LEAKAGE-RESILIENT PUBLIC-KEY
ENCRYPTION FROM OBFUSCATION

‘ Dana Dachman-Soled, S. Dov Gordon, Feng-Hao
Lui, Adam, O’Neill, and Hong-Sheng Zhou




OUTLINE OF TALK

Leakage Models for PKE —

Bounded, Continual, and Continual w/ Leakage on Key
Update

Results in Continual Model: A Generic Compiler to Achieve
Leakage on Key Update

Results in Bounded Model: A New Approach to Optimal
Leakage Rate

Conclusion and Open Problems



OUTLINE OF TALK

Uses indistinguishability obfuscation
[BGIRSVY'01,GGHRSW’13]
Leakage Models for PKE 44 techniques from “deniable encryption”

Bounded, Continual, ai. [SW’'14].
Update

Results in Continual Model: A Generic Compiler to Achieve
Leakage on Key Update

Results in Bounded Model: A New Approach to Optimal
Leakage Rate

Conclusion and Open Problems



OUTLINE OF TALK

Leakage Models for PKE —

Bounded, Continual, and Continual w/ Leakage on Key
Update

Results in Continual Model: A Generic Compiler to Achieve
Leakage on Key Update

Results in Bounded Model: A New Approach to Optimal
Leakage Rate

Conclusion and Open Problems



OUTLINE OF TALK

Leakage Models for PKE —

Bounded, Continual, ap”
Update Uses indistinguishability obfuscation

[BGIRSVY'01,GGHRSW’13]

. . and “punctured programming” [SW’14].
Results in Continual Mok

Leakage on Key Upadaate

Results in Bounded Model: A New Approach to Optimal
Leakage Rate

Conclusion and Open Problems



OUTLINE OF TALK

Leakage Models for PKE —

Bounded, Continual, and Continual w/ Leakage on Key
Update

Results in Continual Model: A Generic Compiler to Achieve
Leakage on Key Update

Results in Bounded Model: A New Approach to Optimal
Leakage Rate

Conclusion and Open Problems



OUTLINE OF TALK

Leakage Models for PKE —

Bounded, Continual, and Continual w/ Leakage on Key
Update



BOUNDED LEAKAGE FOR PKE [AGV’09]

Fix a public-key encryption scheme (K,&,D).

ok (pk, sk) <s K

Adversary Challenger




BOUNDED LEAKAGE FOR PKE [AGV’09]

Fix a public-key encryption scheme (K,&,D).

ok (pk, sk) <s K

f

Adversary Challenger




BOUNDED LEAKAGE FOR PKE [AGV’09]

Fix a public-key encryption scheme (K,&,D).

(pk, sk) <s K

Adversary Challenger




BOUNDED LEAKAGE FOR PKE [AGV’09]

Fix a public-key encryption scheme (K,&,D).

Adversary

(pk, sk) <s K

Challenger




BOUNDED LEAKAGE FOR PKE [AGV’09]

Fix a public-key encryption scheme (K,&,D).

Adversary

ok (pk, sk) <s K
b<s{0,1}
f > c s E(pk,myp)
f(sk)
(mo, m1)
>

Challenger




BOUNDED LEAKAGE FOR PKE [AGV’09]

Fix a public-key encryption scheme (K,&,D).

Adversary

ok (pk, sk) <s K
b<s{0,1}
f > c s E(pk,myp)
f(sk)
(mo, m1)
>

Challenger




BOUNDED LEAKAGE FOR PKE [AGV’09]

Fix a public-key encryption scheme (K,&,D).

Adversary

pk

f

f(sk)

(o, m1)

(pk, sk) <s K
b<s{0,1}
c s E(pk,myp)

Challenger




BOUNDED LEAKAGE FOR PKE [AGV’09]

Fix a public-key encryption scheme (K,&,D).

Adversary

(pk, sk) <s K
b<s{0,1}
c s E(pk,myp)

Challenger

Return (b =1b')




BOUNDED LEAKAGE FOR PKE [AGV’09]

Fix a public-key encryption scheme (K,&,D).

pk (pk7 Sk) F$ IC
“ b<s{0,1}
/ . c s E(pk, myp)
f(sk) :
1
(mo,m1)
=
c
Adversary < Challenger
b/
& Return (b =1')

Require 2-Pr [b = ] — 1 1s negligible.




BOUNDED LEAKAGE FOR PKE [AGV’09]

Fix a public-key encryption scheme (K,&,D).

<t
Must be bounded length!
<
c
Adversary - Challenger

> Return (b =1b')

Require 2-Pr|b=10"]—1 is negligible.




CONTINUAL LEAKAGE FOR PKE
[BKKV’10,DHLW’10]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm U/ computes sk’ <—sU(sk) .

ok (pk, sko) <5 KC

Adversary Challenger



CONTINUAL LEAKAGE FOR PKE
[BKKV’10,DHLW’10]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm I/ computes sk’ +—sU(sk) .

ok (pk, sko) <5 KC

f

Adversary Challenger




CONTINUAL LEAKAGE FOR PKE
[BKKV’10,DHLW’10]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm I/ computes sk’ +—sU(sk) .

(pk, sko) <5 KC

Adversary Challenger




CONTINUAL LEAKAGE FOR PKE
[BKKV’10,DHLW’10]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm U/ computes sk’ <—sU(sk) .

Ski <3 Z/[(Ski_l)
pk

Adversary Challenger



CONTINUAL LEAKAGE FOR PKE
[BKKV’10,DHLW’10]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm I/ computes sk’ +—sU(sk) .

Ski <—$ Z/[(Ski_l)
pk

f

Adversary Challenger




CONTINUAL LEAKAGE FOR PKE
[BKKV’10,DHLW’10]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm I/ computes sk’ s U (sk) .

sk; <—sU(sk;—1)

4\

f(sk;) JREPEATS

U/

Adversary Challenger




CONTINUAL LEAKAGE FOR PKE
[BKKV’10,DHLW’10]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm I/ computes sk’ s U (sk) .

sk; <—sU(sk;—1)

f\

f(sk;) JREPEATS

Adversary Challenger




CONTINUAL LEAKAGE FOR PKE
[BKKV’10,DHLW’10]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm U/ computes sk’ <—sU(sk) .

Ski <3 U(Ski_l)
pk

J
f(sk;) .REPEATS

(o m) U

Adversary Challenger

b<+s{0,1}




CONTINUAL LEAKAGE FOR PKE
[BKKV’10,DHLW’10]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm U/ computes sk’ <—sU(sk) .

Ski <3 U(Ski_l)
pk

J
f(sk;) .REPEATS

(o m) U

c
Adversary Challenger

b<+s{0,1}




CONTINUAL LEAKAGE FOR PKE
[BKKV’10,DHLW’10]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm U/ computes sk’ <—sU(sk) .
Ski <3 U(Ski_l)
pk

J
f(sk;) .REPEATS

(o m) U

c
Adversary Challenger

b/

b<+s{0,1}




CONTINUAL LEAKAGE FOR PKE
[BKKV’10,DHLW’10]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm U/ computes sk’ <—sU(sk) .
Ski <3 U(Ski_l)
pk

J
f(sk;) .REPEATS

(o, ) u

c
Adversary Challenger

b/

b<+s{0,1}

Return (b =1b')



CONTINUAL LEAKAGE FOR PKE
[BKKV’10,DHLW’10]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm U/ computes sk’ <—sU(sk) .

Adversary

Ski <3 U(Ski_l)
pk

J
f(sk;) .REPEATS

(o, ) u

C

b<+s{0,1}

Challenger

b/
Return (b =1b')

Require 2-Pr [b — b’] — 1 1s negligible.



CONTINUAL LEAKAGE FOR PKE
[BKKV’10,DHLW’10]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm I/ computes sk’ +—sU(sk) .

S]{Zi <3 U(Ski_l)

pk
<t
-
C
Adversary * Challenger
b/

= Return (b =1b')

Require 2-Pr|b=10"]—1 is negligible.




LEAKAGE ON KEY-UPDATE FOR PKE
IBKKV’10,LLW’11]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm U/ computes sk’ <—sU(sk) .

ok (pk, sko) <5 KC

Adversary Challenger



LEAKAGE ON KEY-UPDATE FOR PKE
IBKKV’10,LLW’11]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm I/ computes sk’ +—sU(sk) .

ok (pk, sko) <5 KC

f

Adversary Challenger




LEAKAGE ON KEY-UPDATE FOR PKE
IBKKV’10,LLW’11]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm I/ computes sk’ +—sU(sk) .

(pk, sko) <5 KC

Adversary Challenger




LEAKAGE ON KEY-UPDATE FOR PKE
IBKKV’10,LLW’11]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm U/ computes sk’ <—sU(sk) .

Ski <—$ U(Ski_l; Ti)
pk

Adversary Challenger



LEAKAGE ON KEY-UPDATE FOR PKE
IBKKV’10,LLW’11]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm I/ computes sk’ +—sU(sk) .

Ski <—$ U(Ski_l; Ti)
pk

f

Adversary Challenger




LEAKAGE ON KEY-UPDATE FOR PKE
IBKKV’10,LLW’11]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm I/ computes sk’ s U (sk) .

sk; <sU(ski_1;7;)

B G\

f(ski,ri) REPEATS

A\

Adversary Challenger




LEAKAGE ON KEY-UPDATE FOR PKE
IBKKV’10,LLW’11]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm I/ computes sk’ s U (sk) .

sk; <sU(ski_1;7;)

f\

f(ski,ri) REPEATS

Adversary Challenger




LEAKAGE ON KEY-UPDATE FOR PKE
IBKKV’10,LLW’11]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm U/ computes sk’ <—sU(sk) .

Ski <—$ U(Ski_l; 7”2‘)
pk

f
f(ski,mi) REPEATS

(o, ) U

Adversary Challenger

b<+s{0,1}




LEAKAGE ON KEY-UPDATE FOR PKE
IBKKV’10,LLW’11]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm U/ computes sk’ <—sU(sk) .

Ski <—$ U(Ski_l; 7”2‘)
pk

f
f(ski,mi) REPEATS

(o, ) U

c
Adversary Challenger

b<+s{0,1}




LEAKAGE ON KEY-UPDATE FOR PKE
IBKKV’10,LLW’11]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm U/ computes sk’ <—sU(sk) .
Ski <—$ U(Ski_l; 7”2‘)
pk

f
f(ski,mi) REPEATS

(o, ) U

c
Adversary Challenger

b/

b<+s{0,1}




LEAKAGE ON KEY-UPDATE FOR PKE
IBKKV’10,LLW’11]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm U/ computes sk’ <—sU(sk) .
Ski <—$ U(Ski_l; 7”2‘)
pk

f
f(ski,mi) REPEATS

(o, ) u

c
Adversary Challenger

b/

b<+s{0,1}

Return (b =1b')



LEAKAGE ON KEY-UPDATE FOR PKE
IBKKV’10,LLW’11]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm U/ computes sk’ <—sU(sk) .

Adversary

Ski <—$ U(Ski_l; 7”2‘)
pk

f
f(ski,mi) REPEATS

(o, ) u

C

b<+s{0,1}

Challenger

b/
Return (b =1b')

Require 2-Pr [b — b’] — 1 1s negligible.



LEAKAGE ON KEY-UPDATE FOR PKE
IBKKV’'10,LLW’11]

Fix a public-key encryption scheme “with key update” (IC,E,D,U)
i.e. where update algorithm I/ computes sk’ +—sU(sk) .

Ski <—$ U(Ski_l; 7“2')

pk
<
<
C
Adversary * Challenger
b/

= Return (b =1b')

Require 2-Pr|b=10"]—1 is negligible.




OUTLINE OF TALK

Results in Continual Model: A Generic Compiler to Achieve
Leakage on Key Update



COMPILER INTUITION

Suppose we start with a PKE scheme secure in the
continual leakage model.



COMPILER INTUITION

Suppose we start with a PKE scheme secure in the
continual leakage model.



COMPILER INTUITION

Suppose we start with a PKE scheme secure in the
continual leakage model.

For leakage on key updates, simulator needs to be
able to provide “honest-looking” output of function
on the update randomness that it doesn’t know.



COMPILER INTUITION

Suppose we start with a PKE scheme secure in the
continual leakage model.

For leakage on key updates, simulator needs to be
able to provide “honest-looking” output of function
on the update randomness that it doesn’t know.



COMPILER INTUITION

Suppose we start with a PKE scheme secure in the
continual leakage model.

For leakage on key updates, simulator needs to be
able to provide “honest-looking” output of function
on the update randomness that it doesn’t know.

Main 1dea: Make 1t possible to publicly compute
some “honest-looking” update randomness.




COMPILER INTUITION

Suppose we start with a PKE scheme secure in the
continual leakage model.

For leakage on key updates, simulator needs to be
able to provide “honest-looking” output of function
on the update randomness that it doesn’t know.

Main 1dea: Make 1t possible to publicly compute
some “honest-looking” update randomness.




COMPILER INTUITION

Suppose we start with a PKE scheme secure in the
continual leakage model.

For leakage on key updates, simulator needs to be
able to provide “honest-looking” output of function
on the update randomness that it doesn’t know.

Main 1dea: Make 1t possible to publicly compute
some “honest-looking” update randomness.

This 1s very similar to as
recently achieved by Sahai and Waters [SW’14].



THE COMPILER

Let PKE = (Gen, Enc, Dec, Update) be a PKE scheme with key update.



THE COMPILER

Let PKE = (Gen, Enc, Dec, Update) be a PKE scheme with key update.



THE COMPILER

Let PKE = (Gen, Enc, Dec, Update) be a PKE scheme with key update.

Define a new scheme whose public-key additionally contains
obfuscations of two programs:

Internal (hardcoded) state: Public key pk, keys K1, K2, and h.

On input secret key ski; randomness u = (u1, u2).

— If Fo(Ka,u1) @ us = (sko,7r’) for (proper length) strings ska,r’ and u; =

h(sk1,skz,7"), then output sks.
— Else let z = F1 (K1, (ski,u)). Output ske = PKE.Update(pk, ski; ).

Fig.1. Program Update

Internal (hardcoded) state: key K.

On input secret keys ski, ske; randomness r € {0, 1}"”
— Setu; = h(skl,SkQ,T). Set us = FQ(KQ, Ul) ) (Skg, T‘). Output e = (U1, UQ).

Fig. 2. Program Explain



ANALYSIS 1

Main Idea: Simulator uses obfuscated Explain to
produce “honest-looking” randomness.




ANALYSIS 1

Main Idea: Simulator uses obfuscated Explain to
produce “honest-looking” randomness.




ANALYSIS 1

Main Idea: Simulator uses obfuscated Explain to
produce “honest-looking” randomness.

But this requires the stmulator to access two
consecutive keys simultaneously!



ANALYSIS 1

Main Idea: Simulator uses obfuscated Explain to
produce “honest-looking” randomness.

But this requires the stmulator to access two
consecutive keys simultaneously!



ANALYSIS 1

Main Idea: Simulator uses obfuscated Explain to
produce “honest-looking” randomness.

But this requires the stmulator to access two
consecutive keys simultaneously!

We thus need to define a new notion of consecutive
continual leakage-resilience where the adversary
can ask for leakage functions on consecutive keys.



ANALYSIS 1

Main Idea: Simulator uses obfuscated Explain to
produce “honest-looking” randomness.

But this requires the stmulator to access two
consecutive keys simultaneously!

We thus need to define a new notion of consecutive
continual leakage-resilience where the adversary
can ask for leakage functions on consecutive keys.



ANALYSIS 2

Theorem (informal). The compiled scheme 1s secure
with leakage on key-updates if the original
scheme 1s consecutive continual leakage resilient

and the obfuscator 1s a “public-coin” differing-
inputs [IPS’15] obfuscator.




ANALYSIS 2

Theorem (informal). The compiled scheme 1s secure
with leakage on key-updates if the original
scheme 1s consecutive continual leakage resilient

and the obfuscator 1s a “public-coin” differing-
inputs [IPS’15] obfuscator.




ANALYSIS 2

Theorem (informal). The compiled scheme 1s secure
with leakage on key-updates if the original
scheme 1s consecutive continual leakage resilient

and the obfuscator 1s a “public-coin” differing-
inputs [IPS’15] obfuscator.

Note: Worse leakage rate achievable only using
indistinguishability obfuscation.



ACHIEVING CONSECUTIVE CONTINUAL
LEAKAGE-RESILIENCE

We show that existing continual leakage-resilient
PKE schemes [BKKV’10,DHLW’10] can be
upgraded to consecutive continual leakage
without changing the underlying assumptions.



ACHIEVING CONSECUTIVE CONTINUAL
LEAKAGE-RESILIENCE

We show that existing continual leakage-resilient
PKE schemes [BKKV’10,DHLW’10] can be
upgraded to consecutive continual leakage
without changing the underlying assumptions.



ACHIEVING CONSECUTIVE CONTINUAL
LEAKAGE-RESILIENCE

We show that existing continual leakage-resilient
PKE schemes [BKKV’10,DHLW’10] can be
upgraded to consecutive continual leakage
without changing the underlying assumptions.

Via our compiler we get PKE with leakage on key-
updates with optimal leakage rate under bilinear
map assumptions + public-coin differing-inputs
obfuscation [IPS’15].



COMPARISON TO PRIOR WORK

[LLW’11] achieves continual leakage resilience with
leakage on key updates from bilinear map
assumptions but worse leakage rate.



COMPARISON TO PRIOR WORK

[LLW’11] achieves continual leakage resilience with
leakage on key updates from bilinear map
assumptions but worse leakage rate.



OUTLINE OF TALK

Results in Bounded Model: A New Approach to Optimal
Leakage Rate



BACKGROUND: SW-PKE [SW’13]
Key-Generation: Choose a key K and output K as

the secret key and the obfuscation of a program
Encrypt that on inputs x,r outputs F(K,r) + x.



BACKGROUND: SW-PKE [SW’13]
Key-Generation: Choose a key K and output K as

the secret key and the obfuscation of a program
Encrypt that on inputs x,r outputs F(K,r) + x.



BACKGROUND: SW-PKE [SW’13]
Key-Generation: Choose a key K and output K as

the secret key and the obfuscation of a program
Encrypt that on inputs x,r outputs F(K,r) + x.

Encryption: To encrypt x choose random r and

compute y = Encrypt(x,r); output (r,y).



BACKGROUND: SW-PKE [SW’13]
Key-Generation: Choose a key K and output K as

the secret key and the obfuscation of a program
Encrypt that on inputs x,r outputs F(K,r) + x.

Encryption: To encrypt x choose random r and

compute y = Encrypt(x,r); output (r,y).



BACKGROUND: SW-PKE [SW’13]
Key-Generation: Choose a key K and output K as

the secret key and the obfuscation of a program
Encrypt that on inputs x,r outputs F(K,r) + x.

Encryption: To encrypt x choose random r and

compute y = Encrypt(x,r); output (r,y).

SW’13 shows (a modification of) this scheme 1s IND-
CPA using



MAKING IT LEAKAGE-RESILIENT

To make the scheme bounded leakage-resilient, we
modify it 1n two ways:




MAKING IT LEAKAGE-RESILIENT

To make the scheme bounded leakage-resilient, we
modify it 1n two ways:

1. Assume that F'is not just a PRF but also a
randomness extractor.



MAKING IT LEAKAGE-RESILIENT

To make the scheme bounded leakage-resilient, we
modify it 1n two ways:
1. Assume that F'is not just a PRF but also a
randomness extractor.

2. Make the secret decryption key not K but
obfuscation of program Decrypt that on
mput y,r outputs F(K,r)+y.



ANALYSIS

Theorem (informal). The modified scheme is
bounded leakage-resilient using
indistinguishability obfuscation.




ANALYSIS

Theorem (informal). The modified scheme is
bounded leakage-resilient using
indistinguishability obfuscation.




ANALYSIS

Theorem (informal). The modified scheme 1s
bounded leakage-resilient using
indistinguishability obfuscation.

Intuition: Following [SW’13] we use a puncturable
PRF and switch F(K,r) used in the challenge
ciphertext to a truly random, hardcoded value.



ANALYSIS

Theorem (informal). The modified scheme 1s
bounded leakage-resilient using
indistinguishability obfuscation.

Intuition: Following [SW’13] we use a puncturable
PRF and switch F(K,r) used in the challenge
ciphertext to a truly random, hardcoded value.



ANALYSIS

Theorem (informal). The modified scheme 1s
bounded leakage-resilient using
indistinguishability obfuscation.

Intuition: Following [SW’13] we use a puncturable
PRF and switch F(K,r) used in the challenge
ciphertext to a truly random, hardcoded value.

But note we can now leak on this hardcoded value
since encryption uses a randomness extractor.



IMPROVING THE LEAKAGE RATE

This 1nitial idea does not give optimal leakage rate

because the secret key is large (contains the
obfuscated decryption program).



IMPROVING THE LEAKAGE RATE

This 1nitial idea does not give optimal leakage rate

because the secret key is large (contains the
obfuscated decryption program).



IMPROVING THE LEAKAGE RATE

This 1nitial idea does not give optimal leakage rate

because the secret key is large (contains the
obfuscated decryption program).

Can we just make this obfuscated program public?
Of course not! Then anyone could decrypt.



IMPROVING THE LEAKAGE RATE

This 1nitial idea does not give optimal leakage rate

because the secret key is large (contains the
obfuscated decryption program).

Can we just make this obfuscated program public?
Of course not! Then anyone could decrypt.



IMPROVING THE LEAKAGE RATE

This 1nitial idea does not give optimal leakage rate

because the secret key is large (contains the
obfuscated decryption program).

Can we just make this obfuscated program public?
Of course not! Then anyone could decrypt.

Solution: Make the program take an additional
short signed imput to run, this short signed input
then becomes the new secret key.



COMPARISON TO PRIOR WORK

[HLWW’13] showed that any PKE scheme can be

made bounded leakage resilient generically but
with a suboptimal leakage rate.



COMPARISON TO PRIOR WORK

[HLWW’13] showed that any PKE scheme can be

made bounded leakage resilient generically but
with a suboptimal leakage rate.



COMPARISON TO PRIOR WORK

[HLWW’13] showed that any PKE scheme can be

made bounded leakage resilient generically but
with a suboptimal leakage rate.

Our result can be viewed as showed that
obfuscation + OWEF 1s sufficient for optimal
leakage rate.



COMPARISON TO PRIOR WORK

[HLWW’13] showed that any PKE scheme can be

made bounded leakage resilient generically but
with a suboptimal leakage rate.

Our result can be viewed as showed that
obfuscation + OWEF 1s sufficient for optimal
leakage rate.



COMPARISON TO PRIOR WORK

[HLWW’13] showed that any PKE scheme can be
made bounded leakage resilient generically but
with a suboptimal leakage rate.

Our result can be viewed as showed that
obfuscation + OWEF 1s sufficient for optimal
leakage rate.

Optimal leakage rate is also known from other
specific assumptions, e.g. DDH [NS’09].



OUTLINE OF TALK

Leakage Models for PKE —

Bounded, Continual, and Continual w/ Leakage on Key
Update

Results in Continual Model: A Generic Compiler to Achieve
Leakage on Key Update

Results in Bounded Model: A New Approach to Optimal
Leakage Rate

Conclusion and Open Problems




SUMMARY

We gave two main results:



SUMMARY

We gave two main results:

1. Compiler from (consecutive) continual
leakage-resilience to leak on key-updates.



SUMMARY

We gave two main results:

1. Compiler from (consecutive) continual
leakage-resilience to leak on key-updates.

2. Modification of [SW’13] to achieve bounded
leakage with optimal leakage rate.



OPEN QUESTIONS

Can we achieve leakage on key-updates with
optimal leakage rate?




OPEN QUESTIONS

Can we achieve leakage on key-updates with
optimal leakage rate?




OPEN QUESTIONS

Can we achieve leakage on key-updates with
optimal leakage rate?

Can we achieve optimal leakage rate in the bounded
leakage model from indistinguishability (not
differing-inputs) obfuscation?




OPEN QUESTIONS

Can we achieve leakage on key-updates with
optimal leakage rate?

Can we achieve optimal leakage rate in the bounded
leakage model from indistinguishability (not
differing-inputs) obfuscation?




OPEN QUESTIONS

Can we achieve leakage on key-updates with
optimal leakage rate?

Can we achieve optimal leakage rate in the bounded
leakage model from indistinguishability (not
differing-inputs) obfuscation?

Can we achieve continual leakage resilience from
(differing-inputs) obfuscation?



THANK YOU!

adam@cs.georgetown.edu




