
LIZARD NIST SUBMISSION

2018. 06. 29

JUNG HEE CHEON

CONTENTS

 LWE Problem

 LWE-based Encryptions

 Lizard NIST Submission

 Comparison to Other LWR-based Scheme(s)

 Further Improvements (in progress)

Learning with Errors
(LWE) Problem

SOLVING A LINEAR EQUATION SYSTEM

1 3 7

4 5 7

6 6 9

2 7 3

3 8 7

5 4 2

1 0 5

4 5 3

7

9

2

9

6

8

2

7

x1

x2

x3

• Q. = Find

; Easy!

(We can solve it by using
Gaussian elimination)

! (mod 10) x1

x2

x3

LEARNING WITH ERRORS (LWE) PROBLEM

1 3 7

4 5 7

6 6 9

2 7 3

3 8 7

5 4 2

1 0 5

4 5 3

7

9

2

9

6

8

2

7

x1

x2

x3

• Q. = Find

; Hard!

! (mod 10) x1

x2

x3

0

2

9

1

0

1

0

8

+

Small Error
(unknown)

DECISION-LWE PROBLEM

• Q. Distinguish From a uniform
random sample in

; Hard!

(mod 10) 1 3 7

4 5 7

6 6 9

2 7 3

3 8 7

5 4 2

1 0 5

4 5 3

7

1

1

0

6

0

2

5

,

LWE-based
Encryptions

LWE + LHL [REG05]

KeyGen

Enc(M)

s

b = A + e sk: pk: , A

n

A ,
r

s

m

b
r +

M∙q/2

• Require a large m to randomize LWE samples in Encryption
 Leftover Hash Lemma

• Can We Reduce m?

LWE + LWE [LP11]

KeyGen

Enc(M)

s

b = A + e sk: pk: , A

n

A ,
r

s

m

b
r +

M∙q/2

• Pros: smaller m by replacing LHL with LWE

• Cons: Discrete Gaussian samplings

+ e’’

(small)

LWE + LWR [CKLS16]

KeyGen

s

b = A + e sk: pk: , A

n

s

m (small)

d = Enc*(M)
A ,

r
b

r +

� 𝑝
𝑞
∙ � (cf. = → , if 𝑝 = 27, 𝑞 = 29.) c = d d

10110110
01101011
11010100

01001001

⋮

M∙q/2

10110110
01101011
11010100

01001001

⋮

LEARNING WITH ROUNDING (LWR) PROBLEM

• Surprisingly, it is secure under LWR assumption

• LWR: Distinguish any 𝑚 pairs of type

()∈ 𝑍𝑞𝑛 × 𝑍𝑝 from uniform

 Discard the least significant bits of <ai,s>
 instead of adding small errors

• Have reduction from LWE: q is large or m is small

s

 𝑏𝑖 = �
𝑝
𝑞 � 𝑎𝑖 ,

n

𝑎𝑖

THE HARDNESS OF LWR PROBLEM

• Before 2016, security reduction only when the modulus is somewhat large.

 Banergee, Peikert, Rosen [BPR12] introduced LWR, and showed LWR ≥ LWE
when q is sufficiently large. (𝑞 ≥ 𝑝 ∙ 𝐵 ∙ 𝑛𝜔 1 , B: LWE noise support bound)

 Alwen et al. [AKPW13] showed LWR ≥ LWE

 when the modulus and modulus-to-error ratio are super-poly.

• Bogdanov et al. [BGM+16] in TCC 2016 showed LWR ≥ LWE when

 the number of samples is no larger than 𝑂(𝑞 𝐵𝐵⁄). (B: LWE noise support bound)

• Cryptanalytic hardness against best known lattice attacks: LWR = LWE when

 the variance of LWE noise is 12𝑞2 𝑝2⁄ . (size of noise vectors are the same)

(𝑞: LWR modulus, 𝑝: rounding modulus, 𝑛: LWR dimension.)

CAUTION! HOW MANY LSBS CAN BE DISCARDED?

• (Correctness) If we cut a large proportion; , the correctness will

not hold.

• (Security) We can not remove noise addition in encryption if we

cut very small;

→ Since the number of samples of LWR in the Enc procedure is restricted
to be small, we can choose a proper rounding modulus “p” to satisfy both
security and correctness.

<Bogdanov et al.> If the # of samples(m) is no larger than 𝑂(𝑞/𝐵𝐵),
 we cannot distinguish either one from uniform;

, � 𝑝
𝑞
∙ �

s

A
+
e , � 𝑝

𝑞
∙ () � A

n

m

s

A A

n

m (()) ↔

10110110
01101011
11010100

01001001

⋮

ADVANTAGE OF LWR ASSUMPTION

s

b = A + e pk: , A sk = (-s, 1)

s

e

𝑀 𝑞 2⁄

A ,
r

b
r + e1 + + e2

𝑉𝑉𝑉 𝑒𝑖 = 𝜎2

Encryption noise: 𝑟, 𝑒 + (𝑒1, 𝑒2), 𝑠𝑠

�
𝑝
𝑞 ∙ �

𝑀 𝑞 2⁄

A ,
r

b
r + Rounding error (𝑒1, 𝑒2):

(uniform over [± 𝑞 2𝑝⁄])
Variance 𝜎2 = 𝑞2 12𝑝2⁄

Set the parameter 𝝈𝟐 = 𝒒𝟐 𝟏𝟏𝒑𝟐⁄ : Preserve cryptanalytic hardness LWE(m,q,σ) =
LWR(m,q,p) and functionality (encryption noise)

• Smaller CTXT

• No Gaussian sampling in Encryption

LP11.Enc(M)

Lizard.Enc(M)

Lizard NIST
Submission

OVERVIEW

 Ring versions are also provided

 Parameter Suggestions for Category 1/3/5, resp.

FO Transformation

IND-CPA Secure PKE

Lizard.CPA

IND-CCA Secure PKE

Lizard.CCA

IND-CCA Secure KEM

Lizard.KEM

MAIN STRENGTHS

1. [Simpler and Faster] algorithms;
 Use LWR in the Encryption/Encapsulation phases

 Use sparse signed binary or signed binary secrets

2. [Ciphertext Compression] via LWR-style rounding (vs. LWE-style)

3. [Provable IND-CPA, IND-CCA2 Security] from (R)LWE & (R)LWR with
small secrets

4. [Parameters Resist All Known Attacks] unless a significant breakthrough

 Cryptographically negligible Dec. Fail. Rates

 Based on the Core SVP hardness (Methodology of NewHope)

MAIN STRENGTHS -- SIMPLER

1. Enc of typical LWE based PKE requires two random components:

 Ephemeral secret vector (or matrix)

 Error vector (or matrix)

2. Using LWR rounding in Enc/Encaps rules out generating error vectors

3. Further use sparse signed binary or signed binary secrets

 Encryption Procedure Algorithm

1. Generation: random sparse binary vector 𝑟 ← {−1, 0,1}𝑚

2. Subset-sum: row vectors of PK (simple & fast) 𝑎, 𝑏 ← (𝐴𝑡𝑟 ,𝐵𝑡𝑟)

3. Addition: an encoded msg vector (simple & fast) 𝑎, 𝑏 ← (𝑎, 𝑏 + 2𝑘𝑚)

4. Rounding: via addition & bit shifting (simple & fast) 𝑎, 𝑏 ← (𝑎+2ℓ−1

2ℓ
, 𝑏+2ℓ−1

2ℓ
)

𝐴 ∈ 𝑍𝑞𝑚×𝑛, 𝐵 ∈ 𝑍𝑞𝑚×ℓ, 𝐴,𝐵 : PK, 𝑘 = log𝑞 − 1, ℓ = log𝑞 − log𝑝

MAIN STRENGTHS -- FAST

 Our C implementation for Lizard.CCA shows that Enc takes only 0.031 ms fo
r Category 1 and 32-byte msgs (0.036 ms for RLizard.CCA)

* Performance measured on Linux with CPU Intel Xeon E5-2640 v3 at 2.60GHz

Scheme Parameter KeyGen
(# kcycles)

Enc
(# kcycles)

Dec
(# kcycles)

Lizard.CCA CCA_CATEGORY1_N536 406 432 81 88
CCA_CATEGORY1_N663 459 082 83 94

RLizard.CCA RING_CATEGORY1 1 167 94 101

SECURITY

 Lizard.CPA is IND-CPA secure under the hardness assumption of LWE
and LWR problems with small secrets, both of which have reductions
from the standard LWE

 Lizard.KEM and Lizard.CCA are obtained by applying a variant of Fujisa
ki-Okamoto transform [HHK’17] for Lizard.CPA, so they are IND-C
CA2 secure in the quantum random oracle model (QROM)

 Same arguments can be applied to ring versions (RLizard.CPA, RLizard.K
EM and RLizard.CCA)

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A modular analysis of the Fujisaki-Okamoto transformation.”
Theory of Cryptography Conference 2017.

PARAMETER SELECTION

 Mainly considered: Dual attack [Alb17] and Primal attack
[AGVW18]

 Assume the attacks are using BKZ algorithm with Sieve
(equipped with Grover’s quantum search algorithm); Security
measured based on the Core SVP hardness as in
[NewHope]

 Dec. Fail. Rates are set to be cryptographically negligible
• [Alb17] Albrecht, Martin R. “On dual lattice attacks against small-secret LWE and parameter choices in HElib and SEAL.”

Eurocrypt 2017.
• [AGVW18] Albrecht, M. R., Göpfert, F., Virdia, F., and Wunderer, T. “Revisiting the expected cost of solving uSVP and

applications to LWE.” Asiacrypt 2018.
• [NewHope] Alkim, E., Ducas, L., Pöppelmann, T., & Schwabe, P. “Post-quantum key exchange-a new hope.” USENIX 2016.

발표자
프레젠테이션 노트
Among various attacks against (Ring-)LWE and (Ring-) LWR, we concluded that dual attack and primal attack are the most strongest attacks against our scheme.
BKZ algorithm using Grover’s quantum search algorithm is the most efficient BKZ algorithm when we assume that adversary uses quantum computer

BEST ATTACK COMPLEXITIES

Parameter Sets log2(DFR) log2TLWE log2TLWR

KEM_CATEGORY1_N663
CCA_CATEGORY1_N663

-153.500 131 147

KEM_CATEGORY3_N952
CCA_CATEGORY3_N952

-337.189 203 195

KEM_CATEGORY5_N1300
CCA_CATEGORY5_N1300

-332.810 264 291

DFR : Dec. Fail. Rate exactly calculated by python code
TLWE : Time complexity of the best known attacks of LWE
TLWR : Time complexity of the best known attacks of LWR

BEST ATTACK COMPLEXITIES

Parameter Sets log2(DFR) log2TLWE log2TLWR

RING_CATEGORY1 -188.248 153 147

RING_CATEGORY3_N1024 -245.897 195 195

RING_CATEGORY5 -305.684 318 348

DFR : Dec. Fail. Rate exactly calculated by python code
TLWE : Time complexity of the best known attacks of LWE
TLWR : Time complexity of the best known attacks of LWR

SUMMARY ON PERFORMANCE
 Sizes

• Lizard.CCA
 Sizes for 256-bit msgs (Category 1):

• RLizard.CCA
 Sizes for 1024-bit msgs (Category 1):

 Speeds
 Enc of Lizard is fast (from 81 kcycles for Category 1), and RLizard has balanced perfor

mances

 pk sk ctxt
Sizes 1.8 MB 170 KB 0.98 KB

Compressed upto 0.3 MB - -

 pk sk ctxt
Sizes 4.1 KB 0.3 KB 2.2 KB

Compressed upto 1.3 KB - -

FLEXIBILITY OF THE LIZARD

 Lizard can be implemented flexibly for different purposes

 We implemented Lizard.CPA in 3 different ways for 3 different
usages:
• On ARM Core (Android, Galuxy S7); Enc: 0.077 ms, Dec: 0.023 ms

• For 32-bit msgs; Enc: 0.009 ms, Dec: 0.001 ms

• AHE; Enc: 0.014 ms, Dec: 0.012 ms

발표자
프레젠테이션 노트
Lizard is flexible and efficient for various usage. We implemented Lizard in 3 different ways to see the suitability for different usage

Comparison to
Other LWR-based

Scheme(s)

SABER

 Submitted by J. P. D’ Anvers, A. Karmakar, S. S. Roy, F. Vercauteren – KU Leuven (Belgi
um)

 Concept: Module-LWR + Module-LWR based

 Main Strengths: Simplicity, Small Parameter Sizes (Smaller pk / sk / ctxt compared to
Kyber)
• Rounding is simple (‘add constant and chop’ which is the same as Lizard), Secrets from

Centered Binomial dist.

• For 115 bit security (Category 1),

 No NTT, but Toom-Cook & Karatsuba: Constant-time implementation

 DFR is not 2−𝜆, but very small
• 2−120, 2−136, 2−165 for Category 1, III, V, resp.

 Recently, they reported some implementations on ARM Core

Kyber Saber

pk 736 bytes 672 bytes

sk 1632 bytes 992 bytes

ctxt 800 bytes 736 bytes

ROUND2

 Submitted by O. Garcia-Morchon, Z. Zhang, S. Bhattacharya, R. Rietman, Ludo Tolh
uizen, J.L. Torre-Arce

 Concept: LWR + LWR based, RLWR + RLWR based

 Main Strength: Lower Bandwidths

 Very Similar Approach with Lizard Except for the Higher Dec. Fail. Rates

• Sparse trinary secret

• Power-of-2 modulus, rounding by ‘add constant and chop’

 uRound2: w/o NTT, nRound2: with NTT

uRound2 nRound2 Saber

pk 565 bytes 581 bytes 672 bytes

ctxt 636 bytes 652 bytes 736 bytes

DFR 2−66 2−54 2−120

Scheme Lizard Saber Round2

Category KEM / PKE KEM KEM

Main
Strength

Fast Enc/Dec
Ctxt Compression via LWR
Conservative params, negl

DFR

Simplicity
Fixed ring

Compact sizes

Unified Design (GLWR)*
Lower bandwidths

Great speed*

Assumption (Ring-)LWE + (Ring-)LWR Module-LWR (Ring-)LWR

Ring Choice 𝑍𝑞 𝑋 /(𝑋𝑛 + 1) 𝑍8192 𝑋 /(𝑋256 + 1) 𝑍𝑞 𝑋 /(𝑋𝑝−1 + 𝑋𝑝−2 + ⋯
+ 1)

Modulus Power of 2 Power of 2 Power of 2 / Prime

Dec. Failure O O O

Const. Time X O O (Doubtful)

Some Other
Differences

Sparse signed binary secret

DFR << 2−𝜆

Binomial distribution

DFR > 2−𝜆

Toom-Cook and
Karatsuba

Sparse signed binary secret

DFR: 2−65, 2−128 > 2−𝜆
for all parameter sets

NTT

Const time*,

but still vulnerable to Cache
attack*

* ; they insisted so in the submitted documentation DFR ; Decryption Failure Rate

COMPARISON VIA IMPLEMENTATION
(MEASURED ON THE SAME ENVIRONMENT)

Scheme Parameter
Name

KeyGen Enc Dec

Round2

u_n1_fn0_l1 4.765 5.436 5.463

u_n1_fn1_l1 0.432 0.707 0.728

u_n1_fn2_l1 0.961 1.226 1.248

u_nd_l1 0.069 0.082 0.089

n_nd_l1 1.940 3.800 5.652

Lizard

CCA_CATEGORY1_
N536

151.485 0.022 0.024

CCA_CATEGORY1_
N663

166.564 0.023 0.026

RLizard RING_CATEGORY1 0.428 0.028 0.028

Saber* LightSaber 0.084 0.168 0.245
Table: Performance Comparison for LWR-based Schemes with Category I Parameters
 * Saber is a Key Encapsulation Mechanism

FURTHER IMPROVEMENTS (IN PROGRESS)

 KeyGen can be done faster by generating a random seed for each
random component and then using AES-CTR mode to expand it :

 Use AVX2 Instruction :

Scheme Parameter Submitted
KeyGen (ms)

Improved
KeyGen (ms)

Lizard.CCA CCA_CATEGORY1_N536 71.993 3.182
CCA_CATEGORY1_N663 87.848 3.863

Scheme Parameter Enc
(# kcycle)

Dec
(# kcycle)

Lizard.CCA CCA_CATEGORY1_N536 52 62
CCA_CATEGORY1_N663 52 66

Thank You !

EX 1. APPLICATION ON SMARTPHONE

 Implemented Lizard.CPA on Android application

 Used parameters (128-bit security):

 Performance:

𝒎 𝒏 log2𝒒 log2𝒑 𝜶−𝟏 𝝆 𝒉𝒓
960 608 10 8 1822 1/2 128

KeyGen (ms) Enc (ms) Dec(ms)

288.618 0.0770 0.0229

EX 2. FOR 32-BIT MESSAGES

 Implemented Lizard.CPA with 32-bit message space

 Can be utilized on low-end devices

 Used parameters (119-bit security):

 Performance:

𝒎 𝒏 log2𝒒 log2𝒑 𝜶−𝟏 𝝆 𝒉𝒓 log2𝝐
724 480 11 9 303 1/2 128 -154

ctxt
(bytes)

pk
(bytes)

sk
(bytes)

KeyGe
n (ms)

Enc
(ms)

Dec
(ms)

𝐴 as matrix
(𝐴 as seed)

576 741,376
(46,368)

3,840 4.749
(1.891)

0.009
(0.052)

0.001

EX 3. ADDITIVE HOMOMORPHIC ENCRYPTION

 Post-quantum alternative for AHE

 Parameters (128-bit security):

 Performance:

𝒎 𝒏 log2𝒒 log2𝒑 𝜶−𝟏 𝝆 𝒉𝒓
1024 816 16 14 21000 1/2 136

ctxt
(bytes)

pk
(bytes)

sk
(bytes)

KeyGe
n (ms)

Enc
(ms)

Dec
(ms)

Add
(ms)

𝐴 as matrix
(𝐴 as seed)

1,876 2,195,456
(524,320)

52,224 25.923
(21.444)

0.014
(0.092)

0.012 0.0005

	Lizard NIST SUbmission
	Contents
	슬라이드 번호 3
	Solving a linear equation system
	Learning with errors (LWE) problem
	Decision-lwe problem
	슬라이드 번호 7
	Lwe + lhl [reg05]
	Lwe + lwe [lp11]
	Lwe + lwR [CKls16]
	Learning with rounding (Lwr) problem
	The hardness of lwr problem
	Caution! how many lsbs can be discarded?
	Advantage of lwr assumption
	슬라이드 번호 15
	OverView
	Main Strengths
	Main Strengths -- Simpler
	Main Strengths -- Fast
	Security
	Parameter Selection
	Best attack Complexities
	Best attack Complexities
	Summary on Performance
	Flexibility of the Lizard
	슬라이드 번호 26
	Saber
	Round2
	슬라이드 번호 29
	Comparison via implementation�(measured on the same environment)
	Further Improvements (in progress)
	슬라이드 번호 32
	Ex 1. Application on smartphone
	Ex 2. for 32-bit messages
	Ex 3. Additive Homomorphic Encryption

