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Text books

The mathematical details of this presentation can be found in

[Sil09] J. H. Silverman, The Arithmetic of Elliptic Curves

[Was08] L. C. Washington, Elliptic Curves: Number Theory and
Cryptography
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Notation

p is a prime number not equal to 2 or 3.

q is a power of p.

We only consider elliptic curves defined by

y2 = x3 + ax2 + bx+ c, a, b, c ∈ Fp.

If not specified, an elliptic curve is defined over Fq.

Elliptic curves are denoted by E,E′, E1, E2, . . .

The neutral element of an elliptic curve E is denoted by 0E .

For P ∈ E, the x-coordinate of P is denoted by x(P )
(similarly for y(P )).

The multiplication-by-n map is denoted by [n].
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Isogeny (Definition)

Definition 1

Let E1 and E2 be elliptic curves.
An isogeny is a non-constant rational map

φ : E1 → E2

such that φ(0E1) = 0E2 .

Theorem 2 (Theorem III.4.8 in [Sil09])

Let φ : E1 → E2 be an isogeny. Then φ is a group homomorphism, i.e.,

φ(P +Q) = φ(P ) + φ(Q)

for all P,Q ∈ E1.
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Isogeny (Explicit form)

Since we consider elliptic curves defined by y2 = x3 + ax2 + bx+ c,
we can write an isogeny φ in the form

φ(x, y) =

(
g1(x)

h1(x)
, y

g2(x)

h2(x)

)
,

where

g1, h1, g2, h2 are polynomials over Fp,
g1 (resp. g2) and h1 (resp. h2) have no common factors,

h1 and h2 have the same roots.

For P ∈ E1,

φ(P ) = 0E2 ⇔ P = 0E1 or h1(x(P )) = 0.

If g1, h1, g2, h2 are polynomials over Fqk , then we say φ is defined over Fqk .
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Example (Scalar multiplication)

Let m be a nonzero integer. Then the multiplication-by-m map

[m] : E → E

is an isogeny.
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Example

Consider two elliptic curves E1 and E2:

E1 :y
2 = x3 + ax2 + bx,

E2 :y
2 = x3 − 2ax2 + (a2 − 4b)x,

where a, b ∈ Fq and b(a2 − 4b) ̸= 0.

The map φ : E1 → E2 defined by

φ(x, y) =

(
x2 + ax+ b

x
, y

b− x2

x2

)
is an isogeny defined over Fq.
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Example (Frobenius map)

Let E be an elliptic curve defined by y2 = x3 + ax2 + bx+ c.

For an integer k ≥ 0, we define an elliptic curve E(pk) by

E(pk) : y2 = x3 + ap
k
x2 + bp

k
x+ cp

k
.

Then the pk-th power Frobenius map πpk : E → E(pk) defined by

πpk(x, y) = (xp
k
, yp

k
)

is an isogeny.

Note:
yp

k
= y(x3 + ax2 + bx+ c)(p

k−1)/2.
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Isogeny theorem

Theorem 3 (Exercise 5.4 in [Sil09])

Let E1 and E2 be elliptic curves over Fq.
Then the following are equivalent:

There exists an isogeny φ : E1 → E2 defined over Fqk .
#E1(Fqk) = #E2(Fqk).

Remark� �
The latter statement does NOT mean E1(Fqk) ∼= E2(Fqk) as groups.

E.g., There is an isogeny defined over F7 between

E1 : y
2 = x3 − x and E2 : y

2 = x3 + 4x.

Easy calculation shows that

E1(F7) ∼= Z/2Z× Z/4Z and E2(F7) ∼= Z/8Z.� �
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Degree of isogeny

Definition 4

Let φ : E1 → E2 be an isogeny given by

φ(x, y) =

(
g1(x)

h1(x)
, y

g2(x)

h2(x)

)
.

The degree of φ is max{deg g1, deg h1} and is denoted by degφ.

Proposition 5

Let φ : E1 → E2 and ψ : E2 → E3 be isogenies. Then

deg(ψ ◦ φ) = degψ · degφ.
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Degree of isogeny (Examples)

deg πpk = pk.

The isogeny defined by

φ(x, y) =

(
x2 + ax+ b

x
, y

b− x2

x2

)
is of degree 2.

Hiroshi Onuki Introduction on Isogenies 11 / 52



Endomorphism

Definition 6

Let E be an elliptic curve. An endomorphism of E is

an isogeny φ : E → E

or the zero map (P 7→ 0E for all P ∈ E).

[n] is an endomorphism for all n ∈ Z.

πq : (x, y) 7→ (xq, yq) is an endomorphism.

(∵ E is defined over Fq ⇒ E = E(q))
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Endomorphism ring

Definition 7

The set of all endomorphisms of an elliptic curve E forms a ring under
the point-wise addition and composition.

I.e., for endomorphisms α, β of E,

(α+ β)(P ) := α(P ) + β(P ) for all P ∈ E,

α · β := α ◦ β.
We call this ring the endomorphism ring of E and denote it by End(E).

Theorem 8 (Theorem III.9.3 and Theorem V.3.1 in [Sil09])

E is ordinary

⇔ End(E) ∼= an order in an imaginary quadratic field.

E is supersingular

⇔ End(E) ∼= a maximal order in a quaternion algebra.
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Isomorphism

Definition 9

An isomorphism is an isogeny of degree 1.

Two elliptic curves E1 and E2 are isomorphic
if there is an isomorphism φ : E1 → E2. We denote this by E1

∼= E2.

If φ is defined over Fqk , then we say E1 and E2 are isomorphic over Fqk .
We denote this by E1

∼=F
qk
E2.

Remark� �
If φ is an isomorphism, then φ is bijective.
However, the converse is NOT true in general.� �

E.g., the p-th power Frobenius map πp is bijective but not an isomorphism.
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Automorphism

Definition 10

An automorphism is an isomorphism from an elliptic curve to itself.

Definition 11

The set of all automorphisms of an elliptic curve E forms a group under
the composition.

We call this group the automorphism group of E and denote it by Aut(E).

Note: Aut(E) is the unit group of End(E).
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Automorphism group

Proposition 12 (Theorem III.10.1 and Corollary III.10.2 in [Sil09])

Let E be an elliptic curve.

1 Aut(E) = {[±1]} if j(E) ̸= 0, 1728.

2 Aut(E) ∼= Z/4Z if j(E) = 1728.

3 Aut(E) ∼= Z/6Z if j(E) = 0.

For E : y2 = x3 + x with j(E) = 1728,

(x, y) 7→ (−x,
√
−1y)

generates Aut(E).

For E : y2 = x3 + 1 with j(E) = 0,

(x, y) 7→ (ζ3x,−y)
generates Aut(E). (ζ3 is a primitive 3rd root of unity in Fp.)
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Separable isogeny (Definition)

Definition 13

Let φ : E1 → E2 be an isogeny given by

φ(x, y) =

(
g1(x)

h1(x)
, y

g2(x)

h2(x)

)
.

We say φ is separable if
d

dx

g1(x)

h1(x)
̸= 0 as a rational function,

otherwise φ is inseparable.

The pk-th power Frobenius map πpk is inseparable.

The isogeny defined by

φ(x, y) =

(
x2 + ax+ b

x
, y

b− x2

x2

)
is separable.
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Separable isogeny (Properties)

Proposition 14 (Corollary II.2.12 in [Sil09])

An isogeny φ : E1 → E2 decomposes into a composition

E1

π
pk
// E

(pk)
1

ψ
// E2,

where ψ is separable.

Corollary 15

φ is inseparable ⇔ g1(x)

h1(x)
=
r(xp)

s(xp)
for some polynomials r, s.

φ is inseparable ⇒ degφ ≡ 0 (mod p).
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Kernel of isogeny (Definition)

Definition 16

Let φ : E1 → E2 be an isogeny. The kernel of φ is

kerφ = {P ∈ E1 | φ(P ) = 0E2}.

ker[n] = E1[n].

kerπpk = {0E1}.

The kernel of the isogeny defined by

φ(x, y) =

(
x2 + ax+ b

x
, y

b− x2

x2

)
is {0E1 , (0, 0)}.
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Kernel of isogeny (Properties)

Proposition 17 (Theorem III.4.10 in [Sil09])

Let φ be an isogeny. Then

#kerφ ≤ degφ.

If φ is separable then #kerφ = degφ.

Let φ be the isogeny defined by

φ(x, y) =

(
x2 + ax+ b

x
, y

b− x2

x2

)
.

φ is separable, degφ = 2, and #kerφ = #{0E1 , (0, 0)} = 2.
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Kernel of isogeny (Properties)

Proposition 18 (Proposition III.4.12 in [Sil09])

Let E be an elliptic curve and G be a finite subgroup of E.
Then there exist a unique (up to isomorphism) E′ and a separable isogeny

φ : E → E′

such that kerφ = G. (E′ and φ are not necessarily defined over Fq.)

”up to isomorphism” means:
E′′ and ψ satisfy the same conditions ⇒ there is an isomorphism ι s.t.

E
φ

//

ψ
$$

⟳
E′

ι
��

E′′

We denote E′ by E/G.
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Kernel of isogeny (Properties)

Proposition 19 (Remark III.4.13.2 in [Sil09])

In the previous proposition, suppose that G is invariant under
the qk-th power Frobenius map πqk , i.e.,

πqk(P ) ∈ G for all P ∈ G.

Then there exist a unique (up to isomorphism over Fqk)
E′ defined over Fqk and a separable isogeny

φ : E → E′

defined over Fqk such that kerφ = G.

Hiroshi Onuki Introduction on Isogenies 22 / 52



Equivalence of isogenies

Definition 20

Two separable isogenies φ1 and φ2 are equivalent if kerφ1 = kerφ2.

Let φ1 and φ2 be equivalent isogenies with the same codomain.

E1

φ1
//

φ2

// E2

By Proposition 18, ∃ι ∈ Aut(E2) such that φ1 = ι ◦ φ2.

More explicitly, one of the following holds:

φ1 = φ2 or φ1 = −φ2.

j(E2) = 1728 and φ1 = ι ◦ φ2 for ι ∈ Aut(E2) of order 4.

j(E2) = 0 and φ1 = ι ◦ φ2 for ι ∈ Aut(E2) of order 3 or 6.

Hiroshi Onuki Introduction on Isogenies 23 / 52



Equivalence of isogenies

Definition 20

Two separable isogenies φ1 and φ2 are equivalent if kerφ1 = kerφ2.

Let φ1 and φ2 be equivalent isogenies with the same codomain.

E1

φ1
//

φ2

// E2

By Proposition 18, ∃ι ∈ Aut(E2) such that φ1 = ι ◦ φ2.

More explicitly, one of the following holds:

φ1 = φ2 or φ1 = −φ2.

j(E2) = 1728 and φ1 = ι ◦ φ2 for ι ∈ Aut(E2) of order 4.

j(E2) = 0 and φ1 = ι ◦ φ2 for ι ∈ Aut(E2) of order 3 or 6.

Hiroshi Onuki Introduction on Isogenies 23 / 52



Equivalence of isogenies

Definition 20

Two separable isogenies φ1 and φ2 are equivalent if kerφ1 = kerφ2.

Let φ1 and φ2 be equivalent isogenies with the same codomain.

E1

φ1
//

φ2

// E2

By Proposition 18, ∃ι ∈ Aut(E2) such that φ1 = ι ◦ φ2.

More explicitly, one of the following holds:

φ1 = φ2 or φ1 = −φ2.

j(E2) = 1728 and φ1 = ι ◦ φ2 for ι ∈ Aut(E2) of order 4.

j(E2) = 0 and φ1 = ι ◦ φ2 for ι ∈ Aut(E2) of order 3 or 6.

Hiroshi Onuki Introduction on Isogenies 23 / 52



Dual isogeny

Theorem 21 (Theorem III.6.1 in [Sil09])

Let φ : E1 → E2 be an isogeny of degree m.
Then there is a unique isogeny

φ̂ : E2 → E1 such that φ̂ ◦ φ = [m].

We call φ̂ the dual isogeny of φ and always use the notation φ̂ for it.

”Unique” means that φ̂ is literally unique.
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Dual isogeny

Proposition 22 (Theorem III.6.2 in [Sil09])

Let φ : E1 → E2 be an isogeny.

1 For another isogeny ψ : E2 → E3,

ψ̂ ◦ φ = φ̂ ◦ ψ̂.

2 For another isogeny λ : E1 → E2,

φ̂+ λ = φ̂+ λ̂.

3 For all m ∈ Z \ {0},

[̂m] = [m] and deg[m] = m2.

4 deg φ̂ = degφ.

5 ˆ̂φ = φ.
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Dual isogeny

Remark� �
Let φ1 and φ2 be equivalent isogenies with the same codomain.

E1

φ1
//

φ2

// E2

If j(E2) = 0 or 1728 and E1 ̸∼= E2, then φ̂1 and φ̂2 could be
NOT equivalent.� �

Example:
Suppose j(E2) = 1728 and let ι ∈ Aut(E2) of order 4.
An separable isogeny φ : E1 → E2 and ι ◦ φ are equivalent.

ker ι̂ ◦ φ = ker(φ̂ ◦ ι̂) = ι̂−1(ker φ̂) ̸= ker φ̂ in general.

So φ̂ and ι̂ ◦ φ are NOT equivalent in general.
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Decomposition of isogeny

Proposition 23

Let φ : E1 → E2 be a separable isogeny of degree m1m2.
Then φ can be decomposed into

E2
φ1
// E3

φ2
// E2,

where degφ1 = m1 and degφ2 = m2.

(Sketch of proof)
G := kerφ contains a subgroup G1 of order m1.

∃φ1 : E1 → E3 such that kerφ1 = G1 (Proposition 18).

∃φ2 : E3 → E4 such that kerφ2 = φ1(G) (Proposition 18).

Then ker(φ2 ◦ φ1) = φ−1
1 (G) = G1 +G = G.

Thus, there is an isomorphism ι : E4 → E2 such that φ = ι ◦ φ2 ◦ φ1.
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Isogeny of degree p

Proposition 24 (Corollary III.6.4 and Theorem V.3.1 in [Sil09])

E[m] ∼= Z/mZ⊕ Z/mZ for m ̸≡ 0 (mod p).

E[p] ∼=

{
Z/pZ if E is ordinary,

{0E} if E is supersingular.

Corollary 25

If E is ordinary, there are exactly two isogenies of degree p from E,

1 πp
2 the separable isogeny of kernel E[p].

If E is supersingular, only πp is the isogeny of degree p from E.
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Cyclic isogeny

Proposition 26

Let φ : E1 → E2 be a separable isogeny.
Then there exists an integer m such that φ can be decomposed into

E1
[m]

// E1
φ1
// E2,

where kerφ1 is cyclic.

Sketch of proof
From the structure theorem of finite abelian groups,

kerφ ∼= Z/mZ⊕ Z/nZ (m | n).

Therefore, φ can be decomposed into

E
[m]

// E
φ1
// E1,

where kerφ1 = [m] kerφ ∼= Z/(n/m)Z.
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E
[m]

// E
φ1
// E1,

where kerφ1 = [m] kerφ ∼= Z/(n/m)Z.
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Cyclic isogeny

Definition 27

Let m be a positive integer.
An m-isogeny is a separable isogeny with cyclic kernel of order m.

Theorem 28

Let m be a positive integer coprime with p.
Then the number of m-isogenies from E is

m
∏
ℓ

(
1 +

1

ℓ

)
,

where the product is taken over all prime divisors ℓ of m.

Sketch of proof
Consider the number of cyclic subgroups of order m in Z/mZ⊕ Z/mZ.
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Algorithm



Computing isogenies

Our task� �
Given an elliptic curve E and a finite subgroup G of E,
compute the codomain E′ of a separable isogeny φ with kernel G.

In addition, given a point P on E, compute φ(P ).� �

Note:

It is enough to consider separable isogenies.
∵ An inseparable is decomposed into a separable isogeny
and a Frobenius isogeny. (Frobenius isogenies are easy to compute.)

We can assume that G is cyclic.
∵ Otherwise, φ is decomposed into a scalar multiplication
and an isogeny with a cyclic kernel.
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Theorem 29 (Vélu’s Formula, Theorem 12.16 in [Was08])

Let E be an elliptic curve defined by

y2 = x3 + a2x
2 + a4x+ a6 =: f(x),

and G be a finite subgroup of E.
The following E′ and φ give an isogeny φ : E → E′ with kernel G.

E′ : y2 = x3 + a2x
2 + (a4 − 5v)x+ a6 − 4a2v − 7w,

φ(x, y) =
(
F (x), y · F ′(x)

)
,

where v =
∑

P∈G\{0E}

f ′(x(P )), w =
∑

P∈G\{0E}

(
2f(x(P )) + xf ′(x(P ))

)
,

F (x) = x+
∑

P∈G\{0E}

(
f ′(x(P ))

x− x(P )
+

2f(x(P ))

(x− x(P ))2

)
.

For a rational function r(x), r′(x) denotes the derivative of r(x).



Remarks on Vélu’s Formula

Vélu’s formula requires O(#G) operations.

We do NOT need the y-coordinate of the points in G.

∵ G = −G.

The operations in the computation are on a field containing the
x-coordinates of the points in G.

I.e., the operations are on Fqk such that

πqk(P ) = P or− P for all P ∈ G.

Note: φ could be defined over a smaller field than Fqk .

In practice, we often use Montgomery curves, which have more
efficient formulas for isogenies (see Appendix).
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Chain of isogenies

Let G be a cyclic subgroup of E of order n and φ be the separable
isogeny with kernel G.

Assume that n =
∏k
i=1 ℓi for primes ℓi (not necessarily distinct).

From Proposition 23, we can decompose φ into a chain of isogenies

E
φ1
// E1

φ2
// · · · φk // Ek

where degφi = ℓi.

In many cases,
computing φi’s sequentially is more efficient than computing φ directly.

∵ The cost of computing φ is linear in n =
∏k
i=1 ℓi,

while the cost of computing all φi’s is linear in
∑k

i=1 ℓi.
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Computing a chain of isogenies

We consider computing a chain of isogenies

E
φ1
// E1

φ2
// · · · φk // Ek

where degφi = ℓi.

Since the kernel G of the composite isogeny is cyclic, we have

kerφ1 = [n/ℓ1]G,

kerφ2 = [n/(ℓ1ℓ2)]φ1(G), (∵ #φ1(G) = n/ℓ1),

...

kerφi = [n/(ℓ1 · · · ℓi)]φi−1 ◦ · · · ◦ φ1(G),

...

kerφk = φk−1 ◦ · · · ◦ φ1(G).

Hiroshi Onuki Introduction on Isogenies 35 / 52



Computing a chain of isogenies

We consider computing a chain of isogenies

E
φ1
// E1

φ2
// · · · φk // Ek

where degφi = ℓi.

Since the kernel G of the composite isogeny is cyclic, we have

kerφ1 = [n/ℓ1]G,

kerφ2 = [n/(ℓ1ℓ2)]φ1(G), (∵ #φ1(G) = n/ℓ1),

...

kerφi = [n/(ℓ1 · · · ℓi)]φi−1 ◦ · · · ◦ φ1(G),

...

kerφk = φk−1 ◦ · · · ◦ φ1(G).

Hiroshi Onuki Introduction on Isogenies 35 / 52



Computing a chain of isogenies

Given E and x(P ) for a generator P of G, compute φi’s:

E

E1 E2 · · · Ek−1 Ek

x(K1) x(K2) x(K3) · · · x(Kk)

x(P )

x(P1) x(P2) · · · x(Pk)
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Cost of computing a chain of isogenies

We need to compute the following in each step:

Ei : O(ℓi) operations by Vélu’s formula.

x(Pi) : O(ℓi) operations by Vélu’s formula.

x(Ki) : O(log(n/(ℓ1 · · · ℓi))) operations by binary multiplication.

The total cost is

O

(
k∑
i=1

ℓi

)
+O

(
k log(n)−

k∑
i=1

(k + 1− i) log(ℓi)

)
.

Assume that maxi{ℓi} in O(1).

Then k ∈ O(log n), so the total cost is

O
(
(log n)2

)
.
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Strategy

We can reduce the cost from

O((log n)2) to O(log n log logn).

(so called stragegy technique proposed by [DFJP14])

For simplicity, we assume that n = ℓk.

We denote the cost of computing the following by

Ccod : the codomain of an ℓ-isogeny

Cevl : the image of a point under an ℓ-isogeny

Cmul : the multiplication by ℓ
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Example of strategies

Let P ∈ E be a point of order ℓ3.
Decompose the separable isogeny with kernel ⟨P ⟩ into

E
φ1

⟨K1⟩
//E1

φ2

⟨K2⟩
//E2

φ3

⟨K3⟩
//E3

Step Objects Cost

0 E, x(P )

1 x([ℓ2]P ) = x(K1) (2 Cmul)

2 E1, x(φ1(P )) (Ccod + Cevl)

3 x([ℓ]φ1(P )) = x(K2) (Cmul)

4 E2, x(φ1 ◦ φ2(P )) = x(K3) (Ccod + Cevl)

5 E3 (Ccod)

The total cost is 3Ccod + 2Cevl + 3Cmul.

⇒ We can replace Cmul by Cevl.
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Visualization of strategies

The relationship among the points in the previous example:

P
[ℓ]

��

φ1

!!

[ℓ]P

[ℓ]

��

φ1

��

φ1(P )
[ℓ]

~~

φ2

""

[ℓ2]P [ℓ]φ1(P ) φ1 ◦ φ2(P )
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Visualization of strategies

The first strategy:

P
[ℓ]

��

φ1

!!

[ℓ]P

[ℓ]

��

φ1(P )
[ℓ]

~~

φ2

""

[ℓ2]P [ℓ]φ1(P ) φ1 ◦ φ2(P )

The cost is 3Ccod + 2Cevl + 3Cmul.
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Visualization of strategies

The second strategy:

P
[ℓ]

��

φ1

!!

[ℓ]P

[ℓ]

��

φ1

��

φ1(P )
φ2

""

[ℓ2]P [ℓ]φ1(P ) φ1 ◦ φ2(P )

The cost is 3Ccod + 3Cevl + 2Cmul.
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k = 4

•
[ℓ]

��

φ1

��
•

[ℓ]

��

φ1

��

•
[ℓ]

��

φ2

��
•

[ℓ]

��

φ1

��

•
[ℓ]

��

φ2

��

•
[ℓ]

��

φ3

��
• • • •

Problem:
Choose edges connecting the top and bottom vertices to minimize the
cost.
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k = 4

•
[ℓ]

��

φ1

��
•

[ℓ]

��

•
[ℓ]

��

φ2

��
•

[ℓ]

��

•
[ℓ]

��

•
[ℓ]

��

φ3

��
• • • •

Cost: 4Ccod + 3Cevl + 6Cmul

We call this multiplication-based strategy.
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φ1

��
•

[ℓ]

��

φ1

��

•
φ2

��
•

[ℓ]

��

φ1

��

•
φ2

��

•
φ3

��
• • • •

Cost: 4Ccod + 6Cevl + 3Cmul

We call this isogeny-based strategy.

Hiroshi Onuki Introduction on Isogenies 41 / 52



k = 4

•
[ℓ]

��

φ1

��
•

[ℓ]

��

•
φ2

��
•

[ℓ]

��

φ1

��

• •
[ℓ]

��

φ3

��
• • • •

Cost: 4Ccod + 4Cevl + 4Cmul

This strategy minimizes the cost if

1

2
Cmul ≤ Cevl ≤ 2Cmul.
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Cost of strategy

Consider a chain of isogenies of length k.

The cost of the multiplication-based strategy is

kCcod + (k − 1)Cevl +
k(k − 1)

2
Cmul.

The cost of the isogeny-based strategy is

kCcod +
k(k − 1)

2
Cevl + (k − 1)Cmul.

These are O(k2).
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Cost of optimized strategy

A strategy is optimized if its cost is minimum among all strategies of the
same length.

We denote the cost of an optimized strategy by Copt(k).

Theorem 30 (Lemma 4.5 in [DFJP14])

Copt(k) = min
r+s=k

{r · Cmul + s · Cevl + Copt(r) + Copt(s)} .
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Sketch of proof

=
Cp

+ (r)

-
S

* The figure is from [DFJP14].
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Bound of cost

Theorem 31

Let C = max{Cevl, Cmul}. Then

Copt(k) ≤ k · Ccod + (k⌈log2 k⌉)C.
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Sketch of proof

Copt(k) ≤ ⌊k/2⌋C + ⌈k/2⌉C + Copt(⌊k/2⌋) + Copt(⌈k/2⌉)

= kC + Copt(⌊k/2⌋) + Copt(⌈k/2⌉)

≤ kC + kC + Copt(⌊⌊k/2⌋/2⌋) + Copt(⌈⌊k/2⌋/2⌉)
+ Copt(⌊⌈k/2⌉/2⌋) + Copt(⌈⌈k/2⌉/2⌉)

= 2kC + Copt(⌊⌊k/2⌋/2⌋) + Copt(⌈⌊k/2⌋/2⌉)
+ Copt(⌊⌈k/2⌉/2⌋) + Copt(⌈⌈k/2⌉/2⌉)

...

≤ k⌈log2 k⌉C + kCopt(1)

= k⌈log2 k⌉C + kCcod.
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Sketch of proof
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Example

Assume k = 100 and Ccod = Cevl = Cmul = C.

The cost the mulitplication-based (isogeny-based) strategy is

100C + 99C + 4950C = 5149C.

The cost of the optimized strategy is

100C + 672C = 772C.

This is about 15% of the cost of the multiplication-based strategy.
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How to compute the optimized strategy?

There exists an algorithm to compute an optimized strategy.

(see Algorithm 60 in [JAC+22])

Use Theorem 30.

The computation is recursive.

The cost is O(k2).

In applications, an optimized strategy is computed in advance.

∵ k is fixed (in most cases).
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Further topics
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Modular polynomials

Let n > 1 be an integer.

The modular polynomial of order n is a polynomial Φn(X,Y ) ∈ Z[X,Y ]
such that

Φn(j1, j2) = 0 ⇔ ∃n-isogeny φ : Ej1 → Ej2 ,

where Eji is the elliptic curve with j-invariant ji.

Example:
Φ2(X,Y ) =X3 + Y 3 −X2Y 2 + 1488(X2Y +XY 2)− 162000(X2 + Y 2)

+ 40773375XY + 8748000000(X + Y )− 157464000000000.

See Chapter 10.3 in [Was08] or Chapter 5 in [Lan87] for more details.
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√
élu’s formulas

A
√
élu’s formula is an algorithm to compute an ℓ-isogeny.

by [BDFLS20].

based on Vélu’s formula.

The cost is Õ(
√
ℓ) operations, not O(ℓ).

uses the resultant of two polynomials.

In practice,
√
élu’s formulas are faster than Vélu’s formulas for ℓ > 100.
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Radical isogenies

Radical isogenies are formulas to compute an ℓ-isogeny.

by [CDV20],

uses an ℓ-th root (radical) of an element.

Which of Vélu’s formulas or radical isogenies is faster depends on
applications.
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Appendix



Montgomery curves

Definition 32

A Montgomery curve is an elliptic curve defined by

EA : y2 = x3 +Ax2 + x, A2 ̸= 4.

We call A the Montgomery coefficient of EA.

We denote the Montgomery curve with coefficient A by EA.
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Addition on Montgomery curves

Proposition 33 (§10.3 in [Mon87])

Let EA be a Montgomery curve with the Montgomery coefficient A,
and P,Q ∈ EA \ {0EA

}. Then, the following hold:

x(P +Q)x(P −Q) =

(
x(P )x(Q)− 1

x(P )− x(Q)

)2

,

x(2P ) =
(x(P )2 − 1)2

4(x(P )3 +A · x(P )2 + x(P ))
.

Note:

x(P )− x(Q) = 0 ⇔ P +Q = 0EA
or P −Q = 0EA

.

x(P )3 +A · x(P )2 + x(P ) = 0 ⇔ [2]P = 0EA
.
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xADD and xDBL on Montgomery curves

Let EA be a Montgomery curve and P,Q ∈ EA.

From Proposition 33, we define the following two algorithms.

xADD:
Input: A, x(P ), x(Q), x(P −Q)
Output: x(P +Q)

xDBL:
Input: A, x(P )
Output: x([2]P )
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Scalar multiplication on Montgomery curves

Algorithm 1: Montgomery ladder

Input: A Montgomery coefficient A, the x-coordinate of a point
P ∈ EA, and an integer n > 0.

Output: The x-coordinate of [n]P .

1 Let (n0, n1, . . . , nk) be the binary expansion of n. // n =
∑k

i=0 ni2
i.

2 Let (x0, x1) := (x(P ), x([2]P ))
3 for i = k − 1 to 0 do
4 if ni = 1 then
5 (x0, x1) := (xADD(A, x0, x1, x(P )), xDBL(A, x0))

6 else
7 (x0, x1) := (xDBL(A, x0)), xADD(A, x0, x1, x(P ))

8 // x0 = x([nk2
k−i + · · ·+ ni2

i]P )

9 // x1 = x([nk2
k−i + · · ·+ ni2

i + 1]P )

10 return x0
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Remarks on Montgomery ladder

We can give a constant-time implementation of the Montgomery
ladder.

I.e., the computational time only depends on the bit-length of the
scalar n, not on the value of n.

If we do not need a constant-time implementation, we can construct a
more efficient differential addition chain (see [CS17] for more details).
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Isogeny formulas on Montgomery curves

Theorem 34 (2-isogeny formula, Section 4.3 in [JD11])

An isogeny φ : EA → EA′ with kernel ⟨(0, 0)⟩ is given by

A′ =
A+ 6

2
√
A+ 2

,

x(φ(P )) =
(x(P )− 1)2

(2
√
A+ 2)x(P )

for P ∈ EA.
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Isogeny formulas on Montgomery curves

Theorem 35 (2-isogeny formula, Section 1.1.9 in [JAC+22])

Let (x2, 0) be a point on EA of order 2.
Then an isogeny φ : EA → EA′ with kernel ⟨(x2, 0)⟩ is given by

A′ = 2(2− x2),

x(φ(P )) =
x(P )(x2 − x(P ))

x(P )− x2
for P ∈ EA.
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Isogeny formulas on Montgomery curves

Theorem 36 (4-isogeny formula, Section 4.3.2 in [DFJP14])

An isogeny φ : EA → EA′ with kernel ⟨(1,
√
A+ 2)⟩ is given by

A′ = 2
A+ 6

A− 2
,

x(φ(P )) =
(x(P ) + 1)2(x(P )2 +Ax(P ) + 1)

(2−A)x(P )(x(P )− 1)2
for P ∈ EA.

Theorem 37 (4-isogeny formula, Section 4.3.2 in [DFJP14])

An isogeny φ : EA → EA′ with kernel ⟨(−1,
√
A− 2)⟩ is given by

A′ = −2
A− 6

A+ 2
,

x(φ(P )) = −(x(P )− 1)2(x(P )2 +Ax(P ) + 1)

(2 +A)x(P )(x(P ) + 1)2
for P ∈ EA.
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Isogeny formulas on Montgomery curves

Theorem 38 (4-isogeny formula, Section 1.1.9 in [JAC+22])

Let (x4, y4) be a point on EA of order 4.
Then an isogeny φ : EA → EA′ with kernel ⟨(x4, y4)⟩ is given by

A′ = 4x44 − 2,

x(φ(P )) = −x(P )((x
2
4 + 1)x(P )− 2x4)(x4x(P )− 1)2

(x(P )− x4)2(2x4x(P )− x24 − 1)
for P ∈ EA.
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Isogeny formulas on Montgomery curves

Theorem 39 (Odd-degree isogeny formula, Theorem 1 in [CH17])

Let K be a point on EA of odd order ℓ. We denote the x-coordinate of
[i]K by xi for i = 1, 2, . . . , (ℓ− 1)/2.
Then an isogeny φ : EA → EA′ with kernel ⟨K⟩ is given by

A′ =

6

ℓ−1
2∑
i=1

(
1

xi
− xi

)
+A

 ℓ−1
2∏
i=1

xi

2

,

x(φ(P )) = x(P )

 ℓ−1
2∏
i=1

xix(P )− 1

x(P )− xi

2

.
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Isogeny formulas on Montgomery curves

Theorem 40 (Odd-degree isogeny formula, Section 4.2 in [MR18])

We use the same notation as in the previous theorem. Then we have

A′ = 2
a+ d

a− d
,

where a and d are defined by

a = (A+ 2)ℓ

 ℓ−1
2∏
i=1

(xi + 1)

8

,

d = (A− 2)ℓ

 ℓ−1
2∏
i=1

(xi − 1)

8

.

Note: This formula is more efficient than the previous one if ℓ ≥ 7.
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