LIZARD NIST SUBMISSION

2018.06.29

JUNG HEE CHEON

CONTENTS

- LWE Problem
- LWE-based Encryptions
- Lizard NIST Submission
- Comparison to Other LWR-based Scheme(s)
- Further Improvements (in progress)

Learning with Errors (LWE) Problem

SOLVING A LINEAR EQUATION SYSTEM

•	Q.
---	----

*™*10

	Ι	3	7	×ı	=	7	(mod 10)	Find	x _I	!
	4	5	7	x ₂		9	,		x ₂	
	6	6	9	× ₃		2			x ₃	
	2	7	3			9				
	3	8	7			6		Easy!	solvo	it by using
	5	4	2			8	-	Gaussian		it by using nation)
	Ι	0	5			2				
	4	5	3			7				
-	$\bigcap_{\mathbb{Z}^{8\times 3}_{10}}$									

LEARNING WITH ERRORS (LWE) PROBLEM

• Q.

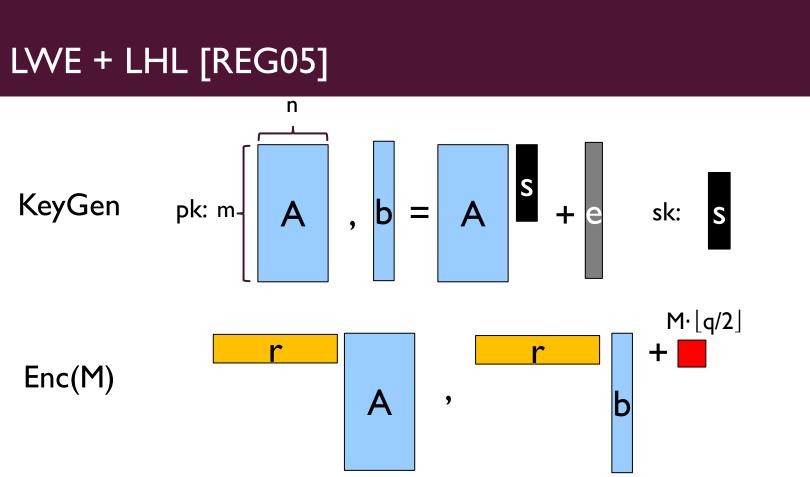
•	Ι	3	7	×ı	+	0	=	7	(mod 10) Find X	!
	4	5	7	x ₂		2		9	x ₂	
	6	6	9	×3		9		2	×3	
	2	7	3			I		9		-
	3	8	7			0		6	; Hard!	
	5	4	2			I		8		
	Ι	0	5			0		2		
	4	5	3			8		7		
		$\mathbb{Z}^{8\times}_{10}$) <3)				Error nown)			

DECISION-LWE PROBLEM

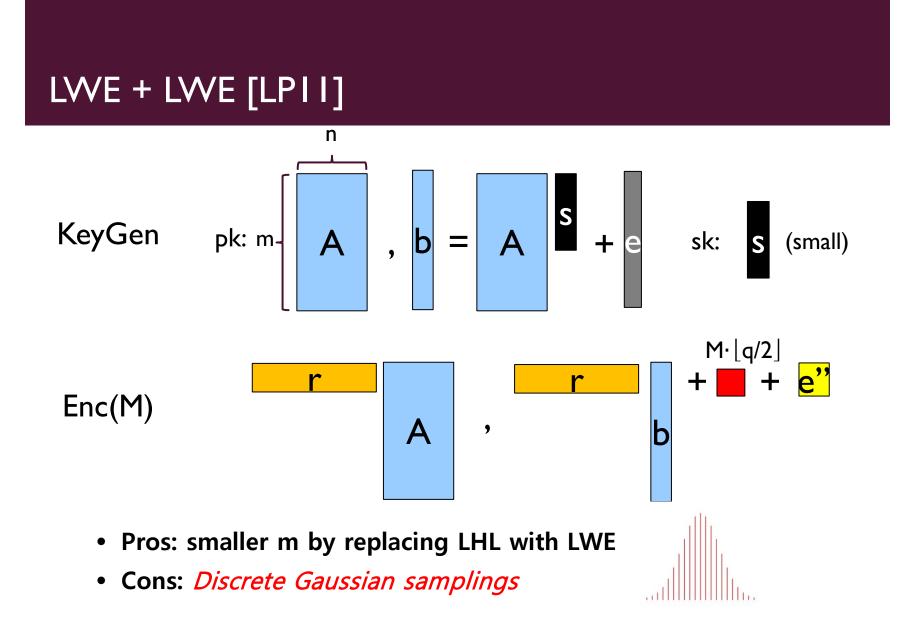
• Q. Distinguish

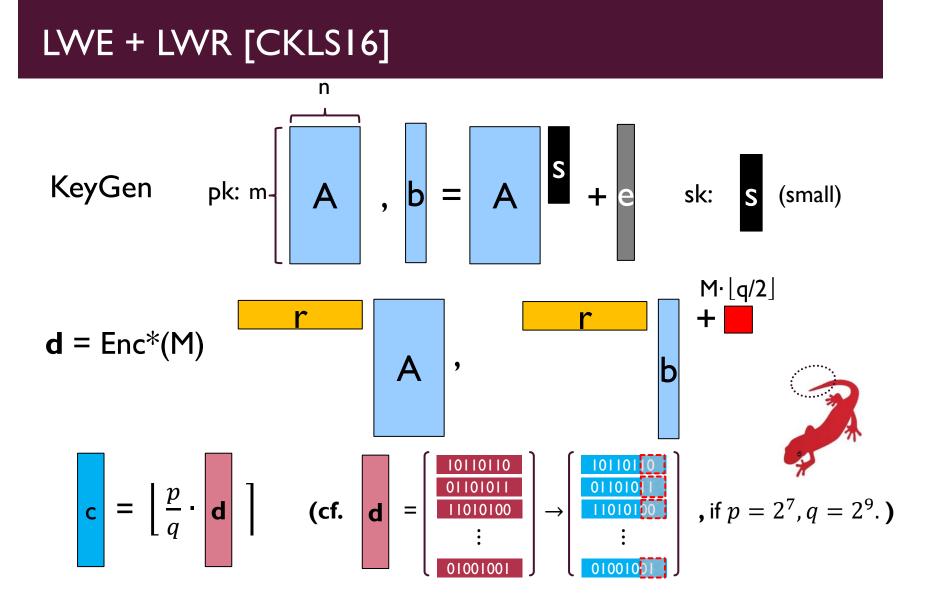
I	3	7		7	(mod 10) From a uniform
4	5	7		I	random sample in $\mathbb{Z}_{10}^{8 imes 4}$
6	6	9		Ι	
2	7	3	,	0	
3	8	7	,	6	; Hard!
5	4	2		0	
I	0	5		2	
4	5	3		5	

LWE-based Encryptions



- Require a large m to randomize LWE samples in Encryption
 - > Leftover Hash Lemma
- Can We Reduce m?





LEARNING WITH ROUNDING (LWR) PROBLEM

- Surprisingly, it is secure under LWR assumption

Discard the least significant bits of $\langle a_i, s \rangle$

instead of adding small errors

• Have reduction from LWE: q is large or m is small

THE HARDNESS OF LWR PROBLEM

(q: LWR modulus, p: rounding modulus, n: LWR dimension.)

- Before 2016, security reduction only when the modulus is somewhat large.
 - ▷ Banergee, Peikert, Rosen [BPR12] introduced LWR, and showed LWR ≥ LWE when q is sufficiently large. $(q \ge p \cdot B \cdot n^{\omega(1)})$, B: LWE noise support bound)
 - > Alwen et al. [AKPW13] showed LWR \geq LWE when the modulus and modulus-to-error ratio are super-poly.
- Bogdanov et al. [BGM+16] in TCC 2016 showed LWR ≥ LWE when the number of samples is no larger than O(q/Bp). (B: LWE noise support bound)
- Cryptanalytic hardness against best known lattice attacks: LWR = LWE when the variance of LWE noise is $12q^2/p^2$. (size of noise vectors are the same)

CAUTION! HOW MANY LSBs CAN BE DISCARDED?

• (Correctness) If we cut a large proportion; not hold.

, the correctness will

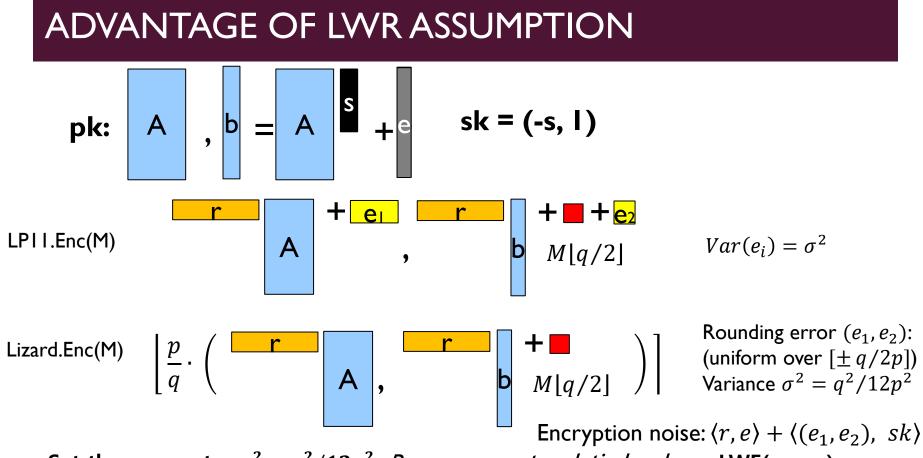
10101

01001001

(Security) We can not remove noise addition in encryption (2) if we cut very small;

 \rightarrow Since **the number of samples of LWR** in the Enc procedure is restricted to be **small**, we can choose a proper rounding modulus "p" to satisfy both security and correctness.

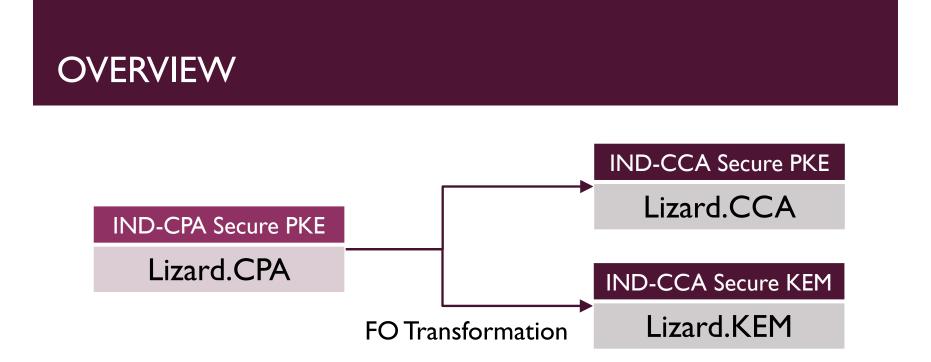
Bogdanov et al.> If <u>the # of samples(m) is no larger than O(q/Bp)</u>, we cannot distinguish either one from uniform; $\left(m \left[A , \left[\frac{p}{q} \cdot \left(A \right] + e \right] \right] \right) \leftrightarrow \left(m \left[A , \left[\frac{p}{q} \right] A \right] \right)$



Set the parameter $\sigma^2 = q^2/12p^2$: *Preserve cryptanalytic hardness* LWE(m,q, σ) = LWR(m,q,p) and functionality (encryption noise)

- Smaller CTXT
- No Gaussian sampling in Encryption

Lizard NIST Submission



- Ring versions are also provided
- Parameter Suggestions for Category 1/3/5, resp.

MAIN STRENGTHS

- I. [Simpler and Faster] algorithms;
 - Use LWR in the Encryption/Encapsulation phases
 - Use sparse signed binary or signed binary secrets

- 3. [Provable IND-CPA, IND-CCA2 Security] from (R)LWE & (R)LWR with small secrets
- 4. [Parameters Resist All Known Attacks] unless a significant breakthrough
 - Cryptographically negligible Dec. Fail. Rates
 - Based on the Core SVP hardness (Methodology of NewHope)

MAIN STRENGTHS -- SIMPLER

- I. Enc of typical LWE based PKE requires two random components:
 - Ephemeral secret vector (or matrix)
 - Error vector (or matrix)
- 2. Using LWR rounding in Enc/Encaps rules out generating error vectors
- 3. Further use **sparse** signed binary or signed binary secrets

Encryption Procedure	Algorithm					
I. Generation: random sparse binary vector	$\vec{r} \leftarrow \{-1, 0, 1\}^m$					
2. Subset-sum: row vectors of PK (simple & fast)	$(a,b) \leftarrow (A^t \vec{r}, B^t \vec{r})$					
3. Addition: an encoded msg vector (simple & fast)	$(a,b) \leftarrow (a,b+2^km)$					
4. Rounding : via addition & bit shifting (simple & fast) $(a, b) \leftarrow \left(\left\lfloor \frac{a+2^{\ell-1}}{2^{\ell}} \right\rfloor, \left\lfloor \frac{b+2^{\ell-1}}{2^{\ell}} \right\rfloor\right)$						
$A \in Z_q^{m \times n}$, $B \in Z_q^{m \times \ell}$, (A, B) : PK, $k = \log q - 1$, $\ell = \log q$	$gq - \log p$					

MAIN STRENGTHS -- FAST

 Our C implementation for Lizard.CCA shows that Enc takes only 0.031 ms for r Category I and 32-byte msgs (0.036 ms for RLizard.CCA)

Scheme		KeyGen (# kcycles)	Enc (# kcycles)	Dec (# kcycles)
Lizard.CCA	CCA_CATEGORY1_N536	406 432	81	88
	CCA_CATEGORY1_N663	459 082	83	94
RLizard.CCA	RING_CATEGORY I	1 167	94	101

* Performance measured on Linux with CPU Intel Xeon E5-2640 v3 at 2.60GHz

SECURITY

- Lizard.CPA is IND-CPA secure under the hardness assumption of LWE and LWR problems with small secrets, both of which have reductions from the standard LWE
- Lizard.KEM and Lizard.CCA are obtained by applying a variant of Fujisa ki-Okamoto transform [HHK'17] for Lizard.CPA, so they are IND-C CA2 secure in the quantum random oracle model (QROM)
- Same arguments can be applied to ring versions (RLizard.CPA, RLizard.K EM and RLizard.CCA)

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. "A modular analysis of the Fujisaki-Okamoto transformation." *Theory of Cryptography Conference* 2017.

PARAMETER SELECTION

- Mainly considered: Dual attack [Alb17] and Primal attack [AGVW18]
- Assume the attacks are using BKZ algorithm with Sieve (equipped with Grover's quantum search algorithm); Security measured based on the Core SVP hardness as in [NewHope]

Dec. Fail. Rates are set to be cryptographically negligible

- [Alb17] Albrecht, Martin R."On dual lattice attacks against small-secret LWE and parameter choices in HElib and SEAL." *Eurocrypt* 2017.
- [AGVW18] Albrecht, M. R., Göpfert, F., Virdia, F., and Wunderer, T. "Revisiting the expected cost of solving uSVP and applications to LWE." Asiacrypt 2018.
- [NewHope] Alkim, E., Ducas, L., Pöppelmann, T., & Schwabe, P. "Post-quantum key exchange-a new hope." USENIX 2016.

BEST ATTACK COMPLEXITIES

Parameter Sets	log ₂ (DFR)	$\log_2 T_{LWE}$	$log_2 T_{LWR}$
KEM_CATEGORY1_N663 CCA_CATEGORY1_N663	-153.500	131	147
KEM_CATEGORY3_N952 CCA_CATEGORY3_N952	-337.189	203	195
KEM_CATEGORY5_N1300 CCA_CATEGORY5_N1300	-332.810	264	291

DFR : Dec. Fail. Rate exactly calculated by python code T_{LVVE} :Time complexity of the best known attacks of LWE T_{LVVR} :Time complexity of the best known attacks of LWR

BEST ATTACK COMPLEXITIES

Parameter Sets	log ₂ (DFR)	$log_2 T_{LWE}$	$\log_2 T_{LWR}$
RING_CATEGORY I	-188.248	153	147
RING_CATEGORY3_N1024	-245.897	195	195
RING_CATEGORY5	-305.684	318	348

DFR : Dec. Fail. Rate exactly calculated by python code T_{LWE} :Time complexity of the best known attacks of LWE T_{LWR} :Time complexity of the best known attacks of LWR

SUMMARY ON PERFORMANCE

- Sizes
 - Lizard.CCA
 - Sizes for 256-bit msgs (Category I):

	pk	sk	ctxt
Sizes	I.8 MB	170 KB	0.98 KB
Compressed upto	0.3 MB	-	-

• RLizard.CCA

Sizes for 1024-bit msgs (Category I):

	pk	sk	ctxt
Sizes	4.I KB	0.3 KB	2.2 KB
Compressed upto	I.3 KB	-	-

- Speeds
 - Enc of Lizard is fast (from 81 kcycles for Category 1), and RLizard has balanced perfor mances

FLEXIBILITY OF THE LIZARD

- Lizard can be implemented flexibly for different purposes
- We implemented Lizard.CPA in 3 different ways for 3 different usages:
 - On ARM Core (Android, Galuxy S7); Enc: 0.077 ms, Dec: 0.023 ms
 - For 32-bit msgs; Enc: 0.009 ms, Dec: 0.001 ms
 - AHE; Enc: 0.014 ms, Dec: 0.012 ms

Comparison to Other LWR-based Scheme(s)

SABER

- Submitted by J. P. D' Anvers, A. Karmakar, S. S. Roy, F. Vercauteren KU Leuven (Belgi um)
- Concept: Module-LWR + Module-LWR based
- Main Strengths: Simplicity, Small Parameter Sizes (Smaller pk / sk / ctxt compared to Kyber)
 - Rounding is simple ('add constant and chop' which is the same as Lizard), Secrets from Centered Binomial dist.
 - For 115 bit security (Category 1),

	Kyber	Saber
pk	736 bytes	672 bytes
sk	1632 bytes	992 bytes
ctxt	800 bytes	736 bytes

- No NTT, but Toom-Cook & Karatsuba: Constant-time implementation
- DFR is not $2^{-\lambda}$, but very small
 - 2^{-120} , 2^{-136} , 2^{-165} for Category I, III, V, resp.
- Recently, they reported some implementations on ARM Core

ROUND2

- Submitted by O. Garcia-Morchon, Z. Zhang, S. Bhattacharya, R. Rietman, Ludo Tolh uizen, J.L. Torre-Arce
- Concept: LWR + LWR based, RLWR + RLWR based

	Main Strength: Lower Bandwidths		uRound2	nRound2	Saber
		pk	565 bytes	581 bytes	672 bytes
		ctxt	636 bytes	652 bytes	736 bytes
		DFR	2 ⁻⁶⁶	2 ⁻⁵⁴	2 ⁻¹²⁰

- Very Similar Approach with Lizard Except for the Higher Dec. Fail. Rates
 - Sparse trinary secret
 - Power-of-2 modulus, rounding by 'add constant and chop'
- uRound2: w/o NTT, nRound2: with NTT

Scheme	Lizard	Saber	Round2
Category	KEM / PKE	KEM	KEM
Main Strength	Fast Enc/Dec Ctxt Compression via LWR Conservative params, negl DFR	Simplicity Fixed ring Compact sizes	Unified Design (GLWR)* Lower bandwidths Great speed*
Assumption	(Ring-)LWE + (Ring-)LWR	Module-LWR	(Ring-)LVVR
Ring Choice	$Z_q[X]/(X^n+1)$	$Z_{8192}[X]/(X^{256}+1)$	$Z_q[X]/(X^{p-1} + X^{p-2} + \cdots + 1)$
Modulus	Power of 2	Power of 2	Power of 2 / Prime
Dec. Failure	0	0	0
Const. Time	X	0	O (Doubtful)
	Sparse signed binary secret	Binomial distribution	Sparse signed binary secret
Some Other Differences	DFR << $2^{-\lambda}$	DFR > $2^{-\lambda}$	DFR: 2^{-65} , $2^{-128} > 2^{-\lambda}$ for all parameter sets
Dillerences		Toom-Cook and Karatsuba	NTT
			Const time*, but still vulnerable to Cache attack*
*; they insis	ted so in the submitted docu	mentation DFF	R ; Decryption Failure Rate

COMPARISON VIA IMPLEMENTATION (MEASURED ON THE SAME ENVIRONMENT)

Scheme	Parameter Name	KeyGen	Enc	Dec
	u_n1_fn0_l1	4.765	5.436	5.463
	u_n1_fn1_l1	0.432	0.707	0.728
Round2	u_n1_fn2_l1	0.961	1.226	1.248
	u_nd_l1	0.069	0.082	0.089
	n_nd_l1	1.940	3.800	5.652
Lizard	CCA_CATEGORYI_ N536	151.485	0.022	0.024
LIZAI U	CCA_CATEGORYI_ N663	166.564	0.023	0.026
RLizard	RING_CATEGORY1	0.428	0.028	0.028
Saber*	LightSaber	0.084	0.168	0.245

Table: Performance Comparison for LWR-based Schemes with Category I Parameters * Saber is a Key Encapsulation Mechanism

FURTHER IMPROVEMENTS (IN PROGRESS)

KeyGen can be done faster by generating a random seed for each random component and then using AES-CTR mode to expand it :

Scheme	Parameter	Submitted KeyGen (ms)	
Lizard.CCA	CCA_CATEGORY1_N536	71.993	3.182
	CCA_CATEGORY1_N663	87.848	3.863

Use AVX2 Instruction :

Scheme	Parameter	Enc (# kcycle)	Dec (# kcycle)
Lizard.CCA	CCA_CATEGORY1_N536	52	62
	CCA_CATEGORY1_N663	52	66

Thank You !

EX I.APPLICATION ON SMARTPHONE

Implemented Lizard.CPA on Android application

Used parameters (128-bit security):

m	n	$\log_2 q$	$log_2 p$	α^{-1}	ρ	h_r
960	608	10	8	1822	1/2	128

Performance:

KeyGen (ms)	Enc (ms)	Dec(ms)
288.618	0.0770	0.0229

EX 2. FOR 32-BIT MESSAGES

- Implemented Lizard.CPA with 32-bit message space
- Can be utilized on low-end devices
- Used parameters (119-bit security):

m	n	$\log_2 q$	$\log_2 p$	$lpha^{-1}$	ρ	h_r	$\log_2 \epsilon$
724	480	П	9	303	1/2	128	-154

Performance:

	ctxt (bytes)	pk (bytes)		KeyGe n (ms)		Dec (ms)
A as matrix (A as seed)	576	741,376 (46,368)	3,840	4.749 (1.891)	0.009 (0.052)	0.001

EX 3. ADDITIVE HOMOMORPHIC ENCRYPTION

Post-quantum alternative for AHE

Parameters (128-bit security):

m	n	$\log_2 q$	$\log_2 p$	α^{-1}	ρ	h _r
1024	816	16	14	21000	1/2	136

Performance:

	ctxt (bytes)	pk (bytes)		KeyGe n (ms)		Dec (ms)	Add (ms)
A as matrix (A as seed)	I,876	2,195,456 (524,320)	52,224	25.923 (21.444)	0.014 (0.092)	0.012	0.0005