
Theoretical Computer Science 242 (2000) 29–40
www.elsevier.com/locate/tcs

Presorting algorithms:
An average-case point of view

Hsien-Kuei Hwang a;∗, Bo-Yin Yang b, Yeong-Nan Yeh c

a Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
bDepartment of Mathematics, Tamkang University, Taipei County, Tamsui 251, Taiwan

c Institute of Mathematics, Academia Sinica, Taipei 115, Taiwan

Received December 1997; revised May 1998
Communicated by H. Prodinger

Abstract

We introduce the concept of presorting algorithms, quantifying and evaluating the performance
of such algorithms with the average reduction in number of inversions. Stages of well-known
algorithms such as Shellsort and quicksort are evaluated in such a framework and shown to
cause a meaning drop in the inversion statistic. The expected value, variance and generating
function for the decrease in number of inversions are computed. The possibility of “presorting”
a sorting algorithm is also investigated under a similar framework. c© 2000 Elsevier Science
B.V. All rights reserved

Keywords: Presorting; Measure of presortedness (mop)

1. Introduction

Sorting is generally considered to be one of the most fundamental problems in com-
puter science. It is omnipresent and inevitable in almost any serious application, and
it is said that about a quarter of computer cycles used are spent sorting. Furthermore,
it is a suitable “prototype problem” – a problem that is easily modeled and has good
mathematical properties, as well as one which combinatorialists, statisticians, proba-
bilists and computer scientists has long been studying, providing a steady source of
good problems and theoretical innovations. See [7, 12, 13] for more information.
Since each of the major families of sorting algorithms has its strengths and weak-

nesses and none is “universally” e�cient, the idea of “adaptive sorting algorithms”
or “input sensitive algorithms” naturally arises. Several algorithms have been devised
to take into account and exploit the existing order of the input sequence. Burge [1]

∗ Corresponding author.
E-mail address: hkhwang@stat.sinica.edu.tw (H. Hwang).

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved
PII: S0304 -3975(98)00181 -9

30 H.K. Hwang et al. / Theoretical Computer Science 242 (2000) 29–40

�rst incorporated such an idea into the analysis of sorting algorithms; Mehlhorn [10]
proposed a more concrete realization by giving a sorting algorithm “smoothly adaptive”
to the number of inversions In of the input sequence (with n elements), de�ned as
the number of disordered pairs. Roughly, if the input has few number of inversions,
say, In = O(n), then the algorithm is linear; the algorithm remains O(n log n) when
the number of inversions increases up to O(n2). These ideas were then formalized
and synthesized in Mannila’s �ne paper [9] on measures of presortedness (here and
throughout, mop).
Following Mehlhorn and Mannila, a number of authors considered this adaptive

aspect of sorting algorithms. The general pattern of approach is to �rst devise a new
mop, to prove that it is not compatible with existing ones, and then to design an
optimal sorting algorithm with respect to this mop. Parallel and randomized extensions
of the problem have also been studied; see the survey by Petersson and Mo�at [11]
and the references therein.
In this paper, we take a di�erent point of view by considering presorting algorithms.

Instead of passively measuring the quantity of presortedness of the input, we actively
“create” sortedness of the input by performing certain simple procedures with an aim to
decrease the quantity of some mop. To give a rough analogy, a barber routinely spray
the to-be-shorn hair with water. The idea is to make the hair easier to handle before
the shears are applied. Note that “preprocessing” a problem is in fact a time-honored
approach, and not at all a con
icting concept to measuring presortedness.
While preprocessing has been widely applied in diverse problems, the usefulness

of its application to problems as fundamental (and simple) as sorting is not obvious.
At an abstract level, we may regard the heap construction as a preprocessing unit
for heapsort. Likewise, the collection of ascending runs in natural mergesort (cf. [7])
is also a preprocessing procedure. We do not, however, view the construction of the
binary search tree as a preprocessing for sorting, the di�erence here being that the
construction itself costs more than the steps that remain – in this case the in-order
traversal – and is thus not e�cient in the following sense.
In general, a preprocessing algorithm, especially for a simple problem as sorting,

must be simple and e�cient. Simplicity means easily programmable and e�ciency (for
sorting) signi�es O(n) operations on average. Obviously, an O(n log n) preprocessing
for sorting does not make much sense.
While mop prefers nearly sorted data or certain skewed distributions of the input,

our presorting algorithms prefer “random input”. Our treatment of presorting algorithms
is from an average-case point of view. We �rst �x a mop and then consider simple
“devices” or operations capable of reducing the quantity of this mop. We thus study
the average number of reductions in this mop.
Take a simple example: if we preform a comparison between the �rst and the last

keys of a random input with n elements, followed by a possible exchange if they
are out of order, the average reduction in number of inversions is given by 1

3n − 1
6

(assuming a uniform probability model on permutations of n elements). Repeating the
same procedure once for the second and the next-to-last keys results in 2

3n−1 decrease

H.K. Hwang et al. / Theoretical Computer Science 242 (2000) 29–40 31

in inversions on average, etc. (see next section for details). Such simple operations
are thus of much bene�t to sorting.
From a more practical viewpoint, there is a di�erent approach to these problems.

If we �x a sorting algorithm, we may ask questions as how to tune it so that it
is less input sensitive (this question received less attention) and, more relevant to
this paper, how to preprocess inputs to increase the average e�ciency of the al-
gorithm. For example, how to preprocess the input so that it reduces the average
number of comparisons used by quicksort? We will show that simple procedures
such as one-step median-of-3 results in a decrease of 1

6n − 1
2 (n¿3) on average in

number of comparisons, with only 2
3 more comparisons at the very �rst partitioning

step!
Another widely used technique for recursive algorithms with a similar e�ect or char-

acter (increasing the e�ciency of an algorithm by simple procedures at the early
stage) is to tune (modify or even replace) the algorithm for small sub�les. We show
that improvements of the standard top-down recursive mergesort at, say, n = 5 re-
sults in linear number of decrease for the avarege total cost with explicitly computable
expression involving periodic functions.

2. Presorting algorithms for inversions

In this section, we develop the above ideas by way of several examples concentrating
on the inversion statistic which is a prototype for mop’s. The number of inversions is
an often-used measure of presortedness (hence, randomness). It is known in statistics
as Kendall’s � and one of the most studied (by statisticians, combinatorialists, etc.)
statistics.
As we stated before, the most obvious presorting algorithm consists of comparing a

pair of keys, and switching them if they are out of order.
Let Sn be the symmetric group of order n. For i ¿ j we de�ne swi; j : Sn→Sn for

� ∈ Sn,

swi; j(�) :=
{
�; �i ¡ �j;
(i j) �; �i ¿ �j:

In other words, we exchange �(i) and �(j) if out-of-order. When i ¡ j, we de�ne
swi; j := swj; i.
Intuitively, a presorting algorithm should at least cause the average value of the mop

under consideration to drop an amount commensurate with the e�ort. For example, for
a constant-time action on a permutation in Sn, we expect a linear reduction for the
expected value of In and for a linear-time action on a permutation in Sn, a quadratic
reduction in number of inversions is expected.
We assume throughout this paper that a uniform probability measure is assigned

on the set Sn. Thus, In is a random variable. It is known that the probability generating

32 H.K. Hwang et al. / Theoretical Computer Science 242 (2000) 29–40

function of In is given by (cf. [7])

In(z) := E(zIn) =
(1 + z)(1 + z + z2) · · · (1 + z + · · · zn−1)

n!
(n¿1);

from which it follows that

E(In) =
n(n− 1)

4
; Var(In) =

n(n− 1)(2n+ 5)
72

(n¿2):

The distribution of In is asymptotically normal.
For � ∈ Sn, let Pk = sw1;nsw2;n−1 : : : swk;n−k+1 : Sn→Sn and write �k = �k(�) =

In(�)− In(Pk(�)), where 16k6bn=2c.

Theorem. We have

∑
�∈Sn

zIn(Pk (�)) = 2k
[
k∏
j=1

(
1 + 2z + 3z2 · · ·+ (n− 2j + 1)zn−2j)

] [
n−2k∏
j=1

1− zj
1− z

]
; (1)

∑
�∈Sn

z�k (�) = (n− 2k)!
k−1∏
j=0

[(
n− 2j
2

)
+
n−2j−1∑
‘=1

(n− 2j − ‘)z2‘−1
]
: (2)

From these generating functions, we easily derive results for the �rst two moments
of �k .

Corollary. The mean and variance of the decrease in the In statistic for the comparison-
and-switching presorting algorithms Pk are given by

E(�k) =
kn
3

− k(2k − 1)
6

;

Var(�k) =
2
9
kn2 − 2

9
kn(2k − 1) + k

108
(32k2 − 24k − 29):

In particular, we have, for a single switch operation,

E(�1) =
n
3
− 1
6
; Var(�1) =

2
9
n2 − 2

9
n− 7

36
;

for two switch operations,

E(�2) =
2n
3

− 1; Var(�2) =
4
9
n2 − 4

3
n− 17

18
;

and for bn=2c operations,

E(�bn=2c) =



n(n+ 1)
12

; if n is even;

(n− 1)(n+ 2)
12

if n is odd;

(3)

Var(�bn=2c) =



n(8n2 + 12n− 29)

216
if n is even;

(n− 1)(8n2 + 20n− 9)
216

if n is odd:

H.K. Hwang et al. / Theoretical Computer Science 242 (2000) 29–40 33

We start with a simple lemma.

Lemma. The single operation swi; j reduces the number of inversions by 1
3 (j− i)+ 1

6
on average.

Proof. Take � ∈ Sn. Half the time (when �i ¡ �j and i ¡ j) swi; j(�) = �; the other
half of the time the number of inversions is reduced by

1 + #{k|i ¡ k ¡ j; �i ¿ �k ¿ �j}:

To �nd the expected value of the last expression we need only observe that for each
k between i and j the conditional probability that �i¿�k ¿�j (given that the switch
occurs) is exactly 1

3 .

The lemma says that if we limit our presorting actions to a sequence of compar-
isons between two elements (and switching when they are out of order), then the best
presorting action on Sn with one single comparison (and switch) with respect to In
is sw1; n, E(�1) = (2n− 1)=6. Similarly, we can show that the best two-comparison
presorting with respect to In is either sw1; n sw2; n−1 or sw1; n−1 sw2; n, either of which
leads to E(�2) = 2

3n− 1 and that the maximum possible reduction in E(In) when we
are limited to under bn=2c comparisons is given by (3). Note that, intuitively, it is not
e�cient if the position of any element in a sequence is moved more than once.

Proof of the Theorem. We only prove the theorem for k = 1, the idea extending
easily to any k6bn=2c by applying the same arguments to the “inner cycles”.
For the �rst part ((1) with k = 1), the factor of two is just multiplicity of the

mapping. Clearly, if � = sw1;n(�) then we have �1 ¡ �n, any other �j that falls
within the range �1 ¡ �j ¡ �n contributes no inversions to the total, and any outside
one inversion each. Hence, if �1 and �n are adjacent (n−1 possibilities) there are (n−2)
inversions caused by �1 and �n; similarly, the pair contributes (n − 3) inversions if
spaced two part, etc., down to no inversions at all if they are 1 and n, respectively.
Inversions caused by the other �j’s are independent of the above and can be read o�
from the formula.
For the second part ((2) with k = 1), if �1 ¡ �n (

(n
2

)
cases) then In does not change

at all! Otherwise, if these two numbers are adjacent then we only save one inversion
(n−1 cases), and for each j that satis�es �1 ¿ �j ¿ �n we save two extra inversions,
so n− 2 cases of saving 3 inversions, n− 3 cases for 5, etc., up to exactly 1 case for
saving 4n− 3 inversions, namely when �1 = n; �n = 1.

3. Sorting as presorting

From the preceding discussions, it is obvious that the operation Pbn=2c has the same
e�ect as a Shellsort with increment bn=2c as far as the average number of inversions

34 H.K. Hwang et al. / Theoretical Computer Science 242 (2000) 29–40

is concerned. And the results reveals essentially that initial large increment of shellsort
is by its very own nature an e�cient presorting method, which accounts for a part of
its good performance in the medium-sized sample range.
We can apply this same idea to other sorting algorithms. In this section, we consider

the e�ect of one-pass quicksort in terms of the number of inversions.
The average number of inversions of a random permutation generated by one-pass

median-of-(2t + 1) quicksort partitioning is given by 1

1=2(n
2t+1

) (∑
16m6n

(m− 1)(m− 2)
(
m− 1
t

)(
n− m
t

))

=
1=2(n
2t+1

) [zn] z2t−2(2z2 + 4tz + t2 − t)
(1− z)2t+4

=
t + 2

4(2t + 3)
n2 − 5t + 6

4(2t + 3)
n+Ot(1);

for t¿0, where the implied constants in the O-term depends on t.
Thus, for one round of quicksort using median-of-(2t+1) on a random permutation

in Sn, the average reduction in In is given by

t + 1
4(2t + 3)

n2 − 3(t + 1)
4(2t + 3)

n+Ot(1) (n→ ∞);

for each integer t¿0.
Note that the leading constant of the quadratic term tends to 1

8 as t becomes large,
implying that about half the number of inversions can be saved by taking slightly
larger t.

4. Presorting algorithms for quicksort

There has been studies (cf. [8]) regarding the use of median-of-(2t + 1)-quicksort
with variant t¿0 for di�erent stages which may also depend on n the size of the
problem. We consider instead here the case of a single round of partition when t is
�xed and small.
Let Hn =

∑
16j6n 1=j denote the harmonic numbers. If we use the formula for the

cost (average number of comparisons) of quicksorting a random input of n elements

qn = 2(n+ 1)Hn − 4n (n¿1);

and use custom algorithms for minimum-average-comparison selections (cf. [7]) with
223 comparisons for median of three, 5

13
15 for median of �ve, and 9

32
105 for median of

7, and choosing the sample from both the beginning and the end to minimize further

1 The notation [zn]f(z) represents the coe�cient of zn in the Taylor expansion of f.

H.K. Hwang et al. / Theoretical Computer Science 242 (2000) 29–40 35

comparisons and data movement, then we have

q(3)n = n− 1
3
+

12
n(n− 1)(n− 2)

n−1∑
j=1
j(n− 1− j)qj:

= 2(n+ 1)Hn − 25
6
n+

1
2
= qn − n

6
+
1
2

(n¿3):

Thus, on average, we do 1
6n − 1

2 (n¿3) fewer comparisons just by using
2
3 more

comparisons at the very �rst partitioning stage!
Similarly, we have

q(5)n = 2(n+ 1)Hn − 127
30
n+

49
30

(n¿5);

q(7)n = 2(n+ 1)Hn − 1793
420

n+
85
28

(n¿7):

In other words, we save on average 7
30n− 49

30 (resp.
113
420n− 85

28) number of comparisons
by using 11315 (resp. 3

32
105) more comparisons at the �rst partitioning stage. Note whereas

q(3)n 6qn for all n that makes the summation meaningful, we need n¿7 in order to have
q(5)n 6qn, and it is only for n¿12 that we have q

(7)
n 6qn.

We can of course continue this process. Take for example the possibility of taking
two rounds of median-of-three quicksort, which can be derived from the q(3)n;1 := q(3)n
above:

q(3)n;2 := n−
1
3
+

12
n(n− 1)(n− 2)

(∑
36j¡n

j(n− 1− j)q(3)j;1 + 2(n− 3)
)
:

= qn − n− 5
3

− 4(2n− 5)
n(n− 1)(n− 2) :

In fact continuing in this manner, with

q(3)n;k := n−
1
3
+

12
n(n− 1)(n− 2)

(∑
36j¡n

j(n− 1− j)q(3)j;k−1 + 2(n− 3)
)
;

and using the identities (for n¿3)

12
n(n− 1)(n− 2)

∑
36j¡n

j(j + 1)(n− 1− j) = n+ 1
6

− 4(4n− 11)
n(n− 1)(n− 2) ;

12
n(n− 1)(n− 2)

∑
36j¡n

j(n− 1− j) = 2− 12(3n− 8)
n(n− 1)(n− 2) ;

we can write

q(3)n;k = qn −
k
6
(n+ 1) + c(k)− En;k ;

36 H.K. Hwang et al. / Theoretical Computer Science 242 (2000) 29–40

where c(0) = 0,

c(k) = 2c(k − 1) + 2
3
=
2
3
(2k − 1) (k¿1);

and En;1 = 0,

En;k =
12

n(n− 1)(n− 2)

(∑
36j¡n

j(n−1−j)Ej;k−1+ 3 · 2
k − 4k − 2
3

n− 2
k+3 − 11k − 5

3

)
;

for k¿2.
From the estimate

En;2 =
4(2n− 5)

n(n− 1)(n− 2) ∼ 8n
−2;

we deduce that

En;3 ∼ 812 log nn2
;

and by induction

En;k ∼ 8(12 log n)
k−2

(k − 2)!n2 ;

for each k¿2.
Thus, the correction term En;k is uniformly small for k = O(1), as n→ ∞ and

q(3)n;k = qn −
k
6
(n+ 1) +

2
3
(2k − 1) + O(n−2+�);

for k = O(1).
In the same vein, we have

q(5)n;k = qn −
7k
30
(n+ 1) +

56(2k − 1)
30

+ O(n−2+�);

q(7)n;k = qn −
113k
420

(n+ 1) +
1388(2k − 1)

420
+ O(n−2+�);

for any � ¿ 0 and k = O(1).
As in the presorting algorithms for inversions discussed earlier, just one early stage

median-of-(2t + 1) for quicksort results in a fairly large saving in cost with later
such stages gaining less and less. This is intuitively in accordance with the law of
diminishing returns.

5. Improvement of recursive algorithms on small sub�les

When a recursive algorithm is not e�cient on small sub�les, it is customary to use
more straightforward alternatives in order to improve the e�ciency of the algorithm.

H.K. Hwang et al. / Theoretical Computer Science 242 (2000) 29–40 37

A well-known example is to resort to insertion sort when quicksorting sub�les of
size smaller then, say, 9 (cf. [7, 12]). In this section, we show that such a simple
“presorting” idea is also useful for the top-down mergesort (cf.[3]).
Roughly, to sort an input of n elements, divide it into two sub�les of sizes bn=2c

and dn=2e, respectively, sort these two recursively, and then use, say, the linear merge
algorithm to merge the two sorted �les. To “presort” mergesort we stop the recursive
call for sub�les of size less than N¿2 and use more e�cient sorting algorithms for
small �les. The average number of comparisons used to mergesort a random permuta-
tion (assuming each of n! permutations of n elements is equally likely) of n elements
is given by the recurrence (cf. [3])

fn = fbn=2c + fdn=2e + en (n ¿ N); (4)

with suitable initial values of fn, 16n6N , and

en = n− bn=2c
dn=2e+ 1 − dn=2e

bn=2c+ 1 (n¿1):

If we take N = 1, direct computations show that fn is optimal (in terms of the expected
number of comparisons) only for n64 (cf. [7, p. 195]). What is the expected number
of comparisons reduced if we use more e�cient sorting algorithms for 56n6N? We
show that a linear number will generally be dropped even in the case when we reduce
only the number of comparisons for sorting �ve elements (N = 5).
To solve (4) for general N , we solve (4) for N = 2 by inserting the di�erences

in value in the en’s. Thus, we replace en in (4) by e′n = en − �n, where �n ¿ 0 for
n = 5; : : : ; N . By the analytic approach of Flajolet and Golin [3], we have the integral
representation

fn =
1
2�i

∫ 2+i∞

2−i∞

ns+1

s(s+ 1)
�(s)
1− 2−s ds;

where (de�ning e0 = 0 and �3en = en+1 − 2en + en−1)

�(s) =
∑
n¿1

�3en
ns

+ DN (s) (<s ¿ −1);

with (�j = 0 for j ¡ 5 and j ¿ N)

DN (s) =
∑

46j6N+1

�3�j
js

:

Thus, in particular,

D5(s) =−�5
4s
+
2�5
5s

− �5
6s
;

D6(s) =−�5
4s
+
2�5 − �6
5s

+
2�6 − �5
6s

− �6
7s
:

Note that DN (0) = 0.

38 H.K. Hwang et al. / Theoretical Computer Science 242 (2000) 29–40

Fig. 1. Fluctuation terms of mergesort with and without “preprocessing”. (Plotted are the coe�cients of the
linear term.)

Applying the techniques used in Hwang [6], we deduce that the average number of
comparisons dropped is given exactly by

−n
(
�′(0)
log 2

+
∑

46j6N+1
�3�j · A(log2(n=j))

)
; (5)

where

A(u) = 1− {u} − 21−{u}:

For example, if we use the merge insertion sort of Ford and Johnson (cf. [7, p.
186]) for n = 5 (and N = 5), then we have �5 = 7=30 and economize

n
(
25
24
+ A(log2(n=4))− 2A(log2(n=5)) + A(log2(n=6))

)

number of comparisons. If we use the same sorting algorithm for both n = 5 and n = 6
(and N = 6), then the expected number of comparisons reduced is given by (5) with
�5 = �6 = 7=30. Similarly, using the Ford–Johnson algorithm for n = 5; 6; 7 results in
�5 and �6 as given above and �7 = 29=105. A graphical rendering of these examples
is given in Fig. 1.

6. Remarks

The preceding discussions are not restricted to just inversions as the sole mop, nor
to quicksort or mergesort as the sole sorting algorithm to work with. However, they
are certainly the most instructive examples. We observe that mop’s such as the number

H.K. Hwang et al. / Theoretical Computer Science 242 (2000) 29–40 39

of runs with ranges of order n is not very useful when handling presorting methods
(however useful they may be for other purposes). In general, as in nonparametric
inference, a right-invariant metric with small variance, say, linear or less than linear, is
unsuitable for general use (cf. [2, 4]). On the other hand, computations of expectation
values in drop of DS :=

∑
16j6n |j−�(j)| or

∑
16j6n−1 |�(j)−�(j+1)| can be made in

a similar manner as for In (but not for generating functions which are intrinsically much
harder). For example, applying sw1; n to a permutation in Sn decreases the expected
value of DS by

E(�(DS)) = 2
3n+O(1):

For,

�(DS) := DS(�)− DS(sw1;n(�)) = 2[max(�1; �n)−min(�1; �n)];
and we know that max of two random elements in [1; n] has an expected value around
2n=3, the min about n=3.
When several presorting algorithms are available, one may further quantify the good-

ness (or e�ciency) of these algorithms by suitable de�nitions. For example, for our
compare-and-switch algorithms, we may de�ne the e�ciency factor �n;k of Pk on an
input of n elements as follows:

�n;k :=
3E(�k)

n · (cost of Pk) :

Thus

�n;k = 1− 2k − 1
2n

→ 1;

when k = o(n); and

�n;k → 1− �;
when k = �n, 0 ¡ �6 1

2 . Since �n;k ¿ �n;k+1, we may say that Pk is more e�cient
than Pk+1.

Acknowledgements

This research was partially supported by the National Science Council under Grants
NSC-86-2115-M-001-004, and NSC-86-2115-M-032-010.

References

[1] W.H. Burge, Sorting, trees, and measures of order, Inform. and Control 1 (1958) 181–197.
[2] P. Diaconis, R.L. Graham, Spearman’s footrule as a measure of disarray, J. Roy. Soc. Statist. Ser. B

39 (1977) 262–268.

40 H.K. Hwang et al. / Theoretical Computer Science 242 (2000) 29–40

[3] P. Flajolet, M. Golin, Mellin transforms and asymptotics: the mergesort recurrence, Acta Inform. 31
(1994) 673–696.

[4] M.A. Fligner, J.S. Verducci (Eds.), Probability models and statistical analysis, for ranking data, Lecture
Notes in Statistics, vol. 80, Springer, Berlin, 1993.

[5] D.H. Greene, D.E. Knuth, Mathematics for the Analysis of Algorithms, Birkh�auser, Boston, 1981.
[6] H.-K. Hwang, Asymptotic expansions of mergesort recurrences, Acta Inform., to appear.
[7] D.E. Knuth, The Art of Computer Programming, vol. III, Sorting and Searching. Addison-Wesley,

Reading, MA. 1973.
[8] C.C. McGeoch, J.D. Tygar, Optimal sampling strategies for quicksort, Random Struct. Algorithms 7

(1995) 287–300.
[9] H. Mannila, Measures of presortedness and optimal sorting algorithms, IEEE Trans. Comput. 34 (1985)

318–325.
[10] K. Mehlhorn, Sorting presorted �les, in: Theoretical Computer Science (4th GI Conference, Aachen,

1979), pp. 199–212, Lecture Notes in Computer Science, vol. 67, Springer Berlin, 1979.
[11] O. Petersson, A. Mo�at, A framework for adaptive sorting, Discrete Appl. Math. 59 (1995) 153–179.
[12] R. Sedgewick, Algorithms, 2nd ed., Addison-Wesley, Reading, MA, 1988.
[13] J.S. Vitter, P. Flajolet, Average-case analysis of algorithms and data structures, in: Handbook of

Theoretical Computer Science, vol. A, Algorithms and Complexity, Elsevier, Amsterdam, 1990, pp.
431–524.

