
Benjamin Wesolowski, CNRS and ENS de Lyon

SQIsignHD
Sqiing in higher dimensions

Based on joint works with Andrea Basso, Pierrick Dartois, Luca De Feo,
Antonin Leroux, Luciano Maino, Giacomo Pope, and Damien Robert

November 2024, Emerging topics in design and cryptanalysis of post-quantum schemes, Paris, France

SQIsign & friends
Isogeny-based

signature schemes

Picture by Beppe Rijs

SQIsign
[De Feo, Kohel, Leroux, Petit, W. — Asiacrypt 2020] SQISign: compact post-
quantum signatures from quaternions and isogenies

• Isogeny-based post-quantum signature scheme

• Very compact: PK + Signature combined 5× smaller than Falcon

Secret key (bytes) Public key (bytes) Signature (bytes) Security

16 64 204 NIST-I

SQIsign
[De Feo, Kohel, Leroux, Petit, W. — Asiacrypt 2020] SQISign: compact post-
quantum signatures from quaternions and isogenies

• Isogeny-based post-quantum signature scheme

• Very compact: PK + Signature combined 5× smaller than Falcon

Key gen. (MCycles) Signing (MCycles) Verif. (MCycles)

Original SQIsign 2800 4600 93

Optimized SQIsign 400 1880 29

Secret key (bytes) Public key (bytes) Signature (bytes) Security

16 64 204 NIST-I

SQIsign
[De Feo, Kohel, Leroux, Petit, W. — Asiacrypt 2020] SQISign: compact post-
quantum signatures from quaternions and isogenies

• Isogeny-based post-quantum signature scheme

• Very compact: PK + Signature combined 5× smaller than Falcon

Key gen. (MCycles) Signing (MCycles) Verif. (MCycles)

Original SQIsign 2800 4600 93

Optimized SQIsign 400 1880 29

Secret key (bytes) Public key (bytes) Signature (bytes) Security

16 64 204 NIST-I

620ms 10ms

Drawbacks of SQIsign
• Signing in 600ms is too slow

• Security proof: the ZK property is based on an ad hoc assumption

• Bad scaling to higher security levels (signing at NIST-V takes 40s)

Drawbacks of SQIsign
• Signing in 600ms is too slow

• Security proof: the ZK property is based on an ad hoc assumption

• Bad scaling to higher security levels (signing at NIST-V takes 40s)

SQIsignHD solves all of these
[Dartois, Leroux, Robert, W. — Eurocrypt 2024]

Drawbacks of SQIsign
• Signing in 600ms is too slow

• Security proof: the ZK property is based on an ad hoc assumption

• Bad scaling to higher security levels (signing at NIST-V takes 40s)

SQIsignHD solves all of these

Verification gets slower…

[Dartois, Leroux, Robert, W. — Eurocrypt 2024]

SQIsign2D

Drawbacks of SQIsign
• Signing in 600ms is too slow

• Security proof: the ZK property is based on an ad hoc assumption

• Bad scaling to higher security levels (signing at NIST-V takes 40s)

SQIsignHD solves all of these

Verification gets slower…

SQIsign2D-West (this talk) [Basso, Dartois, De Feo, Leroux, Maino, Pope, Robert, W. — Asiacrypt 2024]
SQIsign2D-East [Nakagawa, Onuki, Castryck, Chen, Invernizzi, Lorenzon, Vercauteren — Asiacrypt 2024]

[Dartois, Leroux, Robert, W. — Eurocrypt 2024]

Problem solved with

The Isogeny problem
and how to represent an

isogeny

Picture by Beppe Rijs

equations of the form
y

2 = x
3 + ax + b

y
2 = x

3 + x
y

2 = x
3 – 4x

Elliptic curves

E1
E2

6

✦ In crypto, we use elliptic

curves over a finite field

✦ Elliptic curves are groups:

you can add points together!

y
2 = x

3 + x
y

2 = x
3 – 4x

(x, y)

x
2 + 1
x

y (x
2 – 1)
x

2
,()

Elliptic curves

Sometimes, there is a formula to transform
solutions from one equation to another

7

✦ In crypto, we use elliptic

curves over a finite field

✦ Elliptic curves are groups:

you can add points together!

y
2 = x

3 + x
y

2 = x
3 – 4x

(x, y)

x
2 + 1
x

y (x
2 – 1)
x

2
,()

Isogeny

Elliptic curves

Sometimes, there is a formula to transform
solutions from one equation to another

7

✦ In crypto, we use elliptic

curves over a finite field

✦ Elliptic curves are groups:

you can add points together!

✦ Isogenies are group homomorphisms✦ Degree = size of kernel

𝜑 : E1 → E2

y
2 = x

3 + x
y

2 = x
3 – 4x

(x, y)

x
2 + 1
x

y (x
2 – 1)
x

2
,()

Isogeny

Elliptic curves

Sometimes, there is a formula to transform
solutions from one equation to another

7

✦ In crypto, we use elliptic

curves over a finite field

✦ Elliptic curves are groups:

you can add points together!

✦ Isogenies are group homomorphisms✦ Degree = size of kernel

𝜑 : E1 → E2

(degree 2)

y
2 = x

3 + x
y

2 = x
3 – 4x

(x, y)

???
??

????
??

,()

Isogeny?

The Isogeny problem

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

8

The Isogeny problem

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny…

• How to represent an isogeny?

9

The Isogeny problem

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny…

• How to represent an isogeny?

(x, y) x
2 + 1
x

y (x
2 – 1)
x

2
,()⟼

9

The Isogeny problem

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny…

• How to represent an isogeny?

(x, y) x
2 + 1
x

y (x
2 – 1)
x

2
,()⟼

(degree 2)
fine for small degree…

9

The Isogeny problem

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny…

• How to represent an isogeny?

(x, y) x
2 + 1
x

y (x
2 – 1)
x

2
,()⟼

(degree 2)
fine for small degree…

solution typically has degree ≈ 2256

9

The Isogeny problem

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny…

• How to represent an isogeny?

• Build "big" isogenies as formal combinations of "small" ones

(x, y) x
2 + 1
x

y (x
2 – 1)
x

2
,()⟼

(degree 2)
fine for small degree…

solution typically has degree ≈ 2256

9

deg(𝜑 ∘ 𝜓) = deg(𝜑) ∙ deg(𝜓)

The Isogeny problem

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny…

• How to represent an isogeny?

• Build "big" isogenies as formal combinations of "small" ones

(x, y) x
2 + 1
x

y (x
2 – 1)
x

2
,()⟼

(degree 2)
fine for small degree…

solution typically has degree ≈ 2256

E1 ⟶ E2 ⟶ E3 ⟶ … ⟶ E257
22 2 2

10

The Isogeny problem

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny…

• How to represent an isogeny?

• Build "big" isogenies as formal combinations of "small" ones

(x, y) x
2 + 1
x

y (x
2 – 1)
x

2
,()⟼

(degree 2)
fine for small degree…

solution typically has degree ≈ 2256

E1 ⟶ E2 ⟶ E3 ⟶ … ⟶ E257
2

degree 2256

2 2 2

10

The Isogeny problem

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny…

• How to represent an isogeny?

• Build "big" isogenies as formal combinations of "small" ones

‣ 𝜑 ∘ 𝜓 represented by (‘comp’, 𝜑, 𝜓) where 𝜑 and 𝜓 are in efficient repr.

‣ 𝜑 + 𝜓 represented by (‘add’, 𝜑, 𝜓) where 𝜑 and 𝜓 are both E1 → E2

(x, y) x
2 + 1
x

y (x
2 – 1)
x

2
,()⟼

(degree 2)
fine for small degree…

solution typically has degree ≈ 2256

11

The Isogeny problem

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny…

• How to represent an isogeny?

‣ any efficient representation: an encoding which allows one to
evaluate 𝜑(P) in polynomial time for any P

solution typically has degree ≈ 2256

12

Isogeny graph

E1 E2

an isogeny of degree 2 = an edge in a graph

13

• The 2-isogeny graph (supersingular…)

Isogeny graph

E1 E2

14

• The 2-isogeny graph (supersingular…)

Isogeny graph

E1 E2

E3

E4

E7

E6

E5

14

• The 2-isogeny graph (supersingular…)

Isogeny graph

E1 E2

E3

E4

E7

E6

E5

14

• The 2-isogeny graph (supersingular…)

• 3-regular, connected (for supersingular curves)

Isogeny graph

E1 E2

E3

E4

E7

E6

E5

14

Uniformly distributed

Endomorphisms
and computational

problems

Picture by Beppe Rijs

Endomorphism ring

An endomorphism of E is an isogeny 𝜑 : E → E (or the zero map [0])

Endomorphism ring

An endomorphism of E is an isogeny 𝜑 : E → E (or the zero map [0])

The endomorphism ring of E is End(E) = {𝜑 : E → E}

Endomorphism ring

An endomorphism of E is an isogeny 𝜑 : E → E (or the zero map [0])

The endomorphism ring of E is End(E) = {𝜑 : E → E}

• 𝜑 + 𝜓 is pointwise addition: (𝜑 + 𝜓)(P) = 𝜑(P) + 𝜓(P)

• 𝜑𝜓 is the composition: (𝜑𝜓)(P) = 𝜑(𝜓(P))

Endomorphism ring

An endomorphism of E is an isogeny 𝜑 : E → E (or the zero map [0])

The endomorphism ring of E is End(E) = {𝜑 : E → E}

• 𝜑 + 𝜓 is pointwise addition: (𝜑 + 𝜓)(P) = 𝜑(P) + 𝜓(P)

• 𝜑𝜓 is the composition: (𝜑𝜓)(P) = 𝜑(𝜓(P))

Multiplication by m ∈ ℤ is an endomorphism

[m] : E → E : P ⟼ P + … + P

It forms a subring ℤ ⊂ End(E)

Endomorphism ring

What is the structure of End(E)?

• It contains ℤ ⊂ End(E)…

Endomorphism ring

What is the structure of End(E)?

• It contains ℤ ⊂ End(E)…

• (End(E), +) is a lattice of dimension 2 or 4

Endomorphism ring

What is the structure of End(E)?

• It contains ℤ ⊂ End(E)…

• (End(E), +) is a lattice of dimension 2 or 4

Endomorphism ring

What is the structure of End(E)?

• It contains ℤ ⊂ End(E)…

• (End(E), +) is a lattice of dimension 2 or 4

0 1 2 3 4–1–2–3 5 6 7-4-5 ℤ

Endomorphism ring

What is the structure of End(E)?

• It contains ℤ ⊂ End(E)…

• (End(E), +) is a lattice of dimension 2 or 4

Endomorphism ring

What is the structure of End(E)?

• It contains ℤ ⊂ End(E)…

• (End(E), +) is a lattice of dimension 2 or 4

A curve E is supersingular if (End(E), +) is a lattice of dimension 4

Then, there is a ℤ-basis 1, 𝛂2, 𝛂3, 𝛂4: as a lattice,

End(E) = ℤ ⊕ ℤ𝛂2 ⊕ ℤ𝛂3 ⊕ ℤ𝛂4

The endomorphism ring problem

For E supersingular End(E) = {𝜑 : E → E} is a lattice of dimension 4

The EndRing problem

Given E (supersingular) find 4 generators
of the endomorphism ring End(E)

The endomorphism ring problem

For E supersingular End(E) = {𝜑 : E → E} is a lattice of dimension 4

Solution of the form (α1, α2, α3, α4)…

• How are αi represented? Any efficient representation

The EndRing problem

Given E (supersingular) find 4 generators
of the endomorphism ring End(E)

Example

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and

Consider E0 : y2 = x3 + x

Example

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and

Consider E0 : y2 = x3 + x

Two non-scalar endomorphisms:

Example

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and

Consider E0 : y2 = x3 + x

Two non-scalar endomorphisms:

• 𝜄 : E0 → E0 : (x, y) ⟼ (–x, 𝛼y)

Example

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and

Consider E0 : y2 = x3 + x

Two non-scalar endomorphisms:

• 𝜄 : E0 → E0 : (x, y) ⟼ (–x, 𝛼y) 𝜄2 = [–1]

Example

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and

Consider E0 : y2 = x3 + x

Two non-scalar endomorphisms:

• 𝜄 : E0 → E0 : (x, y) ⟼ (–x, 𝛼y)

• 𝜋 : E0 → E0 : (x, y) ⟼ (xp, yp)

𝜄2 = [–1]

Example

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and

Consider E0 : y2 = x3 + x

Two non-scalar endomorphisms:

• 𝜄 : E0 → E0 : (x, y) ⟼ (–x, 𝛼y)

• 𝜋 : E0 → E0 : (x, y) ⟼ (xp, yp)

𝜄2 = [–1]
𝜄𝜋 = –𝜋𝜄

Example

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and

Consider E0 : y2 = x3 + x

Two non-scalar endomorphisms:

• 𝜄 : E0 → E0 : (x, y) ⟼ (–x, 𝛼y)

• 𝜋 : E0 → E0 : (x, y) ⟼ (xp, yp)

𝜄2 = [–1]
𝜄𝜋 = –𝜋𝜄

End(E0) = ℤ ⊕ ℤ𝜄 ⊕ ℤ𝜋 ⊕ ℤ𝜄𝜋
?

Example

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and

Consider E0 : y2 = x3 + x

Two non-scalar endomorphisms:

• 𝜄 : E0 → E0 : (x, y) ⟼ (–x, 𝛼y)

• 𝜋 : E0 → E0 : (x, y) ⟼ (xp, yp)

End(E0) = ℤ ⊕ ℤ𝜄 ⊕ ℤ ⊕ ℤ𝜄 + 𝜋
2

1 + 𝜄𝜋
2

𝜄2 = [–1]
𝜄𝜋 = –𝜋𝜄

Example

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and

Consider E0 : y2 = x3 + x

Two non-scalar endomorphisms:

• 𝜄 : E0 → E0 : (x, y) ⟼ (–x, 𝛼y)

• 𝜋 : E0 → E0 : (x, y) ⟼ (xp, yp)

End(E0) = ℤ ⊕ ℤ𝜄 ⊕ ℤ ⊕ ℤ𝜄 + 𝜋
2

1 + 𝜄𝜋
2 EndRing

𝜄2 = [–1]
𝜄𝜋 = –𝜋𝜄

EndRing problem ⇔ Isogeny problem

Computing End(–) ⇔ Finding isogenies

[Petit, Lauter – preprint 2017] Hard and Easy Problems for Supersingular Isogeny Graphs.

[Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018] Supersingular isogeny graphs and
endomorphism rings: Reductions and solutions.

[W. – FOCS 2021] The supersingular isogeny path and endomorphism ring problems are equivalent.

Computing End(–) ⇔ Finding isogenies

End(–) is a GPS that allows you to find your way between supersingular curves:

• given End(E1) and End(E2), one can find an isogeny E1 → E2 in poly. time

[Petit, Lauter – preprint 2017] Hard and Easy Problems for Supersingular Isogeny Graphs.

[Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018] Supersingular isogeny graphs and
endomorphism rings: Reductions and solutions.

[W. – FOCS 2021] The supersingular isogeny path and endomorphism ring problems are equivalent.

Computing End(–) ⇔ Finding isogenies

End(–) is a GPS that allows you to find your way between supersingular curves:

• given End(E1) and End(E2), one can find an isogeny E1 → E2 in poly. time

You can update the GPS coordinates as you travel through isogenies:

• given End(E1), and a (smooth) isogeny E1 → E2, one can find End(E2) in poly. time

[Petit, Lauter – preprint 2017] Hard and Easy Problems for Supersingular Isogeny Graphs.

[Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018] Supersingular isogeny graphs and
endomorphism rings: Reductions and solutions.

[W. – FOCS 2021] The supersingular isogeny path and endomorphism ring problems are equivalent.

Computing End(–) ⇔ Finding isogenies

End(–) is a GPS that allows you to find your way between supersingular curves:

• given End(E1) and End(E2), one can find an isogeny E1 → E2 in poly. time

You can update the GPS coordinates as you travel through isogenies:

• given End(E1), and a (smooth) isogeny E1 → E2, one can find End(E2) in poly. time

For E1, E2 supersingular, Hom(E1, E2) is a lattice of rank 4

Computing End(–) ⇔ Finding isogenies

End(–) is a GPS that allows you to find your way between supersingular curves:

• given End(E1) and End(E2), one can find an isogeny E1 → E2 in poly. time

You can update the GPS coordinates as you travel through isogenies:

• given End(E1), and a (smooth) isogeny E1 → E2, one can find End(E2) in poly. time

For E1, E2 supersingular, Hom(E1, E2) is a lattice of rank 4

a basis of Hom(E1, E2)

Computing End(–) ⇔ Finding isogenies

End(–) is a GPS that allows you to find your way between supersingular curves:

• given End(E1) and End(E2), one can find an isogeny E1 → E2 in poly. time

You can update the GPS coordinates as you travel through isogenies:

• given End(E1), and a (smooth) isogeny E1 → E2, one can find End(E2) in poly. time

For E1, E2 supersingular, Hom(E1, E2) is a lattice of rank 4

Computing End(–) ⇔ Computing Hom(–, –)

a basis of Hom(E1, E2)

Key generation
Generating a curve with
its endomorphism ring

Picture by Beppe Rijs

Idea of SQIsign

Basic idea of SQIsign:

• Public key: a supersingular curve Epk

• Secret key: a basis of End(Epk)

Idea of SQIsign

Basic idea of SQIsign:

• Public key: a supersingular curve Epk

• Secret key: a basis of End(Epk)
Key recovery = EndRing

Idea of SQIsign

Basic idea of SQIsign:

• Public key: a supersingular curve Epk

• Secret key: a basis of End(Epk)

• SQIsign proof of knowledge: a sigma protocol to prove knowledge of End(Epk)

Key recovery = EndRing

Idea of SQIsign

Basic idea of SQIsign:

• Public key: a supersingular curve Epk

• Secret key: a basis of End(Epk)

• SQIsign proof of knowledge: a sigma protocol to prove knowledge of End(Epk)

• SQIsign: Fiat-Shamir transform of the proof of knowledge

Key recovery = EndRing

Idea of SQIsign

Basic idea of SQIsign:

• Public key: a supersingular curve Epk

• Secret key: a basis of End(Epk)

• SQIsign proof of knowledge: a sigma protocol to prove knowledge of End(Epk)

• SQIsign: Fiat-Shamir transform of the proof of knowledge

How to generate a random Epk together with End(Epk)?

Key recovery = EndRing

Idea of SQIsign

Basic idea of SQIsign:

• Public key: a supersingular curve Epk

• Secret key: a basis of End(Epk)

• SQIsign proof of knowledge: a sigma protocol to prove knowledge of End(Epk)

• SQIsign: Fiat-Shamir transform of the proof of knowledge

How to generate a random Epk together with End(Epk)?

How to generate even a single supersingular curve?

Key recovery = EndRing

A special supersingular curve

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and

Consider E0 : y2 = x3 + x

Two non-trivial endomorphisms:

• 𝜄 : E0 → E0 : (x, y) ⟼ (–x, 𝛼y)

• 𝜋 : E0 → E0 : (x, y) ⟼ (xp, yp)

End(E0) = ℤ ⊕ ℤ𝜄 ⊕ ℤ ⊕ ℤ𝜄 + 𝜋
2

1 + 𝜄𝜋
2

𝜄2 = [–1]
𝜄𝜋 = –𝜋𝜄

A special supersingular curve

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and

Consider E0 : y2 = x3 + x

Two non-trivial endomorphisms:

• 𝜄 : E0 → E0 : (x, y) ⟼ (–x, 𝛼y)

• 𝜋 : E0 → E0 : (x, y) ⟼ (xp, yp)

End(E0) = ℤ ⊕ ℤ𝜄 ⊕ ℤ ⊕ ℤ𝜄 + 𝜋
2

1 + 𝜄𝜋
2

E0 and End(E0) is our reference

𝜄2 = [–1]
𝜄𝜋 = –𝜋𝜄

E0
Start from E0

Generating a random curve

E0
Start from E0

Generating a random curve

E0
Start from E0

Walk randomly

E

Generating a random curve

E0
Start from E0

Walk randomly

E

End(E0)

Generating a random curve

E0
Start from E0

Walk randomly

E

End(E0)

End(E)

Use knowledge of the
path and of End(E0) to

compute End(E)

Generating a random curve

One can generate (E, End(E)) with E uniform

One can generate (E, End(E)) with E uniform
(Trapdoor generation of uniform EndRing instances)

SQIsign
Proving knowledge of an

endomorphism

Picture by Beppe Rijs

A sigma protocol following [DKLPW20]

• Generate a random pair (Epk, End(Epk))

• public key = Epk, secret key = End(Epk)

A sigma protocol following [DKLPW20]

• Generate a random pair (Epk, End(Epk))

• public key = Epk, secret key = End(Epk) Alice (prover) Bob (verifier)

A sigma protocol following [DKLPW20]

• Generate a random pair (Epk, End(Epk))

• public key = Epk, secret key = End(Epk)

End(Epk)
Epk

Alice (prover) Bob (verifier)

A sigma protocol following [DKLPW20]

• Generate a random pair (Epk, End(Epk))

• public key = Epk, secret key = End(Epk)

End(Epk)
Epk

Alice (prover) Bob (verifier)
Generate random
(Ecom, End(Ecom))

Ecom

A sigma protocol following [DKLPW20]

• Generate a random pair (Epk, End(Epk))

• public key = Epk, secret key = End(Epk)

End(Epk) End(Ecom)
Epk Ecom

Alice (prover) Bob (verifier)
Generate random
(Ecom, End(Ecom))

Ecom

A sigma protocol following [DKLPW20]

• Generate a random pair (Epk, End(Epk))

• public key = Epk, secret key = End(Epk)

End(Epk) End(Ecom)
Epk Ecom

Alice (prover) Bob (verifier)
Generate random
(Ecom, End(Ecom))

Ecom

Generate random
𝜑 : Epk → Echall

𝜑

A sigma protocol following [DKLPW20]

• Generate a random pair (Epk, End(Epk))

• public key = Epk, secret key = End(Epk)

End(Epk) End(Ecom)
Epk

challenge 𝜑

Ecom

Echall

Alice (prover) Bob (verifier)
Generate random
(Ecom, End(Ecom))

Ecom

Generate random
𝜑 : Epk → Echall

𝜑

A sigma protocol following [DKLPW20]

• Generate a random pair (Epk, End(Epk))

• public key = Epk, secret key = End(Epk)

End(Epk) End(Ecom)

End(Echall)

Epk

challenge 𝜑

Ecom

Echall

Alice (prover) Bob (verifier)
Generate random
(Ecom, End(Ecom))

Ecom

Generate random
𝜑 : Epk → Echall

𝜑

A sigma protocol following [DKLPW20]

• Generate a random pair (Epk, End(Epk))

• public key = Epk, secret key = End(Epk)

End(Epk) End(Ecom)

End(Echall)

Epk

challenge 𝜑

Ecom

Echall

response σ

Alice (prover) Bob (verifier)
Generate random
(Ecom, End(Ecom))

Ecom

Generate random
𝜑 : Epk → Echall

𝜑

A sigma protocol following [DKLPW20]

• Generate a random pair (Epk, End(Epk))

• public key = Epk, secret key = End(Epk)

End(Epk) End(Ecom)

End(Echall)

Epk

challenge 𝜑

Ecom

Echall

response σ

Alice (prover) Bob (verifier)
Generate random
(Ecom, End(Ecom))

Ecom

Generate random
𝜑 : Epk → Echall

𝜑

Compute
σ : Echall → Ecom

σ

A sigma protocol following [DKLPW20]

• Generate a random pair (Epk, End(Epk))

• public key = Epk, secret key = End(Epk)

End(Epk) End(Ecom)

End(Echall)

Epk

challenge 𝜑

Ecom

Echall

response σ

Alice (prover) Bob (verifier)
Generate random
(Ecom, End(Ecom))

Ecom

Generate random
𝜑 : Epk → Echall

𝜑

Compute
σ : Echall → Ecom

σ Check that σ is
an isogeny

Echall → Ecom

Special soundness

Epk

challenge 𝜑

Ecom

Echall

response σ

Special soundness

Epk

challenge 𝜑

Ecom

Echall

response σ

challenge 𝜑’ Echall‘

Special soundness

Epk

challenge 𝜑

Ecom

Echall

response σ

challenge 𝜑’ Echall‘
response σ’

Special soundness

Epk

challenge 𝜑

Ecom

Echall

response σ

challenge 𝜑’ Echall‘
response σ’

A non-trivial
endomorphism of Epk

Special soundness

Epk

challenge 𝜑

Ecom

Echall

response σ

challenge 𝜑’ Echall‘
response σ’

A non-trivial
endomorphism of Epk

 ⇒ Can respond to
2 challenges

Can find an
endomorphism

Special soundness

Epk

challenge 𝜑

Ecom

Echall

response σ

challenge 𝜑’ Echall‘
response σ’

A non-trivial
endomorphism of Epk

 ⇒ Can respond to
2 challenges

Can find an
endomorphism

Finding one endomorphism ⇔ EndRing
[Page, W. – Eurocrypt 2024]

Computing the response isogeny
End(Echall) End(Ecom)

EcomEchall
response σ

Computing the response isogeny
End(Echall) End(Ecom)

EcomEchall
response σ

1. From End(Echall) and End(Ecom), find a basis (𝜑1, 𝜑2, 𝜑3, 𝜑4) of Hom(Echall, Ecom)

Computing the response isogeny
End(Echall) End(Ecom)

EcomEchall
response σ

1. From End(Echall) and End(Ecom), find a basis (𝜑1, 𝜑2, 𝜑3, 𝜑4) of Hom(Echall, Ecom)

2. Return some σ ∈ Hom(Echall, Ecom)

Computing the response isogeny
End(Echall) End(Ecom)

EcomEchall
response σ

1. From End(Echall) and End(Ecom), find a basis (𝜑1, 𝜑2, 𝜑3, 𝜑4) of Hom(Echall, Ecom)

2. Return some σ ∈ Hom(Echall, Ecom)

Question: how to choose σ? How to represent it?

Computing the response isogeny
End(Echall) End(Ecom)

EcomEchall
response σ

1. From End(Echall) and End(Ecom), find a basis (𝜑1, 𝜑2, 𝜑3, 𝜑4) of Hom(Echall, Ecom)

2. Return some σ ∈ Hom(Echall, Ecom)

Question: how to choose σ? How to represent it?

• Need σ fast to evaluate, for efficient verification

Computing the response isogeny
End(Echall) End(Ecom)

EcomEchall
response σ

1. From End(Echall) and End(Ecom), find a basis (𝜑1, 𝜑2, 𝜑3, 𝜑4) of Hom(Echall, Ecom)

2. Return some σ ∈ Hom(Echall, Ecom)

Question: how to choose σ? How to represent it?

• Need σ fast to evaluate, for efficient verification

• Need σ (and its representation) not to leak the secret

Computing the response isogeny
End(Echall) End(Ecom)

EcomEchall
response σ

1. From End(Echall) and End(Ecom), find a basis (𝜑1, 𝜑2, 𝜑3, 𝜑4) of Hom(Echall, Ecom)

2. Return some σ ∈ Hom(Echall, Ecom)

Question: how to choose σ? How to represent it?

• Need σ fast to evaluate, for efficient verification

• Need σ (and its representation) not to leak the secret

‣ Warning: typical representation of 𝜑i leaks End(Echall)

Computing the response isogeny

Original SQIsign [DKLPW20]:

• Solve a norm equation [KLPT14] to find σ ∈ Hom(Echall, Ecom) of degree 2n,

• Convert σ = a1𝜑1 + a2𝜑2 + a3𝜑3 + a4𝜑4 to path of 2-isogenies

End(Echall) End(Ecom)
EcomEchall

response σ

Computing the response isogeny

Original SQIsign [DKLPW20]:

• Solve a norm equation [KLPT14] to find σ ∈ Hom(Echall, Ecom) of degree 2n,

• Convert σ = a1𝜑1 + a2𝜑2 + a3𝜑3 + a4𝜑4 to path of 2-isogenies

Problems:

• [KLPT14] finds big solution: deg(σ) = 2n ≈ p3.75

• Conversion to chain of 2-isogenies is very costly: signing takes billions of cycles

• Distribution of [KLPT14] output is mysterious: not simulatable? not zero-
knowledge?

End(Echall) End(Ecom)
EcomEchall

response σ

SQIsignHD
Sqiing in higher

dimensions

Picture by Beppe Rijs

Computing the response isogeny

Original SQIsign [DKLPW20]: [KLPT14] finds big solution deg(σ) = 2n ≈ p3.75

End(Echall) End(Ecom)
EcomEchall

response σ

Computing the response isogeny

Original SQIsign [DKLPW20]: [KLPT14] finds big solution deg(σ) = 2n ≈ p3.75

• Smallest isogeny in Hom(Echall, Ecom) has degree ≈ p0.5

End(Echall) End(Ecom)
EcomEchall

response σ

Computing the response isogeny

Original SQIsign [DKLPW20]: [KLPT14] finds big solution deg(σ) = 2n ≈ p3.75

• Smallest isogeny in Hom(Echall, Ecom) has degree ≈ p0.5

Question: Why not output some small σ ∈ Hom(Echall, Ecom), deg(σ) ≈ p0.5?

End(Echall) End(Ecom)
EcomEchall

response σ

Computing the response isogeny

Original SQIsign [DKLPW20]: [KLPT14] finds big solution deg(σ) = 2n ≈ p3.75

• Smallest isogeny in Hom(Echall, Ecom) has degree ≈ p0.5

Question: Why not output some small σ ∈ Hom(Echall, Ecom), deg(σ) ≈ p0.5?

• Representation as linear combination a1𝜑1 + a2𝜑2 + a3𝜑3 + a4𝜑4 is dangerous:

‣ (𝜑1, 𝜑2, 𝜑3, 𝜑4) leaks End(Echall), so leaks secret key End(Epk)

End(Echall) End(Ecom)
EcomEchall

response σ

HD representation of isogenies
Attacks against SIDH [CD23, MMPPW23, Rob23]:

HD representation of isogenies
Attacks against SIDH [CD23, MMPPW23, Rob23]:

• Let 𝜑 : E1 → E2 of degree d

HD representation of isogenies
Attacks against SIDH [CD23, MMPPW23, Rob23]:

• Let 𝜑 : E1 → E2 of degree d

• Let (P, Q) is a basis of E1[2n], with 22n > 4·deg(𝜑)

HD representation of isogenies
Attacks against SIDH [CD23, MMPPW23, Rob23]:

• Let 𝜑 : E1 → E2 of degree d

• Let (P, Q) is a basis of E1[2n], with 22n > 4·deg(𝜑)

a subgroup of E1
of order 22n

HD representation of isogenies
Attacks against SIDH [CD23, MMPPW23, Rob23]:

• Let 𝜑 : E1 → E2 of degree d

• Let (P, Q) is a basis of E1[2n], with 22n > 4·deg(𝜑)

• Given (d, P, Q, 𝜑(P), 𝜑(Q)), one can compute 𝜑(R) for any R ∈ E1 in poly. time

a subgroup of E1
of order 22n

HD representation of isogenies
Attacks against SIDH [CD23, MMPPW23, Rob23]:

• Let 𝜑 : E1 → E2 of degree d

• Let (P, Q) is a basis of E1[2n], with 22n > 4·deg(𝜑)

• Given (d, P, Q, 𝜑(P), 𝜑(Q)), one can compute 𝜑(R) for any R ∈ E1 in poly. time

• Cost: evaluating an isogeny of degree 22n in dimension 2, 4 or 8

a subgroup of E1
of order 22n

HD representation of isogenies
Attacks against SIDH [CD23, MMPPW23, Rob23]:

• Let 𝜑 : E1 → E2 of degree d

• Let (P, Q) is a basis of E1[2n], with 22n > 4·deg(𝜑)

• Given (d, P, Q, 𝜑(P), 𝜑(Q)), one can compute 𝜑(R) for any R ∈ E1 in poly. time

• Cost: evaluating an isogeny of degree 22n in dimension 2, 4 or 8

Interpolation: Knowing 𝜑 on a few points ⇒ Knowing 𝜑 everywhere

a subgroup of E1
of order 22n

HD representation of isogenies
Attacks against SIDH [CD23, MMPPW23, Rob23]:

• Let 𝜑 : E1 → E2 of degree d

• Let (P, Q) is a basis of E1[2n], with 22n > 4·deg(𝜑)

• Given (d, P, Q, 𝜑(P), 𝜑(Q)), one can compute 𝜑(R) for any R ∈ E1 in poly. time

• Cost: evaluating an isogeny of degree 22n in dimension 2, 4 or 8

Corollary: (d, P, Q, 𝜑(P), 𝜑(Q)) is an efficient representation of 𝜑, the "interpolation
representation", or "HD representation"

Interpolation: Knowing 𝜑 on a few points ⇒ Knowing 𝜑 everywhere

a subgroup of E1
of order 22n

Attacks against SIDH [CD23, MMPPW23, Rob23]:

• Let 𝜑 : E1 → E2 of degree d

• Let (P, Q) is a basis of E1[2n], with 22n > 4·deg(𝜑)

• Given (d, P, Q, 𝜑(P), 𝜑(Q)), one can compute 𝜑(R) for any R ∈ E1 in poly. time

• Cost: evaluating an isogeny of degree 22n in dimension 2, 4 or 8

Corollary: (d, P, Q, 𝜑(P), 𝜑(Q)) is an efficient representation of 𝜑, the "interpolation
representation", or "HD representation"

Interpolation: Knowing 𝜑 on a few points ⇒ Knowing 𝜑 everywhere

HD representation of isogenies

Fastest, but requires
22n – d = a2

Attacks against SIDH [CD23, MMPPW23, Rob23]:

• Let 𝜑 : E1 → E2 of degree d

• Let (P, Q) is a basis of E1[2n], with 22n > 4·deg(𝜑)

• Given (d, P, Q, 𝜑(P), 𝜑(Q)), one can compute 𝜑(R) for any R ∈ E1 in poly. time

• Cost: evaluating an isogeny of degree 22n in dimension 2, 4 or 8

Corollary: (d, P, Q, 𝜑(P), 𝜑(Q)) is an efficient representation of 𝜑, the "interpolation
representation", or "HD representation"

Interpolation: Knowing 𝜑 on a few points ⇒ Knowing 𝜑 everywhere

HD representation of isogenies

Somewhat fast, but requires 22n – d = a2 + b2

Fastest, but requires
22n – d = a2

Attacks against SIDH [CD23, MMPPW23, Rob23]:

• Let 𝜑 : E1 → E2 of degree d

• Let (P, Q) is a basis of E1[2n], with 22n > 4·deg(𝜑)

• Given (d, P, Q, 𝜑(P), 𝜑(Q)), one can compute 𝜑(R) for any R ∈ E1 in poly. time

• Cost: evaluating an isogeny of degree 22n in dimension 2, 4 or 8

Corollary: (d, P, Q, 𝜑(P), 𝜑(Q)) is an efficient representation of 𝜑, the "interpolation
representation", or "HD representation"

Interpolation: Knowing 𝜑 on a few points ⇒ Knowing 𝜑 everywhere

HD representation of isogenies

Very costly, but
always works

Somewhat fast, but requires 22n – d = a2 + b2

Fastest, but requires
22n – d = a2

HD representation of isogenies

…

Embed E1 in a higher
dimensional object

E1 E2

Compute higher
dimensional isogenies

Project back to E2

HD representation of isogenies

…

Embed E1 in a higher
dimensional object

E1 E2

Compute higher
dimensional isogenies

Project back to E2

𝜑

HD representation of isogenies

…

Embed E1 in a higher
dimensional object

E1 E2

Compute higher
dimensional isogenies

Project back to E2

𝜑

Determined by what 𝜑 does on E1[2n]

HD response isogeny

SQIsignHD [DLRW24]: constructive use of SIDH attacks

End(Echall) End(Ecom)
EcomEchall

response σ

HD response isogeny

SQIsignHD [DLRW24]: constructive use of SIDH attacks

1. Pick random, small σ ∈ Hom(Echall, Ecom) (say, deg(σ) ≈ p0.5)

End(Echall) End(Ecom)
EcomEchall

response σ

HD response isogeny

SQIsignHD [DLRW24]: constructive use of SIDH attacks

1. Pick random, small σ ∈ Hom(Echall, Ecom) (say, deg(σ) ≈ p0.5)

2. Generate basis (P, Q) of Echall[2n], for 22n > 4·deg(σ)

End(Echall) End(Ecom)
EcomEchall

response σ

HD response isogeny

SQIsignHD [DLRW24]: constructive use of SIDH attacks

1. Pick random, small σ ∈ Hom(Echall, Ecom) (say, deg(σ) ≈ p0.5)

2. Generate basis (P, Q) of Echall[2n], for 22n > 4·deg(σ)

3. Evaluate P’ = σ(P) and Q’ = σ(Q)

End(Echall) End(Ecom)
EcomEchall

response σ

HD response isogeny

SQIsignHD [DLRW24]: constructive use of SIDH attacks

1. Pick random, small σ ∈ Hom(Echall, Ecom) (say, deg(σ) ≈ p0.5)

2. Generate basis (P, Q) of Echall[2n], for 22n > 4·deg(σ)

3. Evaluate P’ = σ(P) and Q’ = σ(Q)

4. (deg(σ), P, Q, P’,Q’) is an HD representation of σ

End(Echall) End(Ecom)
EcomEchall

response σ

Zero-knowledge
From ad hoc to rigorous

security proof

Picture by Beppe Rijs

Honest verifier zero-knowledge

Alice (prover) Bob (verifier)
Generate random
(Ecom, End(Ecom))

Ecom

Generate random
𝜑 : Epk → Echall

𝜑

Compute
σ : Echall → Ecom

σ Check that σ is
an isogeny

Echall → Ecom

Honest verifier zero-knowledge

Alice (prover) Bob (verifier)
Generate random
(Ecom, End(Ecom))

Ecom

Generate random
𝜑 : Epk → Echall

𝜑

Compute
σ : Echall → Ecom

σ Check that σ is
an isogeny

Echall → Ecom
transcript

Honest verifier zero-knowledge

Epk Ecom

challenge 𝜑

Echall

response σ

Alice (prover) Bob (verifier)
Generate random
(Ecom, End(Ecom))

Ecom

Generate random
𝜑 : Epk → Echall

𝜑

Compute
σ : Echall → Ecom

σ Check that σ is
an isogeny

Echall → Ecom
transcript

Honest verifier zero-knowledge

Epk Ecom

challenge 𝜑

Echall

response σ

Alice (prover) Bob (verifier)
Generate random
(Ecom, End(Ecom))

Ecom

Generate random
𝜑 : Epk → Echall

𝜑

Compute
σ : Echall → Ecom

σ Check that σ is
an isogeny

Echall → Ecom
transcript

can generate transcripts with same
distribution without the secret keyHV Zero-knowledge =

Honest transcript

Epk

Honest transcript

Ecom

Uniformly
random curve1)

Epk

Honest transcript

Ecom

challenge 𝜑

Echall

Uniformly
random curve1)

Uniformly
random
2n-isogeny2)

Epk

Honest transcript

Ecom

challenge 𝜑

Echall

response σ

Uniformly
random curve1)

Uniformly
random
2n-isogeny2)

Uniformly random
in Hom(Echall, Ecom)
with degree < B

3)

Epk

Simulated transcript

Epk

Simulated transcript

Epk

challenge 𝜑

Echall
Uniformly
random
2n-isogeny

1)

Simulated transcript

Epk

challenge 𝜑

Echall
Uniformly
random
2n-isogeny

1)
Uniformly random
isogeny from Echall with
degree < B

2)

Ecom

response σ

Simulated transcript

Epk

challenge 𝜑

Echall

Random
codomain2’)

Uniformly
random
2n-isogeny

1)
Uniformly random
isogeny from Echall with
degree < B

2)

Ecom

response σ

Simulated transcript

Epk

challenge 𝜑

Echall

Random
codomain2’)

Uniformly
random
2n-isogeny

1)
Uniformly random
isogeny from Echall with
degree < B

2)

Ecom

response σ

With B large enough, statistically indistinguishable from honest!

Simulated transcript

Epk

challenge 𝜑

Echall

Random
codomain2’)

Uniformly
random
2n-isogeny

1)
Uniformly random
isogeny from Echall with
degree < B

2)

Ecom

response σ

With B large enough, statistically indistinguishable from honest!

???

Random Any-Degree Isogeny Oracle:

• Input: an elliptic curve E, a bound B > 0

• Output: An efficient representation of uniformly distributed isogeny in

RADIO

{𝜑 : E → ? | deg(𝜑) < B}

Random Any-Degree Isogeny Oracle:

• Input: an elliptic curve E, a bound B > 0

• Output: An efficient representation of uniformly distributed isogeny in

We know how to sample random isogenies of smooth degree…

RADIO only extends that power to any degree. Powerful oracle?

RADIO

{𝜑 : E → ? | deg(𝜑) < B}

Random Any-Degree Isogeny Oracle:

• Input: an elliptic curve E, a bound B > 0

• Output: An efficient representation of uniformly distributed isogeny in

We know how to sample random isogenies of smooth degree…

RADIO only extends that power to any degree. Powerful oracle?

RADIO

{𝜑 : E → ? | deg(𝜑) < B}

Assumption: EndRing still hard given a RADIO

Dimensions
2? 4? 8?

Picture by Beppe Rijs

How to verify?

Response: σ represented as (d, P, Q, P’, Q’) where

• (P, Q) is a basis of Echall[2n], with 22n > 4·deg(σ)

• (P’,Q’) = (σ(P), σ(Q))

End(Echall) End(Ecom)
EcomEchall

response σ

How to verify?

Response: σ represented as (d, P, Q, P’, Q’) where

• (P, Q) is a basis of Echall[2n], with 22n > 4·deg(σ)

• (P’,Q’) = (σ(P), σ(Q))

Verification: Check that (d, P, Q, P’, Q’) repr. an isogeny Echall → Ecom of deg < 22n – 2:

End(Echall) End(Ecom)
EcomEchall

response σ

How to verify?

Response: σ represented as (d, P, Q, P’, Q’) where

• (P, Q) is a basis of Echall[2n], with 22n > 4·deg(σ)

• (P’,Q’) = (σ(P), σ(Q))

Verification: Check that (d, P, Q, P’, Q’) repr. an isogeny Echall → Ecom of deg < 22n – 2:

• In general: evaluate an isogeny in dimension 8

End(Echall) End(Ecom)
EcomEchall

response σ

How to verify?

Response: σ represented as (d, P, Q, P’, Q’) where

• (P, Q) is a basis of Echall[2n], with 22n > 4·deg(σ)

• (P’,Q’) = (σ(P), σ(Q))

Verification: Check that (d, P, Q, P’, Q’) repr. an isogeny Echall → Ecom of deg < 22n – 2:

• In general: evaluate an isogeny in dimension 8

• If 22n – deg(σ) = a2 + b2: an isogeny in dimension 4 is sufficient

End(Echall) End(Ecom)
EcomEchall

response σ

How to verify?

Response: σ represented as (d, P, Q, P’, Q’) where

• (P, Q) is a basis of Echall[2n], with 22n > 4·deg(σ)

• (P’,Q’) = (σ(P), σ(Q))

Verification: Check that (d, P, Q, P’, Q’) repr. an isogeny Echall → Ecom of deg < 22n – 2:

• In general: evaluate an isogeny in dimension 8

• If 22n – deg(σ) = a2 + b2: an isogeny in dimension 4 is sufficient

Force 22n – deg(σ) to be a prime ≡ 1 mod 4

End(Echall) End(Ecom)
EcomEchall

response σ

Two versions…

Two versions…

SQIsign8D: no restriction on deg(σ) + degrees large enough for “stat. indisting.”

• Provably secure if EndRing is hard given a RADIO

• Verification needs isogenies in dimension 8, impractical

Two versions…

SQIsign8D: no restriction on deg(σ) + degrees large enough for “stat. indisting.”

• Provably secure if EndRing is hard given a RADIO

• Verification needs isogenies in dimension 8, impractical

SQIsign4D: Force 2n – deg(σ) to be a prime ≡ 1 mod 4 + use smaller degrees

• Security needs heuristics, but more compelling, simpler than original SQIsign

• NIST-I level (128 bits security): 64 bytes public key, 109 bytes signature (9x
smaller than Falcon)

• Verification needs isogenies in dim 4; getting good [Dartois — eprint 2024/1180]

• Scales well to higher security

Dimension 2
SQIsign2D-West

Picture by Beppe Rijs

• Let σ : Echall → Ecom with d = deg(σ) < 22n – 2

2D embedding of an isogeny

• Let σ : Echall → Ecom with d = deg(σ) < 22n – 2

• Given an isogeny η : Echall → ? of degree 22n – d, we can interpolate in dimension 2

2D embedding of an isogeny

• Let σ : Echall → Ecom with d = deg(σ) < 22n – 2

• Given an isogeny η : Echall → ? of degree 22n – d, we can interpolate in dimension 2

• If 22n – d = a2 is square, [a] : Echall → Echall is an isogeny of degree a2 = 22n – d

2D embedding of an isogeny

• Let σ : Echall → Ecom with d = deg(σ) < 22n – 2

• Given an isogeny η : Echall → ? of degree 22n – d, we can interpolate in dimension 2

• If 22n – d = a2 is square, [a] : Echall → Echall is an isogeny of degree a2 = 22n – d

2D embedding of an isogeny

22n – d is unlikely
to be square ☹

• Let σ : Echall → Ecom with d = deg(σ) < 22n – 2

• Given an isogeny η : Echall → ? of degree 22n – d, we can interpolate in dimension 2

• If 22n – d = a2 is square, [a] : Echall → Echall is an isogeny of degree a2 = 22n – d

2D embedding of an isogeny

22n – d is unlikely
to be square ☹

Can look for other
isogenies η 🧐

• Let σ : Echall → Ecom with d = deg(σ) < 22n – 2

• Given an isogeny η : Echall → ? of degree 22n – d, we can interpolate in dimension 2

• If 22n – d = a2 is square, [a] : Echall → Echall is an isogeny of degree a2 = 22n – d

2D embedding of an isogeny

22n – d is unlikely
to be square ☹

Can look for other
isogenies η 🧐

Use secret knowledge of End(Echall)…

• Let σ : Echall → Ecom with d = deg(σ) < 22n – 2

• Given an isogeny η : Echall → ? of degree 22n – d, we can interpolate in dimension 2

• If 22n – d = a2 is square, [a] : Echall → Echall is an isogeny of degree a2 = 22n – d

2D embedding of an isogeny

22n – d is unlikely
to be square ☹

Can look for other
isogenies η 🧐

Made fast with techniques from QFESTA [Nakagawa, Onuki – 2023] and Clapoti [Page, Robert – 2023]

Use secret knowledge of End(Echall)…

[Basso, Dartois, De Feo, Leroux, Maino, Pope, Robert, W. — Asiacrypt 2024]

SQIsign2D-West

[Basso, Dartois, De Feo, Leroux, Maino, Pope, Robert, W. — Asiacrypt 2024]

• Verification: evaluation of an isogeny in dimension 2 (of degree 22n), much faster
than all SQIsign predecessors

SQIsign2D-West

[Basso, Dartois, De Feo, Leroux, Maino, Pope, Robert, W. — Asiacrypt 2024]

• Verification: evaluation of an isogeny in dimension 2 (of degree 22n), much faster
than all SQIsign predecessors

• Still very compact: NIST-I level 66 bytes public key, 148 bytes signature

SQIsign2D-West

[Basso, Dartois, De Feo, Leroux, Maino, Pope, Robert, W. — Asiacrypt 2024]

• Verification: evaluation of an isogeny in dimension 2 (of degree 22n), much faster
than all SQIsign predecessors

• Still very compact: NIST-I level 66 bytes public key, 148 bytes signature

• Security proof similar to most conservative predecessor (SQIsign8D)

‣ No heuristics

‣ Computational assumption: EndRing is hard given access to an oracle that
produces random isogenies of large degree (random-walks-on-steroids oracle)

‣ Public key is uniformly distributed: benefit from full force of worst-case to
average-case reductions!

SQIsign2D-West

Performance in MCycles, for level of security NIST-I
Caution: non-uniform levels of optimizations… should only be indicative of an order of magnitude… timings in ms are
extrapolated for ~3GHz

Performance

Key gen. Signing Verif.

Original SQIsign 2800 4600 93

Optimized SQIsign 400 1880 29

SQIsignHD 190 115 ?

SQIsign2D-West 60 160 9

SQIsign2D-West + heuristics 58 100 9

53ms 3ms
33ms

38ms

620ms 10ms

For NIST-V security level: cost x6

