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Isogenies
Elliptic curves, isogenies, 

isogeny graphs
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✦ In crypto, we use elliptic 

curves over a finite field 

✦ Elliptic curves are groups: 

you can add points together!
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Isogeny

Elliptic curves

Sometimes, there is a formula to transform 
solutions from one equation to another
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✦ In crypto, we use elliptic 

curves over a finite field 

✦ Elliptic curves are groups: 

you can add points together!

✦ Isogenies are group homomorphisms ✦ Degree = size of kernel

𝜑 : E1 → E2

(degree 2)



y 
2 = x 

3 + x
y 

2 = x 
3 – 4x

(x, y)

???
??

????
??

,( )

Isogeny?

The Isogeny problem 

Given E1 and E2 find an isogeny 𝜑 : E1 → E2
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The Isogeny problem 

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

Security of 
cryptosystemsThe isogeny problem =

Hope: cryptosystems as secure as isogeny problem is hard

Hard even for quantum 
algorithms

Post-quantum 

cryptography
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The Isogeny problem 

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny… 

• How to represent an isogeny? 

• Build "big" isogenies as formal compositions of "small" ones

(x, y) x 
2 + 1
x

y (x 
2 – 1)
x 

2
,( )⟼

(degree 2)
fine for small degree…

solution typically has degree ≈ 2256
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deg(𝜑 ∘ 𝜓) = deg(𝜑) · deg(𝜓)



The Isogeny problem 

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny… 

• How to represent an isogeny? 

• Build "big" isogenies as formal compositions of "small" ones

(x, y) x 
2 + 1
x

y (x 
2 – 1)
x 

2
,( )⟼

(degree 2)
fine for small degree…

solution typically has degree ≈ 2256

E1 ⟶ E2 ⟶ E3 ⟶ … ⟶ E257
2

degree 2256

2 2 2
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• Fix small ℓ (say, ℓ = 2). Can easily compute ℓ-isogenies

Isogeny graph

E1 E2

an isogeny of degree ℓ = an edge in a graph

E3

E4



• Fix small ℓ (say, ℓ = 2). Can easily compute ℓ-isogenies

Isogeny graph

E1 E2

an isogeny of degree ℓ = an edge in a graph

E3

E4

∃ ℓ-isogeny E1 → E2 ⇒ ∃ ℓ-isogeny E2 → E1



• Fix small ℓ (say, ℓ = 2). Can easily compute ℓ-isogenies 

• The (supersingular…)ℓ-isogeny graph 

• (ℓ + 1)-regular, connected, finite (all supersingular curves are defined over 𝔽p2)

Isogeny graph

E1 E2

E3

E4

E7

E6

E5







The ℓ-isogeny path problem

• Path finding in a graph of size ≈ p/12 

• Hard for supersingular curves! Best known algorithm = generic graph algorithm 

• Typical meaning of “the isogeny problem”

The 𝓵-IsogenyPath problem 

Given E1 and E2 (supersingular) find  
an 𝓵-isogeny path from E1 to E2
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Isogeny-based 
cryptography

Computational problems 
and cryptosystems



Security of 
cryptosystemsThe isogeny problem =

Hope: cryptosystems as secure as isogeny problem is hard

Hard even for quantum 
algorithms

Post-quantum 

cryptography

Isogeny-based cryptography
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A one-way function
• One-way function: a function f : X → Y which is 

➡ Easy to evaluate: given x ∈ X, it is easy to compute f(x) 

➡ Hard to invert: given y ∈ Y, it is hard to find some x ∈ X such that f(x) = y
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A supersingular 
2-isogeny graph

✦ Very large 
✦ 3-regular 
✦ Connected

A one-way function



E0

Fix a reference 
vertex E0

Input: a message 
m in {0,1}*

m = 0001

A one-way function



E0

Fix a reference 
vertex E0

Input: a message 
m in {0,1}*

m = 0001

0

1

A one-way function



E0

Fix a reference 
vertex E0

Input: a message 
m in {0,1}*

m = 0001

0

1

A one-way function



E0 Input: a message 
m in {0,1}*

m = 0001

0

1
0
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E0 Input: a message 
m in {0,1}*

0
0

0

1
m = 0001

= f(m)

A one-way function
Fix a reference 

vertex E0



E0

0
0

0

1

= f(m)

A one-way function

The CGL hash 
function

[Charles, Goren, Lauter – 
Journal of Cryptology 2009]



E0

Preimage problem: 
Given E0 and f(m), find m

= f(m)

ℓ-IsogenyPath
=

0
0

0

1

A one-way function



Security of 
cryptosystemsThe isogeny problem =

Hope: cryptosystems as secure as isogeny problem is hard

Hard even for quantum 
algorithms

Post-quantum 

cryptography

Isogeny-based cryptography

A one-way function👍
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Isogeny-based cryptography
Reality: upper and lower bounds

= CGL hash function (preimage)𝓵-IsogenyPath

Security of 
cryptosystems?? ≤

≤ CSIDH (key recovery)Vectorisation
≤ SIDH (key recovery)SSI-T

𝓵-IsogenyPath≤

≤ SQIsign (soundness)OneEnd
≤ CGL hash function (collision)OneEnd

💀
[Castryck, Decru] 

[Maino, Martindale, 

Panny, Pope, W.] 

[Robert]  

Eurocrypt 2023
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Endomorphisms
And the supersingular 

endomorphism ring 
problem



E0

= f(m1) = f(m2)

an endomorphism 
of E0

Is the CGL hash 
function collision-

resistant?

The CGL hash function



Endomorphism ring

An endomorphism of E is an isogeny 𝜑 : E → E (or the zero map [0]) 

The endomorphism ring of E is End(E) = {𝜑 : E → E} 

• 𝜑 + 𝜓 is pointwise addition: (𝜑 + 𝜓)(P) = 𝜑(P) + 𝜓(P)  

• 𝜑𝜓 is the composition: (𝜑𝜓)(P) = 𝜑(𝜓(P)) 

Multiplication by m ∈ ℤ is an endomorphism 

[m] : E → E : P ⟼ P + … + P   

It forms a subring ℤ ⊂ End(E)



Endomorphism ring

What is the structure of End(E)? 

• It contains ℤ ⊂ End(E)… 

• (End(E), +) is a lattice of dimension 2 or 4 

0 1 2 3 4–1–2–3 5 6 7-4-5 ℤ



Endomorphism ring

What is the structure of End(E)? 

• It contains ℤ ⊂ End(E)… 

• (End(E), +) is a lattice of dimension 2 or 4  

A curve E is supersingular if (End(E), +) is a lattice of dimension 4 

Then, there is a ℤ-basis 1, 𝛼2, 𝛼3, 𝛼4: as a lattice, 

End(E) = ℤ ⊕ ℤ𝛼2 ⊕ ℤ𝛼3 ⊕ ℤ𝛼4



Endomorphism ring

What is the structure of End(E)? 

• It contains ℤ ⊂ End(E)… 

• (End(E), +) is a lattice of dimension 2 or 4  

• Has a Euclidean norm: ||𝛂||2 = deg(𝛂) 

• Scalar product ⟨𝛂, 𝛃⟩ = (deg(𝛂 + 𝛃) – deg(𝛂 – 𝛃))/4, volume… 

A curve E is supersingular if (End(E), +) is a lattice of dimension 4  

Then, there is a ℤ-basis 1, 𝛂2, 𝛂3, 𝛂4: as a lattice, 

End(E) = ℤ ⊕ ℤ𝛂2 ⊕ ℤ𝛂3 ⊕ ℤ𝛂4



The endomorphism ring problem

Given a supersingular E, 
"compute End(E)"…

EndRing: Find four endomorphisms that form a basis of End(E)



Example

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and 

Consider E0 : y2 = x3 + x 

Two non-trivial endomorphisms: 

• 𝜋 : E0 → E0 : (x, y) ⟼ (xp, yp) 

• 𝜄 : E0 → E0 : (x, y) ⟼ (–x, 𝛼y)

𝜋2 = [–p]
𝜄2 = [–1]

and 𝜄𝜋 = –𝜋𝜄

End(E0) = ℤ ⊕ ℤ𝜄 ⊕ ℤ𝜋 ⊕ ℤ𝜄𝜋 
?



Example

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and 

Consider E0 : y2 = x3 + x 

Two non-trivial endomorphisms: 

• 𝜋 : E0 → E0 : (x, y) ⟼ (xp, yp) 

• 𝜄 : E0 → E0 : (x, y) ⟼ (–x, 𝛼y)

𝜋2 = [–p]
𝜄2 = [–1]

and 𝜄𝜋 = –𝜋𝜄

End(E0) = ℤ ⊕ ℤ𝜄 ⊕ ℤ             ⊕ ℤ𝜄 + 𝜋
2

1 + 𝜄𝜋
2 EndRing



The endomorphism ring problem

Given a supersingular E, 
"compute End(E)"…

EndRing: Find four endomorphisms that form a basis of End(E) 

MaxOrder: Compute the "abstract structure" of End(E) 

• End(E) is isomorphic to a ring of quaternions. Find which!



Quaternion algebra

The quaternion algebra Bp,∞ is the ring (for p ≡ 3 (mod 4)) 

Bp,∞ = ℚ ⊕ ℚ i ⊕ ℚ j ⊕ ℚ k 

where i 2 = –1, j 2 = –p, and k = ij = –ji  

End(E ) is (isomorphic to) a discrete subrings of Bp,∞  

‣ End(E ) is a maximal order in Bp,∞  

‣ There are many maximal orders in Bp,∞ 



The endomorphism ring problem

Given a supersingular E, 
"compute End(E)"…

EndRing: Find four endomorphisms that form a basis of End(E) 

MaxOrder: Compute the "abstract structure" of End(E) 

• Find a subring of Bp,∞ isomorphic to End(E)



Example

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and 

Consider E0 : y2 = x3 + x 

Two non-trivial endomorphisms: 

• 𝜋 : E0 → E0 : (x, y) ⟼ (xp, yp) 

• 𝜄 : E0 → E0 : (x, y) ⟼ (–x, 𝛼y)

𝜋2 = [–p]
𝜄2 = [–1]

and 𝜄𝜋 = –𝜋𝜄

End(E0) = ℤ ⊕ ℤ𝜄 ⊕ ℤ             ⊕ ℤ𝜄 + 𝜋
2

1 + 𝜄𝜋
2

≃ ℤ ⊕ ℤi ⊕ ℤ             ⊕ ℤi + j
2

1 + ij
2

 ⊂ Bp,∞ 

EndRing
MaxOrder



E0

= f(x1) = f(x2)

an endomorphism 
of E0

Collision-finding

OneEnd

≤The CGL hash function

The OneEnd problem 

Given E (supersingular) find one 
endomorphism 𝛼 ∈ End(E) \ ℤ
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The endomorphism ring problem

EndRing: Find four endomorphisms that form a basis of End(E) 

MaxOrder: Compute the "abstract structure" of End(E) 

• Find a subring of Bp,∞ isomorphic to End(E) 

OneEnd: Find a single non-scalar endomorphism in 𝛼 ∈ End(E) \ ℤ

Given a supersingular E, 
"compute End(E)"…



Foundations
Relations between 

problems



Which is hardest? Easiest?

EndRing

MaxOrder

𝓵-IsogenyPath

OneEnd
Isogeny
49



Relating OneEnd to EndRing

Suppose we can solve EndRing. Can we solve OneEnd? 

Given E, we solve OneEnd for E as follows: 
1. Solve EndRing for E, finding a basis 1, 𝛂2, 𝛂3, 𝛂4 of End(E) 

2. Return 𝛂2  

We have that 𝛂2 ∈ End(E) \ ℤ because 𝛂2 is not in span(1) = ℤ

50



Which is hardest? Easiest?

EndRing

MaxOrder

𝓵-IsogenyPath

OneEnd ?
Isogeny
51



Relating OneEnd to Isogeny

Suppose we can solve Isogeny. 
Can we solve OneEnd? 

How to find endomorphisms of E: 

Does 𝛙 ∘ 𝛗 ∈ ℤ? 

‣ Not if 𝛗 is long enough, and has 
cyclic kernel

E
F

1) Random 
walk

2) Solve Isogeny

3) Profit

52

𝛗

𝛙



Which is hardest? Easiest?

EndRing

MaxOrder

𝓵-IsogenyPath

OneEnd
Isogeny
53
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Supersingular curves E over 𝔽p2  
(up to isomorphism)

Maximal orders 𝓞 in Bp,∞  
 𝓞 ≃ End(E ) 

(up to isomorphism)

Isogenies 𝜑 : E → E’ 
(𝓞,𝓞’)-ideals I, 

𝓞 ≃ End(E ) and 𝓞’ ≃ End(E’ )

Isogeny World Quaternion World

𝓵-Isogeny Path:  

Given E and E’,  
find 𝜑 : E ⟶ E’ of degree 𝓵n

HARD
𝓵-Quaternion Path:  

Given 𝓞 and 𝓞’, find an 
(𝓞,𝓞’)-ideal I of norm 𝓵n

HARD? EASY?
MaxOrder

Deuring correspondence



Solving the Quaternion Path Problem

Theorem: There exists an algorithm that solves the 𝓵-quaternion 
path problem in expected polynomial time (assuming GRH). 

Full proof under GRH: [W. – FOCS 2021] The supersingular isogeny path and 
endomorphism ring problems are equivalent. 

Much faster, but heuristic algorithm: [Kohel, Lauter, Petit, Tignol – ANTS 2014] On 
the quaternion ℓ-isogeny path problem.

The "KLPT" algorithm



Supersingular curves E over 𝔽p2  
(up to isomorphism)

Maximal orders 𝓞 in Bp,∞  
 𝓞 ≃ End(E ) 

(up to isomorphism)

Isogenies 𝜑 : E → E’ 
(𝓞,𝓞’)-ideals I, 

𝓞 ≃ End(E ) and 𝓞’ ≃ End(E’ )

Isogeny World Quaternion World

𝓵-Isogeny Path:  

Given E and E’,  
find 𝜑 : E ⟶ E’ of degree 𝓵n

HARD
𝓵-Quaternion Path:  

Given 𝓞 and 𝓞’, find an 
(𝓞,𝓞’)-ideal I of norm 𝓵n

EASY
MaxOrder

Deuring correspondence



Which is hardest? Easiest?

EndRing

MaxOrder

𝓵-IsogenyPath

OneEnd
Isogeny
57

GRH



Which is hardest? Easiest?

EndRing MaxOrder 𝓵-IsogenyPathGRH GRH

Proof assuming GRH: 
[W. – FOCS 2021] The supersingular isogeny path and endomorphism ring problems are equivalent. 

Earlier heuristic reductions: 
[Petit, Lauter – preprint 2017] Hard and Easy Problems for Supersingular Isogeny Graphs. 
[Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018] Supersingular isogeny graphs 
and endomorphism rings: Reductions and solutions.



Which is hardest? Easiest?

EndRing

OneEnd

GRH

CGL collision-resistance
SQIsign soundness

MaxOrder 𝓵-IsogenyPathGRH



Which is hardest? Easiest?

EndRing

OneEnd

GRH

CGL collision-resistance
SQIsign soundness

[Page, W. – Eurocrypt 2024] The supersingular Endomorphism 
Ring and One Endomorphism problems are equivalent.

MaxOrder 𝓵-IsogenyPathGRH



Which is hardest? Easiest?

EndRing

OneEnd

GRH

Isogeny

Unconditional!

MaxOrder 𝓵-IsogenyPathGRH



Which is hardest? Easiest?

EndRing

OneEnd Isogeny

MaxOrder 𝓵-IsogenyPathGRH

[Herlédan Le Merdy, W. — to appear] Unconditional foundations for supersingular 
isogeny-based cryptography 



Average hardness
and worst-case to 

average-case reductions



= f(x)

E0 x

A one-way function

64

The CGL hash 
function

[Charles, Goren, Lauter – 
Journal of Cryptology 2009]



= f(x)

E0

Breaking one-wayness: 
Given E0 and f(x), find x

ℓ-IsogenyPath
=

A one-way function

65

x



A one-way function
• One-way function: a function f : X → Y which is 

➡ Easy to evaluate: given x ∈ X, it is easy to compute f(x) 

➡ Hard to invert: given y ∈ Y, it is hard to find some x ∈ X such that f(x) = y 

➡ Hard to invert: let x ∈ X uniformly random, and y = f(x). There is no efficient 
algorithm A such that A(y) outputs a preimage of y with good probability

For security, we care about average hardness
A problem should be hard on average for random inputs

66



E0

A one-way function

67

random x 
= a random walk

= f(x) uniformly 
distributed?



Rapid mixing
• Some graphs have better "mixing" properties than others…

68

Stays close to starting 
point for a long time… Rapidly goes anywhere



Rapid mixing

69

Stays close to starting 
point for a long time… Rapidly goes anywhere

"slow mixing" "rapid mixing"



Rapid mixing

70

Rapidly goes anywhere
"rapid mixing"The best mixers are 

Ramanujan graphs

Theorem: In a Ramanujan graph with n 
vertices, a random walk of length ≈log(n) 
reaches a distribution indistinguishable 
from uniform.



E0

A one-way function

Theorem [Pizer, 1990]:  
The 𝓁-isogeny graph is a 
Ramanujan graph with  

≈p/12 vertices. In 
particular, random walks 

mix rapidly.

71

random x 
= a random walk

= f(x) uniformly 
distributed



• Let A an algorithm breaking one-
wayness: given E uniformly distributed, 
A(E) finds a path E0 → E with good 
probability

E0

CGL is one-way

E
uniformly 
distributed

A(E)

=f(A(E))



uniformly 
distributed

• Let A an algorithm breaking one-
wayness: given E uniformly distributed, 
A(E) finds a path E0 → E with good 
probability 

• Let (E1, E2) an instance of 𝓵-IsogenyPath 

1. Random walk E1 → F1  

2. Call A(F1) 

3. Same for E2… 

4. Return concatenation of paths 

• Solves 𝓵-IsogenyPath (worst case)

E0

CGL is one-way

E1

E2

F1

F2

uniformly 
distributed

A(F1)

A(F2)



If 𝓵-IsogenyPath is hard (worst case problem), 
then CGL is one-way (average-case problem) E0

CGL is one-way

E1

E2

F1

F2

A(F1)

A(F1)



A worst-case to average-case reduction: 

If 𝓵-IsogenyPath is hard (in the worst case), 
then 𝓵-IsogenyPath is hard on average for 
uniformly random input

Worst-case to average case reductions

E1

E2

F1

F2

3) Solve an 
average-case 

instance

1) Given an 
arbitrary 
instance

2) Randomize…



Which is hardest? Easiest?

EndRing

OneEnd Isogeny

MaxOrder
𝓵-IsogenyPath

Assuming GRH, if any of these is hard in the worst case, then all are hard on average! 
Without GRH, almost always true. 
[Herlédan Le Merdy, W. — to appear] Unconditional foundations for supersingular 
isogeny-based cryptography 



Solving 𝓵-IsogenyPath
and Isogeny, EndRing, 
OneEnd, MaxOrder…



How hard are they?

EndRing

OneEnd Isogeny

MaxOrder
𝓵-IsogenyPath

They are all as hard as each other… 
But how hard is that?



Solving 𝓵-IsogenyPath

The 𝓵-IsogenyPath problem 

Given E1 and E2 (supersingular) find  
an 𝓵-isogeny path from E1 to E2

E1 E2



Solving 𝓵-IsogenyPath

E1 E2

The supersingular 𝓵-isogeny graph 
✦ Approximately p/12 vertices 
✦ Ramanujan



Solving 𝓵-IsogenyPath

E1 E2
Probability to hit E2 = O(1/p)

Uniformly 
distributed

Success after O(p) attempts…

length ≈ log(p)



Solving 𝓵-IsogenyPath

E1 E2

Build table of p1/2 vertices

Success after O(p1/2) attempts!



Theorem: There is an algorithm for 𝓵-IsogenyPath in time Õ(p1/2) 

Corollary: One can solve Isogeny, EndRing, MaxOrder and OneEnd in time Õ(p1/2) 

Theorem [Delfs, Galbraith — DCC 2016]: There is an algorithm for Isogeny in time 
Õ(p1/2) and space log(p)O(1)

Solving 𝓵-IsogenyPath



Solving Isogeny

E1 E2

Success after O(p1/2) attempts!

Curves over 𝔽p

O(p1/2) smaller graph, 
"easier" problem…



OneEnd = EndRing
OneEnd to find them all

© MEE & © Wizards of the Coast



Suppose we have an oracle 𝓞 solving OneEnd 

Let E be an instance of EndRing: we wish to find generators of End(E) 

Idea 0: Sample until you make it… 

1. For i = 1, 2,… call 𝓞(E), which returns some αi ∈ End(E) \ ℤ 

2. As soon as (αi)i generates End(E), extract a basis and return it 

Idea 1  [Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018]:  
Randomize the oracle…

Reducing EndRing to OneEnd

Efficient linear 
algebra!👍

What if 𝓞(E) always 
returns the same α?👍



Idea 1: Randomize the oracle 
We construct a new oracle Rich𝓞 

On input E: 
1. Sample a random isogeny 𝜑 : E → F 

2. Call 𝓞(F) which returns α ∈ End(F) \ ℤ 

3. Return 𝜑 ∘ α ∘ 𝜑 ∈ End(E) \ ℤ

Enriching the oracle

^

E
F



Idea 1: Randomize the oracle 

1. For i = 1, 2,… call Rich𝓞(E), which returns some αi ∈ End(E) \ ℤ 

2. As soon as (αi)i generates End(E), extract a basis and return it 

Heuristic claim [Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018]: 
Rich𝓞 is "random enough": it rapidly produces a generating set 

Problem: It fails. There exist oracles 𝓞 for which the algorithm does not terminate

Reducing EndRing to OneEnd



Idea 2: Prove that the ring generated by (αi)i eventually stabilizes 

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation 

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ 

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

From a generating set of ℤ + M·End(E), one can find a basis of End(E) 👍
"Eventually" = exponential time 👍



Idea 2: Prove that the ring generated by (αi)i eventually stabilizes 

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation 

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ 

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

From a generating set of ℤ + M·End(E), one can find a basis of End(E) 👍
"Eventually" = exponential time 👍

Deuring correspondence

Jacquet–Langlands correspondence

Deligne’s bound on coefficients 
of modular forms

+

+

The tough part!



Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation 

Select E, call α ← 𝓞(E), return (E, α) 

Select E, a random isogeny 𝜑 : E → F, call α ← 𝓞(F), return (E, 𝜑 ∘ α ∘ 𝜑) 

• Long walk (i.e., large degree 𝜑) ⇒ T(D0) converges to a stationary distribution 

• Stationary distribution ⇒ stable under conjugation 

• Spectral analysis of the operator T gives convergence speed

Stabilization

^

A "random walk operator" T on the space 
of probability distributions of (E, α)

Random variable with distribution D0

D1 = T(D0) 



Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation

Stabilization

Deuring correspondence

Jacquet–Langlands correspondence

Deligne’s bound on coefficients 
of modular forms

+

+

The random walk operator is a Hecke operator on 
quaternionic automorphic forms

Elliptic curves → Quaternions

Eigenvalues of the Hecke operator can be read 
off the coefficients of a classical modular form

Quaternions → Modular forms

Bounds on coefficients imply bounds on 
eigenvalues of the random walk operator

Modular forms → … Modular forms



Outline of the reduction: 
1. Initialize S = { 1 } 
2. While S does not generate a ring of the form ℤ + M·End(E), do: 

3. Sample α ← Rich𝓞(E)  

4. α ← LazyReduce(α) 

5. Add α to S 

6. Extract from S a basis of End(E), and return it

Reducing EndRing to OneEnd

In exponential time… 👍

Terminates! 👍

(Idea 3)



Idea 3: Stabilization can be made much faster by "reducing" each oracle output αi. 

Next problem: "Reducing" requires factoring large integers… 

Idea 4: "Lazy reduction": do a partial factorization, and if something fails, it reveals 
a new factor

Faster stabilization



Outline of the reduction: 
1. Initialize S = { 1 } 
2. While S does not generate a ring of the form ℤ + M·End(E), do: 

3. Sample α ← Rich𝓞(E)  

4. α ← LazyReduce(α) 

5. Add α to S 

6. Extract from S a basis of End(E), and return it

Reducing EndRing to OneEnd

Polynomial time ! 🍾

(Idea 3)
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