such that [𝜎 𝑋] [ 1 ℎ0 𝑞 ] is close to [ 0𝑚 ].

Changes toward Falcon
• Rejection Sampling
• Fast Fourier Transforms
• Babai’s nearest-plane algorithm (not Babai’s original algorithm)
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Falcon, Most Complex Selection, Uses Double-Precision Floats

The GPV over NTRU Lattices framework

• Public Basis 𝐴 = [1|ℎ∗] where (∑𝑛−1𝑖=0 ℎ𝑖𝑥𝑖)
∗ = 𝑎0 − ∑

𝑛−1
𝑖=1 𝑎𝑖𝑥𝑛−𝑖.

• Secret Basis 𝐵 = [ 𝑔 −𝑓
𝐺 −𝐹 ]. 𝐵 × 𝐴∗ = 0 (mod 𝑞), ℎ = 𝑔/𝑓 (mod 𝑞).

• Signature of message 𝑀⟶ (𝑟, 𝑠2) where we have small 𝑠1 + 𝑠2ℎ = 𝐻(𝑟‖𝑀).
Don’t send 𝑠1 (computable from 𝑟, 𝑠2), To verify, check ‖(𝑠1, 𝑠2)‖ small.

Reason to Use DP Floats: Fast Fourier Transforms (not NTT) Representation
• Generation of 𝐹, 𝐺 from 𝑓, 𝑔 (in ℤ[𝑥], big integer RNS arithmetic)
• 𝐿𝐷𝐿∗ Decomposition of 𝐵𝐵∗ into a tree-form
• Trapdoor Sampling and Nearest-Plane Algorithm using the tree-form
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Summary of NISTPQC Signatures (recap, Skylake))

scheme security privkey pubkey signature keygen sign verify
SPHINCS+128s NIST I 64 B 32 B 7856 B 85M cc 645M cc 861k cc
SPHINCS+128f NIST I 64 B 32 B 17088 B 1.3M cc 33M cc 2150k cc
SPHINCS+192s NIST III 96 B 48 B 16224 B 125M cc 1246M cc 1444k cc
SPHINCS+192f NIST III 96 B 48 B 35664 B 1.9M cc 55M cc 3492k cc
SPHINCS+256s NIST V 128 B 64 B 29792 B 192M cc 1025M cc 1987k cc
SPHINCS+256f NIST V 128 B 64 B 49856 B 5.0M cc 109M cc 2559k cc
Falcon-512 NIST I 1281 B 897 B 666 B ≈ 20M cc ≈ 387k cc ≈ 82k cc
Falcon-1024 NIST V 2305 B 1793 B 1280 B ≈ 63M cc ≈ 790k cc ≈ 168k cc
Dilithium2 NIST II 2528 B 1312 B 2420 B 124k cc 333k cc 118k cc
Dilithium3 NIST III 4000 B 1952 B 3293 B 256k cc 529k cc 179k cc
Dilithium5 NIST V 4864 B 2592 B 4595 B 298k cc 642k cc 280k cc

UOV-16-160-64 NIST I 378404 B 412160 B 96 B 11.3 M cc 2.3M cc 861k cc
Ed25519 (ref.) ≈ 0 32 B 32 B 64 B ≈ 55k cc ≈ 60k cc ≈ 200k cc
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Thank you for Listening

That’s it Folks!
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Obtaining (𝑓, 𝑔, 𝐹, 𝐺) such that 𝑓𝐺 − 𝑔𝐹 = 𝑞 (mod 𝑥2𝑘 + 1)
Fast Fourier Transform NTRU Solve in Falcon

Discrete Gaussian Samples for 𝑓 , 𝑔 coefficients
Sample 𝑓, 𝑔, ensure: 𝑓−1 exists, ‖(𝑓, 𝑔)‖, ‖ 𝑞𝑔

𝑓𝑓∗+𝑔𝑔∗ ,
𝑞𝑓

𝑓𝑓∗+𝑔𝑔∗‖ are small

A Recursive Process
If 𝑘 = 0: find 𝑎𝑓 + 𝑏𝑔 = 1 using extended GCD variant, 𝐹 = −𝑏𝑞, 𝐺 = 𝑎𝑞
If 𝑘 > 0: recursively find 𝐹′, 𝐺′ where 𝑓′𝐺′ − 𝑔′𝐹′ = 𝑞 (mod 𝑥2𝑘−1 + 1), with

𝑓′(𝑥2) = 𝑓(𝑥)𝑓(−𝑥), 𝑔′(𝑥2) = 𝑔(𝑥)𝑔(−𝑥), then
𝐹(𝑥) = 𝑔(−𝑥)𝐹′(𝑥2), 𝐺(𝑥) = 𝑓(−𝑥)𝐺′(𝑥2).

Things to Note
• Entire computation is in ℤ[𝑥] with thousands-of-bits coefficients.
• Uses Residual Number System with multiple (2048𝑘 + 1) primes < 231.
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Computing the Falcon (𝐿𝐷𝐿∗) Tree from 𝐺 = 𝐵𝐵∗
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Fast Fourier Transform Trapdoor Sampling
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Signing with Assistance from Fast Fourier Transform Trapdoor
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Babai’s Nearest Plane Algorithm

Babai’s original algorithm for short basis (𝑠𝑖)
Let 𝑀 = ∑𝑛𝑖=1 𝑎𝑖𝑠𝑖, then 𝜎 = ∑

𝑛
𝑖=1⌈𝑎𝑖⌋𝑠𝑖,

Nearest Plane Algorithm

1. Let 𝛿 ← 𝑀, find the Gram-Schmidt orthogonalization (𝑠̂𝑖) of lattice basis (𝑠𝑖).
2. for 𝑗 = 𝑛 downto 1 do
3. 𝛿 ← 𝛿 − 𝑐𝑗𝑠𝑗, where 𝑐𝑗 = ⌈⟨𝛿, 𝑠̂𝑗⟩/‖𝑠̂𝑗‖2⌋,

this basically finds recursively integers 𝑐𝑗 such that the hyperplane
𝑐𝑗𝑠𝑗 + span(𝑠1, 𝑠2, … , 𝑠𝑗−1) is closest to 𝛿.

4. end do
5. output 𝜎 = 𝑀 − 𝛿.
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Pieces of the Puzzle of NTRU Prime: Deterministic Encode/Decode

Let 𝑀 = (𝑚0, … ,𝑚𝑛−1) and 𝑅 = (𝑟0, … , 𝑟𝑛−1) be int sequences with
0 ≤ 𝑟𝑖 < 𝑚𝑖 < 214, ∀𝑖. Length of 𝑆 = Encode(𝑅,𝑀) depends only on 𝑀.
Encoding

• If 𝑛 = 0 then S is the empty sequence ().
• If 𝑛 = 1 then S is 𝑟0 in little-endian (if 𝑚0 > 28, 2 bytes, if 28 ≥ 𝑚0 > 1, 1 byte)
• If 𝑛 ≥ 2 then 𝑆 is a prefix then Encode(𝑅0, 𝑀0). Each pair 𝑟𝑖, 𝑟𝑖+1 modulo
𝑚𝑖, 𝑚𝑖+1 for even 𝑖 is merged into 𝑟 = 𝑟𝑖 + 𝑚𝑖𝑟𝑖+1 modulo 𝑚 = 𝑚𝑖𝑚𝑖+1, and then
𝑟,𝑚 are reduced to 𝑟0, 𝑚0 with 0 < 𝑟0 < 𝑚0 < 214, producing an entry for 𝑅0
and an entry for 𝑀0 respectively. For odd 𝑛, include (𝑟𝑛−1, 𝑚𝑛−1 in (𝑅0, 𝑀0).

• Reduction: if 𝑚 ≥ 214 then 𝑟 mod 28 is appended to the prefix while 𝑟,𝑚 are
replaced by ⌊𝑟/28⌋, ⌈𝑚/28⌉, repeat 0–2 times to reduce𝑚 to the correct range.
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Pieces of the Puzzle of NTRU Prime: Decoding

def Decode(S,M):
if len(M) == 0: return []
if len(M) == 1: return [sum(S[i]*256**i for i in range(len(S)))%M[0]]
k = 0; bottom,M2 = [],[]
for i in range(0,len(M)-1,2):
m,r,t = M[i]*M[i+1],0,1
while m >= limit:
r,t,k,m = r+S[k]*t,t*256,k+1,(m+255)//256

bottom += [(r,t)]; M2 += [m]
if len(M)&1: M2 += [M[-1]]
R2 = Decode(S[k:],M2); R = []
for i in range(0,len(M)-1,2):
r,t = bottom[i//2]; r += t*R2[i//2]
R += [r%M[i]]; R += [(r//M[i])%M[i+1]]

if len(M)&1: R += [R2[-1]]
return R
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Pieces of the Puzzle of NTRU Prime
Other Encodings and Hashing

• Encoding of polynomial: center-lift coefficients and add (𝑞 − 1)/2, apply
Encode with 𝑀 = 𝑝 copies of 𝑞

• Encoding of rounded polynomial: center-lift coefficients, divide by 3, add
𝑞−1
6 (𝑞 ≡ 1 (mod 6)), Encode with 𝑀 = 𝑝 copies of 𝑞+23 .

• Encoding of Small polynomial: add 1, pack as 2 bits, small-endian.
• (𝑓, 𝑣 = 1/𝑔) are encoded as two small polynomials.
• Hash is SHA-512 cut to 256 bits. Hash𝑏(𝑥) is 𝐻𝑎𝑠ℎ(𝑏‖𝑥) for byte 𝑏.
hash(𝑟, ℎ) = Hash2(Hash3(𝑟),Hash4(ℎ)) (Hash4(ℎ) is cached after first use);
hash′(𝑏, 𝑦, 𝑧) = Hash𝑏(Hash3(𝑦), 𝑧).
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