‘ o) UNIVERSITAT
wlllwllw DES
UTL
Center for IT-Security, Privacy
and Accountability

SAARLANDES

Delegatable Functional Signatures

Michael Backes, Sebastian Meiser, Dominique Schroder

Public Key Cryptography, March 7, 2016, Taipei

CLSPA

Whatis a Signature?

Alice
(original signep

Alice
signed this
message!

= Alice signs a message with her secret key.
= Public verifiability means:
a) Alice signed the message, or
b) Alice signed the message and the message has been modified, s.t. ...
- ... the resulting message still is in some relation to the signed message.

- ... all operations performed on the message were “valid”.

|
Cl S PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 1

Centerto TSty Py
2o

Whatis a Signature?

Alice

(original signer) g

Alice signed...
some related
message..?!

= Alice signs a message with her secret key.
= Public verifiability means:
a) Alice signed the message, or
b) Alice signed the message and the message has been modified, s.t. ...
- ... the resulting message still is in some relation to the signed message.

- ... all operations performed on the message were “valid”.

|
Cl S PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 2

Centerto TSty Py
2o

IS
(Malleable) Signature Primitives

Homomorphic Sighatures

Redactable Signatures

Proxy Signatures

Sanitizable Signatures

-—
———_——— ———___
— e B
- ~
- ~y

.-~ Functional Digital Signatures [BGI] ~~_
N | PKC’15,
~ . Policy-based Signatures [BF] P

~

~ o -
= -~ -
i -—
Il BT R

Goal: Generalization and simplification of primitives and notions

|
Cl S PMA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 3

Conterfo -Securty
2o

Delegatable Functional Signatures

Alice Bob Inc. Charlie Ltd.
(original signer) (evaluator) (evaluator)

& sk'g

Alice signed
this message
or allowed it!

= Alice signs a message and chooses how the message can be modified by which
evaluator (Bob) and decides what Bob can further delegate, if at all.

= Bob modifies the message/signature pair, chooses how it can be further
modified and by whom (Charlie).

CISPA

151/ Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 4

s ecourtanity

Delegatable Functional Signatures

Alice Bob Inc. Charlie Ltd.
(original signer) (evaluator) (evaluator)

8 & sk'g

= Alice signs a message and chooses how the message can be modified by which
evaluator (Bob) and decides what Bob can further delegate, if at all.

= Bob modifies the message/signature pair, chooses how it can be further
modified and by whom (Charlie).

CISPA

151/ Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 5

s ecourtanity

Delegatable Functional Signatures

Alice Bob Inc. Charlie Ltd.
(original signer) (evaluator) (evaluator)
(m', o’

(mll’ O_II)

= Alice signs a message and chooses how the message can be modified by which
evaluator (Bob) and decides what Bob can further delegate, if at all.

= Bob modifies the message/signature pair, chooses how it can be further
modified and by whom (Charlie).

CWI SPA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 6

Centerfo 7 Sty Py
s ecourtanity

Delegatable Functional Signatures

Alice Bob Inc. Charlie Ltd.
(original signer) (evaluator) (evaluator)

g’ &=

= Alice signs a message and chooses how the message can be modified by which
evaluator (Bob) and decides what Bob can further delegate, if at all.

= Bob modifies the message/signature pair, chooses how it can be further
modified and by whom (Charlie).

CISPA

151/ Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 7

s ecourtanity

Delegatable Functional Signatures

Alice Bob Inc. Charlie Ltd.
(original signer) (evaluator) (evaluator)

8 & sk'g

Alice signed
this message
or allowed it!

(mll’ O_H)

= Alice signs a message and chooses how the message can be modified by which
evaluator (Bob) and decides what Bob can further delegate, if at all.

= Bob modifies the message/signature pair, chooses how it can be further
modified and by whom (Charlie).

CISPA

151/ Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 8

s ecourtanity

Overview

" Functionality and capabilities
= Security notions:
- Types of adversaries
- Unforgeability
- Privacy
" |nstantiability:
- Privacy-free from one-way functions
- Impossibility from one-way functions

- Possibility from trapdoor permutations

\
Cl 5 PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 9

Conter fo T-Securty Pivicy
2o

Functionalities and their Transitive Closure

Message Modified Message

-

= A functionality F is a function: F(f, &, pkopgq, m) = (f',m")

Evaluator Evaluator Key of next Delegated
capabilities input evaluator capabilities

i

* Transitive Closure F* for m and f with respect to the functionality F:
- Forn = 0: F°(f,m) = {(f,m)}
N For n > 0: F’l’l(f’ m) = {(ft m)} Ua,pkeval Fn_l(F(f’ a’ pkeval: m))

Fr(fm) = | Firm)
i=0

|
Cl S PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 10

Conter fo T-Securty Pivicy
2o

Overview

= Security notions:
- Types of adversaries
- Unforgeability
- Privacy
" |nstantiability:
- Privacy-free from one-way functions
- Impossibility from one-way functions

- Possibility from trapdoor permutations

|
Cl S PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 11

Centerto TSty Py
2o

Security Notions - Adversaries

= Three different types of adversaries: Secret Evaluator Key(s):
- Qutsider:
* Access to an oracle for public evaluator keys.
* No access to secret evaluator keys.
- Insider:
e Access to an oracle for public evaluator keys.

* Access to an oracle for secret evaluator keys.

- Strong Insider:

e Access to an oracle for public evaluator keys. O |
e Access to an oracle for secret evaluator keys. o 0

e (Can register its own secret evaluator keys.

|
Cl S PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 12

Centerto TSty Py
2o

Unforgeability — Intuition

= The adversary can request message/signature E

pairs; fresh ones as well as modified ones. (m, O') — (m’, O")

= The adversary should not be able to generate
valid (verifying) message/signature pairs that (m*, O'*)
are not allowed by the signer.

= All “forgeries” that were allowed by the signer, v 8
m,f)o Vf.
modified by legitimate evaluators or by the (’ f) f ! f

adversary (if delegated to it) are discarded. (m*; f) ¢ F*(f; m)

\
Cl 5 PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 13

Conter fo T-Securty Pivicy
2o

Unforgeability — Oracles

a m, f, pk8 pqu‘ﬂ‘";p}:fw am, pkej o
Sign |e Eval
Oracle Oracle
0 = Sig(sk@ pkgm.) o' = Sig(sku, pk@, @, m, pk@ o)
. (weak) (strong)
Outsider Insider Insider
KGenP KGenS RegKey ¢ SKito Pl
Oracle Oracle
plﬁ‘ﬂ.ﬁp& i — sk [y pkﬂpL
@S- = OF
C ‘I 5 PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 14

Conter fo T-Securty Pivicy
2o

Privacy (under Chosen Function Attacks) - Intuition

= The adversary should be unable 8
to distinguish a signature that
has been modified from a fresh I
H
signature for the same message. (ity (m g) (m g)

/ 17
= Conditions and Exceptions: f f f

- The message (m”) has to be
the same.

- The capabilities (f”’) have to

be the same.
I)
- Each evaluator may learn (m , O)
something about the fn

previous party in the line (for
verifying the previous step).

C I SPA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 15

— &‘-hrus

Privacy - Reminder of the Oracles

a m, f, pk8 pqu‘ﬂ‘";p}:fw am, pkej o
Sign |e Eval
Oracle Oracle
0 = Sig(sk@ pkgm.) = Sig(sku, kG, & m, pk@ o)
. (weak) (strong)
Outsider Insider Insider
KGenP KGenS RegKey Skits Pl
Oracle Oracle
plgf‘ﬂ."}li i — sk s plﬂpL
@S- > @ OF=
C ‘I 5 PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 16

Conter fo T-Securty Pivicy
2o

honest

Privacy -Privacy Oracle 8< & PR &

Privacy Oracle

7| If for any key pk,,|i] no pair I Jerifying . 8
fél (Skev [l], pkev [l]) is known: I [pkBU' a] 0’ t, mg, Og (m O)
(2R output L € 020
©
! _ : KGenP
T|_ | Add pkeylt] toasetof taintedkeys. . _ |1 | oracle
©
x | if Vi(pkg, pkey[0],mo, 00) # 1: @3 pkg .
_GCJ output L
o extract fo from o, using sk,

KGenS
é fori € {1, ..., t}: Oracle
'.'5 (fi' mi) = F(fi—lt a[i]r pkev [i]rmi—l) - k k
§ 0; « Evalp(...) S D g
©
= if 10« Sig(skid,m pkeylt], fr,me) RegKey Ski s, pkk i
2 |if L0 = 0y <€
3 o

-..ﬂn

1
CIS PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 17

Centerto TSty Py
s ecourtanity

e —————
Privacy -Privacy Oracle

!

Privacy Oracle
2 I(f ?r a[r)]v kiy ID[E]e)v[i]kno pair . yerifying 8
gé SKeoplll, PKepll IS KNOWnN: [pkBU' a] ,t,mo, 09
o output L < 0 (my, 0p)
©
S
T | Add pk,,[t] to a set of tainted keys
E if Vi(pkg, pkey[0], mo, o) # 1: [
3 output L [
d extract fo from o, using sk, I

h ________________ =
E’ fori € {1,...,t}:
= (fimy) = F(fi_q, alil, pkey[il, mi_)
e o; < Evalg(...)
=
o)
":_; if :O-(_Sig(S]ermpkev[t]rft;mt)
17 if L0 = O
>
@)

CWI S PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 18

Centerto TSty Py
s At

Privacy -Privacy Oracle

!

Privacy Oracle
» If for any key pk,,|i] no pair 8
= t
o | (skyyli], pkeyli]) is known: [k
@ evlll, PKey Pkey, al o, t, mg, gy my, 0
Q output L . 0 (my, 0p)
©
G
T | Add pk,,|t] to a set of tainted keys.
©
x if Vi(pkg, pkey[0], mo, o) # 1:
_GCJ output L
© extract fo from o, using sk, (|
o™= = = = == e === == - = fO fl ft—l
e! fori € {1,...,t} | a a, a,
= (fom)—F(f--l, ali], pkeylil, mi—1)
§| 0; l<— EvalF(...)l - - (my, 0p) = (my,01) - - (my, o)
S I _I
b . 3
5 |if 10 < Sig(si@, mpkeylt], fr.me)
2 |if L0 = Oy
>
O
C IS PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 19

i a.,-a,r«

e —————
Privacy -Privacy Oracle

!

Privacy Oracle
» If for any key pk,,|i] no pair 8
> . .
o | (skyyli], pkeyli]) is known: [k t
@ evlll, PKey Pkey, al o, t, m, 0y my, 0
Q output L € 0 (my, ap)
©
S
T | Add pk,,|t] to a set of tainted keys.
©
x if Vi(pkg, pkey[0], mo, o) # 1:
_GCJ output L
© extract fo from o, using sk,
5 fori € {1 t f() fl ft—l&
I ori Lo, th . | a o o
= (fimy) = F(fi_q, alil, pkey il mi—y) ! . ‘
§ 0; « Evalg(...) (mg,09) > (my,04) > ... = (M, 0p)
ol |~ ~ T T 7 T T -
S, |ifb = 0:0 < Sig(skQ, m pkey[t], fr,m) '
s |if 10 = 0y ! o
=1 >
T _|

CWI S PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 20

...
Overview

" |nstantiability:
- Privacy-free from one-way functions
- Impossibility from one-way functions

- Possibility from trapdoor permutations

CWI S PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 21

Centerto TSty Py
s ecourtanity

Requires:
one-way functions

Instantiation from OWF (without Privacy)

Alice Bob Inc. Charlie Ltd.
(original signer) (evaluator) (evaluator)

2 8t kg

Idea: authentication chain
= Alice signs a message and a functionality with her secret key.

= Bob appends his changes and signs them (and the message/signature upon
which they are based) with his secret key.

= Charlie appends his changes and signs them (and the message/signature
upon which they are based) with his secret key.

CWI SPA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 22

Centerfo 7 Sty Py
s ecourtanity

Requires:

Instantiation from OWF (without Privacy) one-way functions

Alice Bob Inc. Charlie Ltd.
(original signer) (evaluator) (evaluator)

2 8t kg

Idea: authentication chain
= Alice signs a message and a functionality with her secret key.

= Bob appends his changes and signs them (and the message/signature upon
which they are based) with his secret key.

= Charlie appends his changes and signs them (and the message/signature
upon which they are based) with his secret key.

CWI SPA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 23

Centerfo 7 Sty Py
s ecourtanity

Requires:
one-way functions

Instantiation from OWF (without Privacy)

Alice Bob Inc. Charlie Ltd.
(original signer) (evaluator) (evaluator)

2 8t kg

Idea: authentication chain
= Alice signs a message and a functionality with her secret key.

= Bob appends his changes and signs them (and the message/signature upon
which they are based) with his secret key.

= Charlie appends his changes and signs them (and the message/signature
upon which they are based) with his secret key.

CWI SPA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 24

Centerfo 7 Sty Py
s ecourtanity

Construction from
one-way permutations
is impossible.

Impossibility with Privacy

= |dea: We construct blind signatures from DFS using black-box techniques.

= Blind signatures cannot be constructed from one-way permutations using
black-box techniques [KSY — TCC'11].

= Functionality:
Fc(1, @, pkyser,m) = (0, Open(a, m))

(Commit(m), ay) — (n, 0;)

Signer User

commitment
I) @ (g

C °| signatureonc

< Z— ¢, x = Commit(m)
0 < Sig(Ska, Pka; 1,¢) o signature on m

o'« Evalg, (sk@ k@ x, o)

C I SPA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 25

— x.‘-a,m‘

Construction from
trapdoor permutations.

Instantiation from trapdoor permutations

= |dea: Encrypt and prove.
- Each evaluator verifies the signature of the previous party.
- Encrypt the transcript of all signatures (pre-allocate enough space).

- Zero Knowledge proofs that the signature chain is valid.

(max) allowed delegations
I%
W\

|
Cl S PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 26

Conter fo T-Securty Pivicy
2o

Construction from
trapdoor permutations.

Instantiation from trapdoor permutations

= |dea: Encrypt and prove.
- Each evaluator verifies the signature of the previous party.
- Encrypt the transcript of all signatures (pre-allocate enough space).

- Zero Knowledge proofs that the signature chain is valid.

(max) allowed delegations
D000)

|
Cl S PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 27

Conter fo T-Securty Pivicy
2o

Construction from

Instantiation from trapdoor permutations
trapdoor permutations.

= |dea: Encrypt and prove.
- Each evaluator verifies the signature of the previous party.
- Encrypt the transcript of all signatures (pre-allocate enough space).

- Zero Knowledge proofs that the signature chain is valid.

7

7
7
7

ZK

CWI S PA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 28

Centerto TSty Py
s At

Open Problems

= Construction for unbounded number of delegations
= Efficient Construction

= Signatures with constant size

|
Cl S PMA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 29

e
2o

L ——————————S
Open Problems

Thank you
for your attention!

Questions?

>

1
C LS%PMA Delegatable Functional Signatures — PKC 2016 — Sebastian Meiser 30

