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Fix a public-key encryption scheme (K,&,D).

<t
Must be bounded length!
<
c
Adversary - Challenger

> Return (b =1b')
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COMPILER INTUITION

Suppose we start with a PKE scheme secure in the
continual leakage model.

For leakage on key updates, simulator needs to be
able to provide “honest-looking” output of function
on the update randomness that it doesn’t know.

Main 1dea: Make 1t possible to publicly compute
some “honest-looking” update randomness.

This 1s very similar to as
recently achieved by Sahai and Waters [SW’14].
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THE COMPILER

Let PKE = (Gen, Enc, Dec, Update) be a PKE scheme with key update.

Define a new scheme whose public-key additionally contains
obfuscations of two programs:

Internal (hardcoded) state: Public key pk, keys K1, K2, and h.

On input secret key ski; randomness u = (u1, u2).

— If Fo(Ka,u1) @ us = (sko,7r’) for (proper length) strings ska,r’ and u; =

h(sk1,skz,7"), then output sks.
— Else let z = F1 (K1, (ski,u)). Output ske = PKE.Update(pk, ski; ).

Fig.1. Program Update

Internal (hardcoded) state: key K.

On input secret keys ski, ske; randomness r € {0, 1}"”
— Setu; = h(skl,SkQ,T). Set us = FQ(KQ, Ul) ) (Skg, T‘). Output e = (U1, UQ).

Fig. 2. Program Explain
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Theorem (informal). The compiled scheme 1s secure
with leakage on key-updates if the original
scheme 1s consecutive continual leakage resilient

and the obfuscator 1s a “public-coin” differing-
inputs [IPS’15] obfuscator.

Note: Worse leakage rate achievable only using
indistinguishability obfuscation.
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ACHIEVING CONSECUTIVE CONTINUAL
LEAKAGE-RESILIENCE

We show that existing continual leakage-resilient
PKE schemes [BKKV’10,DHLW’10] can be
upgraded to consecutive continual leakage
without changing the underlying assumptions.

Via our compiler we get PKE with leakage on key-
updates with optimal leakage rate under bilinear
map assumptions + public-coin differing-inputs
obfuscation [IPS’15].
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BACKGROUND: SW-PKE [SW’13]
Key-Generation: Choose a key K and output K as

the secret key and the obfuscation of a program
Encrypt that on inputs x,r outputs F(K,r) + x.

Encryption: To encrypt x choose random r and

compute y = Encrypt(x,r); output (r,y).

SW’13 shows (a modification of) this scheme 1s IND-
CPA using
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MAKING IT LEAKAGE-RESILIENT

To make the scheme bounded leakage-resilient, we
modify it 1n two ways:
1. Assume that F'is not just a PRF but also a
randomness extractor.

2. Make the secret decryption key not K but
obfuscation of program Decrypt that on
mput y,r outputs F(K,r)+y.
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ANALYSIS

Theorem (informal). The modified scheme 1s
bounded leakage-resilient using
indistinguishability obfuscation.

Intuition: Following [SW’13] we use a puncturable
PRF and switch F(K,r) used in the challenge
ciphertext to a truly random, hardcoded value.

But note we can now leak on this hardcoded value
since encryption uses a randomness extractor.
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IMPROVING THE LEAKAGE RATE

This 1nitial idea does not give optimal leakage rate

because the secret key is large (contains the
obfuscated decryption program).

Can we just make this obfuscated program public?
Of course not! Then anyone could decrypt.

Solution: Make the program take an additional
short signed imput to run, this short signed input
then becomes the new secret key.
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COMPARISON TO PRIOR WORK

[HLWW’13] showed that any PKE scheme can be
made bounded leakage resilient generically but
with a suboptimal leakage rate.

Our result can be viewed as showed that
obfuscation + OWEF 1s sufficient for optimal
leakage rate.

Optimal leakage rate is also known from other
specific assumptions, e.g. DDH [NS’09].
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SUMMARY

We gave two main results:

1. Compiler from (consecutive) continual
leakage-resilience to leak on key-updates.

2. Modification of [SW’13] to achieve bounded
leakage with optimal leakage rate.
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OPEN QUESTIONS

Can we achieve leakage on key-updates with
optimal leakage rate?

Can we achieve optimal leakage rate in the bounded
leakage model from indistinguishability (not
differing-inputs) obfuscation?

Can we achieve continual leakage resilience from
(differing-inputs) obfuscation?
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