
Identity-Based Encryption Cocks IBE Scheme Algebraic Structure Applications Conclusion

Identity-Based Cryptosystems and
Quadratic Residuosity

Marc Joye

Proxy: Fabrice Benhamouda

PKC 2016 · Tapei, Taiwan

1 / 20



Identity-Based Encryption Cocks IBE Scheme Algebraic Structure Applications Conclusion

Identity-Based Encryption

Definition

An identity-based encryption scheme is a set of 4 algorithms
1 Setup

Input: security parameter κ
Output: master public/secret key mpk/msk

2 Encryption

Input: master public key mpk, identity id , message m
Output: C = E (mpk , id ,m)

3 Key derivation

Input: identity id , master secret key msk
Output: user’s private key usk

4 Decryption

Input: decryption key usk , ciphertext C
Output: m = D(usk,C )
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This Talk

Study of Cocks IBE scheme

Clifford Cocks (mathematician, GCHQ)

Our Main Contribution

Discovery of the algebraic structure underlying Cocks encryption

better understanding of its properties and its security

new applications

3 / 20



Identity-Based Encryption Cocks IBE Scheme Algebraic Structure Applications Conclusion

Outline

1 Cocks IBE Scheme

2 Algebraic Structure

3 Applications

4 Conclusion

4 / 20



Identity-Based Encryption Cocks IBE Scheme Algebraic Structure Applications Conclusion

Preliminaries

If p prime number, a ∈ Fp, Legendre symbol:

(
a

p

)
=


0 if a ≡ 0 mod p

1 if a is a square (a = b2 mod p)

−1 else

If N = pq RSA modulus, a ∈ ZN , Jacobi symbol:(
a

N

)
=

(
a

p

)
·
(
a

q

)
(efficiently computable)

a is a square mod N ⇐⇒
(
a

p

)
=

(
a

q

)
= 1 =⇒

(
a

N

)
= 1
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Cocks Cryptosystem

First pairing-free IBE scheme (2001)

works in standard RSA groups
semantically secure under QR assumption (in the ROM)

Quadratic Residuosity Assumption

Let N = pq be an RSA-type modulus. The distributions of

JN =
{
a ∈ Z×N |

(
a
N

)
= 1
}

and QRN =
{
a ∈ Z×N |

(
a
p

)
=
(
a
q

)
= 1
}

are indistinguishable
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Cocks Cryptosystem (cont’d)

Setup mpk = {N, u,H}, msk = {p, q} where:

N = pq an RSA modulus
u ∈ JN \QRN

H : {0, 1}∗ → JN hash function (RO)

Key derivation compute Did = H(id) and returns

usk = δid =

{
(Did)1/2 if Did ∈ QRN

(uDid)1/2 if Did ∈ JN \QRN

Remark: Original cryptosystem defined with p, q ≡ 3 (mod 4) and u = −1
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Cocks Cryptosystem (cont’d)

mpk
Alice Bob

message m ∈ {−1, 1} δid = H(id)1/2 mod N

t

, t̄

∈R ZN s.t.

or δid = (uH(id))1/2 mod N

(
t

N

)
= m

c = t +
H(id)

t
mod N

c̄ = t̄ +
uH(id)

t̄
mod N

C=(c

,c̄

)−−−−−−−→ γ = c

or c̄

m =

(
γ + 2δid

N

)
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Pell Curve

Consider the Pell curve given by the Pell equation

x2 −∆y2 = 1

over Fp, where ∆ = δ2 ∈ F×p

Set of points (x , y) on the Pell curve

forms a group C (Fp)
order p − 1
neutral element: O = (0, 1)
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Group Law

Geometric interpretation

Algebraically: (x1, y1)⊕ (x2, y2) = (x1x2 + ∆y1y2, x1y2 + x2y1)
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Compact Representation

Slope
line through PPP and O: y = s(x − 1)

for efficiency, let t := ∆s = ∆y
x−1

ψ : Fp ∪ {∞} → C (Fp),

{
t 7→ PPP =

(
t2+∆
t2−∆

, 2t
t2−∆

)
∞ 7→ O

Remark: ψ not defined at ±δ when ∆ ∈ QRp
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The Group ZN,∆

We recall that ∆ = δ2 ∈ QRp

Define the group (Fp,∆,~) with neutral element ∞, where

Fp,∆ = (Fp \ {±δ}) ∪ {∞}
= {ψ−1(PPP) | PPP ∈ C (Fp)}
= {t ∈ Fp | t2 6= ∆} ∪ {∞}

∼= F×p

under the law ~: t1 ~ t2 =
t1t2 + ∆

t1 + t2

By Chinese remaindering, for N = pq, consider

ZN,∆ := Fp,∆ ×Fq,∆
∼= Z×N
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The Subgroup of Squares in ZN,∆

Main Observation

(Up to a factor of 2) Cocks ciphertexts are squares in
ZN,∆, where ∆ = H(id) ∈ QRN [or ∆ = uH(id) ∈ QRN ]

t1 ~ t2 =
t1t2 + ∆

t1 + t2

=⇒ t ~ t =
t2 +H(id)

2t
=

1

2
·
(
t +
H(id)

t

)
=

c

2

and likewise, t̄ ~ t̄ = t̄2+uH(id)
2t̄ = 1

2 ·
(
t̄ + uH(id)

t̄

)
= c̄

2
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Re-Randomizing Cocks Ciphertexts

For simplicity, we suppose H(id) ∈ QRN =⇒ ∆ = H(id)

Let message m = (−1)b ∈ {±1}
Corresponding ciphertext is c = t + ∆

t with
(
t
N

)
= m

Choosing a random t ′ and computing c ′ = t ′ + ∆
t′ , we have

c∗

2
:=

c

2
~

c ′

2
≡ c

2
⇐⇒

(
c + c ′

N

)
= 1

=⇒ t ′ should be chosen s.t.
(
c+c ′

N

)
= 1 to get a ciphertext c∗

equivalent to c
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Computing over Cocks Ciphertexts

For simplicity, we suppose H(id) ∈ QRN =⇒ ∆ = H(id)

Let messages m1 = (−1)b1 and m2 = (−1)b2 ∈ {±1}
Define message m3 := m1 ·m2 = (−1)b1⊕b2

Corresponding ciphertexts are denoted c1, c2, and c3

Then
c ′3
2

:=
c1

2
~

c2

2
≡ c3

2
⇐⇒

(
c1 + c2

N

)
= 1

If necessary, re-randomize e.g. c1 until above
condition is met

16 / 20



Identity-Based Encryption Cocks IBE Scheme Algebraic Structure Applications Conclusion

Computing over Cocks Ciphertexts

Cocks cryptosystem is homomorphic
w.r.t. multiplication for messages in {±1}
w.r.t. ⊕ for messages in {0, 1}
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Making Cocks Ciphertexts Anonymous

Galbraith: Cocks ciphertext are not anonymous

With our notation

Proposition

Let w ∈ ZN,∆. If (
w2 −∆

N

)
= −1

then w is not a square in ZN,∆

=⇒ If a ciphertext c satisfies
(

(c/2)2−H(id)

N

)
= −1 then it is not

for user with identity id
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Making Cocks Ciphertexts Anonymous

~-multiply with probability 1/2 the value of c
2 with

an element d
2 satisfying

(
(d/2)2−∆

N

)
= −1

At decryption time, legitimate recipient can ~-divide by d
2 in

case ciphertext were ~-multiplied by d
2

Application: Public-key encryption with keyword search
(PEKS)
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Summary

Description of algebraic structure underlying Cocks encryption

Better understanding of Cocks cryptosystem

Applications:

homomorphic computations
anonymous encryption

(More results in the paper)

Cocks cryptosystem is homomorphic
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Comments/Questions?

http://joye.site88.net/
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