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Isogenies

Elliptic curves, isogenies,
iIsogeny graphs




Elliptic curves

equations of the form
y2=x34 ax+ b

y? = x3 — 4x



use elliptic * lso
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The Isogeny problem

Given E, and E, find an isogeny ¢ : E, — E,

y2 = x3 4+ x yo =0 ax
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The Isogeny problem

Given E, and E, find an isogeny ¢ : E, — E,

Hope: cryptosystems as secure as isogeny problem is hard

—_— Security of

The isogeny problem cryptosystems
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The Isogeny problem

Given E, and E, find an isogeny ¢ : E, — E,

* The solution ¢ is an isogeny... solution

typicall
* How to represent an isogeny? as degree = 2256
(x, y) +—— (X2 +1 y(x2— 1)) (degl'ee 2)
X % fine for smal degree..

* Build "big" isogenies as formal compositions of "small" ones

deg(o - ) = degly) - deg())

7



The Isogeny problem

Given E, and E, find an isogeny ¢ : E, — E,

* The solution ¢ is an isogeny... solution typicall
* How to represent an isogeny? as degree = 2256
(x, y) +— x2+ 1 y(x?- 1)) (degree 2)
4 X X2

* Build "big" isogenies as formal compositions of "small" ones

E4Letel  LE,




Isogeny graph

* Fix small £ (say, £ =2). Can easily compute £ -isogenies

/_,Es

N
AE4

an isogeny of degree ¢ =an edge in a graph

> k3




Isogeny graph

* Fix small £ (say, £ =2). Can easily compute £ -isogenies

E;

an isogeny of degree ¢ =an edge in a graph

3 4 -isogeny E, — E, = 3 £ -isogeny E, — F,



Isogeny graph

* Fix small £ (say, £ =2). Can easily compute £ -isogenies

® (/ +1)-regular, connected, finite (all supersingular curves are defined over [Fp2)
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The £ -isogeny path problem

The ¢-IsogenyPath problem

Given E, and E, (supersingular) find
an f-isogeny path from E, to E,

* Path finding in a graph of size = p/12
* Hard for supersingular curves! Best known algorithm = generic graph algorithm

* Typical meaning of “the isogeny problem"”
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Isogeny-based
cryptography

Computational problems
and cryptosystems




Isogeny-based cryptography

Hope: cryptosystems as secure as isogeny problem is hard

—_— Security of
- cryptosystems

The isogeny problem
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A one-way function

* One-way function: a functionf: X — Y which is

m» Easy to evaluate: given x € X, it is easy to compute f(x)

m» Hardtoinvert: giveny e Y, it is hard to find some x € X such that f(x) =y

17



_ ncuon
A one-way A supersingular
2-isogeny graph

+ Very large
+ J-reqular
+ Connected



A one-way function
Fix a reference
vertex Eg

Input: a message
min {0,1)*

m=0001



on

Fix a reference
vertex Eg

O\Aone -way func

Input: a message
min {0,1)*

m=0001
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Fix a reference
vertex Eg

O\Aone -way func

Input: a message
m in {0+

m=0001



on

Fix a reference
vertex Eg

O\Aone -way func

Input: a message
m in {0+

m=0001



on

Fix a reference
vertex Eg

O\A()ne -way func

Input: a message
m in {0+

m=0001



®v_  Aone-way function

N

Fix a reference
vertex Eg

Input: a message
min {01)*

m=0001



on

Fix a reference
vertex Eg

®., _  Aone-wayfunc
\

Input: a message
m in {0+

m=0001



@ A one-way functon
\ Fix a reference
0 vertex Eg

Input: a message
m in {0+

m=0001




@ A one-way functon
\ Fix a reference
0 vertex Eo

Input: a message
m in {0+

m=0001




@ A one-way functon
\ Fix a reference
0 vertex Eo

Input: a message
m in {0+

m=0001
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The CGL hash
fllﬂci.i‘)n

[Charles, Goren, Lavuter -
Journal of Cryptology 20091
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Preimage problem:
®  (GivenEy and f(m), find m

£-IsogenyPath




Isogeny-based cryptography

Hope: cryptosystems as secure as isogeny problem is hard

—_— Security of
- cryptosystems

The isogeny problem
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Isogeny-based cryptography

Reality: upper and lower bounds

cryoroaiil < £-IsogenyPath

CGL hash function (preimage)

f-1sogenyPath

OneEnd < CGL hash function (collision)
OneEnd < SQIlsign (soundness) i dale,
Vectorisation <  CSIDH (key recovery) &Mva;:“a'\:egpg, W2 oe
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Endomorphisms

And the supersingular
endomorphism ring
problem
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‘%GL hash fu

ction

Is the CGL hash
function collision-
resistant?

an endomorphism
of Eo



Endomorphism ring

An endomorphism of E is an isogeny ¢ : E — E (or the zero map [O])
The endomorphismring of E is End(E) ={¢ : E — E}

* ¢ +1is pointwise addition: (¢ + ¥)(P) = o(P) + (P)

* ¢1) is the composition: (py)(P) = o((P))

Multiplication by m € Z is an endomorphism
Im|:E—-E:P—P+..+P
It forms a subring Z ¢ End(E)



Endomorphism ring

What is the structure of End(E)?
* |t contains Z c End(E)...

* (End(E), +) is a lattice of dimension 2 or 4

® ® ® ® ® ® ® ® ®
® ® ® ® ® ® ® ® ®
® ® ® ® ® ® ® ® ®
MR A




Endomorphism ring

What is the structure of End(E)?
* |t contains Z c End(E)...

* (End(E), +) is a lattice of dimension 2 or 4

A curve E is supersingular if (End(E), +) is a lattice of dimension 4

Then, there is a Z-basis 1, a», a3, aa: as a lattice,

End(E) =7 ® Zay & Zaz ® Zaa



Endomorphism ring

What is the structure of End(E)?
* |t contains Z c End(E)...

* (End(E), +) is a lattice of dimension 2 or 4

* Has a Euclidean norm: ||¢||? = deg(«)

 Scalar product («, f) = (deg(e + B) - deg(a - g))/4, volume...

A curve E is supersingular if (End(E), +) is a lattice of dimension 4

Then, there is a Z-basis 1, a2, a3, ca: as a lattice,

End(E) =27 @ Zowp ® Zoz ® Zoxs



The endomorphism ring problem

Given a supersingular E,
‘compute End(E)"...

EndRing: Find four endomorphisms that form a basis of End(E)



Example

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-trivial endomorphisms:

2= [p]
* 7:Eo— Eo: (X, V) — (XxP, ypP T P
0 — Eo: (X, y) — (XP, yP) and oz = -

® 1:Eo— Eo:(x, V) — (=X, ay) 2 = [-1]

?
End(Eo)=7 @71 ® 77t ® Zur



Example

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-trivial endomorphisms:

2 = [-p]
® 7:Eo— Eo: (X, y)— (XP, yP T P
7:Eo— Fo: (X y) = kP, ye) and (= -7,

® 1:Fo—Eo: (X y)— (X, ay) 2 =[-1]

End(Eo)=20Zi10Z " o 1 ~ EndRing



The endomorphism ring problem

Given a supersingular E,
‘compute End(E)"...

EndRing: Find four endomorphisms that form a basis of End(E)

MaxOrder: Compute the "abstract structure" of End(E)

* End(E) is isomorphic to a ring of quaternions. Find which!



Quaternion algebra

The quaternion algebra B, is the ring (for p = 3 (mod 4))
Bro=QoQi®oQj®QKk

where [2=-1, j2=-p, and kK =ij = —ji

End(E) is (isomorphic to) a discrete subrings of Bp,«
> End(E) is a maximal order in By«

> There are many maximal orders in Bp,«



The endomorphism ring problem

Given a supersingular E,
‘compute End(E)"...

EndRing: Find four endomorphisms that form a basis of End(E)

MaxOrder: Compute the "abstract structure" of End(E)
e Find a subring of Bp,. isomorphic to End(E)



Example

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx

Two non-trivial endomorphisms:

* 7:Eo— Eo: (X, y)— (xP, yr) 7 [_p] and it = -7
® 1:Fo—Eo: (X y)— (X, ay) 2 =[-1]
End(Eo)=/@ Z1® 7 ‘+2” o7 | +2”T EndRing

T oTie7 ’;f @7 1+2’7 c B, MaxO0rder
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The OneEnd problem

ction Collision-finding
V1

Oneknd

Given E (supersingular) find one
endomorphism o € End(E) \ Z

l 46

N A ® \ (x1) = f(x2)




The endomorphism ring problem

Given a supersingular E,
‘compute End(E)"...

EndRing: Find four endomorphisms that form a basis of End(E)

MaxOrder: Compute the "abstract structure" of End(E)
e Find a subring of Bp,. isomorphic to End(E)

OneEnd: Find a single non-scalar endomorphism in « € End(E) \ Z



Foundations

Relations between
problems




Which is hardest? Easiest?

Endliil’lg ¢-IsogenyPath

MaxOrder
Oneknd
Isogeny



Relating OneEnd to EndRing

Suppose we can solve EndRing. Can we solve OneEnd?

Given E, we solve OneEnd for E as follows:
1. Solve EndRing for E, finding a basis 1, a2, a3, a4 of End(E)

2. Return oo

We have that a2 € End(E) \ Z because a2 is not in span(1) =Z

50



Which is hardest? Easiest?

EndRing  ,jsogenyPath
A A

MaxOrder

Oneknd _:
> [sogeny



Relating OneEnd to Isogeny

2) Solve lsogeny

Suppose we can solve Isogeny.
Can we solve OneEnd?

How to find endomorphisms of E:

Does Yo e /7

%) Profit

~ Not if ¢ is long enough, and has

cyclic kernel

52



Which is hardest? Easiest?

Endliing f-lsogenyPath

A\ o
\:
| MaxOrder

Onetnd
> Isogeny



Isogeny World Quaternion World

Deuring correspondence

Maximal orders @ in Bp,«
O = End(E)
(up to isomorphism)

Supersingular curves E over [Fp2
(up to isomorphism)

. B (0,0')-ideals I,
sogenies ¢ : £ — E O = End(E) and O’ = End(E"’)
HARD HARD? EASY?
£-lsogeny Path: £-Quaternion Path:
Given Eand F’ Given O and O’, find an

find o : E — E’ of degree # (0,0’)-ideal | of norm ¢



Solving the Quaternion Path Problem

Theorem: There exists an algorithm that solves the f-quaternion
path problem in expected polynomial time (assuming GRH).

Full proof under GRH: [W. - FOCS 2021] The supersingular isogeny path and
endomorphism ring problems are equivalent.

Much faster, but heuristic algorithm: [Kohel, Lauter, Petit, Tignol - ANTS 2014] On
the quaternion £ -isogeny path problem.

The “KLPT" algorithm



Isogeny World

Quaternion World

Deuring correspondence

Supersingular curves E over [Fp2
(up to isomorphism)

Maximal orders @ in Bp,«
O = End(E)
(up to isomorphism)

. - (0,0')-ideals I,
sogenies : E = E O = End(E) and O’ = End(E"’)
HARD . EASY
MaxOrder

£-lsogeny Path:

Given Eand £,
find o : E — B’ of degree #

£-Quaternion Path:

Given © and O’ find an
(0,0')-ideal | of norm ¢



Which is hardest? Easiest?

Endliil’lg f—lsogenyPath

\GRH
MaxOrder

OneEnd

™ [sogeny



Which is hardest? Easiest?

GRH GRH

EndRing <— MaxQrder <— ¢-IsogenyPath

Proof assuming GRH:
[W. - FOCS 2021] The supersingular isogeny path and endomorphism ring problems are equivalent.

Earlier heuristic reductions:
[Petit, Lauter - preprint 2017] Hard and Easy Problems for Supersingular Isogeny Graphs.

[Eisentrager, Hallgren, Lauter, Morrison, Petit - Eurocrypt 2018] Supersingular isogeny graphs
and endomorphism rings: Reductions and solutions.



Which is hardest? Easiest?

GRH GRH

EndRing <— Max0rder <— #-lsogenyPath

N\ \

Wl . CGL collision-resistance
Oneknd — SQlsign soundness




Which is hardest? Easiest?

GRH GRH

EndRing <— MaxQrder <— ¢-IsogenyPath

A\

[Page, W. - Eurocrypt 2024] The supersingular Endomorphism
Ring and One Endomorphism problems are equivalent.

v
Oneknd <—




Which is hardest? Easiest?

GRH GRH

EndRing <— MaxOrder < ¢

A\

sogenyPath

Unconditional!
vV

Oneknd —— lsogeny




Which is hardest? Easiest?

EndRing <> MaxOrder <— f—lsogenyl’ath
A A
J, |

OneEnd <— lsogeny

[Herlédan Le Merdy, W. — to appear] Unconditional foundations for supersingular
isogeny-based cryptography



Average hardness

and worst-case to
average-case reductions




o we-way ncuon

The C6L hash
function

[Charles, Goren, Lavuter -
Journal of Cryptology 20091




A one-way function
\ [ Breaking one-wayness:

¢ Given Eo and £(x), find x

£-IsogenyPath




A one-way function

* One-way function: a functionf: X — Y which is

m» Easy to evaluate: given x € X, it is easy to compute f(x)
m) MNave S-inne SHLOR - ,' lS=Rake=te-FRe=-50me-c-X-sHeh-thatfOH) =

m» Hard to invert: let x € X uniformly random, and y = f(x). There is no efficient
algorithm A such that A(y) outputs a preimage of y with good probability

For security, we care about average hardness

66
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- uniformly
= I gistributed?




Rapid mixing

* Some graphs have better "mixing" properties than others...

Stays close fo sta.rﬁng Rapidly goes anywhere
point for a long time... PR
\
0\ e
r ‘
@
/0
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Rapid mixing

"slow mixing" “yapid mixing"
Stqys close to sta.ning Rapidly goes anywhere
point for a long time...

® —
- ")
o N\
@
/ \
e

\
@
[

@

/
|
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Rapid mixing

The best wixers are “rapid mixing
Ramanujan graphs Rapidly goes anywhere

Theorem: In a Ramanujan graph with n
vertices, a random walk of length =log(n)
reaches a distribution indistinguishable
from uniform.

70



Theorem [Pizer, 1990]:
The f-isogeny graph is a

Ramanujan graph with

=p/12 vertices. In
particular, random walks
mix rapidly.

_ uniformly
‘\ X) distributed




CGL i1s one-way

* Let A an algorithm breaking one-

wayness: given E uniformly distributed, Eo
A(E) finds a path Eo — E with good PN
probability

@ E =f(A(E))

uniformly
distributed



uniformly
distributed

CGL i1s one-way

* Let A an algorithm breaking one-
wayness: given E uniformly distributed,
A(E) finds a path Eo — E with good
probability

* Let (E1, E2) an instance of #~-lsogenyPath

1. Random walk E1 — Fj uniformly
2. Call A(F) distributed
3. Same for Eos...

4. Return concatenation of paths

* Solves f-IsogenyPath (worst case)



CGL i1s one-way

If £~IsogenyPath is hard (worst case problem),
then CGL is one-way (average-case problem)



Worst-case to average case reductions

F2
@

A worst-case to average-case reduction:

If £~-lsogenyPath is hard (in the worst case),
then f-lsogenyPath is hard on average for
uniformly random input

2) Randomize...

1) Given an
arbitrary
instance




Which is hardest? Easiest?

: MaxOrder
EndRing ¢-IsogenyPath

Oneknd Isogeny

Assuming GRH, if any of these is hard in the worst case, then all are hard on average!
Without GRH, almost always true.

[Herlédan Le Merdy, W. — to appear] Unconditional foundations for supersingular
isogeny-based cryptography



Solving £-IsogenyPath
and Isogeny, EndRing,
OneEnd, MaxOrder...




How hard are they?

: MaxOrder
EndRing ¢-IsogenyPath

Oneknd Isogeny

They are all as hard as each other...
But how hard is that?



Solving #-IsogenyPath

The ¢-IsogenyPath problem

Given E, and E, (supersingular) find
an f-isogeny path from E, to E,




Solving #-IsogenyPath

The supersingular £-isogeny graph

+ Approximately p/12 vertices
+ Ramanvujan



Solving #-IsogenyPath

Uniformly
distributed @

Probability to hit E2 = 0(1/p)
Success after O(p) attempts...




Solving #-IsogenyPath

Build table/of p24vertices

Success after 0(pV2) attempts!



Solving #-IsogenyPath

Theorem: There is an algorithm for £-IsogenyPath in time O(p'/2)

One can solve Isogeny, EndRing, MaxOrder and OneEnd in time O(p'/2)

Theorem |Delfs, Galbraith — DCC 2016]: There is an algorithm for Isogeny in time
O(p'72) and space log(p)oM



Solving Isogeny

/

p
snjaller graph,
agier” problem...

- E2

Curveg over |
0(p™é) ..

e

Success after 0(pV/2) attempts!



OneEnd = EndRing

OneEnd to find them all

© MEE & © Wizards of the Coast



Reducing EndRing to OneEnd

Suppose we have an oracle O solving OneEnd

Let E be an instance of EndRing: we wish to find generators of End(E)

Idea O: Sample until you make it... What if O(E) always

. . f urns the same o?
1. Fori=1,2,...call O(E), which returns some aoj € End(E) \Z ret

2. As soon as (a)i generates End(E), extract a basis and return it - & Efﬁcif“{)'{';"ear
algebra!

Idea1 [Eisentrager, Hallgren, Lauter, Morrison, Petit - Eurocrypt 2018]:

Randomize the oracle...



Enriching the oracle

Idea 1: Randomize the oracle
We construct a new oracle Richo

On Input E:
1. Sample a random isogeny

2. Call O(F) which returns oo € End(F) \ Z
3. Return® oo oo e ENd(E) \Z




Reducing EndRing to OneEnd

Idea 1: Randomize the oracle

1. Fori=1, 2,... call RLch9(E), which returns some o € End(E) \Z

2. As soon as (o) generates End(E), extract a basis and return it

Rich¢ is "random enough": it rapidly produces a generating set

Problem: It fails. There exist oracles @ for which the algorithm does not terminate



Stabilization

Idea 2: Prove that the ring generated by ()i eventually stabilizes

Theorem 1: The probability distribution of R1ch9(E) is stable under conjugation
In essence: any output a is as likely as any conjugate -'af

Theorem 2: Subrings of End(E) stable under conjugation are Z+ M-End(E) for M € 7

Conclusion: The algorithm eventually generates a ring of the form Z + M - End(E)
o

From a generating set of Z * MEnd(E), one can find a basis of End(E) =

"Eventually” = exponential time ‘?‘



Stabilization

The tough part!

Theorem 1: The probability distribution of R1ch9(E) is stable under conjugation

Deuring correspondence
4

Jacquet-Langlands correspondence
4

Deligne’s bound on coefficients
of modular forms



Stabilization

Theorem 1: The probability distribution of R1ch9(E) is stable under conjugation

Select E, call o« « O(E), return (E, o) Randow variable with distribution Do

A "random walk operator” T on the space
\) of probability distributions of (E, o)

Select E, a random isogeny ccallae « O(F), return (E, 2 cac o) 1 =TI(Po)
® | ong walk (i.e., large degree ¢) = T(Do) converges to a stationary distribution
® Stationary distribution = stable under conjugation

® Spectral analysis of the operator T gives convergence speed



Stabilization

Theorem 1: The probability distribution of R1ch9(E) is stable under conjugation

Deuring correspondence Elliptic curves — Quaternions

The random walk operator is a Hecke operator on

+ L. .
guaternionic automorphic forms

Jacquet-Langlands cor respondence Quaternions = Modular forms

Eigenvalues of the Hecke operator can be read

+ . .
off the coefficients of a classical modular form

Deligne’s bound on coefficients Modular forms — ... Modular forms

of modular forms Bounds on coefficients imply bounds on
eigenvalues of the random walk operator



Reducing EndRing to OneEnd

Outline of the reduction:

1. Initialize S={1}

2. While S does not generate a ring of the form Z + M- End(E), do:
3. Sample o« < Rich9(E)

5. Addato S

6. Extract from S a basis of End(E), and return it

Terminates! <&

8 8 Q\"
In exponential time.. =



Faster stabilization

Idea 3: Stabilization can be made much faster by "reducing" each oracle output «.

Next problem: "Reducing" requires factoring large integers...

Idea 4:"Lazy reduction": do a partial factorization, and if something fails, it reveals
a new factor



Reducing EndRing to OneEnd

Outline of the reduction:

1. Initialize S={1}

2. While S does not generate a ring of the form Z + M- End(E), do:
3. Sample o < R1icho(E)
4. o — LazyReduce(a) (Idea 3)
5. Addato S

6. Extract from S a basis of End(E), and return it

<

Polynowmial time! g




GRH

EndRing <— MaxOrder <

/'\ /‘\

t’—lsogenyPath

v v
OneEnd <— lsogeny




