
Efficient Threshold Encryption
from Lossy Trapdoor Functions

Xiang Xie, Rui Xue and Rui Zhang
SKLOIS

Chinese Academy of Sciences

2

Outline

 Background

 Our Results

 Our Constructions

 Conclusions

3

pk
sk ...

n parties

sk2

sk1

skn

Threshold Public Key Encryption (ThPKE)

4

pk
sk

C=ThEnc(pk,m)

...
n parties

pk

Threshold Public Key Encryption (ThPKE)

5

pk
sk ...

n parties

pk
m1 = ThDec(C,sk1)

m2 = ThDec(C,sk2)

mn = ThDec(C,skn)

If more than tp parties are honest
m = Combine(m1,m2, …, mn)

Threshold Public Key Encryption (ThPKE)

6

ThPKE=(ThGen, ThEnc, ThDec ThCom)

 ThGen: (pk, sk) ThGen(λ, n, tp)

 ThEnc: C ThEnc(pk,m)

 ThDec: mi ThDec(ski, C)

ThCom: m ThCom(m1,m2,…,mn)

Formal definition

7

Static Attacker Challenger

Announce threshold tp to be corrupted

pk sk1, sk2 ,…, sktp

(i , C)

mi=ThDec(C, ski)…

m0, m1

C*=ThEnc(pk, mb), b {0,1}

(i , C ≠ C*)

…
Output b’ (guess b)

mi=ThDec(C, ski)

Security

8

Related work

 Introduced by Desmedt’87 and Desmedt-
Frankel’90

 Shoup-Gennaro’98 (ROM)

 Canetti-Goldwasser’99 (interactive or storage of
secrets)

 Zhang-Hanaoka-Shikata-Imai’04,Dodis-Katz’05
(generic constructions from ME)

 Boneh-Boyen-Halevi’05, Arita–Tsurudome’09
(pairing)

 Bendlin-Damgard’10 (lattice, not generic)

9

Overview of our results

1. Generic threshold public encryption
 Inspired from Dodis-Katz’05

 Weaker components than those in DK’05
 sTag-CCA instead of Tag-CCA

2. sTag-CCA PKE from lossy trapdoor functions
 ThPKE from lattices (against quantum attackers)

3. Comparisons with other schemes from Lattice
 slightly efficient than the known lattice based scheme

(BD’10)

Basic Ideas

10

Threshold PKE

Full Tag-CCA PKE

Lossy Trapdoor Functions

Multiple Encryption Technique
([ZHSI04,DK05])

?Efficient Solutions

Towards our goal…

11

Threshold PKE

sTag-CCA PKE

Lossy Trapdoor Functions

1. ThPKE from sTag-CCA PKE
(Improving [ZHSI04,DK05])

2. sTag-CCA PKE from Lossy
Trapdoor Functions

12

 Tag-based PKE (TPKE)

Informally, the encryption and the decryption
algorithms take an additional input: a “tag” (denoted
as τ).

TPKE=(TGen, TEnc, TDec)
 (pk,sk)TGen(k)

 (C, τ)TEnc(pk, τ, m)

 mTDec(sk, C, τ)

Ingredients

13

 Full Tag-CCA (used in DK’05)
 (C, τ) ≠ (C*, τ*) in 2nd CCA-query stage

 (C, τ*) is a legal query as long as C ≠ C*

 sTag-CCA
 τ ≠τ* for a query (C, τ) in 2nd CCA-query stage

 Any (C*, τ) with τ ≠ τ* is a legal query

sTag-CCA is a weaker security
defnition than full Tag-CCA !

Security of TPKE

14

Other ingredients

 Secret Share scheme SS = (Share, Rec) with privacy
threshold tp

 (m1,m2,…,mn)Share(m, n)

 mRec(m1,m2,…,mn)

 tp legal shares do not reveal any information of m

 Signature scheme ∑=(Gen, Sign, Ver)

 Strongly unforgeable one-time signature
 An attacker is able to make at most one query to the

sign oracle on a message m, and obtain σ.

 The attacker wins if he outputs (m*, σ*) ≠ (m, σ) and
Ver(m*, σ*) =1

15

Construction: step 1

“SS + TPKE + Sig = ThPKE”

Step 1

16

Security of TPKE

Selective Attacker Challenger

Select τ* to the challenger

pk

(C, τ ≠ τ*)

m=TDec(sk, C, τ)

…

m0, m1

(C*, τ*) =TEnc(pk, τ* mb) b {0,1}

(C, τ ≠ τ*)

m=TDec(sk, C, τ)
…

Output b’ (guess b)

Intuition of the design of DK’05

17

c1 = TEnc(pk1, svk, m1)

c2 = TEnc(pk2, svk, m2)

cn = TEnc(pkn, svk, mn)

σ = Sign(ssk, (c1,…cn))…

The adversary can no longer modify the ciphertext!

c=<svk,c1,c2,…,cn,σ>

18

Our construction
 Given TPKE=(TGen, TEnc, TDec), SS = (Share, Rec)

∑ = (Gen, Sign, Ver), we construct

ThPKE=(ThGen,ThEnc, ThDec, ThCom) as follows.

 ThGen(n, tp)

 (pk1,sk1) TGen, …, (pkn,skn) TGen,

 Set PK=(pk1,…, pkn), Ski=ski

 ThEnc(PK, m)

 (m1,…,mn)=Share(m); (svk,ssk) Gen

 c1 = TEnc(pk1, svk, m1),…, cn = TEnc(pkn, svk, mn)

 σ = Sign(ssk, (c1,…cn))

 Output C=(svk, c1,…cn, σ)

19

Our construction

 ThDec(Ski, C)
 Parse C = (svk, c1,…cn, σ)

 Check Ver(svk, (c1,…cn)) =1; if not, abort

 Output mi = TDec(ski, ci ,svk)

 ThCom(m1,…,mn)
 Output m=Rec(m1,…,mn)

20

Theorem 1. ThPKE constructed above is a CCA secure
threshold encryption scheme, if TPKE is sTag-CCA secure, SS
is tp secure and ∑ is one-time strongly unforgeable.

Proof sketch: We define a sequence of games to prove this theorem.

W.l.o.g we assume {n-tp+1,…n} are corrupted.

1, If decryption query C is of the form (svk*, c1,…cn σ), abort.
This can be done via the one-time strongly unforgeable signature.

Security of our scheme

21

2. For 1 ≤ i ≤ n – tp-1, the challenger change the challenge ciphertext as:

Game i: (TEnc(pk1,0), …,TEnc(pki, 0), TEnc(pki+1,mi+1),…,TEnc(pkn,mn)

Game i+1: (TEnc(pk1,0), …,TEnc(pki, 0), TEnc(pki+1,0),…, TEnc(pkn,mn)

View(Game i) ≈ View(Game i+1)

according to the sTag-CCA of TPKE scheme !

Security of our scheme

Up to now…

22

Threshold PKE

sTag-CCA PKE

Lossy Trapdoor Functions

1. ThPKE from sTag-CCA PKE
(Improving [ZHSI04,DK05])

?Efficient Solutions

23

We obtain sTag-CCA PKE from lossy
trapdoor functions and All-But-One (ABO)
trapdoor functions [PK’08].

Construction: step 2

How to sTag-CCA PKE

24

Lossy trapdoor functions

25

(s,td) Sabo(b*)

G(s,b,x): an injective trapdoor function (with b ≠ b*)

G(s,b*,x): a lossy function

s0 ≈ s1
(s0,td0) Sabo(b0), (s1,td1) Sabo(b1)

For any b0,b1

All-But-One trapdoor functions

“LF + Additional Branch Set”

26

Our sTag-CCA PKE
PKE = (Gen, Enc, Dec)

 Gen(k)

 (F, F-1) S(inj,k), (s, td) Sabo(0,k),

 Sample a pairwise independent hash h

 pk=(F,G, h), sk=(F-1) (td’ for proof)

 Enc (m)

 Choose b (tag) from the branch set.

 Randomly choose x (compactible with F and G)

 C=< F(x), G(s, b, x), h(x) XOR m >

 Output (C, b)

27

Our sTag-CCA PKE

 Dec (C, b)

 Parse C as (c1, c2, c3)

 x= F-1(c1)

 Check F(x) = c1, G(s, x, b)= c2; If not, abort

 Output x XOR c3

It is exactly the Peikert-Waters
“basic PKE” from LTFs !

In [PW08], it was proved that this
construction is CCA1 secure.

28

Theorem 2. The encryption scheme
PKE=(Gen, Enc, Dec) described above is
sTag-CCA secure.

Our sTag-CCA PKE

29

Game 1: (s, td) Sabo(b*) instead of (s, td) Sabo(0)

Game 2: use td to answer decryption queries.

Game 3: (s, *) S(lossy) instead of (s, td) S(inj)

Game 4: use randomly chosen r instead of c3*

Proof sketch

Wrapping up the whole story…

30

Threshold PKE

sTag-CCA PKE

Lossy Trapdoor Functions

1. ThPKE from sTag-CCA PKE
(Improving [ZHSI04,DK05])

2. sTag-CCA PKE from Lossy
Trapdoor Functions

31

Comparisons of ThPKE

32

Conclusions

 ThPKE from LTFs
1. ThPKE from sTag-CCA PKE

2. sTag-CCA PKE from LTFs

 Concrete implementation from Lattices
 (Slightly) better than the previous one

from lattice [BD’10]

