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SQIlsign

[De Feo, Kohel, Leroux, Petit, W. — Asiacrypt 2020] SQISign: compact post-
quantum signatures from quaternions and isogenies

* Isogeny-based post-qguantum signature scheme

* Very compact: PK + Signature combined 5% smaller than Falcon
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* Security proof: the ZK property is based on an ad hoc assumption

* Bad scaling to higher security levels (signing at NIST-V takes 40s)
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Drawbacks of SQIsign

* Signing in 600ms is too slow
* Security proof: the ZK property is based on an ad hoc assumption

* Bad scaling to higher security levels (signing at NIST-V takes 40s)

solves all of 1l

[Dartois, Leroux, Robert, W. — Eurocrypt 2024]

Verification gets slower... Problem solved with

SQlsign2D-West (this talk) [Basso, Dartois, De Feo, Leroux, Maino, Pope, Robert, W. — Asiacrypt 2024]
SQIsign2D-East [Nakagawa, Onuki, Castryck, Chen, Invernizzi, Lorenzon, Vercauteren — Asiacrypt 2024]
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Elliptic curves

equations of the form
y2=x34 ax+ b

y? = x3 — 4x



use elliptic
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The Isogeny problem

Given E, and E, find an isogeny ¢ : E, — E,
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The Isogeny problem

Given E, and E, find an isogeny ¢ : E, — E,

* The solution ¢ is an isogeny... solution

typicall
* How to represent an isogeny? as degree = 2256
(x, y) +—— (X2 +1 y(x2— 1)) (degl'ee 2)
X % fine for smal degree..

* Build "big" isogenies as formal combinations of "small" ones

deg(o - ) = degly) - deg())
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The Isogeny problem

Given E, and E, find an isogeny ¢ : E, — E,

* The solution ¢ is an isogeny... solution

typicall
* How to represent an isogeny? as degree = 2256
(x, y) +— (X2 +1 y(x2-— 1)) (deg'ee 2)

* Build "big" isogenies as formal combinations of "small" ones

> o o ) represented by (‘comp’, ¢, ) where ¢ and 1 are in efficient repr.
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The Isogeny problem

Given E, and E, find an isogeny ¢ : E, — E,

* The solution ¢ is an isogeny... S0/ution "Ypicall

* How to represent an isogeny? as degree = 2256

> any efficient representation: an encoding which allows one to
evaluate ¢(P) in polynomial time for any P
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Isogeny graph

Ei ——

an isogeny of degree 2 = an edge in a graph
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Isogeny graph

® The 2-isogeny graph (supersingular...)

Er — E2
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Isogeny graph

® The 2-isogeny graph (supersingular...)
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Isogeny graph

® The 2-isogeny graph (supersingular...)

® 3-regular, connected (for supersingular curves)

14
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Endomorphism ring

An endomorphism of E is an isogeny ¢ : E — E (or the zero map [O])
The endomorphismring of E is End(E) ={¢ : E — E}

* ¢ +1is pointwise addition: (¢ + ¥)(P) = o(P) + (P)

* ¢1) is the composition: (py)(P) = o((P))

Multiplication by m € Z is an endomorphism
Im|:E—-E:P—P+..+P
It forms a subring Z ¢ End(E)
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* |t contains Z c End(E)...



Endomorphism ring

What is the structure of End(E)?
* |t contains Z c End(E)...

* (End(E), +) is a lattice of dimension 2 or 4



Endomorphism ring

What is the structure of End(E)?
* |t contains Z c End(E)...

* (End(E), +) is a lattice of dimension 2 or 4

0‘ C‘ 0‘ 0. OZ,!:)‘ C‘ “ .‘ Q‘ O‘ C‘



Endomorphism ring

What is the structure of End(E)?
* |t contains Z c End(E)...

* (End(E), +) is a lattice of dimension 2 or 4
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Endomorphism ring

What is the structure of End(E)?
* |t contains Z c End(E)...

* (End(E), +) is a lattice of dimension 2 or 4

A curve E is supersingular if (End(E), +) is a lattice of dimension 4

Then, there is a Z-basis 1, a2, a3, cta: as a lattice,

ENd(E) =7 ® Zopy ® Zoz ® Zos



The endomorphism ring problem

For E supersingular End(E) ={¢ : E — E} is a lattice of dimension 4

The EndRing problem

Given E (supersingular) find 4 generators
of the endomorphism ring End(E)




The endomorphism ring problem

For E supersingular End(E) ={¢ : E — E} is a lattice of dimension 4

The EndRing problem

Given E (supersingular) find 4 generators
of the endomorphism ring End(E)

Solution of the form (o, o2, az, aa)...

* How are «; represented? Any efficient representation
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Example

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-scalar endomorphismes:
* 1:Eo— Eo: (X, ¥)— (-X, ay) 2 =[-1]

* 7:Eo0— Eo: (X, y)— (xP, yP) L7T = =711

End(Eo)=20Zi10Z " o 1 ~ EndRing
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Computing End(-) & Finding isogenies

[Petit, Lauter - preprint 2017] Hard and Easy Problems for Supersingular Isogeny Graphs.

[Eisentrager, Hallgren, Lauter, Morrison, Petit - Eurocrypt 2018] Supersingular isogeny graphs and
endomorphism rings: Reductions and solutions.

[W. - FOCS 2021] The supersingular isogeny path and endomorphism ring problems are equivalent.
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Computing End(-) & Finding isogenies

End(-) is a GPS that allows you to find your way between supersingular curves:

* given End(E1) and End(E2), one can find an-isegeny-E—-Erin-pory—time

You can update the GPS coordinates as you travel through isogenies:

* given End(E1), and a (smooth) isogeny E1 — E»2, one can find End(E2) in poly. time

For E,, E2 supersingular, Hom(Es, E2) is a lattice of rank 4

\

Computing End(-) & Computing |
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Basic idea of SQlsign:
* Public key: a supersingular curve Epx

e Secret key: a basis of End(Epk)
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Idea of SQlsign

Basic idea of SQlsign:

* Public key: a supersingular curve Epk Key VGCOVGI'Y - E"dkiﬂg

* Secret key: a basis of End(Epk)

* SQIlsign proof of knowledge: a sigma protocol to prove knowledge of End(E k)

* SQIlsign: Fiat-Shamir transform of the proof of knowledge

How to generate a random Epk together with End(Epk)?

How to generate even a single supersingular curve?



A special supersingular curve

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-trivial endomorphisms:
* 1:Eo— Eo: (X, y) — (X, ay) 2 =[-1]

e 7:Eo— Eo: (X, y)— (xr, yr) 7T & =771

End(Eo)=7 0 Zio7 17 o7 1T
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A special supersingular curve

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-trivial endomorphisms:
* 1:Eo— Eo: (X, ¥)— (-X, ay) 2 =[-1]

e 7:Eo— Eo: (X, y)— (xr, yr) 7T & =771

End(Eo)=2 02107 ;" o “2‘”

Eo and End(Eo) is our refer



® Generating arandom curve

Start from E,
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Start from E,
Walk randomly



Start from E,
Walk randomly



Start frowm E,
Walk randomly

Use knowledge of the

path and of End(E) to
compute End(E)



One can generate (E, End(F)) with E uniform



One can generate (K, End(F)) with E uniform

(Trapdoor generation of uniform EndRing instances)



SQIsign

Proving knowledge of an
endomorphism
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A sigma protocol following [ DKLPW20|

* Generate a random pair (Epk, End(Epk))

* public key = E., secret key = End(E k)
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* Generate a random pair (Epk, End(Epk))

* public key = Epi, secret key = End(Epk) Alice (prover) Bob (verifier)

Generate random Ecom
(Ecom, End (Ecom))

End(Ep) End(Ecom)
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A sigma protocol following [ DKLPW20|

* Generate a random pair (Epk, End(Epk))

* publickey = Ei, secretkey = End(Epk) Alice (prover) Bob (verifier)
Generate random Ecom X
(Ecom, End(Ecom))

Ehd(Epk) End(Econ) o Generate random

<€

® Epk — Echall

Epk Ecom
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* Generate a random pair (Epk, End(Epk))

* public key = Epi, secret key = End(Epk) Alice (prover) Bob (verifier)
Generate random Ecom X
(Ecom, End(Ecom))
EHd(Epk) End(Econ o Generate random
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Computing the response isogeny

End(Ecpnan) response o End(E;on)

Echal| =———> Lcom

1.  From End(Echan) and End(Ecom), find a basis (¢1, @2, @3, @a) of Hom(Echall, Ecom)

2. Return some o € Hom(Echall, Ecom)

Question: how to choose o? How to represent it?
* Need o fast to evaluate, for efficient verification
* Need o (and its representation) not to leak the secret

> Warning: typical representation of ¢; leaks End(Echall)
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Computing the response isogeny
End(Echan) End(E;om)

response o
Echal| =—————> Fcom

Original SQlsign [DKLPW20]:

e Solve a norm equation [KLPT14] to find o0 € Hom(Echall, Ecom) of degree 2n,

e Convert 0= aip1 + axp2 + asps + aap4 to path of 2-isogenies

Problems:

e [KLPT14] finds big solution: deg(o) = 2n = p3.75

* Conversion to chain of 2-isogenies is very costly: signing takes billions of cycles

* Distribution of [KLPT14] output is mysterious: not simulatable? not zero-
knowledge?
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Computing the response isogeny

End(Ecpnan) response o End(E;on)

Echal| =———> Lcom

Original SQlsign [DKLPW20]: [KLPT14] finds big solution deg(o) = 2n = p375

* Smallest isogeny in Hom(Echall, Ecom) has degree = p0-5

Question: Why not output some small 6 € Hom(Echall, Ecom), deg(o) = p©.5?

* Representation as linear combination aip1 + a2p2 + azp3 + asgpa is dangerous:

> (@1, P2, @3, @a) leaks End(Echal), so leaks secret key End(Epk)
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HD representation of isogenies

Attacks against SIDH [CD23, MMPPW23, Rob23]:
a subgroup of E;

* let ¢ : Ey — E; of degree d L/_— of order 22»

e Let (P, Q) is a basis of E1[27], with 220 > 4 - deg(yp)
* Given (d, P, Q, ¢(P), (Q)), one can compute ¢(R) for any R € E1 in poly. time

* Cost: evaluating an isogeny of degree 221 in dimension 2, 4 or 8
Interpolation: Knowing ¢ on a few points = Knowing ¢ everywhere

Corollary: (d, P, Q, »(P), ©(Q)) is an efficient representation of ¢, the "interpolation
representation’, or "HD representation’
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HD representation of isogenies

Attacks against SIDH [CD23, MMPPW23, Rob23]:

* letgp: E1— E2of degree d

e Let (P, Q) is a basis of E1[27], with 220 > 4 - deg(yp)

* Given (d, P, Q, »(P), »(Q)), one can compute @(R) for any R € E1in poly. time

* Cost: evaluating an isogeny of degree 227 in dimension 2, 4 or 8 «

N\

yA
Fas . / Very costly, but
fg‘?; A ‘gf:‘;‘z" A always works
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HD representation of isogenies

A

N OV Y2

> A )
AT AT

Embed E in a higher . bompute higher
dimensional object dimensional isogenies

Deterwmined by what ¢ does on E1L 2]
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SQlsignHD |DLRW?24]: constructive use of SIDH attacks

1. Pick random, small 0 € Hom(Echal, Ecom) (say, deg(o) = p0.5)
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1. Pick random, small c € Hom(Echall, Ecom) (say, deg(o) = p9-5)
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3. Evaluate P’ = o(P) and Q' = o(Q)



HD response i1sogeny
End(Ecnan) End(E;om)

response o
Echal| =—————> Fcom

SQlsignHD |DLRW?24]: constructive use of SIDH attacks

1.

2.
3.

Pick random, small o0 € Hom(Echall, Ecom) (say, deg(o) = p©-5)
Generate basis (P, Q) of Echan[2n], for 22n > 4 - deg(o)
Evaluate P’ = o(P) and Q' = o(Q)

(deg(o), P, Q, P,Q’) is an HD representation of o
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Honest verifier zero-knowledge

Alice (prover) Bob (verifier)
Generate random Ecom X E
(Ecom, End(Ecom)) Com
0 Generate random
< @ : Epk — Echall )
Compute i challenge ¢ response o
6 ¢ Ectatl — Ecor > | Check thatois
an isogeny
Echall — Ecom ECha ”

can generate transcripts with same
distribution without the secret I
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RADIO

Random Any-Degree Isogeny Oracle:
* Input: an elliptic curve E, a bound B> 0O

* Output: An efficient representation of uniformly distributed isogeny in

ip: E— 7| deg(e) < B}

We know how to sample random isogenies of smooth degree...

RADIO only extends that power to any degree. Powerful oracle?

EndRing still hard given a RADIC
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Two versions...

SQlsign8D: no restriction on deg(o) + degrees large enough for “stat. indisting.”
* Provably secure if EndRing is hard given a RADIO

* \erification needs isogenies in dimension 8, impractical

Force 2n - deg(o) to be a prime =1 mod 4 + use smaller degrees

* Security needs heuristics, but more compelling, simpler than original SQlsign

* NIST-I level (128 bits security): 64 bytes public key, 109 bytes signature (9x
smaller than Falcon)

* \erification needs isogenies in dim 4; getting good [Dartois — eprint 2024/1180]

* Scales well to higher security
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2D embedding of anisogeny

* Let 0: Echall — Ecom With d = deg(o) < 22n-2
* Given an isogeny n : Echall — ? of degree 227 - d, we can interpolate in dimension 2

o |f 22n — d = a2 s square, [a] : Echall — Echall is an isogeny of degree a2 = 22n — d

271 - d is ynlikely Can look for other
To be square @ isogenies N &

Use secret knowledge of End(Echan)...

Made fast with techniques f
QFESTA [Nakagawa, Om?kie f- Zr(())%]

and Clapoti [Page, Robert - 2023]
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SQIlsign2D-West

[Basso, Dartois, De Feo, Leroux, Maino, Pope, Robert, W. — Asiacrypt 2024]

* \erification: evaluation of an isogeny in dimension 2 (of degree 22n), much faster
than all SQIlsign predecessors

e Still very compact: NIST-I level 66 bytes public key, 148 bytes signature
* Security proof similar to most conservative predecessor (SQIlsign8D)
> No heuristics

> Computational assumption: EndRing is hard given access to an oracle that
produces random isogenies of large degree (random-walks-on-steroids oracle)

> Public key is uniformly distributed: benefit from full force of worst-case to
average-case reductions!



Performance

Performance in MCycles, for level of security NIST-I

Caution: non-uniform levels of optimizations... should only be indicative of an order of magnitude... timings in ms are
extrapolated for ~3GHz

Key gen. Signhing Verif.
Original SQlsign 2800 4600 93
Optimized SQlsign 400 1880 29
SQIsignHD 190 115 ?
SQlsign2D-West 60 160 9
SQIsign2D-West + heuristics 58 100 9

For NIST-V security level: cost x6



