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SQIsign2D

Drawbacks of SQIsign
• Signing in 600ms is too slow 

• Security proof: the ZK property is based on an ad hoc assumption 

• Bad scaling to higher security levels (signing at NIST-V takes 40s)

SQIsignHD solves all of these

Verification gets slower…

SQIsign2D-West (this talk) [Basso, Dartois, De Feo, Leroux, Maino, Pope, Robert, W. — Asiacrypt 2024] 
SQIsign2D-East [Nakagawa, Onuki, Castryck, Chen, Invernizzi, Lorenzon, Vercauteren — Asiacrypt 2024]

[Dartois, Leroux, Robert, W. — Eurocrypt 2024]

Problem solved with
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Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny…
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The Isogeny problem 

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny… 

• How to represent an isogeny? 

• Build "big" isogenies as formal combinations of "small" ones 

‣ 𝜑 ∘ 𝜓 represented by (‘comp’, 𝜑, 𝜓) where 𝜑 and 𝜓 are in efficient repr. 
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The Isogeny problem 

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny… 

• How to represent an isogeny? 

‣ any efficient representation: an encoding which allows one to 
evaluate 𝜑(P) in polynomial time for any P

solution typically has degree ≈ 2256
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Isogeny graph

E1 E2

an isogeny of degree 2 = an edge in a graph

13



• The 2-isogeny graph (supersingular…)

Isogeny graph

E1 E2

14



• The 2-isogeny graph (supersingular…)

Isogeny graph

E1 E2

E3

E4

E7

E6

E5

14



• The 2-isogeny graph (supersingular…)

Isogeny graph

E1 E2

E3

E4

E7

E6

E5

14



• The 2-isogeny graph (supersingular…)

• 3-regular, connected (for supersingular curves)

Isogeny graph
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Endomorphism ring

An endomorphism of E is an isogeny 𝜑 : E → E (or the zero map [0])

The endomorphism ring of E is End(E) = {𝜑 : E → E}

• 𝜑 + 𝜓 is pointwise addition: (𝜑 + 𝜓)(P) = 𝜑(P) + 𝜓(P) 

• 𝜑𝜓 is the composition: (𝜑𝜓)(P) = 𝜑(𝜓(P))

Multiplication by m ∈ ℤ is an endomorphism

[m] : E → E : P ⟼ P + … + P  

It forms a subring ℤ ⊂ End(E)
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Endomorphism ring

What is the structure of End(E)?

• It contains ℤ ⊂ End(E)…

• (End(E), +) is a lattice of dimension 2 or 4 

A curve E is supersingular if (End(E), +) is a lattice of dimension 4 

Then, there is a ℤ-basis 1, 𝛂2, 𝛂3, 𝛂4: as a lattice,

End(E) = ℤ ⊕ ℤ𝛂2 ⊕ ℤ𝛂3 ⊕ ℤ𝛂4
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Given E (supersingular) find 4 generators  
of the endomorphism ring End(E)



The endomorphism ring problem

For E supersingular End(E ) = {𝜑 : E → E} is a lattice of dimension 4

Solution of the form (α1, α2, α3, α4)…

• How are αi represented? Any efficient representation

The EndRing problem 

Given E (supersingular) find 4 generators  
of the endomorphism ring End(E)
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Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and 
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Computing End(–)  ⇔  Finding isogenies

End(–) is a GPS that allows you to find your way between supersingular curves: 

• given End(E1) and End(E2), one can find an isogeny E1 → E2 in poly. time 

You can update the GPS coordinates as you travel through isogenies: 

• given End(E1), and a (smooth) isogeny E1 → E2, one can find End(E2) in poly. time 

For E1, E2 supersingular, Hom(E1, E2) is a lattice of rank 4

Computing End(–)  ⇔  Computing Hom(–, –)

a basis of Hom(E1, E2) 
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Idea of SQIsign

Basic idea of SQIsign:

• Public key: a supersingular curve Epk 

• Secret key: a basis of End(Epk)

• SQIsign proof of knowledge: a sigma protocol to prove knowledge of End(Epk)

• SQIsign: Fiat-Shamir transform of the proof of knowledge

How to generate a random Epk together with End(Epk)?

How to generate even a single supersingular curve?

Key recovery = EndRing



A special supersingular curve

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and 
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A special supersingular curve

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and 

Consider E0 : y2 = x3 + x 

Two non-trivial endomorphisms: 

• 𝜄 : E0 → E0 : (x, y) ⟼ (–x, 𝛼y) 

• 𝜋 : E0 → E0 : (x, y) ⟼ (xp, yp)

End(E0) = ℤ ⊕ ℤ𝜄 ⊕ ℤ             ⊕ ℤ𝜄 + 𝜋
2

1 + 𝜄𝜋
2

E0 and End(E0) is our reference

𝜄2 = [–1]
𝜄𝜋 = –𝜋𝜄
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E0
Start from E0

Walk randomly

E

End(E0)

End(E)

Use knowledge of the 
path and of End(E0) to 

compute End(E)

Generating a random curve
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One can generate (E, End(E)) with E uniform
(Trapdoor generation of uniform EndRing instances)
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Proving knowledge of an 

endomorphism
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A sigma protocol following [DKLPW20]
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A sigma protocol following [DKLPW20]

• Generate a random pair (Epk, End(Epk)) 

• public key = Epk, secret key = End(Epk)

End(Epk) End(Ecom)

End(Echall)

Epk

challenge 𝜑

Ecom

Echall

response σ

Alice (prover) Bob (verifier)
Generate random 
(Ecom, End(Ecom))

Ecom

Generate random 
𝜑 : Epk → Echall 

𝜑

Compute  
σ : Echall → Ecom 

σ Check that σ is 
an isogeny 

Echall → Ecom 
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Special soundness

Epk

challenge 𝜑

Ecom

Echall

response σ

challenge 𝜑’ Echall‘
response σ’

A non-trivial 
endomorphism of Epk 

 ⇒ Can respond to 
2 challenges 

Can find an 
endomorphism

Finding one endomorphism ⇔ EndRing
[Page, W. – Eurocrypt 2024]
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Computing the response isogeny
End(Echall) End(Ecom)

EcomEchall
response σ

1. From End(Echall) and End(Ecom), find a basis (𝜑1, 𝜑2, 𝜑3, 𝜑4) of Hom(Echall, Ecom)

2. Return some σ ∈ Hom(Echall, Ecom)

Question: how to choose σ? How to represent it?

• Need σ fast to evaluate, for efficient verification

• Need σ (and its representation) not to leak the secret

‣ Warning: typical representation of 𝜑i leaks End(Echall)
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Computing the response isogeny

Original SQIsign [DKLPW20]:

• Solve a norm equation [KLPT14] to find σ ∈ Hom(Echall, Ecom) of degree 2n, 

• Convert σ = a1𝜑1 + a2𝜑2 + a3𝜑3 + a4𝜑4 to path of 2-isogenies

Problems: 

• [KLPT14] finds big solution: deg(σ) = 2n ≈ p3.75 

• Conversion to chain of 2-isogenies is very costly: signing takes billions of cycles

• Distribution of [KLPT14] output is mysterious: not simulatable? not zero-
knowledge?

End(Echall) End(Ecom)
EcomEchall

response σ
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Original SQIsign [DKLPW20]: [KLPT14] finds big solution deg(σ) = 2n ≈ p3.75 

• Smallest isogeny in Hom(Echall, Ecom) has degree ≈ p0.5 

Question: Why not output some small σ ∈ Hom(Echall, Ecom), deg(σ) ≈ p0.5?
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Computing the response isogeny

Original SQIsign [DKLPW20]: [KLPT14] finds big solution deg(σ) = 2n ≈ p3.75 

• Smallest isogeny in Hom(Echall, Ecom) has degree ≈ p0.5 

Question: Why not output some small σ ∈ Hom(Echall, Ecom), deg(σ) ≈ p0.5?

• Representation as linear combination a1𝜑1 + a2𝜑2 + a3𝜑3 + a4𝜑4 is dangerous:

‣ (𝜑1, 𝜑2, 𝜑3, 𝜑4) leaks End(Echall), so leaks secret key End(Epk)

End(Echall) End(Ecom)
EcomEchall

response σ
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Attacks against SIDH [CD23, MMPPW23, Rob23]: 

• Let 𝜑 : E1 → E2 of degree d 

• Let (P, Q) is a basis of E1[2n], with 22n > 4·deg(𝜑) 

• Given (d, P, Q, 𝜑(P), 𝜑(Q)), one can compute 𝜑(R) for any R ∈ E1 in poly. time 

• Cost: evaluating an isogeny of degree 22n in dimension 2, 4 or 8 

Corollary: (d, P, Q, 𝜑(P), 𝜑(Q)) is an efficient representation of 𝜑, the "interpolation 
representation", or "HD representation"

Interpolation: Knowing 𝜑 on a few points ⇒ Knowing 𝜑 everywhere

HD representation of isogenies

Very costly, but 
always works

Somewhat fast, but requires 22n – d = a2 + b2

Fastest, but requires 
22n – d = a2
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HD representation of isogenies

…

Embed E1 in a higher 
dimensional object

E1 E2

Compute higher 
dimensional isogenies

Project back to E2

𝜑

Determined by what 𝜑 does on E1[2n]
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3. Evaluate P’ = σ(P) and Q’ = σ(Q)
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HD response isogeny

SQIsignHD [DLRW24]: constructive use of SIDH attacks

1. Pick random, small σ ∈ Hom(Echall, Ecom) (say, deg(σ) ≈ p0.5)

2. Generate basis (P, Q) of Echall[2n], for 22n > 4·deg(σ)

3. Evaluate P’ = σ(P) and Q’ = σ(Q)

4. (deg(σ), P, Q, P’,Q’) is an HD representation of σ

End(Echall) End(Ecom)
EcomEchall

response σ
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Honest verifier zero-knowledge

Epk Ecom

challenge 𝜑

Echall

response σ

Alice (prover) Bob (verifier)
Generate random 
(Ecom, End(Ecom))

Ecom

Generate random 
𝜑 : Epk → Echall 

𝜑

Compute  
σ : Echall → Ecom 

σ Check that σ is 
an isogeny 

Echall → Ecom 
transcript

can generate transcripts with same 
distribution without the secret keyHV Zero-knowledge =



Honest transcript

Epk



Honest transcript

Ecom

Uniformly 
random curve1)

Epk



Honest transcript

Ecom

challenge 𝜑

Echall

Uniformly 
random curve1)

Uniformly 
random  
2n-isogeny2)

Epk



Honest transcript

Ecom
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response σ

Uniformly 
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Uniformly random 
in Hom(Echall, Ecom) 
with degree < B

3)

Epk
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Simulated transcript

Epk

challenge 𝜑

Echall

Random 
codomain2’)

Uniformly 
random  
2n-isogeny

1)
Uniformly random 
isogeny from Echall with 
degree < B

2)

Ecom

response σ

With B large enough, statistically indistinguishable from honest!

???
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Random Any-Degree Isogeny Oracle:

• Input: an elliptic curve E, a bound B > 0

• Output: An efficient representation of uniformly distributed isogeny in

We know how to sample random isogenies of smooth degree… 

RADIO only extends that power to any degree. Powerful oracle?

RADIO

{𝜑 : E → ? | deg(𝜑) < B}

Assumption: EndRing still hard given a RADIO



Dimensions
2? 4? 8?
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• (P’,Q’) = (σ(P), σ(Q))
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• In general: evaluate an isogeny in dimension 8
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How to verify?

Response: σ represented as (d, P, Q, P’, Q’) where 

• (P, Q) is a basis of Echall[2n], with 22n > 4·deg(σ)

• (P’,Q’) = (σ(P), σ(Q))

Verification: Check that (d, P, Q, P’, Q’) repr. an isogeny Echall → Ecom of deg < 22n – 2:

• In general: evaluate an isogeny in dimension 8

• If 22n – deg(σ) = a2 + b2: an isogeny in dimension 4 is sufficient
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How to verify?

Response: σ represented as (d, P, Q, P’, Q’) where 

• (P, Q) is a basis of Echall[2n], with 22n > 4·deg(σ)

• (P’,Q’) = (σ(P), σ(Q))

Verification: Check that (d, P, Q, P’, Q’) repr. an isogeny Echall → Ecom of deg < 22n – 2:

• In general: evaluate an isogeny in dimension 8

• If 22n – deg(σ) = a2 + b2: an isogeny in dimension 4 is sufficient

Force 22n – deg(σ) to be a prime ≡ 1 mod 4

End(Echall) End(Ecom)
EcomEchall

response σ
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Two versions…

SQIsign8D: no restriction on deg(σ) + degrees large enough for “stat. indisting.” 

• Provably secure if EndRing is hard given a RADIO

• Verification needs isogenies in dimension 8, impractical

SQIsign4D: Force 2n – deg(σ) to be a prime ≡ 1 mod 4 + use smaller degrees

• Security needs heuristics, but more compelling, simpler than original SQIsign

• NIST-I level (128 bits security): 64 bytes public key, 109 bytes signature (9x 
smaller than Falcon)

• Verification needs isogenies in dim 4; getting good [Dartois — eprint 2024/1180] 

• Scales well to higher security



Dimension 2
SQIsign2D-West
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• Let σ : Echall → Ecom with d = deg(σ) < 22n – 2

• Given an isogeny η : Echall → ? of degree 22n – d, we can interpolate in dimension 2
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• Let σ : Echall → Ecom with d = deg(σ) < 22n – 2

• Given an isogeny η : Echall → ? of degree 22n – d, we can interpolate in dimension 2

• If 22n – d = a2 is square, [a] : Echall → Echall is an isogeny of degree a2 = 22n – d

2D embedding of an isogeny

22n – d is unlikely 
to be square ☹

Can look for other 
isogenies η 🧐

Made fast with techniques from   QFESTA [Nakagawa, Onuki – 2023] and Clapoti [Page, Robert – 2023]

Use secret knowledge of End(Echall)…
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[Basso, Dartois, De Feo, Leroux, Maino, Pope, Robert, W. — Asiacrypt 2024]

• Verification: evaluation of an isogeny in dimension 2 (of degree 22n), much faster 
than all SQIsign predecessors

• Still very compact: NIST-I level 66 bytes public key, 148 bytes signature

• Security proof similar to most conservative predecessor (SQIsign8D)

‣ No heuristics

‣ Computational assumption: EndRing is hard given access to an oracle that 
produces random isogenies of large degree (random-walks-on-steroids oracle)

‣ Public key is uniformly distributed: benefit from full force of worst-case to 
average-case reductions!

SQIsign2D-West



Performance in MCycles, for level of security NIST-I 
Caution: non-uniform levels of optimizations… should only be indicative of an order of magnitude… timings in ms are 
extrapolated for ~3GHz

Performance

Key gen. Signing Verif.

Original SQIsign 2800 4600 93

Optimized SQIsign 400 1880 29

SQIsignHD 190 115 ?

SQIsign2D-West 60 160 9

SQIsign2D-West + heuristics 58 100 9

53ms 3ms
33ms

38ms

620ms 10ms

For NIST-V security level: cost x6


