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Learning with Errors 
(LWE) Problem 



SOLVING A LINEAR EQUATION SYSTEM 
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• Q. = Find 

; Easy! 
 

(We can solve it by using   
Gaussian elimination) 
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LEARNING WITH ERRORS (LWE) PROBLEM 
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• Q. = Find 

; Hard! 
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DECISION-LWE PROBLEM 

• Q. Distinguish From a uniform  
random sample in          

; Hard! 
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LWE-based 
Encryptions 



LWE + LHL [REG05] 
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• Require a large m to randomize LWE samples in Encryption 
  Leftover Hash Lemma 

• Can We Reduce m? 
 



LWE + LWE [LP11] 
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• Pros: smaller m by replacing LHL with LWE 

• Cons: Discrete Gaussian samplings 
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LWE + LWR [CKLS16] 
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LEARNING WITH ROUNDING (LWR) PROBLEM 

• Surprisingly, it is secure under LWR assumption 

 
• LWR: Distinguish any 𝑚 pairs of type 

 

(                                       )∈ 𝑍𝑞𝑛 × 𝑍𝑝    from uniform 

 
 Discard the least significant bits of <ai,s> 
    instead of adding small errors 
 
• Have reduction from LWE: q is large or m is small 
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THE HARDNESS OF LWR PROBLEM  

• Before 2016, security reduction only when the modulus is somewhat large. 
 

  Banergee, Peikert, Rosen [BPR12] introduced LWR, and showed LWR ≥ LWE 
when q is sufficiently large.  (𝑞 ≥ 𝑝 ∙ 𝐵 ∙ 𝑛𝜔 1 ,   B: LWE noise support bound)  
 

  Alwen et al. [AKPW13] showed LWR ≥ LWE 

  when the modulus and modulus-to-error ratio are super-poly. 
 

• Bogdanov et al. [BGM+16] in TCC 2016 showed LWR ≥ LWE when 

   the number of samples is no larger than 𝑂(𝑞 𝐵𝐵⁄ ). (B: LWE noise support bound) 
 

• Cryptanalytic hardness against best known lattice attacks: LWR = LWE when 

   the variance of LWE noise is 12𝑞2 𝑝2⁄ . (size of noise vectors are the same) 

 

(𝑞: LWR modulus, 𝑝: rounding modulus, 𝑛: LWR dimension.) 



CAUTION! HOW MANY LSBS CAN BE DISCARDED? 

• (Correctness) If we cut a large proportion;            , the correctness will 

not hold.  

• (Security) We can not remove noise addition in encryption        if we 

cut very small; 

 

→ Since the number of samples of LWR in the Enc procedure is restricted 
to be small, we can choose a proper rounding modulus “p” to satisfy both 
security and correctness. 

<Bogdanov et al.> If the # of samples(m) is no larger than 𝑂(𝑞/𝐵𝐵),  
  we cannot distinguish either one from uniform; 
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ADVANTAGE OF LWR ASSUMPTION 
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b = A + e pk: , A sk = (-s, 1) 
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r + e1 + + e2 

𝑉𝑉𝑉 𝑒𝑖 = 𝜎2 
 

Encryption noise: 𝑟, 𝑒 + (𝑒1, 𝑒2), 𝑠𝑠  

� 
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𝑀 𝑞 2⁄  
 

A , 
r 

b 
r + Rounding error (𝑒1, 𝑒2): 

(uniform over [± 𝑞 2𝑝⁄ ]) 
Variance 𝜎2 = 𝑞2 12𝑝2⁄  

Set the parameter 𝝈𝟐 = 𝒒𝟐 𝟏𝟏𝒑𝟐⁄ : Preserve cryptanalytic hardness LWE(m,q,σ) = 
LWR(m,q,p) and functionality (encryption noise)  

• Smaller CTXT 

• No Gaussian sampling in Encryption 

LP11.Enc(M) 

Lizard.Enc(M) 



Lizard NIST 
Submission 



OVERVIEW 

 Ring versions are also provided 

 Parameter Suggestions for Category 1/3/5,  resp. 

FO Transformation 

IND-CPA Secure PKE 

Lizard.CPA 

IND-CCA Secure PKE 

Lizard.CCA 

IND-CCA Secure KEM 

Lizard.KEM 



MAIN STRENGTHS 

1. [Simpler and Faster] algorithms; 
 Use LWR in the Encryption/Encapsulation phases  

 Use sparse signed binary or signed binary secrets  
 

2. [Ciphertext Compression] via LWR-style rounding (vs. LWE-style) 
 

3. [Provable IND-CPA, IND-CCA2 Security] from (R)LWE & (R)LWR with 
small secrets 
 

4. [Parameters Resist All Known Attacks] unless a significant breakthrough  

 Cryptographically negligible Dec. Fail. Rates 

 Based on the Core SVP hardness (Methodology of NewHope) 



MAIN STRENGTHS -- SIMPLER 

1. Enc of typical LWE based PKE requires two random components:  

 Ephemeral secret vector (or matrix) 

 Error vector (or matrix) 

2. Using LWR rounding in Enc/Encaps rules out generating error vectors 

3. Further use sparse signed binary or signed binary secrets 

 Encryption Procedure Algorithm 

1. Generation: random sparse binary vector 𝑟 ← {−1, 0,1}𝑚 

2. Subset-sum: row vectors of PK      (simple & fast) 𝑎, 𝑏 ← (𝐴𝑡𝑟 ,𝐵𝑡𝑟) 

3. Addition: an encoded msg vector    (simple & fast) 𝑎, 𝑏 ← (𝑎, 𝑏 + 2𝑘𝑚)  

4. Rounding: via addition & bit shifting  (simple & fast) 𝑎, 𝑏 ← ( 𝑎+2ℓ−1 

2ℓ
, 𝑏+2ℓ−1 

2ℓ
) 

𝐴 ∈ 𝑍𝑞𝑚×𝑛, 𝐵 ∈ 𝑍𝑞𝑚×ℓ, 𝐴,𝐵 : PK,        𝑘 = log𝑞 − 1,        ℓ = log𝑞 − log𝑝 



MAIN STRENGTHS -- FAST 

 Our C implementation for Lizard.CCA shows that Enc takes only 0.031 ms fo
r Category 1 and 32-byte msgs (0.036 ms for RLizard.CCA) 

 

* Performance measured on Linux with CPU Intel Xeon E5-2640 v3 at 2.60GHz 

Scheme Parameter KeyGen 
(# kcycles) 

Enc 
(# kcycles) 

Dec 
(# kcycles) 

Lizard.CCA CCA_CATEGORY1_N536 406 432 81   88 
CCA_CATEGORY1_N663 459 082 83 94 

RLizard.CCA RING_CATEGORY1 1 167 94 101 



SECURITY 

 Lizard.CPA is IND-CPA secure under the hardness assumption of LWE 
and LWR problems with small secrets, both of which have reductions 
from the standard LWE 
 

 Lizard.KEM and Lizard.CCA are obtained by applying a variant of Fujisa
ki-Okamoto transform [HHK’17] for Lizard.CPA, so they are IND-C
CA2 secure in the quantum random oracle model (QROM) 
 

 Same arguments can be applied to ring versions (RLizard.CPA, RLizard.K
EM and RLizard.CCA) 

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A modular analysis of the Fujisaki-Okamoto transformation.” 
Theory of Cryptography Conference 2017. 
 



PARAMETER SELECTION 

 Mainly considered: Dual attack [Alb17] and Primal attack 
[AGVW18] 
 

 Assume the attacks are using BKZ algorithm with Sieve  
(equipped with Grover’s quantum search algorithm); Security 
measured based on the Core SVP hardness as in 
[NewHope] 
 

 Dec. Fail. Rates are set to be cryptographically negligible 
• [Alb17]  Albrecht, Martin R. “On dual lattice attacks against small-secret LWE and parameter choices in HElib and SEAL.” 

Eurocrypt 2017. 
• [AGVW18]  Albrecht, M. R., Göpfert, F.,  Virdia, F.,  and Wunderer, T. “Revisiting the expected cost of solving uSVP and 

applications to LWE.” Asiacrypt 2018. 
• [NewHope] Alkim, E., Ducas, L., Pöppelmann, T., & Schwabe, P. “Post-quantum key exchange-a new hope.” USENIX 2016. 
 

발표자
프레젠테이션 노트
Among various attacks against (Ring-)LWE and (Ring-) LWR, we concluded that dual attack and primal attack are the most strongest attacks against our scheme.
BKZ algorithm using Grover’s quantum search algorithm is the most efficient BKZ algorithm when we assume that adversary uses quantum computer



BEST ATTACK COMPLEXITIES 

Parameter Sets log2(DFR) log2TLWE log2TLWR 

KEM_CATEGORY1_N663 
CCA_CATEGORY1_N663 

-153.500 131 147 

KEM_CATEGORY3_N952 
CCA_CATEGORY3_N952 

-337.189 203 195 

KEM_CATEGORY5_N1300 
CCA_CATEGORY5_N1300 

-332.810 264 291 

DFR : Dec. Fail. Rate exactly calculated by python code  
TLWE : Time complexity of the best known attacks of LWE 
TLWR : Time complexity of the best known attacks of LWR 



BEST ATTACK COMPLEXITIES 

Parameter Sets log2(DFR) log2TLWE log2TLWR 

RING_CATEGORY1 -188.248 153 147 

RING_CATEGORY3_N1024 -245.897 195 195 

RING_CATEGORY5 -305.684 318 348 

DFR : Dec. Fail. Rate exactly calculated by python code  
TLWE : Time complexity of the best known attacks of LWE 
TLWR : Time complexity of the best known attacks of LWR 



SUMMARY ON PERFORMANCE 
 Sizes 

• Lizard.CCA  
 Sizes for 256-bit msgs (Category 1): 

 

 

 

• RLizard.CCA 
 Sizes for 1024-bit msgs (Category 1): 

 

 

       

 Speeds 
 Enc of Lizard is fast (from 81 kcycles for Category 1), and RLizard has balanced perfor

mances 

  pk sk ctxt 
Sizes 1.8 MB 170 KB 0.98 KB 

Compressed upto 0.3 MB - - 

  pk sk ctxt 
Sizes 4.1 KB 0.3 KB 2.2 KB 

Compressed upto 1.3 KB - - 



FLEXIBILITY OF THE LIZARD 

 Lizard can be implemented flexibly for different purposes 
 

 We implemented Lizard.CPA in 3 different ways for 3 different 
usages: 
• On ARM Core (Android, Galuxy S7);   Enc: 0.077 ms,  Dec: 0.023 ms 

• For 32-bit msgs;   Enc: 0.009 ms,  Dec: 0.001 ms 

• AHE;   Enc: 0.014 ms,  Dec: 0.012 ms 
 

발표자
프레젠테이션 노트
Lizard is flexible and efficient for various usage. We implemented Lizard in 3 different ways to see the suitability for different usage




Comparison to 
Other LWR-based 

Scheme(s) 



SABER 

 Submitted by  J. P. D’ Anvers,   A. Karmakar,   S. S. Roy,   F.  Vercauteren – KU Leuven (Belgi
um) 

 Concept:  Module-LWR + Module-LWR based    

 Main Strengths:  Simplicity,   Small Parameter Sizes (Smaller pk / sk / ctxt compared to 
Kyber) 
• Rounding is simple ( ‘add constant and chop’ which is the same as Lizard),  Secrets from 

Centered Binomial dist.  

• For 115 bit security (Category 1),  

 

 

 

 No NTT,  but Toom-Cook & Karatsuba:  Constant-time implementation 

 DFR is not 2−𝜆, but very small  
• 2−120, 2−136, 2−165 for Category 1, III, V, resp. 

 Recently, they reported some implementations on ARM Core 

Kyber Saber 

pk 736 bytes  672 bytes 

sk 1632 bytes 992 bytes 

ctxt 800 bytes 736 bytes 



ROUND2 

 Submitted by O. Garcia-Morchon,  Z. Zhang,  S. Bhattacharya,  R. Rietman,  Ludo Tolh
uizen,  J.L. Torre-Arce 

 Concept:  LWR + LWR based, RLWR + RLWR based 

 Main Strength:  Lower Bandwidths 

 

 

 

 Very Similar Approach with Lizard Except for the Higher Dec. Fail. Rates  

• Sparse trinary secret 

• Power-of-2 modulus,  rounding by ‘add constant and chop’ 

 uRound2: w/o NTT,  nRound2: with NTT 

uRound2 nRound2 Saber 

pk 565 bytes 581 bytes  672 bytes 

ctxt 636 bytes 652 bytes 736 bytes 

DFR 2−66 2−54 2−120 



Scheme Lizard Saber Round2 

Category KEM / PKE KEM KEM 

Main 
Strength 

Fast Enc/Dec 
Ctxt Compression via LWR 
Conservative params, negl 

DFR 

Simplicity 
Fixed ring  

Compact sizes 

Unified Design (GLWR)* 
Lower bandwidths 

Great speed* 

Assumption (Ring-)LWE + (Ring-)LWR Module-LWR (Ring-)LWR 

Ring Choice 𝑍𝑞 𝑋 /(𝑋𝑛 + 1)  𝑍8192 𝑋 /(𝑋256 + 1) 𝑍𝑞 𝑋 /(𝑋𝑝−1 + 𝑋𝑝−2 + ⋯
+ 1)  

Modulus Power of 2 Power of 2 Power of 2 / Prime 

Dec. Failure O O O 

Const. Time X O O (Doubtful) 

 
 
 
 

Some Other 
Differences 

Sparse signed binary secret 
 
 

DFR << 2−𝜆  
 
 

Binomial distribution 
 
 

DFR > 2−𝜆  
 
 

Toom-Cook and 
Karatsuba 

 

Sparse signed binary secret 
 
 

DFR: 2−65, 2−128 > 2−𝜆  
for all parameter sets 

 
NTT 

 
Const time*,  

but still vulnerable to Cache 
attack* 

* ;  they insisted so in the submitted documentation DFR ; Decryption Failure Rate 



COMPARISON  VIA IMPLEMENTATION 
(MEASURED ON THE SAME ENVIRONMENT) 

Scheme Parameter 
Name 

KeyGen Enc Dec 

 
 
 

Round2 

u_n1_fn0_l1 4.765 5.436 5.463 

u_n1_fn1_l1 0.432 0.707 0.728 

u_n1_fn2_l1 0.961 1.226 1.248 

u_nd_l1 0.069 0.082 0.089 

n_nd_l1 1.940 3.800 5.652 
 

 
Lizard 

CCA_CATEGORY1_
N536 

151.485 0.022 0.024 

CCA_CATEGORY1_
N663 

166.564 0.023 0.026 

RLizard RING_CATEGORY1 0.428 0.028 0.028 

Saber* LightSaber 0.084 0.168 0.245 
Table: Performance Comparison for LWR-based Schemes with Category I Parameters 
  * Saber is a Key Encapsulation Mechanism 



FURTHER IMPROVEMENTS (IN PROGRESS) 

 KeyGen can be done faster by generating a random seed for each  
random component and then using  AES-CTR mode to expand it :  

 

 

 

 

 Use  AVX2 Instruction : 

 

 

Scheme Parameter Submitted 
KeyGen (ms) 

Improved 
KeyGen (ms) 

Lizard.CCA CCA_CATEGORY1_N536 71.993  3.182 
CCA_CATEGORY1_N663 87.848 3.863  

Scheme Parameter Enc  
(# kcycle) 

Dec  
(# kcycle) 

Lizard.CCA CCA_CATEGORY1_N536 52 62 
CCA_CATEGORY1_N663 52 66 



Thank You ! 



EX 1. APPLICATION ON SMARTPHONE 

 Implemented Lizard.CPA on Android application 

 

 Used parameters (128-bit security): 
 

 

 

 Performance: 

𝒎 𝒏 log2𝒒 log2𝒑 𝜶−𝟏 𝝆 𝒉𝒓 
960 608 10 8 1822 1/2 128 

KeyGen (ms) Enc (ms) Dec(ms) 

288.618 0.0770 0.0229 



EX 2. FOR 32-BIT MESSAGES 

 Implemented Lizard.CPA with 32-bit message space 

 Can be utilized on low-end devices 

 Used parameters (119-bit security): 

 

 

  Performance: 
 

𝒎 𝒏 log2𝒒 log2𝒑 𝜶−𝟏 𝝆 𝒉𝒓 log2𝝐 
724 480 11 9 303 1/2 128 -154 

ctxt  
(bytes) 

pk 
(bytes) 

sk  
(bytes) 

KeyGe
n (ms) 

Enc 
(ms) 

Dec 
(ms) 

𝐴 as matrix 
(𝐴 as seed) 

576 741,376 
(46,368) 

3,840 4.749 
(1.891) 

0.009 
(0.052) 

0.001 



EX 3. ADDITIVE HOMOMORPHIC ENCRYPTION 

 Post-quantum alternative for AHE 

 Parameters (128-bit security): 

 

 

 Performance: 

𝒎 𝒏 log2𝒒 log2𝒑 𝜶−𝟏 𝝆 𝒉𝒓 
1024 816 16 14 21000 1/2 136 

ctxt  
(bytes) 

pk 
(bytes) 

sk  
(bytes) 

KeyGe
n (ms) 

Enc 
(ms) 

Dec 
(ms) 

Add 
(ms) 

𝐴 as matrix 
(𝐴 as seed) 

1,876 2,195,456 
(524,320) 

52,224 25.923 
(21.444) 

0.014 
(0.092) 

0.012 0.0005 
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