

Computational foundations of Isogeny-based cryptography

Benjamin Wesolowski, CNRS and ENS Lyon October 2024, 25th Workshop on Elliptic Curve Cryptography, Taipei, Taiwan

Isogenies Elliptic curves, isogenies, isogeny graphs

 $y^2 = x^3 + x$

 E_1

- Elliptic curves are groups:
 you can add points together!

Elliptic curves

equations of the form

 $y^2 = x^3 + ax + b$

 Isogenies are group homomorphisms . Degree = size of kernel

The Isogeny problem

Given E_1 and E_2 find an isogeny $\varphi: E_1 \to E_2$

Hope: cryptosystems as secure as isogeny problem is hard

The isogeny problem

Hard even for ' Quantum algorithms

The *Isogeny* problem

Given E_1 and E_2 find an isogeny $\varphi: E_1 \rightarrow E_2$

Security of cryptosystems

Post-quantum cryptography

The Iso Given E_1 and E_2 find

- The solution φ is an isoger
- How to represent an isoge

$$(x, y) \longrightarrow$$

Build "big" isogenies as for
 dea(o o 1)

by problem
d an isogeny
$$\varphi: E_1 \rightarrow E_2$$

ny...
eny?
 $\left(\frac{x^2+1}{x}, \frac{y(x^2-1)}{x^2}\right)$
(degree 2)
fine for small degree...
rmal compositions of "small" ones

 $deg(\varphi \circ \psi) = deg(\varphi) \cdot deg(\psi)$

- The solution φ is an isogeny...
- How to represent an isogeny?

$$(x, y) \longrightarrow$$

Isogeny graph

• Fix small ℓ (say, $\ell = 2$). Can easily compute ℓ -isogenies

an isogeny of degree ℓ = an edge in a graph

Isogeny graph

• Fix small ℓ (say, ℓ = 2). Can easily compute ℓ -isogenies

E1 -

an isogeny of degree ℓ = an edge in a graph $\exists \ell$ -isogeny $E_1 \rightarrow E_2 \Rightarrow \exists \ell$ -isogeny $E_2 \rightarrow E_1$

Isogeny graph

- Fix small ℓ (say, $\ell = 2$). Can easily compute ℓ -isogenies
- The (supersingular...) & -isogeny graph

• (ℓ + 1)-regular, **connected**, finite (all supersingular curves are defined over \mathbb{F}_{p^2})

The *l*-isogeny path problem

The *l-IsogenyPath* problem

Given E_1 and E_2 (supersingular) find an *l*-isogeny path from E_1 to E_2

- Path finding in a graph of size $\approx p/12$
- Typical meaning of "the isogeny problem"

• Hard for supersingular curves! Best known algorithm = generic graph algorithm

Isogeny-based cryptography

Computational problems and cryptosystems

Isogeny-based cryptography

Hope: cryptosystems as secure as isogeny problem is hard

The isogeny problem

Hard even for Quantum algorithms

Security of cryptosystems

Post-quantum cryptography

A one-way function

- **One-way function:** a function $f: X \rightarrow Y$ which is
 - **Easy to evaluate:** given $x \in X$, it is easy to compute f(x)
 - → Hard to invert: given $y \in Y$, it is hard to find some $x \in X$ such that f(x) = y

A supersingular 2-isogeny graph

+ Very large + 3-regular

+ Connected

Input: a message m in {0,1}*

Input: a message m in {0,1}*

m = 0001

A one-way function

The CGL hash function

ECharles, Goren, Lauter -Journal of Cryptology 20091

A one-way function Preimage problem: Given Eo and f(m), find m l-IsogenyPath 5

Isogeny-based cryptography

Hope: cryptosystems as secure as isogeny problem is hard

The isogeny problem

Hard even for Quantum algorithms Security of cryptosystems

Me-way function

Isogeny-based cryptography

- *l*-lsogenyPath
 - OneEnd \leq
 - OneEnd **<**
 - Vectorisation \leq

CCI T

Reality: upper and lower bounds

Security of cryptosystems

<

l-lsogenyPath

CGL hash function (preimage) CGL hash function (collision) SQIsign (soundness) CSIDH (key recovery) SIDH (key recovery)

[Castryck, Decru] [Maino, Martindale, Panny, Pope, W.J [Robert] Eurocrypt 2023

Endomorphisms And the supersingular endomorphism ring problem

an endomorphism of Eo

Eo

Endomorphism ring

- An **endomorphism** of *E* is an isogeny $\varphi : E \to E$ (or the zero map [0])
- The **endomorphism ring** of *E* is $End(E) = \{\varphi : E \rightarrow E\}$
 - $\varphi + \psi$ is pointwise addition: $(\varphi + \psi)(P) = \varphi(P) + \psi(P)$
 - $\varphi\psi$ is the composition: $(\varphi\psi)(P) = \varphi(\psi(P))$
- Multiplication by $m \in \mathbb{Z}$ is an endomorphism $[m]: E \rightarrow E: P \mapsto P + ... + P$
- It forms a subring $\mathbb{Z} \subset \text{End}(E)$

Endomorphism ring

What is the structure of End(*E*)?

- It contains $\mathbb{Z} \subset \text{End}(E)$...
- (End(*E*), +) is a **lattice** of dimension 2 or 4

Endomorphism ring

What is the structure of End(E)?

- It contains $\mathbb{Z} \subset \text{End}(E)$...
- (End(*E*), +) is a **lattice** of dimension 2 or 4

A curve E is **supersingular** if (End(E), +) is a lattice of dimension 4 Then, there is a \mathbb{Z} -basis 1, α_2 , α_3 , α_4 : as a lattice,

- End(E) = $\mathbb{Z} \oplus \mathbb{Z}\alpha_2 \oplus \mathbb{Z}\alpha_3 \oplus \mathbb{Z}\alpha_4$

Endomorphismring

What is the structure of End(E)?

- It contains $\mathbb{Z} \subset \text{End}(E)$...
- (End(*E*), +) is a **lattice** of dimension 2 or 4
- Has a **Euclidean norm**: $||\alpha||^2 = deg(\alpha)$
- Scalar product $\langle \alpha, \beta \rangle = (deg(\alpha + \beta) deg(\alpha \beta))/4$, volume...

A curve E is **supersingular** if (End(E), +) is a lattice of dimension 4 Then, there is a \mathbb{Z} -basis 1, α_2 , α_3 , α_4 : as a lattice,

- $End(E) = \mathbb{Z} \oplus \mathbb{Z}\alpha_2 \oplus \mathbb{Z}\alpha_3 \oplus \mathbb{Z}\alpha_4$

The endomorphism ring problem

Given a supersingular E, "compute End(E)"...

EndRing: Find four endomorphisms that form a basis of End(*E*)

Example

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Two non-trivial endomorphisms:

- $\pi: E_0 \rightarrow E_0: (x, y) \mapsto (x^p, y^p)$
- $\iota: E_0 \to E_0: (x, y) \mapsto (-x, \alpha y)$

$\mathsf{End}(\mathbf{E_0}) \stackrel{?}{=} \mathbb{Z} \oplus \mathbb{Z} \iota \oplus \mathbb{Z} \pi \oplus \mathbb{Z} \iota \pi$

- **Consider** $E_0: y^2 = x^3 + x$

$$\pi^{2} = [-p]$$

$$and \ \iota \pi = -\pi \iota$$

$$\iota^{2} = [-1]$$

Example

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Two non-trivial endomorphisms:

- $\pi: E_0 \rightarrow E_0: (x, y) \mapsto (x^p, y^p)$
- $\iota: E_0 \to E_0: (x, y) \mapsto (-x, \alpha y)$

$End(E_0) = \mathbb{Z} \oplus \mathbb{Z} \cup \mathbb{Z}$

- Consider $E_0: y^2 = x^3 + x$

$$\pi^{2} = [-p]$$
and $\pi = -\pi i$

$$\tau^{2} = [-1]$$

$$\mathbb{Z} \frac{\iota + \pi}{2} \oplus \mathbb{Z} \frac{1 + \iota \pi}{2}$$
 EndRing

The endomorphism ring problem

Given a supersingular E, "compute End(E)"...

EndRing: Find four endomorphisms that form a basis of End(E)

MaxOrder: Compute the "abstract structure" of End(*E*) • End(*E*) is isomorphic to a ring of quaternions. Find which!

Quaternion algebra

- The quaternion algebra $B_{p,\infty}$ is the ring (for $p \equiv 3 \pmod{4}$) $B_{\mathcal{P},\infty} = \mathbb{Q} \oplus \mathbb{Q} \ i \oplus \mathbb{Q} \ j \oplus \mathbb{Q} \ k$
- where $i^{2} = -1$, $j^{2} = -p$, and k = ij = -ji

End(E) is (isomorphic to) a discrete subrings of $B_{p,\infty}$

- End(E) is a maximal order in $B_{p,\infty}$
- There are many maximal orders in $B_{p,\infty}$

The endomorphism ring problem

Given a supersingular E, "compute End(E)"...

EndRing: Find four endomorphisms that form a basis of End(E)

MaxOrder: Compute the "abstract structure" of End(*E*)

• Find a subring of $B_{p,\infty}$ isomorphic to End(E)

Example

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Two non-trivial endomorphisms:

- $\pi: E_0 \rightarrow E_0: (x, y) \mapsto (x^p, y^p)$
- $\iota: E_0 \to E_0: (x, y) \mapsto (-x, \alpha y)$

 $\mathbf{End}(\mathbf{E_0}) = \mathbb{Z} \oplus \mathbb{Z} \iota \oplus \mathbb{Z} \frac{\iota + \pi}{2} \oplus \mathbb{Z} \frac{1 + \iota \pi}{2}$

- **Consider** $E_0: y^2 = x^3 + x$

$$\pi^{2} = [-p]$$

$$and \ \iota \pi = -\pi \iota$$

$$\iota^{2} = [-1]$$

Collision-finding The CGL hash function OneEnd

Eo

Given *E* (supersingular) find *one* endomorphism $\alpha \in \text{End}(E) \setminus \mathbb{Z}$

The OneEnd problem

The endomorphism ring problem

Given a supersingular E, "compute End(E)"...

EndRing: Find four endomorphisms that form a basis of End(E)

MaxOrder: Compute the "abstract structure" of End(*E*)

• Find a subring of $B_{p,\infty}$ isomorphic to End(E)

OneEnd: Find a single non-scalar endomorphism in $\alpha \in \text{End}(E) \setminus \mathbb{Z}$

Foundations Relations between problems

l-IsogenyPath

MaxOrder

lsogeny

Relating OneEnd to EndRing

Suppose we can solve **EndRing**. Can we solve **OneEnd**?

Given *E*, we solve **OneEnd** for *E* as follows:

- 1. Solve **EndRing** for E, finding a basis 1, α_2 , α_3 , α_4 of End(E)
- 2. Return α_2

We have that $\alpha_2 \in End(E) \setminus \mathbb{Z}$ because α_2 is not in span(1) = \mathbb{Z}

EndRing *e*-IsogenyPath MaxOrder OneEnd

lsogeny

Relating OneEnd to Isogeny

Suppose we can solve **Isogeny**. Can we solve **OneEnd**?

How to find endomorphisms of *E*:

Does $\psi \circ \varphi \in \mathbb{Z}$?

• Not if φ is long enough, and has cyclic kernel

2) Solve Isogeny

EndRing *e*-IsogenyPath ? MaxOrder OneEnd

lsogeny

Isogeny World Qua Deuring correspondence

Supersingular curves \mathbf{E} over \mathbb{F}_{p^2} (up to isomorphism)

Isogenies $\varphi : E \to E'$

HARD ℓ -Isogeny Path: Given E and E', find φ : E \rightarrow E' of degree ℓ^n

Quaternion World

Maximal orders \mathcal{O} in $B_{p,\infty}$ $\mathcal{O} \simeq \text{End}(E)$ (up to isomorphism)

(𝔅,𝔅))-ideals I,
 𝔅 = End(𝔅) and 𝔅' ≃ End(𝔅')

HARD? EASY?

l-Quaternion Path:

Given O and O', find an (O,O')-ideal I of norm ℓ^n

Solving the Quaternion Path Problem

path problem in expected polynomial time (assuming GRH).

Full proof under GRH: [W. – FOCS 2021] The supersingular isogeny path and endomorphism ring problems are equivalent.

the quaternion ℓ -isogeny path problem.

- **Theorem:** There exists an algorithm that **solves the** *l***-quaternion**
- Much faster, but heuristic algorithm: [Kohel, Lauter, Petit, Tignol ANTS 2014] On
 - The "KLPT" algorithm

Isogeny World Qua Deuring correspondence

Supersingular curves \mathbf{E} over \mathbb{F}_{p^2} (up to isomorphism)

Isogenies $\varphi : E \to E'$

HARD ℓ -lsogeny Path: MaxOrder Given E and E', find φ : E \rightarrow E' of degree ℓ^n

Quaternion World

Maximal orders \mathcal{O} in $B_{p,\infty}$ $\mathcal{O} \simeq \text{End}(E)$ (up to isomorphism)

 $(\mathcal{O},\mathcal{O}')$ -ideals I, $\mathcal{O} \simeq \mathbf{End}(E)$ and $\mathcal{O}' \simeq \mathbf{End}(E')$

EASY

l-Quaternion Path:

Given O and O', find an (O,O')-ideal l of norm lⁿ

EndRing f-IsogenyPath GRH MaxOrder OneEnd

lsogeny

EndRing $\stackrel{\text{\tiny GRH}}{\longleftrightarrow}$ MaxOrder $\stackrel{\text{\tiny GRH}}{\longleftrightarrow}$ l-lsogenyPath

Proof assuming GRH:

[W. – FOCS 2021] The supersingular isogeny path and endomorphism ring problems are equivalent.

Earlier heuristic reductions:

[Petit, Lauter – preprint 2017] Hard and Easy Problems for Supersingular Isogeny Graphs. **[Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018]** Supersingular isogeny graphs and endomorphism rings: Reductions and solutions.

EndRing \iff MaxOrder \iff ℓ -IsogenyPath **[Page, W. – Eurocrypt 2024]** The supersingular Endomorphism Ring and One Endomorphism problems are equivalent. CGL collision-resistance

OneEnd <-->

SQIsign soundness

EndRing \iff MaxOrder \iff l-IsogenyPath **Unconditional!** OneEnd ----> Isogeny

OneEnd <---> Isogeny

isogeny-based cryptography

[Herlédan Le Merdy, W. — to appear] Unconditional foundations for supersingular

Average hardness and worst-case to average-case reductions

A one-way function

The CGL hash function

ECharles, Goren, Lauter -Journal of Cryptology 20091

A one-way function

Breaking one-wayness: Given Eo and f(x), find x

l-IsogenyPath

A one-way function

- **One-way function:** a function $f: X \rightarrow Y$ which is
 - **Easy to evaluate:** given $x \in X$, it is easy to compute f(x)

For security, we care about average hardness A problem should be hard on average for random inputs

Hard to invort: given $y \in Y$, it is hard to find some $x \in X$ such that f(x) = y

Hard to invert: let $x \in X$ uniformly random, and y = f(x). There is no efficient algorithm A such that A(y) outputs a preimage of y with good probability

Rapid mixing

• Some graphs have better "mixing" properties than others...

Stays close to starting point for a long time...

Rapid mixing

"slow mixing" Stays close to starting point for a long time...

"rapid mixing" Rapidly goes anywhere

Rapid mixing

The best mixers are Ramanujan graphs

Theorem: In a **Ramanujan graph** with *n* vertices, a random walk of length $\approx \log(n)$ reaches a distribution indistinguishable from uniform.

"rapid mixing" Rapidly goes anywhere

Theorem [Pizer, 1990]:

The *l*-isogeny graph is a Ramanujan graph with ≈p/12 vertices. In particular, random walks mix rapidly.

• Let **A** an algorithm **breaking onewayness**: given *E* uniformly distributed, **A**(*E*) finds a path $E_0 \rightarrow E$ with good probability

Eo A(E) uniformly distributed
- Let **A** an algorithm **breaking onewayness**: given *E* uniformly distributed, **A**(*E*) finds a path $E_0 \rightarrow E$ with good probability
- Let (E_1, E_2) an instance of *l*-lsogenyPath
 - Random walk $E_1 \rightarrow F_1$
 - 2. Call $A(F_1)$
 - 3. Same for E_2 ...
 - 4. Return concatenation of paths
- Solves *l*-lsogenyPath (worst case)

If *l*-lsogenyPath is hard (worst case problem), then CGL is one-way (average-case problem)

Worst-case to average case reductions

A worst-case to average-case reduction: If *l*-lsogenyPath is hard (in the worst case), then *l*-lsogenyPath is hard on average for uniformly random input

t1

3) Solve an average-case instance

2) Randomize...

arbitrary instance

 F_2

Which is hardest? Easiest? MaxOrder

EndRing

OneEnd

Assuming GRH, if any of these is hard in the worst case, then all are hard on average! Without GRH, almost always true. [Herlédan Le Merdy, W. — to appear] Unconditional foundations for supersingular

isogeny-based cryptography

e-IsogenyPath

sogeny

Solving & IsogenyPath and Isogeny, EndRing, OneEnd, MaxOrder...

How hard are they? MaxOrder

EndRing

OneEnd

They are all as hard as each other... But **how hard** is that?

l-IsogenyPath

sogeny

Solving *l*-IsogenyPath

The *l-IsogenyPath* problem

Given E_1 and E_2 (supersingular) find an ℓ -isogeny path from E_1 to E_2

Solving *l*-IsogenyPath

The supersingular *l*-isogeny graph + Approximately p/12 vertices + Ramanujan

E

Success after $O(p^{1/2})$ attempts!

Theorem: There is an algorithm for *l*-lsogenyPath in time $\hat{O}(p^{1/2})$

Theorem [Delfs, Galbraith – DCC 2016]: There is an algorithm for **Isogeny** in time $\tilde{O}(p^{1/2})$ and space $\log(p)^{O(1)}$

Solving *l*-IsogenyPath

Corollary: One can solve **Isogeny**, **EndRing**, **MaxOrder** and **OneEnd** in time $\tilde{O}(p^{1/2})$

Success after $O(p^{1/2})$ attempts!

E₂

OneEnd to find them all

Reducing EndRing to OneEnd

Suppose we have an oracle *O* solving **OneEnd** Let E be an instance of **EndRing**: we wish to find generators of End(E)

Idea 0: Sample until you make it...

- **1.** For $i = 1, 2, ... \text{ call } \mathcal{O}(E)$, which returns some $\alpha_i \in \text{End}(E) \setminus \mathbb{Z}$
- **2.** As soon as $(\alpha_i)_i$ generates End(*E*), extract a basis and return it $d \in \mathcal{B}$

Idea 1 [Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018]: **Randomize** the oracle...

Efficient linear algebra!

Enriching the oracle

Idea 1: Randomize the oracle We construct a new oracle **Rich**^o

On input E:

- **1.** Sample a random isogeny $\varphi : E \to F$
- **2.** Call $\mathcal{O}(F)$ which returns $\alpha \in \text{End}(F) \setminus \mathbb{Z}$
- **3.** Return $\hat{\phi} \circ \alpha \circ \phi \in \text{End}(E) \setminus \mathbb{Z}$

Reducing EndRing to OneEnd

Idea 1: Randomize the oracle

- **1.** For $i = 1, 2, \dots$ call **Rich**^O(*E*), which returns some $\alpha_i \in \text{End}(E) \setminus \mathbb{Z}$
- **2.** As soon as $(\alpha_i)_i$ generates End(E), extract a basis and return it

Rich^o is "random enough": it rapidly produces a generating set

- Heuristic claim [Eisenträger, Hallgren, Lauter, Morrison, Petit Eurocrypt 2018]:
- **Problem:** It **fails**. There exist oracles *O* for which the algorithm does not terminate

Idea 2: Prove that the ring generated by $(\alpha_i)_i$ eventually stabilizes

Stabilization

- **Theorem 1:** The probability distribution of **Rich**^O(*E*) is stable under conjugation In essence: any output α is as likely as any conjugate $\beta^{-1}\alpha\beta$
- **Theorem 2:** Subrings of End(E) stable under conjugation are $\mathbb{Z} + M \cdot \text{End}(E)$ for $M \in \mathbb{Z}$
- **Conclusion:** The algorithm **eventually** generates a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$
 - From a generating set of \mathbb{Z} + M·End(E), one can find a basis of End(E) \downarrow
 - "Eventually" = exponential time

Stabilization

Idea 2: Prove that the ring generated by $(\alpha_i)_i$ eventually stabilizes

Deuring correspondence

Conclusion: The algorithm **eventually** generates a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$ Deligne's bound on coefficients From a generating set of \mathbb{Z} + M-End(E), one of modular forms nd(E)

The tough part!

Theorem 1: The probability distribution of **Rich**^o(*E*) is stable under conjugation

Theorem 2: Subrings of Ethd(E) stable under conjugation are $\mathbb{Z} + M \cdot \text{End}(E)$ for $M \in \mathbb{Z}$ Jacquet-Langlands correspondence

Stabilization

Select *E*, call $\alpha \leftarrow \mathcal{O}(E)$, return (*E*, α)

- Long walk (i.e., large degree φ) $\Rightarrow T(D_0)$ converges to a stationary distribution
- Stationary distribution \Rightarrow stable under conjugation
- Spectral analysis of the operator T gives convergence speed

- **Theorem 1:** The probability distribution of **Rich**^o(*E*) is stable under conjugation
 - Random variable with distribution Po
 - A "random walk operator" T on the space of probability distributions of (E, α)
- Select E, a random isogeny $\varphi: E \to F$, call $\alpha \leftarrow \mathcal{O}(F)$, return $(E, \hat{\varphi} \circ \alpha \circ \varphi)$ $V_1 = f(V_0)$

+

+

Deuring correspondence

Jacquet-Langlands correspondence

Deligne's bound on coefficients of modular forms

Stabilization

Theorem 1: The probability distribution of **Rich**^o(*E*) is stable under conjugation

Elliptic curves \rightarrow **Quaternions**

The random walk operator is a Hecke operator on quaternionic automorphic forms

Quaternions → Modular forms

Eigenvalues of the Hecke operator can be read off the coefficients of a classical modular form

Modular forms \rightarrow ... Modular forms

Bounds on coefficients imply bounds on eigenvalues of the random walk operator

Reducing EndRing to OneEnd

Outline of the reduction:

- Initialize $S = \{1\}$ 1.
- **2.** While S does not generate a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$, do:
 - **3.** Sample $\alpha \leftarrow \operatorname{Rich}^{O}(E)$
 - **4.** $\alpha \leftarrow LazyReduce(\alpha)$ (Idea 3)
 - **5.** Add α to S
- 6. Extract from S a basis of End(E), and return it

Termina

Faster stabilization

Next problem: "Reducing" requires factoring large integers...

Idea 4: "Lazy reduction": do a partial factorization, and if something fails, it reveals a new factor

Idea 3: Stabilization can be made much faster by "reducing" each oracle output α_i .

Reducing EndRing to OneEnd

Outline of the reduction:

- 1. Initialize $S = \{1\}$
- **2.** While S does not generate a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$, do:
 - **3.** Sample $\alpha \leftarrow \operatorname{Rich}^{O}(E)$
 - **4.** $\alpha \leftarrow LazyReduce(\alpha)$ (Idea 3)
 - **5.** Add α to S
- 6. Extract from S a basis of End(E), and return it

Polynomial time!

