On the use of Frobenius map to accelerate polynomial multiplication with Cantor FFT

Chen-Mou Cheng
chenmou.cheng@gmail.com

Dept. Electrical Engineering
National Taiwan University

Graduate School of Engineering
Osaka University

June 29, 2018
Acknowledgment

Notation

- Throughout this talk:
 - p will always denote a prime number
 - q will always denote a power of a prime number
 - That is, $q = p^d$ for p prime and d positive integer
- We will consider \mathbb{F}_p, \mathbb{F}_q, and \mathbb{F}_{pq}
Throughout this talk:

- p will always denote a prime number
- q will always denote a power of a prime number
 - That is, $q = p^d$ for p prime and d positive integer

We will consider \mathbb{F}_p, \mathbb{F}_q, and \mathbb{F}_{pq}

When in doubt, $p = 2$:-(
The Fourier transform

- The Fourier transform of $f \in \mathbb{F}_q[t]$ is the evaluation of f in some zero set $Z = \{\zeta_1, \ldots, \zeta_n\}$ of \mathbb{F}_q: $f(Z) = (f(\zeta_1), \ldots, f(\zeta_n))$

- Let $P(t) = \prod_{z \in Z} (t - z)$ be the vanishing polynomial on Z; then $\mathbb{F}_q^Z \cong \mathbb{F}_q[t]/(P)$

- If Z has some “nice” (group) structure, then often there are fast algorithms for computing $f(Z)$, e.g.:
 - For $Z = \langle \xi \rangle$, where ξ a primitive n-th root of unity: $P(t) = t^n - 1$
 - For $Z = \mathbb{F}_q$ (as an additive group): $P(t) = t^q - t$

- This way we can turn (polynomial) multiplication in $\mathbb{F}_q[t]/(P)$ into pointwise multiplication in \mathbb{F}_q^Z
 - Doesn’t matter what P is if the degree of the product is $< n$

- See Dan’s paper: “Multidigit multiplication for mathematicians” (and engineers!) for more detail
The Kronecker segmentation

- For \(q = p^d \), to multiply \(f, g \in \mathbb{F}_p[t] \) such that \(\text{deg } fg < n \), write

\[
\begin{cases}
 f(t) = f_0(t) + f_1(t)T + \cdots + f_{2n/d-1}(t)T^{2n/d-1} = F(T) \\
 g(t) = g_0(t) + g_1(t)T + \cdots + g_{2n/d-1}(t)T^{2n/d-1} = G(T),
\end{cases}
\]

where \(T = t^{d/2} \) and \(\text{deg } f_i, \text{deg } g_i < d/2 \)

- Interpret \(f_i, g_i \) as elements in \(\mathbb{F}_q \cong \mathbb{F}_p[t]/(P) \) for some irreducible \(P \)
 - Again doesn’t matter what \(P \) is, as \(\text{deg } f_i g_j < d \)
 - Now we can multiply \(F \) and \(G \) using, e.g., (fast) Fourier transform
 - Need to “carry” to get back \(f(t)g(t) \) from \(F(T)G(T) \)
The Frobenius Fourier transform

- In ISSAC’17, van der Hoeven and Larrieu showed how to avoid the factor-of-two loss using Frobenius map $\phi(x) = x^p$ to accelerate computing $f(Z)$ for $Z \subset \mathbb{F}_q$ and $f \in \mathbb{F}_p[t]$
 - Partitioning Z into a disjoint union of orbits of elements in Z under the action of the Galois group $\text{Gal}(\mathbb{F}_q/\mathbb{F}_p)$
 - Choose a representative in each orbit to form a *cross section* Σ; thus

$$Z = \bigcup_{\sigma \in \Sigma} \text{Gal}(\mathbb{F}_q/\mathbb{F}_p) \cdot \sigma = \bigcup_{\sigma \in \Sigma} \{ \sigma, \phi(\sigma), \phi^2(\sigma), \ldots \}$$

 - Compute $f(\Sigma)$ and get the rest of $f(Z)$ via $f(\phi(\sigma)) = \phi(f(\sigma))$

- Main result: for $q = p^d$, computing $f(Z)$ for $f \in \mathbb{F}_p[t]$ is roughly d times faster than computing $g(Z)$ for $g \in \mathbb{F}_q[t]$, as $|\Sigma| \approx |Z|/n$
Cantor’s “FFT” and its derivatives

- Cantor showed how to compute $f(Z)$ for some additive subgroup Z of \mathbb{F}_{pq} in $O(n(\log n)^2)$ time for $n = |Z|$ via what he called “an analogue of the fast Fourier transform”
 - Based on a tower $\mathbb{F}_p, \mathbb{F}_{p^2}, \mathbb{F}_{p^3}, \ldots$ of Artin-Schreier extensions of \mathbb{F}_p
- Gao and Mateer gave an $O(n \log n \log \log n)$ Cooley-Tukey-style algorithm, a.k.a. really fast Fourier transform, when $p = 2$ and $Z = \mathbb{F}_{pq}$
Cantor’s “FFT” and its derivatives

- Cantor showed how to compute $f(Z)$ for some additive subgroup Z of \mathbb{F}_{p^q} in $O(n(\log n)^2)$ time for $n = |Z|$ via what he called “an analogue of the fast Fourier transform”
 - Based on a tower $\mathbb{F}_p, \mathbb{F}_{p^p}, \mathbb{F}_{p^p^2}, \ldots$ of Artin-Schreier extensions of \mathbb{F}_p
- Gao and Mateer gave an $O(n \log n \log \log n)$ Cooley-Tukey-style algorithm, a.k.a.
 really fast Fourier transform, when $p = 2$ and $Z = \mathbb{F}_{p^q}$
- We showed that van der Hoeven and Larrieu’s idea of using Frobenius map to accelerate polynomial multiplication beautifully generalizes to Cantor-Gao-Mateer-\ldots FFT
Cantor’s construction

- Let \(\wp(t) = t^p - t \) be the Artin-Schreier polynomial and

\[
s_m(t) := \wp^m(t) = (\wp \circ \wp \circ \cdots \circ \wp)(t) = \sum_{i=0}^{m} (-1)^{m-i} \binom{m}{i} t^{p^i}
\]

- Let \(W_i \) be the zero set of \(s_i(t) = \prod_{\omega \in W_i} (t - \omega) \); then \(s_j(W_i) = W_{i-j} \), and

\[
\overline{\mathbb{F}_p} = W_1 \subset W_2 \subset \cdots \subset \tilde{\mathbb{F}}_p = \bigcup_{i=0}^{\infty} \mathbb{F}_{p^{p^i}}
\]

- Since \(s_i \)'s are linear, \(W_i \)'s are vector (sub)spaces over \(\mathbb{F}_p \)
- \(\text{dim}_{\mathbb{F}_p} W_i = i \), and \(W_i \) is a field iff \(i = p^d \) for some integer \(d \)
Cantor’s basis

- Choose u_0, u_1, \ldots from \tilde{F}_p such that
 \[
 \phi(u_j) = (u_0 u_1 \cdots u_{j-1})^{p-1} + \text{[a sum of monomials of lower degree]}
 \]
- Let $m_k m_{k-1} \cdots m_0$ be the base-p expansion of m and define
 \[y_m = u_0^{m_0} u_1^{m_1} \cdots u_k^{m_k} \]
- Cantor showed that (y_0, y_1, \ldots, y_m) is a basis for W_{m+1}, and $y_m \in W_{m+1} - W_m$
- Can Gaussian-eliminate and get a (Cantor) basis (v_0, v_1, \ldots, v_m) such that $\forall i, s(v_{i+1}) = v_i$
A closer look at cosets of W_j in W_i, $0 < j < i$

- Can put the cosets of W_j in W_i into a one-to-one correspondence with the elements in $s_j(W_i) = W_{i-j}$
 - If ω and ω' are representatives from the same coset, then
 \[0 = s_j(\omega - \omega') = s_j(\omega) - s_j(\omega'), \text{ or } s_j(\omega) = s_j(\omega') \]
 - Conversely, if ω and ω' are from different cosets, then $s_j(\omega) \neq s_j(\omega')$

- Can label the coset containing ω as $W_j + s_j^{-1}(\alpha)$ for $\alpha = s_j(\omega) \in W_{i-j}$:

\[
W_i = \bigcup_{\omega_1 \in W_1} W_{i-1} + s_{i-1}^{-1}(\omega_1) \quad \text{for } s_i(t) = \prod_{\omega_1 \in W_1} \left(s_{i-1}(t) - \omega_1 \right)
\]

\[
= \bigcup_{\omega_2 \in W_2} W_{i-2} + s_{i-2}^{-1}(\omega_2) \quad = \prod_{\omega_2 \in W_2} \left(s_{i-2}(t) - \omega_2 \right)
\]

\[
\vdots \quad \vdots
\]

\[
= \bigcup_{\omega_{i-1} \in W_{i-1}} W_1 + s^{-1}(\omega_{i-1}) \quad = \prod_{\omega_{i-1} \in W_{i-1}} \left(s(t) - \omega_{i-1} \right)
\]
Cantor’s algorithm

- To compute $f(W_m)$, let

$$A_m = \left\{ f^{(i)}_{\omega}(t) := f(t) \mod (s_i(t) - \omega) : 0 \leq i \leq m, \omega \in W_{m-i} \right\}$$

- Start from $f^{(m)}_0(t) = f(t)$ and compute $f^{(m-1)}_{\omega}, \ldots$
 - $s_i(x) - \omega$ divides $s(s_i(x) - \omega) = s_{i+1}(x) - s(\omega)$, so

$$f^{(i)}_{\omega}(t) = f(t) \mod (s_i(t) - \omega)$$

$$= \left(f(t) \mod (s_{i+1}(t) - s(\omega)) \right) \mod (s_i(t) - \omega)$$

$$= f^{(i+1)}_{s(\omega)}(t) \mod (s_i(t) - \omega)$$

- Then $f(W_m) = (f^{(0)}_{\omega_1}, f^{(0)}_{\omega_2}, \ldots,)$, the constant polynomials
Gao-Mateer’s (a-ha) algorithm

- To evaluate $f^{(i)}(W_j + s_j^{-1}(\omega))$ for all $\omega \in W_{i-j}$, can set $T = s_j(t)$ and “Taylor-expand” f around it: $f(t) = f_0(t) + f_1(t)T + f_2(t)T^2 + \cdots$

- Again think $p = 2$ and $i = 2j$:

$$f(t) = (f_{0,0} + f_{0,1}t + \cdots + f_{0,2i-1}t^{2i-1})$$
$$+ (f_{1,0} + f_{1,1}t + \cdots + f_{1,2i-1}t^{2i-1})s_j(t)$$
$$+ (f_{2,0} + f_{2,1}t + \cdots + f_{2,2i-1}t^{2i-1})s_j^2(t)$$
$$\vdots$$
$$+ (f_{2i-1,0} + f_{2i-1,1}t + \cdots + f_{2i-1,2i-1}t^{2i-1})s_j^{2i-1}(t)$$

- Observe that $s_j(t) = \omega$ on $W_j + s_j^{-1}(\omega)$, so can recursively break down as Cooley and Tukey did if $i = p^q$
Orbits under the action of $\text{Gal}(\mathbb{F}_{pq}/\mathbb{F}_p)$

- Let \mathbb{F}_{pq} be the smallest field containing $\alpha \in \tilde{\mathbb{F}}_p$
- This means that $\alpha^{pq} = \alpha$ but $\alpha^{p^i} \neq \alpha \forall i < q$, so

$$|\text{Orb}_\alpha| = \left| \left\{ \alpha, \phi(\alpha), \phi^2(\alpha), \ldots, \phi^{q-1}(\alpha) \right\} \right| = q$$

- Now $\phi = 1 + s$, so

$$\phi^m = (1 + s)^m = \sum_{i=0}^{m} \left(\begin{array}{c} m \\ i \end{array} \right) s^i$$

- Lemma: $\binom{nq}{q} = n \mod p$ for $n = 1, 2, \ldots, p - 1$
<table>
<thead>
<tr>
<th>m</th>
<th>1</th>
<th>s</th>
<th>s^2</th>
<th>s^3</th>
<th>s^4</th>
<th>...</th>
<th>s^p</th>
<th>...</th>
<th>s^{p^2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>(i_0)</td>
<td>(i_1)</td>
<td>(i_2)</td>
<td>(i_3)</td>
<td>(i_4)</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2p$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$3p$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p^2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>
Our main result

- Let \(\mathbb{F}_{p^q} \) be the smallest field containing \(\alpha \in \tilde{\mathbb{F}}_p \)
- Write \(\alpha = \sum_{i=0}^{m} a_i v_i = (a_m a_{m-1} \cdots a_0) \), where \(q/p \leq m < q \), \(a_i \in \mathbb{F}_p \), and \(a_m \neq 0 \)
- **Theorem:**
 \[
 \text{Orb}_\alpha = \left\{ (a_m b_{m-1} X \cdots X b_{m-p} X \cdots X b_{m-p^2} X \cdots X b_{m-q/p} X \cdots) \right\},
 \]
 \[
 \underbrace{p}_{p^2} \underbrace{p^2}_\vdots \underbrace{q/p}_{\text{q/p}}
 \]
 where \(b_i \in \mathbb{F}_p \) and \(X \) “don’t care’s”
- **Corollary:** Fixing \(b_i \)'s and varying \(a_m \) and \(X \)'s, we get a cross section for \(W_{m+1} - W_m \)
Partial cross sections of W_i

- For multiplying $f, g \in \mathbb{F}_p[t]$ with $\deg fg < n$, we just need to evaluate on a set Z of size n.
- Idea: since Frobenius map gives us a factor of q gain, let's choose Z as the union of some cosets of W_j in W_i such that $Z \subset \mathbb{F}_{pq} - \mathbb{F}_{pq/p}$ and $|Z| = n/q$.
- Furthermore, if we choose j a power of p and $i \geq j + q/p$, then the action of $\text{Gal}(\mathbb{F}_{pq}/\mathbb{F}_p)$ will leave W_j “intact,” which greatly simplifies software implementation.
- For hardware implementation, can use full-fledged cross sections.
Concluding remarks

- Can avoid Kronecker segmentation in polynomial multiplication in $\mathbb{F}_p[t]$ (for small-ish p) by working in some extension field \mathbb{F}_q of \mathbb{F}_p, with help from Frobenius map
- Sorry didn’t talk about all the detail due to time constraints
- If your favorite PQC scheme involves such polynomial multiplication, then please come talk to us!
Thanks!

- Questions or comments?