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Abstract—Cryptographic primitives are ubiquitous for mod-
ern security. The correctness of their implementations is crucial
to resist malicious attacks. Typical arithmetic computation
of these C programs contains large numbers of non-linear
operations, hence is challenging existing automatic C verifi-
cation tools. We present an automated approach to verify
cryptographic C programs. Our approach successfully verifies
C implementations of various arithmetic operations used in
NIST P-224, P-256, P-521 and Curve25519 in OpenSSL. During
verification, we expose a bug and a few anomalies that have
been existing for a long time. They have been reported to and
confirmed by the OpenSSL community. Our results establish
the functional correctness of these C implementations for the
first time.
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I. INTRODUCTION

Cryptographic primitives are the foundation of modern
computer security. They are invoked for authentication, en-
cryption, and key exchange protocols, among others. Unlike
normal programs, typical cryptographic or security settings
always assume an adversary who would take advantage of
any mistakes and run out of his ways to induce errors so as
to launch attacks. As illustrated in [1], even a tiny bug can
have catastrophic impacts. Consequently, the correctness of
cryptographic primitives is of the utmost importance.

Cryptography programming however is far from easy.
Modern cryptography relies on complicated mathematical
constructions. Consider, for instance, Elliptic Curve Cryp-
tography (ECC) [2], [3]. Such cryptosystems are based on
arithmetic over large finite fields. Take the elliptic curve
Curve25519 [4] used in OpenSSH [5] as an example. It is
defined over finite field Z2255−19. Each field element hence
belongs to the integer set {0, 1, . . . , 2255 − 20}; sums and
products of two field elements are computed by addition and
multiplication modulo 2255 − 19 respectively. A point on
Curve25519 is a pair of field elements (x, y) satisfying the
curve equation y2 = x3 + 486662x2 + x, or the symbolic
point at infinity. An operation on points called point addition
can then be defined on top of those field operations. With
point addition, a group is defined over points on Curve25519.
Point multiplication further takes hundreds of point addition
operations. And it is required by the public-key primitives
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over Curve25519, such as those in the default key exchange
protocol in OpenSSH.

Reality is even more complicated than mathematics.
Observe that a field element in Z2255−19 can be represented
by a 255-bit number. Yet there are no computers with 255-
bit architectures available. In practice, a field element is
represented by four 64- or five 51-bit numbers in 64-bit
architectures. Arithmetic over the finite field has to be im-
plemented on such representations. In such implementations,
field multiplication requires several 64-bit multiplication and
addition instructions. Carries must be propagated. Modular
computation must be performed. Cryptography programming
can be very challenging even for experienced programmers.

Curve25519 is but one elliptic curve in ECC. In the
widely used security library OpenSSL [6], cryptographic
primitives based on four different curves over different finite
fields are provided. In addition to Curve25519, three NIST-
recommended curves (P-224, P-256, and P-521) are used.
Each curve is defined over its special finite field. Each finite
field has its dedicated C functions for field arithmetic. One
wonders if there might be errors in these building blocks of
computer security. Indeed, the OpenSSL source code can
only be modified by a chosen group of 12 developers for
security purposes [7]. Restricting code commits can reduce
the probability but not remove the possibility of bugs in
the library. Concern about correctness of cryptographic C
programs in OpenSSL thus has some justification.

Program verification is an active research field with
numerous promising ideas. One naturally hopes that all such
programs could be formally verified. Yet existing techniques
do not appear to be able to verify cryptographic C programs.

Motivating Example. Montgomery reduction [8] is a widely
used algorithm in cryptography programming. Let B = 232.
Given integer inputs N , N ′ and T with NN ′ + 1 ≡ 0
(mod B), Montgomery reduction is an efficient way to
calculate TB−1 modN without long division. Fig. 1 shows
a simplified Montgomery reduction algorithm. Observe that
division and modulo by B are bit shifting and masking
operations respectively for B is a power of 2. The algorithm
thus computes TB−1 mod N with addition, multiplication,
bit shifting and masking operations. Long division by N
is indeed not needed. A reference C implementation is as
follows, where N < 231 is assumed for simplicity.



Pre-condition: 0 < N < B with N ≡ 1 (mod 2), 0 < N ′ < B
with NN ′ + 1 ≡ 0 (mod B), and 0 ≤ T < BN

Post-condition: REDC−(N,N ′, T )×B ≡ T (mod N)
function REDC−(N,N ′, T )

m← ((T modB)N ′) modB
t← (T +mN)/B
return t

Figure 1. Montgomery Reduction

Table I
VERIFYING FUNCTION REDC() WITH SELECTED TOOLS

Configuration Output
CPA-SEQ (SV-COMP2019 version1)
-default -heap 10000M TIMEOUT
-svcomp19 -heap 10000M TIMEOUT

PESCO (SV-COMP2019 version)
-svcomp19-pesco -heap 10000M -stack 2048k TIMEOUT
-svcomp19-pesco-linear -heap 10000M TIMEOUT
-stack 2048k

UAUTOMIZER (SV-COMP2019 version)
--architecture 64bit TIMEOUT

SMACK (version 1.9.3)
--verifier boogie FALSE
--bit-precise --verifier boogie TIMEOUT
--verifier corral TIMEOUT
--bit-precise --verifier corral TIMEOUT
--verifier symbooglix FALSE
--bit-precise --verifier symbooglix UNKNOWN2

--verifier duality TIMEOUT
--bit-precise --verifier duality TIMEOUT

1 typedef uint64_t u64;
2 #define B ((u64)1 << 32)
3 u64 REDC(u64 N, u64 Np, u64 T) {
4 const u64 btm32bits = 0xFFFFFFFF;
5 u64 m = ((T & btm32bits) * Np) & btm32bits;
6 u64 t = (T + m * N) >> 32;
7 return t;
8 }

The inputs N, Np and T are 64-bit integers. Given N < 231

and pre-conditions in Fig. 1, we would like to verify whether
REDC(N,Np,T)× B ≡ T (mod N). We have tried automatic
C verification tools including CPA-SEQ [9], PESCO [10],
UAUTOMIZER [11], and SMACK [12] on a Linux machine
with 2-core 3.60GHz CPUs and 16GB RAM. No tool can
verify the 8-line C program in 15 minutes (Table I). Two
FALSE’s are reported, but the counterexamples turn out to
be spurious. Real cryptographic C programs in OpenSSL
implement operations on field elements with hundreds of
bits. Using existing verification tools, it is very unlikely to
verify these programs within a reasonable time limit.

1The SV-COMP2019 versions of CPA-SEQ, PESCO and UAUTOMIZER
are downloadable at https://sv-comp.sosy-lab.org/2019/systems.php

2Due to a bug of the tool (see the issue at https://github.com/smackers/
smack/issues/427), SMACK did claim that REDC() was verified. The real
output is UNKNOWN.

In order to verify cryptographic C programs, new tech-
niques are needed. In [13], the modeling language CRYP-
TOLINE and its tool for verifying cryptographic assembly
programs are proposed. We leverage the work by translating
LLVM IR programs to CRYPTOLINE and use its tool to verify
cryptographic C programs. More specifically, the following
steps are needed to verify cryptographic C programs:

1) Submit a cryptographic C program to Clang and
generate a program in LLVM IR.

2) Use our translator to convert the LLVM IR program
to a CRYPTOLINE program.

3) Specify properties about the C program in the generated
CRYPTOLINE program.

4) Verify whether the CRYPTOLINE program conforms
to the specification with the CRYPTOLINE verification
tool.

Using our translator, the 8-line reference C implementation
for Montgomery reduction (Fig. 1) is verified within 10 sec-
onds. We then apply our approach to the cryptographic C pro-
grams for arithmetic operations over the four elliptic curves
(NIST P-224, NIST P-256, NIST P-521, and Curve25519)
in OpenSSL. 38 cryptographic C functions in OpenSSL are
verified. The largest function (x25519_scalar_mult) has
1153 LLVM IR instructions and is verified within 50 minutes
on a dedicated Linux server. The function implements the
critical step in the group operation on Curve25519. It takes
5 255-bit field elements as inputs and returns 4 255-bit field
elements as outputs. Its specification consists of three non-
linear multivariate polynomial modulo equations over 45 (=
(5 + 4) × 5) 64-bit variables. We are not aware of any other
similar technique at such a scale.

We would like to point out a bug found during verification.
In the function felem_diff_128_64 for the NIST P-
521 curve, our approach exposes an overflow error in
the implementation. We have reported our findings to the
OpenSSL developer community. The community confirmed
the bug and released a fix3. To the credits of the community,
we only found one bug and minor anomalies in 3 C functions
out of 38. Yet programming errors did occur in this widely
used and inspected security library. One can never be too
careful about security libraries.

Our Contributions. We identify a useful subset of LLVM
IR (called LLVMCRYPTO) to model intermediate repre-
sentations of cryptographic programs emitted from Clang.
LLVMCRYPTO contains the most common instructions used in
implementations of arithmetic operations. These instructions
however form the core of many public-key cryptographic
programs. Using LLVMCRYPTO, a number of cryptographic
programs are modeled.

Given an LLVMCRYPTO program, we develop a translator
to translate it into a CRYPTOLINE program. CRYPTOLINE is

3https://github.com/openssl/openssl/commit/
13fbce17fc9f02e2401fc3868f3f8e02d6647e5f
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designed for cryptographic assembly programs, not LLVM IR.
In particular, CRYPTOLINE does not allow pointer arithmetic
found in LLVMCRYPTO. Such LLVMCRYPTO features are
translated to CRYPTOLINE automatically. A soundness
theorem is established for our translator. It guarantees that no
bug will be missed if a program is verified by our approach.

Our case studies include 38 C functions from NIST P-224,
P-256, P-521, and Curve25519 in OpenSSL. To the best of
our knowledge, this is the first automated approach which
can verify the correctness of these cryptographic C programs.
We also expose a bug and two incorrect input assumptions
in the NIST P-521 implementations.

In the rest of the paper, after introducing LLVMCRYPTO
in Section II, we review CRYPTOLINE in Section III. The
translation is addressed in Section IV, while case studies are
detailed in Section V. Conclusion comes in Section VII.

II. LLVMCRYPTO – A SUBSET OF LLVM IR

LLVM [14] is an open-source project for modular com-
pilation and related technologies. It is based on a code
representation called LLVM IR (for LLVM Intermediate
Representation). Very roughly, any C program is represented
in LLVM IR for code transformations and optimizations.

For cryptographic C programs, the full LLVM IR is
not necessary. We examine the intermediate representations
generated after architecturally independent optimizations
in Clang, and identify a useful subset of LLVM IR for
cryptographic C programs, called LLVMCRYPTO. In this
section, we present LLVMCRYPTO and give its formal
semantics.

A. Notations

Let N, N+ and Z denote the set of non-negative, positive,
and all integers, respectively. We use [n] to denote the set
{0, 1, . . . , n− 1} for n ∈ N+. a÷ b and amod b denote the
quotient and non-negative remainder of a divided by b. That
is, we have a = b×(a÷ b)+(amod b) with 0 ≤ amod b <
b. Let f : A → B be a function. For a ∈ A and b ∈ B,
define the function f [a← b] : A→ B by

f [a← b](x) =

{
b if x = a
f(x) otherwise.

B. Syntax

LLVM IR is a strongly typed language. In addition to
variables and constants, it supports pointers and vectors. In
cryptographic C programs, arithmetic computation, bitwise
masking and shifting are widely used. We consider the subset
LLVMCRYPTO that is useful to the compilation of these
programs. The syntax of LLVMCRYPTO is shown in Fig. 2.

We use x, y, z, . . . for variables and p, q, . . . for pointers.
An argument (Arg) can be a variable or a number. Let
` ∈ N+. An argument for a vector of size ` (Argv(`)) can be a
vector variable or a sequence of ` numbers. In LLVMCRYPTO,
operands and the result of each instruction can be 64- or

Num ::= 0 | 1 | 2 | · · · Var ::= x | y | z | · · ·
Ptr ::= p | q | · · · Width ::= 64 | 128
Arg ::= Var | Num Argv(`) ::= Var | Num`

Inst ::= Var = add Width Arg Arg

| Var = addv < `xWidth > Argv(`) Argv(`)

| Var = sub Width Arg Arg

| Var = subv < `xWidth > Argv(`) Argv(`)

| Var = mul Width Arg Arg

| Var = mulv < `xWidth > Argv(`) Argv(`)

| Var = shl Width Arg Num

| Var = lshr Width Arg Num

| Var = and Width Arg Arg

| Var = load Width Ptr

| Var = loadv < `xWidth > Ptr

| store Width Arg Ptr

| storev < `xWidth > Argv(`) Ptr

| Ptr = geteltptr Width Ptr Num

| Ptr = geteltptrv < `xWidth > Ptr Num Num

| Var = trunc Arg

| Var = zext Arg

| Var = insertelt < `xWidth > Argv(`) Arg Num

Prog ::= Inst ; | Inst ;Prog

Figure 2. The Syntax of LLVMCRYPTO

128-bit values, specified by the instruction syntactically. For
instance, the instruction y = add 64 a1 a2 adds the 64-bit
operands a1, a2 together, and assigns the sum to the 64-bit
variable y. On the other hand, y = add 128 a1 a2 has 128-bit
operands and result.

Let w ∈ {64, 128}. y = addv < ` xw > a1 a2 computes
the element-wise sum of the vectors a1 and a2, and assigns
the result to the vector variable y whose ` elements are of
bit width w. The instructions sub and mul, as well as their
vector versions subv and mulv, work similarly.

Two bitwise shifting instructions are defined in LLVM-
CRYPTO. y = shl w a n shifts the w-bit operand a to the
left by n < w bits, and stores the result as a w-bit value in
y. Instruction lshr on the other hand shifts to the right. The
bitwise AND instruction is y = and w a1 a2.

The instruction y = load w p loads the w-bit value
from pointer p. To load a vector of w-bit values, y =

loadv < ` xw > p is used. The instructions store and
storev store values into the memory.

One can obtain the pointer to an element of a vector
stored in memory. q = geteltptr w p n makes q point
to the n-th w-bit element of the vector designated by p. If
p points to a vector whose elements are vectors of size `,
q = geteltptrv < ` xw > p n1 n2 sets q to the pointer at
the n2-th element of the n1-th vector designated by p.

The instruction y = trunc a truncates the 128-bit value a



to the low 64 bits and stores the result in the 64-bit variable
y. y = zext a extends the 64-bit operand a to 128 bits.

Finally, the instruction y = insertelt < ` xw > a1 a2 k
assigns to y the `-long vector identical to a1 except that its
k-th element is a2 where k < `. An LLVMCRYPTO program
is simply a sequence of instructions separated by semicolons.

There are no control-flow instructions like branching in
LLVMCRYPTO. Those are avoided in typical cryptographic
programs for side-channel attack prevention.

Example. The file ecp nistp521.c in OpenSSL implements
the NIST P-521 elliptic curve over the prime p521 = 2521−1.
In this implementation, a field element a is represented as
a0 + a1× 258×1 + a2× 258×2 + · · ·+ a8× 258×8 using nine
64-bit limbs ai’s. The following LLVMCRYPTO fragment
is extracted from the LLVM IR code of the C function
felem_diff64. It subtracts a field element y represented by
y0, . . . , y8 from the field element x represented by x0, . . . , x8.
The result is then stored in the memory designated by pout.

1 : v0 = sub 64 4611686018427387872 y0;
2 : v′0 = add 64 v0 x0;
3 : q0 = geteltptr 64 pout 0;
4 : store 64 v′0 q0;

The fragment only shows the operations on the least signif-
icant limb. y0 is subtracted from a constant at line 1. The
result is added to x0 at line 2. Line 3 computes q0 pointing
to the 0-th 64-bit element of the memory designated by pout.
The calculation result v′0 is stored to the memory cell pointed
by q0 at line 4.

An LLVMCRYPTO program is in SSA form (Static Single
Assignment) if its variables and pointers are defined at most
once. Any LLVM IR program generated from Clang is in
SSA form.

C. Semantics

Similar to its syntax, the semantics of LLVMCRYPTO is
designed for cryptographic C programs. Observe that field
elements in OpenSSL are represented by unsigned integers.
Our semantics is hence defined over unsigned numbers. We
moreover assume the underlying architecture is 64-bit for
simplicity. Each memory cell represents a value in [264]. It
is straightforward to modify the semantics of LLVMCRYPTO
for 32-bit architectures.

We give a small-step semantics for LLVMCRYPTO. Let
σ ∈ V , (Var ∪ Ptr)→ N be a valuation, and m ∈M ,
N→ [264] a memory state. S , V ×M is the set of states.
A valuation formalizes the values of variables and pointers.
The content of memory cells is modeled by a memory state.
Our semantics specifies how a state transits to another by
executing each instruction. Fig. 3 gives the semantics of
LLVMCRYPTO.

Given σ ∈ V , we define the semantic function J•Kσ for
numbers, variables and pointers as follows.

JaKσ =

{
a if a ∈ Num
σ(a) if a ∈ Var ∪ Ptr

From the state (σ,m), the instruction y = add w a1 a2
moves to the state (σ′,m) where σ′ updates the value of y
to (Ja1Kσ + Ja2Kσ) mod 2w. The sum is truncated to w bits
by modulo 2w. Other variables in σ remain unchanged in
σ′.

More notations are needed for vectors. For ` ∈ N+ and
v ∈ Num`, v[i] denotes the i-th element of v when i ∈ [`].
We also use the variable x[i] for the i-th element of the
vector variable x ∈ Var . Given a valuation σ and n ∈ N, the
notation σ[ai ← bi]

n
i=0 is short for σ[a0 ← b0] · · · [an ← bn].

The semantics of y = addv < ` xw > a1 a2 should now be
clear. It updates the vector variable y with the element-wise
sum of vectors a1, a2; and each element sum is truncated to a
w-bit value. The semantics for subtraction and multiplication
is similar and omitted from Fig. 3 for clarity. The semantics
for bitwise instructions shl, lshr and and is obvious.

In our memory model, addresses are natural numbers and
memory cells are elements in [264] because we assume a
64-bit architecture. Let m ∈ M be a memory state and
n, v ∈ N, we use the following notations for convenience:

m64(n) , m(n)

m64[n← v] , m[n← v mod 264]

m64(n) reads the memory cell located at the address n;
m64[n← v] updates the cell located at n with the value v.
In LLVMCRYPTO, we also need to interpret two consecutive
memory cells as a 128-bit value. We choose the little-endian
representation in our semantics. Define:

m128(n) , m(n+ 1)× 264 +m(n)

m128[n← v] , m[n← vL][n+ 1← vH ]

where vL = v mod 264 and vH = (v÷ 264) mod 264. Hence
m128(n) reads a 128-bit value from the memory cells located
at n; m128[n ← v] updates the memory cells located at n
with the 128-bit value v.

The semantics of y = load w p can now be explained. It
updates y by the w-bit value in the memory cell designated
by p. To load a vector of values, define size(w) , w÷ 64
for the number of memory cells needed for w-bit values. By
y = loadv < ` xw > p, the vector variable y is updated with
` w-bit values from the memory cells designated by p. The
instructions store and storev are defined similarly

If p points to a vector of w-bit values in memory, the
n-th element is located at JpKσ + JnKσ × size(w). This is
exactly what q = geteltptr w p n computes. geteltptrv
is defined similarly when p points to a vector of vectors.

The semantics of instructions trunc and zext is straight-
forward. Finally, y = insertelt < ` xw > a1 a2 k copies



(σ,m)
y = add w a1 a2−−−−−−−−−−−→ (σ′,m) where σ′ = σ[y ← (Ja1Kσ + Ja2Kσ) mod 2w]

(σ,m)
y = addv < ` xw > a1 a2−−−−−−−−−−−−−−−→ (σ′,m) where σ′ = σ[y[i]← (Ja1[i]Kσ + Ja2[i]Kσ) mod 2w]`−1

i=0

(σ,m)
y = shl w a n−−−−−−−−−→ (σ′,m) where σ′ = σ[y ← (JaKσ × 2JnKσ ) mod 2w]

(σ,m)
y = lshr w a n−−−−−−−−−−→ (σ′,m) where σ′ = σ[y ← JaKσ ÷ 2JnKσ ]

(σ,m)
y = and w a1 a2−−−−−−−−−−−→ (σ′,m) where σ′ = σ[y ← Ja1Kσ band Ja2Kσ]

(σ,m)
y = load w p−−−−−−−−→ (σ′,m) where σ′ = σ[y ← mw(JpKσ)]

(σ,m)
y = loadv < ` xw > p−−−−−−−−−−−−−→ (σ′,m) where σ′ = σ[y[i]← mw(JpKσ + i× size(w))]`−1

i=0

(σ,m)
store w a p−−−−−−−−→ (σ,m′) where m′ = mw[JpKσ ← JaKσ]

(σ,m)
storev < ` xw > a p−−−−−−−−−−−−→ (σ,m′) where m′ = mw[JpKσ + i× size(w)← Ja[i]Kσ]`−1

i=0

(σ,m)
q = geteltptr w p n−−−−−−−−−−−−−→ (σ′,m) where σ′ = σ[q ← JpKσ + JnKσ × size(w)]

(σ,m)
q = geteltptrv < ` xw > p n1 n2−−−−−−−−−−−−−−−−−−−−→ (σ′,m) where σ′ = σ[q ← JpKσ + Jn1Kσ × `× size(w) + Jn2Kσ × size(w)]

(σ,m)
y = trunc a−−−−−−−→ (σ′,m) where σ′ = σ[y ← JaKσ mod 264]

(σ,m)
y = zext a−−−−−−−→ (σ′,m) where σ′ = σ[y ← JaKσ]

(σ,m)
y = insertelt < ` xw > a1 a2 k−−−−−−−−−−−−−−−−−−−−→ (σ′,m) where σ′ = σ[y[i]← Ja1[i]Kσ mod 2w]`−1

i=0 [y[k]← Ja2Kσ mod 2w]

Figure 3. Semantics of LLVMCRYPTO

the vector a1 of ` w-bit values to y and then updates the
k-th element of y with the w-bit value a2.

III. DOMAIN-SPECIFIC LANGUAGE CRYPTOLINE

CRYPTOLINE [13] is a domain-specific language for
cryptographic assembly programs and their verification. It
is equipped with an automatic verification tool. We briefly
review the language and its verification in this section.

A. The Language

CRYPTOLINE serves as an abstraction for cryptographic
assembly programs across different architectures. Details such
as registers and address modes are ignored in the language.
For simplicity, it only considers variables, numbers and
flags. Typical arithmetic assembly instructions are modeled
in CRYPTOLINE. Fig. 4 gives the syntax of the language.

The semantics of CRYPTOLINE is parameterized by the bit
width of the underlying architecture. To be consistent with
LLVMCRYPTO, the semantics of CRYPTOLINE is explained
here for 64-bit architectures. All arguments (Arg) are hence
assumed 64-bit. The formal semantics can be found in [13].

A CRYPTOLINE state models the current values of vari-
ables and flags (clFlag). Set is the assignment statement and
Cset is the conditional assignment. Carry and borrow flags are
explicit in CRYPTOLINE. Add b x u v sets the sum of u and v
to x with carry in b. Adc is the addition-with-carry statement.
Sub and Sbb are subtraction and subtraction-with-borrow
statements, respectively. Full multiplication Mulf x y u v
updates x and y with the high and low 64 bits of the product
of u and v, respectively. And is the bitwise AND statement.
Shl x u n shifts the value of u to the left by n bits and
assigns the result to x if the high n bits of u are all zero;
otherwise the CRYPTOLINE program goes into the error
state.

clFlag ::= b | c | d | · · ·
clExp ::= Arg | clExp + clExp | clExp− clExp

| clExp ∗ clExp
clPred ::= clExp = clExp | clExp ≡ clExp mod clExp

| clExp < clExp | clExp ≤ clExp | clPred ∧ clPred
clStmt ::= Set Var Arg | Cset Var clFlag Arg Arg

| Add clFlag Var Arg Arg
| Adc clFlag Var Arg Arg clFlag
| Sub clFlag Var Arg Arg
| Sbb clFlag Var Arg Arg clFlag
| Mulf Var Var Arg Arg | And Var Arg Arg
| Shl Var Arg Num | Split Var Var Arg Num
| Assert clPred | Assume clPred

clProg ::= ε | clStmt; clProg

Figure 4. CRYPTOLINE Statements and Programs

Split is provided to model common patterns of assembly
code in cryptographic programs. The statement Split x y u n
splits the value of u into two parts: the low n bits are moved
to y and the remaining high bits are moved to x.

For verification purposes, CRYPTOLINE supports asser-
tions and assumptions. Predicates (clPred) e1 = e2 and
e1 ≡ e2 mod e3 are algebraic properties. e1 < e2 and
e1 ≤ e2 are range properties. Assert pred checks if the
predicate pred holds in the current state. If so, the execution
continues with the same state. Otherwise, it enters the error
state. Assume pred on the other hand assumes pred holds
at the current program location, thus the execution continues
with states satisfying pred . No predicate is satisfied in the
error state. A common usage for assertions and assumptions
is to add external information for verification. Let us assume,



say, answer = 42 at some program location but this predicate
is obscure. In CRYPTOLINE, a human verifier can assert the
predicate and then assume it to pass the predicate to the
verification tool. The assertion ensures the predicate indeed
holds at the location; the assumption then adds the predicate
as a lemma for verification.

A CRYPTOLINE program is simply a sequence of CRYP-
TOLINE statements followed by semicolons.

B. Verification with Specifications

In addition to programs, CRYPTOLINE allows to specify
pre- and post-conditions using predicates (clPred). Pre- and
post-conditions together compose specifications. Given a
CRYPTOLINE program with its specification, we would like
to know if the program will end in a state satisfying the
post-condition whenever it starts from a state satisfying the
pre-condition. The CRYPTOLINE verification tool checks
if a CRYPTOLINE program conforms to its specification
automatically.

Example (continued). According to the comments of
felem_diff64 in ecp nistp521.c, the pre-condition of the
program is the range property

∧8
i=0 yi < 259 +214. Assume

that the nine consecutive memory cells designated by pout are
represented by variables addr p 0, addr p 1, . . . , addr p 8
(explained later). The post-condition of the CRYPTOLINE
program generated from felem_diff64 is

((addr p 0 < x0 + 262) ∧ · · · ∧ (addr p 8 < x8 + 262))

∧ ( radix58(x0, x1, . . . , x8)− radix58(y0, y1, . . . , y8)
≡ radix58(addr p 0, . . . , addr p 8) mod p521 )

where radix58(a0, a1, . . . , a8) = a0 + a1 × 258×1 + a2 ×
258×2+· · ·+a8×258×8 denotes the field element represented
by ai’s. The first part of the post-condition is a range property.
The second part is an algebraic property stating that the result
element is a difference between the inputs over the prime
p521.

IV. TRANSLATING LLVMCRYPTO TO CRYPTOLINE

Given an LLVMCRYPTO program, we first translate it
into a CRYPTOLINE program in order to verify with the
CRYPTOLINE verification tool. The soundness property of
the translation means that the generated program captures
all behaviors of the input one, being an over-approximation
of it. We introduce the translation and discuss its soundness
in this section.

A. Symbolic Memory Addresses

In CRYPTOLINE and its semantics model, there are no
pointers or memory. But it is different in LLVMCRYPTO.
Both pointers and memory are considered, which is closer to
reality. We bridge this gap by representing memory addresses
symbolically then using these symbols to translate pointers.

Assume SVar = {p,q, . . .} is a set of symbolic variables.
A , SVar × Z is called the set of symbolic (memory)
addresses. A symbolic address (p, o) ∈ A represents the
memory address having an offset o from the memory address
represented by (p, 0) ∈ A. In LLVMCRYPTO, a pointer is only
allowed to be added with a constant offset. Hence we define
the addition +A : A×Z→ A as (p, o1)+A o2 , (p, o1+o2),
where (p, o1) ∈ A and o2 ∈ Z. This is sufficient to model
pointer calculations in LLVMCRYPTO. For instance, the
following two instructions are commonly used for accessing
the i-th element of the array a designated by pointer p:

q = geteltptr 64 p i;
y = load 64 q;

where y is the value of a[i]. If p refers to the memory address
np, q will have the value nq = np + i according to the
semantics. If np is symbolically represented by (p, op), our
translation algorithm is sufficient to calculate nq’s symbolic
address as (p, oq) = (p, op)+A i. Even though symbolic
addresses cannot capture complete information about memory
addresses, they reflect the relationships between the absolute
memory addresses. For example, the offset i between np and
nq is preserved for their symbolic representations.

We define a pointer table pt as a mapping from pointers
Ptr to symbolic addresses A. It models the valuation of
pointers and helps alias analysis in the translation algorithm.
pt(p) models the memory address represented by p.

B. Translation Algorithm

Assume the pointer table pt models the valuation of
pointers before executing an LLVMCRYPTO instruction s. The
function INSTTOCLPROG(pt, s) translates s into a sequence
cp of CRYPTOLINE statements. It returns a pair 〈pt′, cp〉,
where pt′ models the valuation of pointers after executing
s. pt′ reflects the effect on pointers when executing s with
respect to the LLVMCRYPTO semantics. We then translate
a given LLVMCRYPTO program by sequentially applying
INSTTOCLPROG() to each instruction. We summarize the
translation for 64-bit LLVMCRYPTO instructions as in Ta-
ble II.

The translation of arithmetic instructions is straightforward.
For example, the instruction add is translated to the statement
Add. Note that carries are not present in LLVMCRYPTO.
Hence the introduced carry flag is discarded using a fresh
name d. But the value of d does indicate the presence of over-
flow when executing the add instruction. Since the instruction
add does not change pointers, pt remains the same after
executing add. The instruction y = addv < ` x 64 > a1 a2
adds two vectors a1 and a2 of length `. It is equivalent to `
add instructions on each pair of a1[i] and a2[i]. Hence we
have it translated to ` Add statements.

The translation of bitwise shifting is a little subtle. The
instruction shl has similar semantics as Shl, except that Shl
may cause an error that is undesired by shl. To avoid that,



Table II
SUMMARY OF INSTTOCLPROG(pt, s), THE 64-BIT CASE

Instruction s Output 〈pt′, cp〉

y = add 64 a1 a2 〈pt, Add d y a1 a2; 〉
y = addv < `x 64> a1 a2 〈pt, sequence of Add’s〉
y = shl 64 a n 〈pt, Split zd t a (64− n);

Shl y t n; 〉
y = lshr 64 a n 〈pt, Split y zd a n; 〉
y = and 64 a1 a2 〈pt, And y a1 a2; 〉
y = load 64 p 〈pt, Set y Lpt(p)MV ; 〉
y = loadv < `x 64> p 〈pt, sequence of Set’s〉
q = geteltptr 64 p n 〈pt[q ← pt(p)+A n], ε〉
y = trunc a 〈pt, Set y aL; 〉
y = zext a 〈pt, Set yL a;

Set yH 0; 〉
y = insertelt < `x 64> a1 a2 k 〈pt, sequence of Set’s〉

the high n bits of a are discarded first by Split using the fresh
variable zd. Then the remaining low 64−n bits stored in the
temporary variable t can be safely shifted to the left by n
bits. Similar translation is applied for lshr. The translation
for and is trivial.

To translate an instruction involving memory, the memory
cell is referred to using a CRYPTOLINE variable. Assume
that we have a one-to-one function L•MV : A → Var . It
converts each symbolic address into a CRYPTOLINE variable.
For example, L(p, 1)MV = addr p 1 in our implementation.
Now the translation for y = load 64 p is straightforward.
y is assigned with the variable Lpt(p)MV , which represents
the value in the memory cell indexed by p. The vector
version loadv is translated in the same way as addv. Again,
load does not change pointers, pt remaining unchanged.
The instructions store and storev are treated similarly,
omitted in Table II.

When translating q = geteltptr 64 p n, we obtain the
symbolic address pt(p) and add it with offset n×size(64) =
n. Then the value of q in pt is updated with the result. No
CRYPTOLINE statement is required since it does not modify
variables or memory, hence cp = ε. The translation for
geteltptrv is similar and hence omitted.

Given any 128-bit LLVMCRYPTO variable y, two CRYPTO-
LINE variables yL and yH are used to represent its low and
high 64 bits, respectively, in the translation. The same applies
to any number, thus any argument. Then it is straightforward
to translate instructions trunc and zext with Set statements.
As well, Set statements are used to translate insertelt by
copying each element of a1 to y with the k-th element y[k]
assigned by a2.

For 128-bit instructions, the idea is the same but more
technical. For instance, when translating a 128-bit add, two
64-bit Add’s are required to mimic 128-bit addition. One
128-bit load needs two Set’s to copy two consecutive cells

function PROGTOCLPROG(prog)
Construct pt0 with prog
Let prog = s1; s2; · · · ; sn;
for i← 1 to n do
〈pti, cpi〉 ← INSTTOCLPROG(pti−1, si)

return (cp1 cp2 · · · cpn)

Figure 5. Translation of LLVMCRYPTO Programs

to yL and yH . The technicalities are not detailed here.
Given an LLVMCRYPTO program prog , a variable or a

pointer is undefined if it is not assigned by any instructions
in prog . Undefined variables (denoted by VarU ) and pointers
(by PtrU ) are usually the input variables and pointers of the
program.

Now the LLVMCRYPTO program translation is straight-
forward with INSTTOCLPROG(). The algorithm is depicted
in Fig. 5. We first construct the initial pointer table pt0
as a mapping that maps each pj ∈ PtrU in prog , to the
symbolic address (pj , 0). All pj’s are distinct. With pt0, the
algorithm starts from the first instruction s1. An updated
pointer table pt1 and a fragment of CRYPTOLINE program
cp1 are obtained. It then continues to translate the next
instruction s2 with pt1. pti is obtained at the i-th iteration.
It actually models the valuation of pointers after executing i
instructions of prog . Finally, all cpi’s are combined in order
as the output CRYPTOLINE program.

Example (continued). Given the whole LLVMCRYPTO pro-
gram, we know that pout is an undefined pointer. We let
pt0(pout) = (p, 0) when constructing pt0. According to the
translation algorithm, pt2 = pt1 = pt0 after translating lines 1
and 2. Line 3 is translated into no CRYPTOLINE statements,
but updates q0 in pt3 with pt3(q0) = pt2(pout)+A 0 =
(p, 0). Let L(p, 0)MV = addr p 0. The LLVMCRYPTO pro-
gram fragment is translated into the following CRYPTOLINE
program fragment by our algorithm:

1a : Sub d0 v0 4611686018427387872 y0;
2a : Add d1 v′0 v0 x0;
4a : Set addr p 0 v′0;

C. Soundness

Given an initial state (σ0,m0), an LLVMCRYPTO program
is well-formed if (1) all its undefined variables and undefined
pointers have their values in σ0; and (2) it is in SSA form.

We make an assumption on how programs access the
memory.

Separation Assumption. The memory is divided into several
isolated segments. Each segment πj contains one base address
designated by an undefined pointer pj ∈ PtrU . Let pt0(pj) =
(pj , 0). Every address in πj is uniquely represented by the
symbolic address (pj , o) for some o ∈ Z during translation.

This assumption is indeed common in cryptographic
programs. Assume that a cryptographic arithmetic function



has two arrays a and b as parameters. Pointers pa and pb are
the inputs pointing to their base addresses, i.e. the addresses
of a[0] and b[0]. Then the address of a[i] can be, and is
always, calculated via pa. No one will do this via pb. The
separation assumption is inspired by separation logic [15].

Given an LLVMCRYPTO program prog with initial state
(σ0,m0), we use (σi,mi) to denote the state after executing
the first i instructions. That is, for the i-th instruction si
of prog , we have (σi−1,mi−1)

si−→ (σi,mi). We define a
simulation relation 4 between LLVMCRYPTO states (σ,m)
and CRYPTOLINE states ρ. (σ,m) 4 ρ reads as (σ,m) is
simulated by ρ. (σ,m) 4 ρ holds if the values of variables
and the content of memory in (σ,m) are correctly projected
into ρ. For example, given a 128-bit LLVMCRYPTO variable
x, its corresponding 64-bit representations xL and xH in
CRYPTOLINE should satisfy ρ(xL) + ρ(xH)× 264 = σ(x).

We prove the soundness property of our translation via
the following theorem:

Theorem 1. Given Separation Assumption and a well-
formed LLVMCRYPTO program prog with initial state
(σ0,m0). The generated CRYPTOLINE program clprog =
PROGTOCLPROG(prog) = (cp1 · · · cpn) satisfies:

(i) for all i ∈ [0, n], there exists a CRYPTOLINE state ρi
of clprog such that (σi,mi) 4 ρi ;

(ii) for all i ∈ [1, n] and ρ with (σi−1,mi−1)
si−→ (σi,mi)

and (σi−1,mi−1) 4 ρ, there exists ρ′ such that ρ
cpi−−→

ρ′ and (σi,mi) 4 ρ′.

Theorem 1 guarantees that after translation, (1) each state
of the input LLVMCRYPTO program has its corresponding
simulation CRYPTOLINE state(s) of the generated program;
(2) each execution trace of the input LLVMCRYPTO program
has its corresponding simulation trace(s) of the generated
CRYPTOLINE program. Therefore, all the behaviors of the
input program are captured by the generated one.

With Theorem 1, assume that the given LLVMCRYPTO
program prog has n instructions. If a property Pllvm does
not hold in the final state (σn,mn), then there must exist a
CRYPTOLINE state ρn (with (σn,mn) 4 ρn) of the generated
program and a trace to ρn, such that the corresponding
property Pcl does not hold in ρn either. In other words, if
the verification tool verifies that Pcl holds in all possible
final states ρn’s (even if (σn,mn) 64 ρn) along all possible
execution traces of the generated CRYPTOLINE program,
then Pllvm is guaranteed to hold in (σn,mn) of the input
prog . Therefore, if our verification result shows that the
generated CRYPTOLINE program is correct with respect
to the specification, it implies that the input LLVMCRYPTO
program is also correct. Hence the input C program is correct.

D. Implementation Heuristics

Although our translator is fully automatic, extra human
effort is sometimes needed to get the generated CRYPTOLINE
programs verified due to limitations of the CRYPTOLINE

verification tool. In our first implementation of the translator,
we found that it took large amounts of human work to
verify the generated CRYPTOLINE programs. However, most
of the work was repetitive and tedious. We develop four
kinds of heuristics to reduce human efforts in the current
implementation, including heuristics for specific bitwise
shifting, for special and, for overflow/underflow, and for the
and-after-lshr pattern. The former two apply specialized
translation when the arguments of the input instruction have
specific values. The latter two are detailed as follows. We
stress that all the heuristics retain the soundness property of
our verification results.

1) Heuristics for Overflow/Underflow: In the translation
of add, sub and mul, we introduce carry/borrow flags that
indicate the presence of overflow/underflow in the input
LLVMCRYPTO instructions. For example, when translating
y = add 64 a1 a2, the statement Add d y a1 a2 is used.
A new flag d is introduced that indicates the presence of
overflow in add. But in most cases in cryptographic programs,
such an overflow will not happen thanks to the careful range
assumptions on inputs. Nevertheless, it is difficult for the
CRYPTOLINE tool to deduce d = 0 automatically and use
this information to verify specified properties. Our heuristic
hence automatically inserts the following two CRYPTOLINE
statements for each flag d of such a kind during translation:

Assert d = 0; Assume d = 0;

The Assert statement tells CRYPTOLINE to check whether d
is 0. If it is, then Assume utilizes this information to ease the
verification. Only if it is not, an overflow may arise. Human
efforts hence are needed to investigate the problem.

This heuristic also applies to the translation of shl for
the same reason, to check whether the value of zd equals 0.

2) Heuristics for and-after-lshr: In cryptographic pro-
grams, a masking and instruction often follows an lshr

instruction to perform a splitting together. For instance, the
following pattern is common:

y1 = lshr 64 a 51;
y2 = and 64 a 0x7FFFFFFFFFFFF;

y1 and y2 get the high 13 bits and the low 51 bits, respectively,
of a. By our translation algorithm, they are translated to:

Split y1 zd a 51;
And y2 a 0x7FFFFFFFFFFFF;

But CRYPTOLINE requires the extra information zd = y2 to
pass the verification. We implement heuristics to insert the
following statements automatically to help the verification:

Assert zd = y2; Assume zd = y2;

Note that in practice, the instructions lshr and and

may not be adjacent. They may not have exactly the same
a as operands. And several pairs of lshr and and may
even interleave. It makes this and-after-lshr pattern more



complicated. The implemented simple heuristic only relates
and to the previous lshr. However, it works in most of
the scenarios we have encountered. A more precise analysis
of the pattern can further improve the automation of our
technique.

V. EVALUATION

We have implemented our translator on LLVM 3.7.0 and
successfully applied our approach to 38 C implementations
of arithmetic operations in cryptographic primitives of
OpenSSL 1.1.1. Among them, 35 are verified. One bug
and several anomalies are exposed and confirmed in the
remaining 3 functions.

A. Experiment Setup

The verification proceeded in the following way. Given
a C implementation of an arithmetic operation, first we
compiled it into LLVM IR using Clang 3.7.0. Then the LLVM
IR code was translated by our translator to CRYPTOLINE
automatically. The very few instructions not supported by
LLVMCRYPTO required manual translation. The generated
CRYPTOLINE program was then verified by the verification
tool. Some of them required human efforts to annotate the
program, like adding Assert’s. The verification was performed
on two machines respectively: a Mac laptop M1 running
OS X 10.11.6 with a 2-core 2.6GHz CPU and 8GB RAM,
and a Linux machine M2 running Ubuntu 16.04.5 with two
6-core 3.47GHz CPUs and 128GB RAM. Boolector 3.0.0 and
Singular 4.1.1 were utilized as SMT solver and ideal mem-
bership solver, respectively, for the CRYPTOLINE verification
tool.

B. Verification Tasks

The verified implementations include fundamental arith-
metic operations in Curve25519 and three NIST elliptic
curves (P-224, P-256 and P-521). Each curve has its own
special finite field Zp: p = 2255 − 19 for Curve25519, p =
2224−296+1 for NIST P-224, p = 2256−2224+2192+296−1
for NIST P-256, and p = 2521 − 1 for NIST P-521.
The field elements of different bit widths over different
curves hence have different representations. Their arithmetic
implementations thus differ.

Most of the specifications of these arithmetic operations
came from the comments in OpenSSL source code. For
those without specifications written in the comments, we
determined their specifications from the context of their
usage inside OpenSSL. The pre-conditions of the verified
specifications are range properties on inputs. And the post-
conditions contain both algebraic and range properties relat-
ing outputs to the inputs. See the example in Section III-B.
The most complicated algebraic post-condition we have
verified is part of the Montgomery Ladderstep [16] in
Curve25519: X1 × X5 × (X2 × Z3 − Z2 × X3)2 ≡
Z5× (X2×X3−Z2×Z3)2 mod (2255−19). Each of X1,

X2, X3, X5, Z2, Z3 and Z5 is a field element represented
by five 64-bit limbs. Note that Montgomery Ladderstep is a
crucial step to compute point multiplication over Curve25519
efficiently and securely. It requires 18 field operations that
are implemented as individual functions. Such complicated
algebraic properties involving large numbers cannot even be
specified in existing general-purpose C verification tools, let
alone be verified by them.

C. Experiment Results

The results of the experiment are summarized in Table III.
In the table, the “loc-ir” column displays the number of
lines of LLVM IR code for each function, and “loc-cl” for
their CRYPTOLINE code. The “diff-*” columns show the
percentage of manual modifications in each CRYPTOLINE
program. “diff-0” is for our translator with no heuristics
implemented and “diff-h” is with all four heuristics. Note
that specifying pre- and post-conditions does not count,
but modifying one line (i.e. one statement) counts two:
one deletion and one addition. Finally, T1 and T2 are the
verification time in seconds on M1 and M2, respectively.
They do not contain translation time from LLVMCRYPTO
to CRYPTOLINE. The translation for the largest target with
1153 instructions only took less than 5 seconds. The others
took less than 2 seconds. We highlight the results as follows:

1) For functions felem_diff_128_64, felem_mul and
felem_square in ecp nistp521 (marked with “-”),
our approach shows that they do not conform to
the specifications given in the OpenSSL source code
comments. More details are given in Section V-D.

2) Most of the verified tasks (71.4%, 25 of 35) are finished
within only 5 seconds even on M1. 32 (91.4%) of them
take less than 20 seconds. Two of those left require
around 1 minute. The largest target in the experiment,
the Montgomery Ladderstep (the last row) makes M1
out-of-memory (marked with “OM”). It requires around
47 minutes on M2. A further experiment showed that
this can be accelerated by parallelization supported by
CRYPTOLINE. The verification time on M2 is then
reduced to 1288 seconds (around 21 minutes) by using
option “-jobs 6” to parallelize with 6 threads. This
improves the scalability of our approach.

3) The “diff-*” columns show that the automation of our
approach is greatly improved by our heuristics. With
these heuristics, most of the tasks (65.8%, 25 of 38) are
verified fully automatically. Almost all (92.1%, 35 of
38) need only less than 10% of manual modifications.
We believe that more heuristics can further reduce these
efforts and improve the usability of our tool.

D. Bug and Anomalies in ecp nistp521

The functions felem_diff_128_64, felem_mul and
felem_square in ecp nistp521.c implement subtraction,
multiplication and squaring on field elements respectively.



Table III
EXPERIMENT RESULTS

function loc-ir loc-cl diff-0 diff-h T1 T2
(%) (%) (s) (s)

ecp nistp224.c
felem diff 30 40 40.0 0.0 0.40 0.18

felem diff 128 64 30 60 26.7 0.0 0.85 0.73
felem mul 60 298 49.0 0.0 9.64 8.80

felem scalar 15 20 40.0 0.0 0.16 0.08
felem square 43 193 47.7 0.0 1.96 1.20
felem sum 22 24 33.3 0.0 0.23 0.10

widefelem diff 54 112 25.0 0.0 2.75 2.67
felem mul reduce 99 493 58.4 9.3 73.47 71.02

felem neg 47 145 49.0 9.0 1.07 0.57
felem reduce 75 246 50.0 7.7 4.56 3.94

felem square reduce 82 388 60.3 11.9 64.83 61.45
widefelem scalar 31 136 45.6 2.9 5.28 4.72

ecp nistp256.c
felem diff 30 64 25.0 0.0 2.09 2.11

felem scalar 16 74 43.2 0.0 0.55 0.31
felem small sum 26 44 18.2 0.0 0.39 0.31

felem sum 22 40 20.0 0.0 0.34 0.27
smallfelem mul 109 488 49.2 0.0 8.58 6.59
smallfelem neg 22 36 22.2 0.0 0.25 0.12

felem shrink 65 160 63.8 26.3 4.55 4.55
felem small mul 175 672 51.9 6.7 15.06 12.88

smallfelem square 74 330 51.5 1.2 4.55 3.25

ecp nistp521.c
felem diff64 61 81 44.4 0.0 0.84 0.49
felem diff128 61 126 28.6 0.0 17.59 18.30

felem neg 43 45 40.0 0.0 0.50 0.24
felem scalar 43 45 40.0 0.0 0.97 0.95

felem scalar64 35 45 40.0 0.0 1.12 1.15
felem scalar128 36 162 44.4 0.0 3.61 3.61

felem sum64 52 54 33.3 0.0 0.28 0.13
felem reduce 145 317 53.0 17.0 2.29 1.36

felem diff 128 64 70 126 28.6 0.0 - -
felem mul 289 1618 49.9 0.0 - -

felem square 158 892 51.1 0.0 - -

curve25519.c
fe51 add 32 30 33.3 0.0 0.18 0.07
fe51 sub 37 45 44.4 0.0 0.35 0.15
fe51 mul 124 617 51.5 2.7 17.67 14.52

fe51 mul121666 57 166 44.6 4.8 1.42 0.88
fe51 sq 94 432 51.4 3.2 9.67 7.57

x25519 scalar multa 1153 5280 50.6 2.5 OM 2815.16

aOnly the Montgomery Ladderstep part is verified.

They all have input range assumptions given in the comments
as pre-conditions.

The verification of these three functions failed with these
given pre-conditions. It turns out that the given range assump-
tions may cause unexpected overflows in the implementations.
These overflows then result in wrong returned values. Using
the output of the CRYPTOLINE verification tool, we suc-
ceeded in locating the instructions with unexpected overflows.
Counterexamples were also constructed. A counterexample of

felem_diff_128_64 shows that the unexpected overflow
really happens when it is invoked by point_double.

We reported our findings with the counterexamples to the
OpenSSL developer community. The community confirmed
that the overflow in felem_diff_128_64 is a bug. They
then fixed it in the commit 13fbce1. Besides OpenSSL 1.1.1,
this bug is hidden in various releases including 1.1.0, 1.0.2
etc. For felem_mul and felem_square, the community
confirmed that the range assumptions written in the comments
were wrong. New range assumptions were also given from
the community.

The new implementation of felem_diff_128_64 and the
new range assumptions of felem_mul and felem_square

have been verified by our approach. The verification of new
felem_diff_128_64 takes less than 5 seconds on both
M1 and M2. felem_mul and felem_square with new
assumptions take around 320 and 80 seconds respectively on
both machines.

E. Remark on Compiler Optimization

In the experiment, we found that there are vectorized in-
structions in the assembly output of x25519_scalar_mult
from Clang, even though the source code is sequential. It turns
out that compilers like Clang are able to perform surprisingly
non-trivial optimizations. It can vectorize a fragment of
sequential code. In the case of x25519_scalar_mult, two
sequential additions a1 + b1 and a2 + b2 in C code are
optimized to a vector addition addv on vectors a and b,
where a contains a1, a2 and b similarly. The vector addition
is further assembled to a vectorized assembly instruction if
the underlying architecture supports. This means the two
sequential C statements will be executed simultaneously in
the binary executable.

VI. RELATED WORK

To the best of our knowledge, this work presents the first
attempt to verify existing cryptographic C code automatically.
We compare our approach with others in three categories.

A. General-Purpose C Verification

Numerous techniques and well-developed automatic tools
such as [9]–[12], [17]–[21] are available for verifying C
code. The annual Competition on Software Verification (SV-
COMP)4 is a showcase for them. We have tried CPA-SEQ [9],
PESCO [10] and UAUTOMIZER [11] from the top three
winning in Overall category in SV-COMP 2019 [22] to verify
our 8-line motivating example. As shown, these general-
purpose verification tools are not very suitable for verifying
bit-precise non-linear algebraic properties in cryptographic
programs. We specially mention SMACK [12] since it works
similarly as our approach. It converts LLVM IR programs
into Boogie programs [23], then chooses various verifiers
for Boogie to perform verification. However, Boogie is

4https://sv-comp.sosy-lab.org/

https://sv-comp.sosy-lab.org/


not designed for cryptographic programs and there is no
verifier developed for that purpose. FRAMA-C [24] allows
to verify algebraic properties by combining SMT-solving
and interactive theorem proving. However, the complicated
algebraic properties involving large numbers are difficult or
even impossible to be specified in these general-purpose C
verification tools.

B. Verifying Cryptographic C Code

gfverif [25] is an automatic tool used to verify a C im-
plementation of the Montgomery Ladderstep in Curve25519.
It needs to re-implement existing C programs using its con-
structs before verification. gfverif verifies fewer programs
than our approach because its constructs are more limited.
For example, it does not support 128-bit integers or algebraic
properties involving variable modulus. It cannot verify our
motivating example in Section I either. Cryptol/SAW [26]
automatically verifies several cryptographic implementations
in C and Java against their reference implementations. How-
ever, the reference implementations are not proven correct.
F* [27] and Vale [28] implement arithmetic operations in
their languages, and verify the results using SMT solving
and manual proofs. Fiat-Crypto [29] is a project that tries to
synthesize correct-by-construction C code for cryptographic
primitives. But its verification relies on manual proofs using
Coq [30]. A collection of hash functions, random number
generators and other operations [31]–[38] are formally and
manually verified using proof assistants like Coq. Note
that interactive theorem proving costs much more human
efforts than our approach. And our approach is able to
construct counterexamples when verification fails, while
manual approaches cannot.

C. Verifying Cryptographic Assembly Code

In [39], the authors verified a hand-optimized assembly im-
plementation of the Montgomery Ladderstep in Curve25519
using SMT solvers and Coq. They have to annotate programs
extensively and manually. If SMT solving fails, human
verifiers have to use Coq to manually fill the gap. The
work [40] models cryptographic assembly programs with
a domain-specific language BVCRYPTOLINE. Programs in
BVCRYPTOLINE can be verified automatically by a certified
approach. Extending BVCRYPTOLINE, CRYPTOLINE [13] is
equipped with automated tools for translation from assembly
code to CRYPTOLINE. Although the verification is not
certified, it is much faster. Our approach is based on
CRYPTOLINE. Compared to them, our approach works at a
higher level and supports features like pointer arithmetic.

VII. CONCLUSION

We have presented an automated approach to translation
and verification of arithmetic functions in cryptographic C
programs. The case studies on real-world implementations
in OpenSSL suggest the applicability and scalability of our

approach. We were assisted greatly by the useful comments
of OpenSSL developers in our experiments.

There are three obvious future directions. First, more
translation heuristics can be developed to ease the verification
process. Second, specifications are written at the CRYPTO-
LINE level for the moment. It requires human verifiers to
have knowledge about the translation. Another direction is to
design a specification language that allows verifiers to write
pre- and post-conditions at C source code. Finally, we have
only worked up to one iteration of an innermost loop (the
Montgomery Ladderstep). We could elevate the verification
to a higher level of the cryptographic primitive (here, a point
multiplication on a curve) by checking loop invariants.
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