Implementing post-quantum cryptography

Peter Schwabe
Radboud University, Nijmegen, The Netherlands
June 28, 2018

PQCRYPTO Mini-School 2018, Taipei, Taiwan
Part I: How to make software secure
Timing Attacks

General idea of those attacks

- Secret data has influence on timing of software
- Attacker measures timing
- Attacker computes influence\(^{-1}\) to obtain secret data
Timing Attacks

General idea of those attacks

- Secret data has influence on timing of software
- Attacker measures timing
- Attacker computes influence\(^{-1}\) to obtain secret data

Two kinds of remote...

- Timing attacks are a type of side-channel attacks
- Unlike other side-channel attacks, they work remotely:
 - Some need to run attack code in parallel to the target software
 - Attacker can log in remotely (ssh)
Timing Attacks

General idea of those attacks

- Secret data has influence on timing of software
- Attacker measures timing
- Attacker computes influence$^{-1}$ to obtain secret data

Two kinds of remote...

- Timing attacks are a type of side-channel attacks
- Unlike other side-channel attacks, they work remotely:
 - Some need to run attack code in parallel to the target software
 - Attacker can log in remotely (ssh)
 - Some attacks work by measuring network delays
 - Attacker does not even need an account on the target machine
Timing Attacks

General idea of those attacks

- Secret data has influence on timing of software
- Attacker measures timing
- Attacker computes influence\(^{-1}\) to obtain secret data

Two kinds of remote...

- Timing attacks are a type of side-channel attacks
- Unlike other side-channel attacks, they work remotely:
 - Some need to run attack code in parallel to the target software
 - Attacker can log in remotely (ssh)
 - Some attacks work by measuring network delays
 - Attacker does not even need an account on the target machine
- Can’t protect against timing attacks by locking a room
- This talk: don’t consider “local” side-channel attacks
Problem No. 1

```c
if (secret)
{
  do_A();
}
else
{
  do_B();
}
```
Examples

- Square-and-multiply (or double-and-add):

 “if s is one: multiply”
Examples

- Square-and-multiply (or double-and-add):

 "if s is one: multiply"

- Modular reduction:

 "if $a > q$: subtract q from $a"
Examples

- Square-and-multiply (or double-and-add):

 "if s is one: multiply"

- Modular reduction:

 "if $a > q$: subtract q from a"

- Rejection sampling:

 "if $a < q$: accept $a"
Examples

- Square-and-multiply (or double-and-add):

 “if \(s \) is one: multiply”

- Modular reduction:

 “if \(a > q \): subtract \(q \) from \(a \)”

- Rejection sampling:

 “if \(a < q \): accept \(a \)”

- Byte-array (tag) comparison:

 “if \(a[i] \neq b[i] \): return”
Examples

- Square-and-multiply (or double-and-add):
 "if s is one: multiply"

- Modular reduction:
 "if $a > q$: subtract q from a"

- Rejection sampling:
 "if $a < q$: accept a"

- Byte-array (tag) comparison:
 "if $a[i] \neq b[i]$: return"

- Sorting and permuting:
 "if $a < b$: branch into subroutine"
Eliminating branches

So, what do we do with code like this?

```plaintext
if s then
  r ← A
else
  r ← B
end if
```
Eliminating branches

- So, what do we do with code like this?

```plaintext
if s then
  r ← A
else
  r ← B
end if
```

- Replace by

```plaintext
r ← sA + (1 − s)B
```
Eliminating branches

- So, what do we do with code like this?
  ```plaintext
  if s then
    r ← A
  else
    r ← B
  end if
  ```
- Replace by
  ```plaintext
  r ← sA + (1 - s)B
  ```
- Can expand s to all-one/all-zero mask and use XOR instead of addition, AND instead of multiplication
Eliminating branches

- So, what do we do with code like this?

  ```
  if s then
    r ← A
  else
    r ← B
  end if
  ```

- Replace by

  ```
  r ← sA + (1 - s)B
  ```

- Can expand s to all-one/all-zero mask and use XOR instead of addition, AND instead of multiplication

- For very fast A and B this can even be faster
Problem No. 2

table[secret]
Timing leakage part II

Consider lookup table of 32-bit integers

- Cache lines have 64 bytes
- Crypto and the attacker’s program run on the same CPU
- Tables are in cache

<table>
<thead>
<tr>
<th>$T[0] \ldots T[15]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T[16] \ldots T[31]$</td>
</tr>
<tr>
<td>$T[32] \ldots T[47]$</td>
</tr>
<tr>
<td>$T[48] \ldots T[63]$</td>
</tr>
<tr>
<td>$T[64] \ldots T[79]$</td>
</tr>
<tr>
<td>$T[80] \ldots T[95]$</td>
</tr>
<tr>
<td>$T[96] \ldots T[111]$</td>
</tr>
<tr>
<td>$T[112] \ldots T[127]$</td>
</tr>
<tr>
<td>$T[128] \ldots T[143]$</td>
</tr>
<tr>
<td>$T[144] \ldots T[159]$</td>
</tr>
<tr>
<td>$T[160] \ldots T[175]$</td>
</tr>
<tr>
<td>$T[176] \ldots T[191]$</td>
</tr>
<tr>
<td>$T[192] \ldots T[207]$</td>
</tr>
<tr>
<td>$T[208] \ldots T[223]$</td>
</tr>
<tr>
<td>$T[224] \ldots T[239]$</td>
</tr>
<tr>
<td>$T[240] \ldots T[255]$</td>
</tr>
</tbody>
</table>
Consider lookup table of 32-bit integers

- Cache lines have 64 bytes
- Crypto and the attacker’s program run on the same CPU
- Tables are in cache
- The attacker’s program replaces some cache lines
Timing leakage part II

T[0]…T[15]	
T[16]…T[31]	
???	
???	
T[64]…T[79]	
T[80]…T[95]	
???	
???	
???	
???	
T[160]…T[175]	
T[176]…T[191]	
T[192]…T[207]	
T[208]…T[223]	
???	
???	

- Consider lookup table of 32-bit integers
- **Cache lines** have 64 bytes
- Crypto and the attacker’s program run on the same CPU
- Tables are in cache
- The attacker’s program replaces some cache lines
- Crypto continues, loads from table again
Timing leakage part II

Consider lookup table of 32-bit integers

Cache lines have 64 bytes

Crypto and the attacker’s program run on the same CPU

Tables are in cache

The attacker’s program replaces some cache lines

Crypto continues, loads from table again

Attacker loads his data:

<table>
<thead>
<tr>
<th>T[0] ... T[15]</th>
</tr>
</thead>
<tbody>
<tr>
<td>T[16] ... T[31]</td>
</tr>
<tr>
<td>???</td>
</tr>
<tr>
<td>???</td>
</tr>
<tr>
<td>T[64] ... T[79]</td>
</tr>
<tr>
<td>T[80] ... T[95]</td>
</tr>
<tr>
<td>???</td>
</tr>
<tr>
<td>???</td>
</tr>
<tr>
<td>???</td>
</tr>
<tr>
<td>???</td>
</tr>
<tr>
<td>T[160] ... T[175]</td>
</tr>
<tr>
<td>T[176] ... T[191]</td>
</tr>
<tr>
<td>T[192] ... T[207]</td>
</tr>
<tr>
<td>T[208] ... T[223]</td>
</tr>
<tr>
<td>???</td>
</tr>
<tr>
<td>???</td>
</tr>
</tbody>
</table>
Timing leakage part II

- Consider lookup table of 32-bit integers
- *Cache lines* have 64 bytes
- Crypto and the attacker’s program run on the same CPU
- Tables are in cache
- The attacker’s program replaces some cache lines
- Crypto continues, loads from table again
- Attacker loads his data:
 - Fast: cache hit (crypto did not just load from this line)
Timing leakage part II

- Consider lookup table of 32-bit integers
- *Cache lines* have 64 bytes
- Crypto and the attacker’s program run on the same CPU
- Tables are in cache
- The attacker’s program replaces some cache lines
- Crypto continues, loads from table again
- Attacker loads his data:
 - Fast: cache hit (crypto did not just load from this line)
 - Slow: cache miss (crypto just loaded from this line)

<table>
<thead>
<tr>
<th>(T[0] \ldots T[15])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T[16] \ldots T[31])</td>
</tr>
<tr>
<td>???</td>
</tr>
<tr>
<td>???</td>
</tr>
<tr>
<td>(T[64] \ldots T[79])</td>
</tr>
<tr>
<td>(T[80] \ldots T[95])</td>
</tr>
<tr>
<td>???</td>
</tr>
<tr>
<td>(T[112] \ldots T[127])</td>
</tr>
<tr>
<td>???</td>
</tr>
<tr>
<td>???</td>
</tr>
<tr>
<td>(T[160] \ldots T[175])</td>
</tr>
<tr>
<td>(T[176] \ldots T[191])</td>
</tr>
<tr>
<td>(T[192] \ldots T[207])</td>
</tr>
<tr>
<td>(T[208] \ldots T[223])</td>
</tr>
<tr>
<td>???</td>
</tr>
<tr>
<td>???</td>
</tr>
</tbody>
</table>
The general case

Loads from and stores to addresses that depend on secret data leak secret data.
“Countermeasure”

- Observation: This simple *cache-timing attack* does not reveal the secret address, only the cache line
- Idea: Lookups *within one cache line* should be safe
“Countermeasure”

- Observation: This simple *cache-timing attack* does not reveal the secret address, only the cache line
- Idea: Lookups *within one cache line* should be safe... or are they?
“Countermeasure”

- Observation: This simple *cache-timing attack* does not reveal the secret address, only the cache line
- Idea: Lookups *within one cache line* should be safe... or are they?
- Bernstein, 2005: “*Does this guarantee constant-time S-box lookups? No!*”
“Countermeasure”

- Observation: This simple *cache-timing attack* does not reveal the secret address, only the cache line
- Idea: Lookups *within one cache line* should be safe... or are they?
- Bernstein, 2005: “Does this guarantee constant-time S-box lookups? No!”
- Osvik, Shamir, Tromer, 2006: “This is insufficient on processors which leak low address bits”
“Countermeasure”

- Observation: This simple *cache-timing attack* does not reveal the secret address, only the cache line.
- Idea: Lookups *within one cache line* should be safe... or are they?
- Bernstein, 2005: “*Does this guarantee constant-time S-box lookups? No!*”
- Osvik, Shamir, Tromer, 2006: “*This is insufficient on processors which leak low address bits*”
- Reasons:
 - Cache-bank conflicts
 - Failed store-to-load forwarding
 - ...

Implementing post-quantum cryptography
“Countermeasure”

- Observation: This simple cache-timing attack does not reveal the secret address, only the cache line
- Idea: Lookups within one cache line should be safe... or are they?
- Bernstein, 2005: “Does this guarantee constant-time S-box lookups? No!”
- Osvik, Shamir, Tromer, 2006: “This is insufficient on processors which leak low address bits”
- Reasons:
 - Cache-bank conflicts
 - Failed store-to-load forwarding
 - ...
- OpenSSL is using it in BN_mod_exp_mont_consttime
Observation: This simple *cache-timing attack* does not reveal the secret address, only the cache line.

Idea: Lookups *within one cache line* should be safe... or are they?

Bernstein, 2005: *“Does this guarantee constant-time S-box lookups? No!”*

Osvik, Shamir, Tromer, 2006: *“This is insufficient on processors which leak low address bits”*

Reasons:
- Cache-bank conflicts
- Failed store-to-load forwarding
- ...

OpenSSL is using it in `BN_mod_exp_mont_consttime`

Brickell (Intel), 2011: yeah, it’s fine as a countermeasure
“Countermeasure”

- Observation: This simple cache-timing attack does not reveal the secret address, only the cache line
- Idea: Lookups within one cache line should be safe... or are they?
- Bernstein, 2005: “Does this guarantee constant-time S-box lookups? No!”
- Osvik, Shamir, Tromer, 2006: “This is insufficient on processors which leak low address bits”
- Reasons:
 - Cache-bank conflicts
 - Failed store-to-load forwarding
 - ...
- OpenSSL is using it in BN_mod_exp_mont_consttime
- Brickell (Intel), 2011: yeah, it’s fine as a countermeasure
- Bernstein, Schwabe, 2013: Demonstrate timing variability for access within one cache line
“Countermeasure”

- Observation: This simple cache-timing attack does not reveal the secret address, only the cache line
- Idea: Lookups within one cache line should be safe... or are they?
- Bernstein, 2005: “Does this guarantee constant-time S-box lookups? No!”
- Osvik, Shamir, Tromer, 2006: “This is insufficient on processors which leak low address bits”
- Reasons:
 - Cache-bank conflicts
 - Failed store-to-load forwarding
 - ...
- OpenSSL is using it in BN_mod_exp_mont_consttime
- Brickell (Intel), 2011: yeah, it’s fine as a countermeasure
- Bernstein, Schwabe, 2013: Demonstrate timing variability for access within one cache line
- Yarom, Genkin, Heninger: CacheBleed attack “is able to recover both 2048-bit and 4096-bit RSA secret keys from OpenSSL 1.0.2f running on Intel Sandy Bridge processors after observing only 16,000 secret-key operations (decryption, signatures).”
Countermeasure

```c
uint32_t table[TABLE_LENGTH];

uint32_t lookup(size_t pos)
{
    size_t i;
    int b;
    uint32_t r = table[0];
    for(i=1;i<TABLE_LENGTH;i++)
    {
        b = (i == pos);
        cmov(&r, &table[i], b); // See "eliminating branches"
    }
    return r;
}
```

Implementing post-quantum cryptography 11
uint32_t table[TABLE_LENGTH];

uint32_t lookup(size_t pos)
{
 size_t i;
 int b;
 uint32_t r = table[0];
 for(i=1;i<TABLE_LENGTH;i++)
 {
 b = (i == pos); /* DON’T! Compiler may do funny things! */
 cmov(&r, &table[i], b);
 }
 return r;
}
uint32_t table[TABLE_LENGTH];

uint32_t lookup(size_t pos)
{
 size_t i;
 int b;
 uint32_t r = table[0];
 for(i=1;i<TABLE_LENGTH;i++)
 {
 b = isequal(i, pos);
 cmov(&r, &table[i], b);
 }
 return r;
}
Countermeasure, part 2

```c
int isequal(uint32_t a, uint32_t b)
{
    size_t i; uint32_t r = 0;
    unsigned char *ta = (unsigned char *)&a;
    unsigned char *tb = (unsigned char *)&b;
    for(i=0;i<sizeof(uint32_t);i++)
    {
        r |= (ta[i] ^ tb[i]);
    }
    r = (-r) >> 31;
    return (int)(1-r);
}
```
Part II: How to make software fast
Vector computations

Scalar computation

- Load 32-bit integer a
- Load 32-bit integer b
- Perform addition $c \leftarrow a + b$
- Store 32-bit integer c

Vectorized computation

- Load 4 consecutive 32-bit integers (a_0, a_1, a_2, a_3)
- Load 4 consecutive 32-bit integers (b_0, b_1, b_2, b_3)
- Perform addition $(c_0, c_1, c_2, c_3) \leftarrow (a_0 + b_0, a_1 + b_1, a_2 + b_2, a_3 + b_3)$
- Store 128-bit vector (c_0, c_1, c_2, c_3)
Vector computations

Scalar computation

- Load 32-bit integer a
- Load 32-bit integer b
- Perform addition $c \leftarrow a + b$
- Store 32-bit integer c

Vectorized computation

- Load 4 consecutive 32-bit integers (a_0, a_1, a_2, a_3)
- Load 4 consecutive 32-bit integers (b_0, b_1, b_2, b_3)
- Perform addition $(c_0, c_1, c_2, c_3) \leftarrow (a_0 + b_0, a_1 + b_1, a_2 + b_2, a_3 + b_3)$
- Store 128-bit vector (c_0, c_1, c_2, c_3)

- Perform the same operations on independent data streams (SIMD)
- Vector instructions available on most “large” processors
- Instructions for vectors of bytes, integers, floats...
Vector computations

Scalar computation

- Load 32-bit integer \(a \)
- Load 32-bit integer \(b \)
- Perform addition \(c \leftarrow a + b \)
- Store 32-bit integer \(c \)

Vectorized computation

- Load 4 consecutive 32-bit integers \((a_0, a_1, a_2, a_3)\)
- Load 4 consecutive 32-bit integers \((b_0, b_1, b_2, b_3)\)
- Perform addition \((c_0, c_1, c_2, c_3) \leftarrow (a_0 + b_0, a_1 + b_1, a_2 + b_2, a_3 + b_3)\)
- Store 128-bit vector \((c_0, c_1, c_2, c_3)\)

- Perform the same operations on independent data streams (SIMD)
- Vector instructions available on most “large” processors
- Instructions for vectors of bytes, integers, floats…
- Need to interleave data items (e.g., 32-bit integers) in memory
- Compilers will not help with vectorization
Vector computations

Scalar computation

- Load 32-bit integer \(a \)
- Load 32-bit integer \(b \)
- Perform addition \(c \leftarrow a + b \)
- Store 32-bit integer \(c \)

Vectorized computation

- Load 4 consecutive 32-bit integers \((a_0, a_1, a_2, a_3)\)
- Load 4 consecutive 32-bit integers \((b_0, b_1, b_2, b_3)\)
- Perform addition \((c_0, c_1, c_2, c_3) \leftarrow (a_0 + b_0, a_1 + b_1, a_2 + b_2, a_3 + b_3)\)
- Store 128-bit vector \((c_0, c_1, c_2, c_3)\)

- Perform the same operations on independent data streams (SIMD)
- Vector instructions available on most “large” processors
- Instructions for vectors of bytes, integers, floats…
- Need to interleave data items (e.g., 32-bit integers) in memory
- Compilers will not really help with vectorization
Why is this so great?

- Consider the Intel Skylake processor
Why is this so great?

- Consider the Intel Skylake processor
 - 32-bit load throughput: 2 per cycle
 - 32-bit add throughput: 4 per cycle
 - 32-bit store throughput: 1 per cycle
Why is this so great?

- Consider the Intel Skylake processor
 - 32-bit load throughput: 2 per cycle
 - 32-bit add throughput: 4 per cycle
 - 32-bit store throughput: 1 per cycle
 - 256-bit load throughput: 2 per cycle
 - 8×32-bit add throughput: 3 per cycle
 - 256-bit store throughput: 1 per cycle
Why is this so great?

- Consider the Intel Skylake processor
 - 32-bit load throughput: 2 per cycle
 - 32-bit add throughput: 4 per cycle
 - 32-bit store throughput: 1 per cycle
 - 256-bit load throughput: 2 per cycle
 - $8 \times$ 32-bit add throughput: 3 per cycle
 - 256-bit store throughput: 1 per cycle

- **Vector instructions are almost as fast as scalar instructions but do $8 \times$ the work**
Why is this so great?

- Consider the Intel Skylake processor
 - 32-bit load throughput: 2 per cycle
 - 32-bit add throughput: 4 per cycle
 - 32-bit store throughput: 1 per cycle
 - 256-bit load throughput: 2 per cycle
 - 8× 32-bit add throughput: 3 per cycle
 - 256-bit store throughput: 1 per cycle

- **Vector instructions are almost as fast as scalar instructions but do 8× the work**

- Situation on other architectures/microarchitectures is similar

- Reason: cheap way to increase arithmetic throughput (less decoding, address computation, etc.)
Take-home message

“Big multipliers are pre-quantum, vectorization is post-quantum”
Standard-lattice-based schemes

- Standard-lattices operate on matrices over \mathbb{Z}_q, for “small” q
- These are trivially vectorizable
- So trivial that even compilers may do it!
Standard-lattice-based schemes

- Standard-lattices operate on matrices over \mathbb{Z}_q, for “small” q
- These are trivially vectorizable
- So trivial that even compilers may do it!
- Standard-lattice-based signatures (e.g., Bai-Galbraith):
 - Multiple attempts for signing (rejection sampling)
 - Each attempt: compute Av for fixed A
Standard-lattice-based schemes

- Standard-lattices operate on matrices over \mathbb{Z}_q, for “small” q
- These are trivially vectorizable
- So trivial that even compilers may do it!
- Standard-lattice-based signatures (e.g., Bai-Galbraith):
 - Multiple attempts for signing (rejection sampling)
 - Each attempt: compute $A\mathbf{v}$ for fixed A
- More efficient:
 - Compute multiple products $A\mathbf{v}_i$
 - Typically ignore some results
Standard-lattice-based schemes

- Standard-lattices operate on matrices over \mathbb{Z}_q, for “small” q
- These are trivially vectorizable
- So trivial that even compilers may do it!
- Standard-lattice-based signatures (e.g., Bai-Galbraith):
 - Multiple attempts for signing (rejection sampling)
 - Each attempt: compute $A\mathbf{v}$ for fixed A
- More efficient:
 - Compute multiple products $A\mathbf{v}_i$
 - Typically ignore some results
- Reason: reuse coefficients of A in cache
Structured lattices

- Structured lattices (NTRU, RLWE, MLWE) work with polynomials
- Most important operation: multiply polynomials
- Obvious question: How do we vectorize polynomial multiplication?
Structured lattices

- Structured lattices (NTRU, RLWE, MLWE) work with polynomials
- Most important operation: multiply polynomials
- Obvious question: How do we vectorize polynomial multiplication?
- Let’s take an example:

\[
\begin{align*}
r_0 &= f_0g_0 \\
r_1 &= f_0g_1 + f_1g_0 \\
r_2 &= f_0g_2 + f_1g_1 + f_2g_0 \\
r_3 &= f_0g_3 + f_1g_2 + f_2g_1 + f_3g_0 \\
r_4 &= f_1g_3 + f_2g_2 + f_3g_1 \\
r_5 &= f_2g_3 + f_3g_2 \\
r_6 &= f_3g_3
\end{align*}
\]
Structured lattices

- Structured lattices (NTRU, RLWE, MLWE) work with polynomials
- Most important operation: multiply polynomials
- Obvious question: How do we vectorize polynomial multiplication?
- Let’s take an example:

\[
\begin{align*}
 r_0 &= f_0 g_0 \\
 r_1 &= f_0 g_1 + f_1 g_0 \\
 r_2 &= f_0 g_2 + f_1 g_1 + f_2 g_0 \\
 r_3 &= f_0 g_3 + f_1 g_2 + f_2 g_1 + f_3 g_0 \\
 r_4 &= f_1 g_3 + f_2 g_2 + f_3 g_1 \\
 r_5 &= f_2 g_3 + f_3 g_2 \\
 r_6 &= f_3 g_3
\end{align*}
\]

- Can easily load \((f_0, f_1, f_2, f_3)\) and \((g_0, g_1, g_2, g_3)\)
- Multiply, obtain \((f_0 g_0, f_1 g_1, f_2 g_2, f_3 g_3)\)
Structured lattices

- Structured lattices (NTRU, RLWE, MLWE) work with polynomials
- Most important operation: multiply polynomials
- Obvious question: How do we vectorize polynomial multiplication?
- Let's take an example:

$$
\begin{align*}
 r_0 &= f_0 g_0 \\
 r_1 &= f_0 g_1 + f_1 g_0 \\
 r_2 &= f_0 g_2 + f_1 g_1 + f_2 g_0 \\
 r_3 &= f_0 g_3 + f_1 g_2 + f_2 g_1 + f_3 g_0 \\
 r_4 &= f_1 g_3 + f_2 g_2 + f_3 g_1 \\
 r_5 &= f_2 g_3 + f_3 g_2 \\
 r_6 &= f_3 g_3
\end{align*}
$$

- Can easily load \((f_0, f_1, f_2, f_3)\) and \((g_0, g_1, g_2, g_3)\)
- Multiply, obtain \((f_0 g_0, f_1 g_1, f_2 g_2, f_3 g_3)\)
- And now what?
Structured lattices

- Structured lattices (NTRU, RLWE, MLWE) work with polynomials
- Most important operation: multiply polynomials
- Obvious question: How do we vectorize polynomial multiplication?
- Let’s take an example:

\[
\begin{align*}
 r_0 &= f_0 g_0 \\
 r_1 &= f_0 g_1 + f_1 g_0 \\
 r_2 &= f_0 g_2 + f_1 g_1 + f_2 g_0 \\
 r_3 &= f_0 g_3 + f_1 g_2 + f_2 g_1 + f_3 g_0 \\
 r_4 &= f_1 g_3 + f_2 g_2 + f_3 g_1 \\
 r_5 &= f_2 g_3 + f_3 g_2 \\
 r_6 &= f_3 g_3
\end{align*}
\]

- Can easily load \((f_0, f_1, f_2, f_3)\) and \((g_0, g_1, g_2, g_3)\)
- Multiply, obtain \((f_0 g_0, f_1 g_1, f_2 g_2, f_3 g_3)\)
- And now what?
- Looks like we need to shuffle a lot!
Karatsuba and Toom

- Our polynomials have many more coefficients (say, 256–1024)
- Idea: use Karatsuba’s trick:
 - consider \(n = 2^k \)-coefficient polynomials \(f \) and \(g \)
 - Split multiplication \(f \cdot g \) into 3 half-size multiplications

\[
(f_\ell + X^k f_h) \cdot (g_\ell + X^k g_h)
= f_\ell g_\ell + X^k (f_\ell g_h + f_h g_\ell) + X^n f_h g_h
= f_\ell g_\ell + X^k ((f_\ell + f_h)(g_\ell + g_h) - f_\ell g_\ell - f_h g_h) + X^n f_h g_h
\]
Karatsuba and Toom

- Our polynomials have many more coefficients (say, 256–1024)
- Idea: use Karatsuba’s trick:
 - consider \(n = 2^k \)-coefficient polynomials \(f \) and \(g \)
 - Split multiplication \(f \cdot g \) into 3 half-size multiplications

\[
(f_\ell + X^k f_h) \cdot (g_\ell + X^k g_h) \\
= f_\ell g_\ell + X^k (f_\ell g_h + f_h g_\ell) + X^n f_h g_h \\
= f_\ell g_\ell + X^k ((f_\ell + f_h)(g_\ell + g_h) - f_\ell g_\ell - f_h g_h) + X^n f_h g_h
\]

- Apply recursively to obtain 9 quarter-size multiplications, 27 eighth-size multiplications etc.
Karatsuba and Toom

- Our polynomials have many more coefficients (say, 256–1024)
- Idea: use Karatsuba’s trick:
 - consider \(n = 2^k \)-coefficient polynomials \(f \) and \(g \)
 - Split multiplication \(f \cdot g \) into 3 half-size multiplications

\[
(f_\ell + X^k f_h) \cdot (g_\ell + X^k g_h) \\
= f_\ell g_\ell + X^k(f_\ell g_h + f_h g_\ell) + X^n f_h g_h \\
= f_\ell g_\ell + X^k((f_\ell + f_h)(g_\ell + g_h) - f_\ell g_\ell - f_h g_h) + X^n f_h g_h
\]

- Apply recursively to obtain 9 quarter-size multiplications, 27 eighth-size multiplications etc.
- Generalization: Toom-Cook. Obtain, e.g., 5 third-size multiplications
- Split into sufficiently many “small” multiplications, vectorize across those
Transposing/Interleaving

- Small example: compute $a \cdot b$, $c \cdot d$, $e \cdot f$, $g \cdot h$
- Each factor with 3 coefficients, e.g., $a = a_0 + a_1 X + a_2 X^2$
Transposing/Interleaving

- Small example: compute $a \cdot b$, $c \cdot d$, $e \cdot f$, $g \cdot h$
- Each factor with 3 coefficients, e.g., $a = a_0 + a_1X + a_2X^2$
- Coefficients in memory:

 $a_0, a_1, a_2, b_0, b_1, b_2, c_0, \ldots, h_1, h_2$
Transposing/Interleaving

- Small example: compute $a \cdot b$, $c \cdot d$, $e \cdot f$, $g \cdot h$
- Each factor with 3 coefficients, e.g., $a = a_0 + a_1 X + a_2 X^2$
- Coefficients in memory:

 \[
 a_0, \ a_1, \ a_2, \ b_0, \ b_1, \ b_2, \ c_0, \ldots, \ h_1, \ h_2
 \]

- Problem:
 - Vector loads will yield
 \[
 v_0 = (a_0, a_1, a_2, b_0) \quad \ldots \quad v_6 = (g_2, h_0, h_1, h_2)
 \]
 - However, we need
 \[
 v_0 = (a_0, c_0, e_0, h_0) \quad \ldots \quad v_6 = (b_2, d_2, f_2, g_2)
 \]
Transposing/Interleaving

- Small example: compute $a \cdot b, c \cdot d, e \cdot f, g \cdot h$
- Each factor with 3 coefficients, e.g., $a = a_0 + a_1 X + a_2 X^2$
- Coefficients in memory:

 $a_0, a_1, a_2, b_0, b_1, b_2, c_0, \ldots, h_1, h_2$

- Problem:
 - Vector loads will yield

 $v_0 = (a_0, a_1, a_2, b_0) \quad \ldots \quad v_6 = (g_2, h_0, h_1, h_2)$

 - However, we need

 $v_0 = (a_0, c_0, e_0, h_0) \quad \ldots \quad v_6 = (b_2, d_2, f_2, g_2)$

- Solution: transpose data matrix (or interleave words):

 $a_0, c_0, e_0, h_0, a_1, c_1, e_1, \ldots, f_2, g_2$
Two applications of Karatsuba/Toom

Streamlined NTRU Prime $\mathbb{Z}_{4591}[X]/(X^{761} - X - 1)$

- Multiply in the ring $\mathcal{R} = \mathbb{Z}_{4591}[X]/(X^{761} - X - 1)$
- Pad input polynomial to 768 coefficients
- 5 levels of Karatsuba: 243 multiplications of 24-coefficient polynomials
- Massively lazy reduction using double-precision floats
- 28,682 Haswell cycles for multiplication in \mathcal{R}
Two applications of Karatsuba/Toom

Streamlined NTRU Prime 4591^{761}

- Multiply in the ring $\mathcal{R} = \mathbb{Z}_{4591}[X]/(X^{761} - X - 1)$
- Pad input polynomial to 768 coefficients
- 5 levels of Karatsuba: 243 multiplications of 24-coefficient polynomials
- Massively lazy reduction using double-precision floats
- 28,682 Haswell cycles for multiplication in \mathcal{R}

NTRU-HRSS-KEM

- Multiply in the ring $\mathcal{R} = \mathbb{Z}_{8192}[X]/(X^{701} - 1)$
- Use Toom-Cook to split into 7 quarter-size, then 2 levels of Karatsuba
- Obtain 63 multiplications of 44-coefficient polynomials
- 11,722 Haswell cycles for multiplication in \mathcal{R}
We can do better: NTTs

- Many LWE/MLWE systems use very specific parameters:
 - Work in polynomial ring \(\mathcal{R} = \mathbb{Z}_q[X]/(X^n + 1) \)
 - Choose \(n \) a power of 2
 - Choose \(q \) prime, s.t. \(2n \) divides \(q - 1 \)
We can do better: NTTs

- Many LWE/MLWE systems use very specific parameters:
 - Work in polynomial ring \(R = \mathbb{Z}_q[X]/(X^n + 1) \)
 - Choose \(n \) a power of 2
 - Choose \(q \) prime, s.t. \(2n \) divides \((q - 1) \)
- Examples: NewHope \((n = 1024, q = 12289)\), Kyber \((n = 256, q = 7681)\)
We can do better: NTTs

- Many LWE/MLWE systems use very specific parameters:
 - Work in polynomial ring $\mathcal{R} = \mathbb{Z}_q[X]/(X^n + 1)$
 - Choose n a power of 2
 - Choose q prime, s.t. $2n$ divides $(q - 1)$
- Examples: NewHope ($n = 1024, q = 12289$), Kyber ($n = 256, q = 7681$)
- Big advantage: fast negacyclic number-theoretic transform
- Given $g \in \mathcal{R}$, n-th primitive root of unity ω and $\psi = \sqrt{\omega}$, compute

$$\text{NTT}(g) = \hat{g} = \sum_{i=0}^{n-1} \hat{g}_i X^i,$$

with

$$\hat{g}_i = \sum_{j=0}^{n-1} \psi^j g_j \omega^{ij},$$
We can do better: NTTs

- Many LWE/MLWE systems use very specific parameters:
 - Work in polynomial ring $\mathcal{R} = \mathbb{Z}_q[X]/(X^n + 1)$
 - Choose n a power of 2
 - Choose q prime, s.t. $2n$ divides $(q - 1)$
- Examples: NewHope ($n = 1024, q = 12289$), Kyber ($n = 256, q = 7681$)
- Big advantage: fast *negacyclic number-theoretic transform*
- Given $g \in \mathcal{R}$, n-th primitive root of unity ω and $\psi = \sqrt{\omega}$, compute

\[
\text{NTT}(g) = \hat{g} = \sum_{i=0}^{n-1} \hat{g}_i X^i, \ 	ext{with}
\]

\[
\hat{g}_i = \sum_{j=0}^{n-1} \psi^j g_j \omega^{ij},
\]

- Compute $f \cdot g$ as $\text{NTT}^{-1}(\text{NTT}(f) \circ \text{NTT}(g))$
We can do better: NTTs

- Many LWE/MLWE systems use very specific parameters:
 - Work in polynomial ring $\mathcal{R} = \mathbb{Z}_q[X]/(X^n + 1)$
 - Choose n a power of 2
 - Choose q prime, s.t. $2n$ divides $(q - 1)$
- Examples: NewHope ($n = 1024$, $q = 12289$), Kyber ($n = 256$, $q = 7681$)
- Big advantage: fast *negacyclic number-theoretic transform*
- Given $g \in \mathcal{R}$, n-th primitive root of unity ω and $\psi = \sqrt{\omega}$, compute

 $$\text{NTT}(g) = \hat{g} = \sum_{i=0}^{n-1} \hat{g}_i X^i, \text{ with}$$

 $$\hat{g}_i = \sum_{j=0}^{n-1} \psi^j g_j \omega^{ij},$$

- Compute $f \cdot g$ as $\text{NTT}^{-1}(\text{NTT}(f) \circ \text{NTT}(g))$
- NTT^{-1} is essentially the same computation as NTT
Zooming into the NTT

- FFT in a finite field
- Evaluate polynomial \(f = f_0 + f_1 X + \cdots + f_{n-1} X^{n-1} \) at all \(n \)-th roots of unity
- Divide-and-conquer approach
 - Write polynomial \(f \) as \(f_0(X^2) + X f_1(X^2) \)
Zooming into the NTT

- FFT in a finite field
- Evaluate polynomial $f = f_0 + f_1X + \cdots + f_{n-1}X^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(X^2) + Xf_1(X^2)$
 - Huge overlap between evaluating

\[
 f(\beta) = f_0(\beta^2) + \beta f_1(\beta^2) \quad \text{and} \quad \\
 f(-\beta) = f_0(\beta^2) - \beta f_1(\beta^2)
\]
Zooming into the NTT

- FFT in a finite field
- Evaluate polynomial $f = f_0 + f_1X + \cdots + f_{n-1}X^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(X^2) + Xf_1(X^2)$
 - Huge overlap between evaluating

\[
\begin{align*}
 f(\beta) &= f_0(\beta^2) + \beta f_1(\beta^2) \quad \text{and} \\
 f(-\beta) &= f_0(\beta^2) - \beta f_1(\beta^2)
\end{align*}
\]

- f_0 has $n/2$ coefficients
- Evaluate f_0 at all $(n/2)$-th roots of unity by recursive application
- Same for f_1
Zooming into the NTT

- FFT in a finite field
- Evaluate polynomial \(f = f_0 + f_1X + \cdots + f_{n-1}X^{n-1} \) at all \(n \)-th roots of unity
- Divide-and-conquer approach
 - Write polynomial \(f \) as \(f_0(X^2) + Xf_1(X^2) \)
 - Huge overlap between evaluating
 \[
 f(\beta) = f_0(\beta^2) + \beta f_1(\beta^2) \quad \text{and} \quad f(-\beta) = f_0(\beta^2) - \beta f_1(\beta^2)
 \]
 - \(f_0 \) has \(n/2 \) coefficients
 - Evaluate \(f_0 \) at all \((n/2) \)-th roots of unity by recursive application
 - Same for \(f_1 \)
- Apply recursively through \(\log n \) levels
Vectorizing the NTT

- First thing to do: replace recursion by iteration
- Loop over $\log n$ levels with $n/2$ “butterflies” each
- Butterfly on level k:
 - Pick up f_i and f_{i+2^k}
 - Multiply f_{i+2^k} by a power of ω to obtain t
 - Compute $f_{i+2^k} \leftarrow a_i - t$
 - Compute $f_i \leftarrow a_i + t$
- All $n/2$ butterflies on one level are independent
- Vectorize across those butterflies
Vectorized NTT results

- Güneysu, Oder, Pöppelmann, Schwabe, 2013:
 - 4480 Sandy Bridge cycles ($n = 512$, 23-bit q)
 - Use double-precision floats to represent coefficients
Vectorized NTT results

- Güneysu, Oder, Pöppelmann, Schwabe, 2013:
 - 4480 Sandy Bridge cycles \((n = 512, \text{ 23-bit } q)\)
 - Use double-precision floats to represent coefficients

- Alkim, Ducas, Pöppelmann, Schwabe, 2016:
 - 8448 Haswell cycles \((n = 1024, \text{ 14-bit } q)\)
 - Still use doubles
Vectorized NTT results

- Güneysu, Oder, Pöppelmann, Schwabe, 2013:
 - 4480 Sandy Bridge cycles ($n = 512, 23$-bit q)
 - Use double-precision floats to represent coefficients
- Alkim, Ducas, Pöppelmann, Schwabe, 2016:
 - 8448 Haswell cycles ($n = 1024, 14$-bit q)
 - Still use doubles
- Longa, Naehrig, 2016:
 - 9100 Haswell cycles ($n = 1024, 14$-bit q)
 - Uses vectorized integer arithmetic
Vectorized NTT results

- Güneysu, Oder, Pöppelmann, Schwabe, 2013:
 - 4480 Sandy Bridge cycles \((n = 512, \text{23-bit } q) \)
 - Use double-precision floats to represent coefficients

- Alkim, Ducas, Pöppelmann, Schwabe, 2016:
 - 8448 Haswell cycles \((n = 1024, \text{14-bit } q) \)
 - Still use doubles

- Longa, Naehrig, 2016:
 - 9100 Haswell cycles \((n = 1024, \text{14-bit } q) \)
 - Uses vectorized integer arithmetic

- Seiler, 2018:
 - 2784 Haswell cycles \((n = 1024, \text{14-bit } q) \)
 - 460 Haswell cycles \((n = 256, \text{13-bit } q) \)
 - Uses vectorized integer arithmetic
How about hashing?

- NTT-based multiplication is **fast**
- Consequence: “symmetric” parts in lattice-based crypto becomes significant overhead!
- Most important: hashes and XOFs
How about hashing?

- NTT-based multiplication is \textbf{fast}
- Consequence: “symmetric” parts in lattice-based crypto becomes significant overhead!
- Most important: hashes and XOFs
- Typical hash construction:
 - Process message in blocks
 - Each block modifies an internal state
 - Cannot vectorize across blocks
How about hashing?

- NTT-based multiplication is **fast**
- Consequence: “symmetric” parts in lattice-based crypto becomes significant overhead!
- Most important: hashes and XOFs
- Typical hash construction:
 - Process message in blocks
 - Each block modifies an internal state
 - Cannot vectorize across blocks
- Idea: Vectorize internal processing (permutation or compression function)
- Two problems:
 - Often strong dependencies between instructions
 - Need limited instruction-level parallelism for pipelining
How about hashing?

- NTT-based multiplication is **fast**
- Consequence: “symmetric” parts in lattice-based crypto becomes significant overhead!
- Most important: hashes and XOFs
- Typical hash construction:
 - Process message in blocks
 - Each block modifies an internal state
 - Cannot vectorize across blocks
- Idea: Vectorize internal processing (permutation or compression function)
- Two problems:
 - Often strong dependencies between instructions
 - Need limited instruction-level parallelism for pipelining
- Consequence: consider designing with parallel hash/XOF calls!
PQCRYPTO ≠ Lattices

- So far we’ve looked at lattices, how about other PQCRYPTO?
- Code-based crypto (and some MQ-based crypto) need binary-field arithmetic
- Typical: operations in \mathbb{F}_{2^k} for $k \in 1, \ldots, 20$
So far we’ve looked at lattices, how about other PQCRYPTO?
Code-based crypto (and some MQ-based crypto) need binary-field arithmetic
Typical: operations in \mathbb{F}_{2^k} for $k \in 1, \ldots, 20$
Most architectures don’t support this efficiently
Traditional approach: use lookups (log tables)
PQCRYPTO \neq Lattices

- So far we’ve looked at lattices, how about other PQCRYPTO?
- Code-based crypto (and some MQ-based crypto) need binary-field arithmetic
 - Typical: operations in \mathbb{F}_{2^k} for $k \in 1, \ldots, 20$
 - Most architectures don’t support this efficiently
 - Traditional approach: use lookups (log tables)
 - Obvious question: can vector operations help?
Bitslicing

- So far: vectors of bytes, 32-bit words, floats, ...
- Consider now vectors of bits
Bitslicing

- So far: vectors of bytes, 32-bit words, floats, ...
- Consider now vectors of bits
- Perform arithmetic on those vectors using XOR, AND, OR
- “Simulate hardware implementations in software”
Bitslicing

- So far: vectors of bytes, 32-bit words, floats, ...
- Consider now vectors of bits
- Perform arithmetic on those vectors using XOR, AND, OR
- “Simulate hardware implementations in software”
- Technique was introduced by Biham in 1997 for DES
- Bitslicing works for every algorithm
- Efficient bitslicing needs a huge amount of data-level parallelism
Bitslicing binary polynomials

4-coefficient binary polynomials
\((a_3 x^3 + a_2 x^2 + a_1 x + a_0), \text{ with } a_i \in \{0, 1\}\)

4-coefficient bitsliced binary polynomials

typedef unsigned char poly4; /* 4 coefficients in the low 4 bits */
typedef unsigned long long poly4x64[4];

void poly4_bitslice(poly4x64 r, const poly4 f[64])
{
 int i,j;
 for(i=0;i<4;i++)
 {
 r[i] = 0;
 for(j=0;j<64;j++)
 r[i] |= (unsigned long long)(1 & (f[j] >> i))<<j;
 }
}
typedef unsigned long long poly4x64[4];
typedef unsigned long long poly7x64[7];

void poly4x64_mul(poly7x64 r, const poly4x64 f, const poly4x64 g) {
 r[0] = f[0] & g[0];
 r[1] = (f[0] & g[1]) ^ (f[1] & g[0]);
 r[2] = (f[0] & g[2]) ^ (f[1] & g[1]) ^ (f[2] & g[0]);
 r[3] = (f[0] & g[3]) ^ (f[1] & g[2]) ^ (f[2] & g[1]) ^ (f[3] & g[0]);
}
McBits (revisited)

- Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
- Low-level: bitsliced arithmetic in \mathbb{F}_{2^k}, $k \in \{11, \ldots, 16\}$
McBits (revisited)

- Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
- Low-level: bitsliced arithmetic in \mathbb{F}_{2^k}, $k \in \{11, \ldots, 16\}$
- Higher level:
 - Additive FFT for efficient root finding
 - Transposed FFT for syndrome computation
 - Batcher sort for random permutations
McBits (revisited)

- Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
- Low-level: bitsliced arithmetic in \mathbb{F}_{2^k}, $k \in \{11, \ldots, 16\}$
- Higher level:
 - Additive FFT for efficient root finding
 - Transposed FFT for syndrome computation
 - Batcher sort for random permutations
- Results:
 - 75,935,744 Ivy Bridge cycles for 256 decodings at ≈ 256-bit pre-quantum security
 - **Not** 75,935,744/256 = 296,624 cycles for one decoding
 - Reason: Need 256 independent decodings for parallelism
McBits (revisited)

- Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
- Low-level: bitsliced arithmetic in \mathbb{F}_{2^k}, $k \in \{11, \ldots, 16\}$
- Higher level:
 - Additive FFT for efficient root finding
 - Transposed FFT for syndrome computation
 - Batcher sort for random permutations
- Results:
 - 75,935,744 Ivy Bridge cycles for 256 decodings at ≈ 256-bit pre-quantum security
 - Not 75,935,744/256 = 296,624 cycles for one decoding
 - Reason: Need 256 independent decodings for parallelism
- Chou, CHES 2017: use *internal* parallelism
 - Target even higher security (297 bits pre-quantum)
 - Does *not* require independent decryptions
 - Even faster, even when considering throughput
How about MQ?

- Most important operation: evaluate system of quadratic equations
- Massively parallel, efficiently vectorizable
How about MQ?

- Most important operation: evaluate system of quadratic equations
- Massively parallel, efficiently vectorizable
- Distinguish 3 (or 4) different cases, depending on the field
- \mathbb{F}_{31}: 16-bit-word vector elements, use integer arithmetic
How about MQ?

- Most important operation: evaluate system of quadratic equations
- Massively parallel, efficiently vectorizable
- Distinguish 3 (or 4) different cases, depending on the field
- \mathbb{F}_{31}: 16-bit-word vector elements, use integer arithmetic
- $\mathbb{F}_2/\mathbb{F}_4$: Use bitslicing
How about MQ?

- Most important operation: evaluate system of quadratic equations
- Massively parallel, efficiently vectorizable
- Distinguish 3 (or 4) different cases, depending on the field
 - \mathbb{F}_{31}: 16-bit-word vector elements, use integer arithmetic
 - $\mathbb{F}_2/\mathbb{F}_4$: Use bitslicing
 - $\mathbb{F}_{16}/\mathbb{F}_{256}$: Use vector-permute instructions for table lookups
 - For \mathbb{F}_{256} use tower-field arithmetic on top of \mathbb{F}_{16}
Recent MQ results

- Chen, Hülsing, Rijneveld, Samardjiska, Schwabe, 2016: 64 eqns in 64 vars over \mathbb{F}_{31}: 6616 Haswell cycles
Recent MQ results

- Chen, Hülsing, Rijneveld, Samardjiska, Schwabe, 2016:
 64 eqns in 64 vars over \mathbb{F}_{31}: 6616 Haswell cycles
- Chen, Li, Peng, Yang, Cheng, 2017:
 - 256 eqns in 256 vars over \mathbb{F}_2: 92800 Haswell cycles
 - 128 eqns in 128 vars over \mathbb{F}_4: 32300 Haswell cycles
 - 64 eqns in 64 vars over \mathbb{F}_{16}: 9600 Haswell cycles
 - 64 eqns in 64 vars over \mathbb{F}_{31}: 8700 Haswell cycles
 - 64 eqns in 64 vars over \mathbb{F}_{256}: 16200 Haswell cycles
- In particular for \mathbb{F}_2 speedups for public inputs
Recent MQ results

- Chen, Hülsing, Rijneveld, Samardjiska, Schwabe, 2016:
 64 eqns in 64 vars over \mathbb{F}_{31}: 6616 Haswell cycles

- Chen, Li, Peng, Yang, Cheng, 2017:
 - 256 eqns in 256 vars over \mathbb{F}_{2}: 92800 Haswell cycles
 - 128 eqns in 128 vars over \mathbb{F}_{4}: 32300 Haswell cycles
 - 64 eqns in 64 vars over \mathbb{F}_{16}: 9600 Haswell cycles
 - 64 eqns in 64 vars over \mathbb{F}_{31}: 8700 Haswell cycles
 - 64 eqns in 64 vars over \mathbb{F}_{256}: 16200 Haswell cycles
 - In particular for \mathbb{F}_{2} speedups for public inputs

- Chen, Hülsing, Rijneveld, Samardjiska, Schwabe, 2017:
 128 eqns in 128 vars over \mathbb{F}_{4}: 17 558 Haswell cycles (batched)
Vectorizing hash-based signatures

- I said earlier that hashes are hard to vectorize
- How about hash-based signatures?
Vectorizing hash-based signatures

- I said earlier that hashes are hard to vectorize
- How about hash-based signatures?
- Most speed-critical operation is Winternitz public-key computation
- Compute 67 independent hash chains of length 16 each
- All hashes have the same (short) input length
- This is trivially vectorizable!
Vectorizing hash-based signatures

- I said earlier that hashes are hard to vectorize.
- How about hash-based signatures?
- Most speed-critical operation is Winternitz public-key computation.
- Compute 67 independent hash chains of length 16 each.
- All hashes have the same (short) input length.
- This is trivially vectorizable!
- Examples:
 - Oliveira, López, Cabral, 2017: Optimize LMS and XMSS
 - $\approx 10\text{ms}$ for XMSS signing ($h = 20$) on Skylake.
Vectorizing hash-based signatures

- I said earlier that hashes are hard to vectorize
- How about hash-based signatures?
- Most speed-critical operation is Winternitz public-key computation
- Compute 67 independent hash chains of length 16 each
- All hashes have the same (short) input length
- This is trivially vectorizable!
- Examples:
 - Oliveira, López, Cabral, 2017: Optimize LMS and XMSS
 - ≈ 10ms for XMSS signing ($h = 20$) on Skylake
 - Bernstein, Hopwood, Hülsing, Lange, Niederhagen, Papachristodoulou, Schneider, Schwabe, Wilcox-O’Hearn, 2015: Optimize SPHINCS
 - Vectorize also Merkle-tree hashes inside HORST computation
 - ≈ 52 Mio cycles for signing on Haswell
Additional benefits

Two things very inefficient to vectorize

1. Variably indexed lookups:

\[v \leftarrow (m[i], m[j], m[k], m[\ell]) \]
Additional benefits

Two things very inefficient to vectorize

1. Variably indexed lookups:

\[v \leftarrow (m[i], m[j], m[k], m[\ell]) \]

2. Branches

\[v \leftarrow (c[0]?a : b, c[1]?c : d, c[2]?e : f, c[3]?g : h) \]
Additional benefits

Two things very inefficient to vectorize

1. Variably indexed lookups:

 \[v \leftarrow (m[i], m[j], m[k], m[\ell]) \]

2. Branches

 \[v \leftarrow (c[0]?a : b, c[1]?c : d, c[2]?e : f, c[3]?g : h) \]

Rethink algorithms

- Consequence: rethink algorithms without those constructs
- Different approach to thinking algorithms: a lot of fun!
Additional benefits

Two things very inefficient to vectorize

1. Variably indexed lookups:

 \[v \leftarrow (m[i], m[j], m[k], m[\ell]) \]

2. Branches

 \[v \leftarrow (c[0]?a : b, c[1]?c : d, c[2]?e : f, c[3]?g : h) \]

Rethink algorithms

- Consequence: rethink algorithms without those constructs
- Different approach to thinking algorithms: a lot of fun!
- More importantly: eliminates most notorious timing side channels!
- Efficient vectorized implementations are often also “constant-time”
References

- Bernstein, Chuengsatiansup, Lange, van Vredendaal: *NTRU Prime: reducing attack surface at low cost*. http://cr.yp.to/papers.html#ntruprime

- Hülsing, Rijneveld, Schanck, Schwabe: *High-speed key encapsulation from NTRU*. https://cryptojedi.org/papers/#ntrukem
References

- Güneysu, Oder, Pöppelmann, Schwabe: *Software speed records for lattice-based signatures*. https://cryptojedi.org/papers/#lattisigns

- Longa, Naehrig: *Speeding up the Number Theoretic Transform for Faster Ideal Lattice-Based Cryptography*. https://eprint.iacr.org/2016/504

References

References

- Chen, Hülsing, Rijneveld, Samardjiska, Schwabe: *From 5-pass MQ-based identification to MQ-based signatures.* https://cryptojedi.org/papers/#mqdss

- Chen, Hülsing, Rijneveld, Samardjiska, Schwabe: *SOFIA: MQ-based signatures in the QROM.* https://cryptojedi.org/papers/#sofia
References
