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1 Introduction

MPKCs (multivariate public key cryptosystems) [15,31] are PKCs whose public
keys are multivariate polynomials in many small variables. It has two properties
that are often touted: Firstly, it is considered a significant possibility for Post-
Quantum Cryptography, with potential to resist future attacks with quantum
computers. Secondly, it is often considered to be faster than the competition.

Extant MPKCs almost always hide the private map Q via composition with
two affine maps S, T . So, P = (p1, . . . , pm) = T ◦ Q ◦ S : Kn → Km, or

P : w = (w1, . . . , wn) S7→ x = MSw + cS
Q7→ y T7→ z = MT y + cT = (z1, . . . , zm)

(1)
The public key consists of the polynomials in P. P(0) is always taken to be zero.

In any given scheme, the central map Q belongs to a certain class of quadratic
maps whose inverse can be computed relatively easily. The maps S, T are affine
(sometimes linear) and full-rank. The xj are called the central variables. The
polynomials giving yi in x are called the central polynomials; when necessary
to distinguish between the variable and the value, we will write yi = qi(x).
The key of a MPKC is the design of the central map because, solving a generic
multivariate quadratic system is hard, so the best solution for finding w given z
invariably turns to other means, which depend on the structure of Q.

1.1 Questions

Four or five years ago, it was shown that instances of TTS and C∗−, specifically
TTS/4 and SFLASH, are faster signature schemes than traditional competition
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using RSA and ECC [1, 10, 33]. These two instances both been broken in the
meantime [19, 20]. Now that the width of a typical ALU is 64 bits, commodity
PC hardware has never been more friendly to RSA and ECC. While multivariates
still represent a future-proofing effort, can we still say that MPKCs are efficient
on commodity hardware?

1.2 Our Answers

Currently the fastest multivariate PKCs seems to be from the Rainbow and `IC
families [17,18]. We run comparisons using Pentium III (P3) machines (on which
NESSIE contestants are tested) and modern Core 2 and Opteron (hereafter C2
an K8) machines. On these test runs, we can say that compared to implementa-
tions using standard PKCs (DSA, RSA, ECDSA), present instances of MPKCs
with design security levels of around 280 can hold their own in terms of efficiency.

In this paper, we describe how we select our Rainbow and `IC-derived in-
stances sketch our implementation. We also suggest the new approach of using
bit-slicing when evaluating in GF(16) or other small fields during the construc-
tion of the private map.

Scheme result SecrKey PublKey KeyGen SecrMap PublMap

RSA-1024 1024b 128 B 320 B 2.7 sec 84 ms 2.00 ms

ECC-GF(2163) 320b 48 B 24 B 1.6 ms 1.9 ms 5.10 ms

PMI+(136, 6, 18, 8) 144b 5.5 kB 165 kB 1.1 sec 1.23 ms 0.18 ms

rainbow (28, 18, 12, 12) 336b 24.8 kB 22.5 kB 0.3 sec 0.43 ms 0.40 ms

rainbow (24, 24, 20, 20) 256b 91.5 kB 83 kB 1.6 sec 0.93 ms 0.73 ms

TTS (28, 18, 12, 12) 336b 3.5kB 22.5kB 0.04 sec 0.11 ms 0.40 ms

TTS (24, 24, 20, 20) 256b 5.6kB 83kB 0.43 sec 0.22 ms 0.74 ms

2IC+i (128,6,16) 144b 5 kB 165 kB 1 sec 0.03 ms 0.17 ms

2IC+i (256,12,32) 288b 18.5 kB 1184 kB 14.9 sec 0.24 ms 2.60 ms

QUARTZ 128b 71.0 kB 3.9 kB 3.1 sec 11 sec 0.24 ms

3IC-p(24, 32, 1) 380b 9 kB 148 kB 0.6 sec 2.00 ms 1.90 ms

pFLASH 292b 5.5 kB 72 kB 0.3 sec 5.7 ms 1.70 ms
Table 1. Current Multivariate PKCs Compared on a Pentium III 500

In the comparison here, we use D. J. Bernstein’s eBATs system to do bench-
marking. We can conclude that
1. 3IC−p is comparable to SFLASH, but not as fast as Rainbow.
2. Rainbow is fast and TTS faster, although the security is not as well studied.
3. 2IC+i is a very fast way to build an encryption scheme.

1.3 Previous Work

In [4], Berbain, Billet and Gilbert describe several ways to compute the public
maps of MPKCs and compare their efficiency. However, they do not describe the
evaluation of the private maps.
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Scheme result SecrKey PublKey KeyGen SecrMap PublMap

PMI+(136, 6, 18, 8) 144b 5.5 kB 165 kB 350.8 Mclk 335.4 kclk 51.4 kclk

PMI+(136, 6, 18, 8)64b 144b 5.5 kB 165 kB 350.4 Mclk 333.9 kclk 46.5 kclk

rainbow (28, 18, 12, 12) 336b 24.8 kB 22.5 kB 110.7 Mclk 143.9 kclk 121.4 kclk

rainbow (24, 24, 20, 20) 256b 91.5 kB 83 kB 454.0 Mclk 210.2 kclk 153.8 kclk

rainbow (24, 24, 20, 20)64b 256b 91.5 kB 83 kB 343.8 Mclk 136.8 kclk 79.3 kclk

TTS (28, 18, 12, 12) 336b 3.5kB 22.5kB 11.5 Mclk 35.9 kclk 121.4 kclk

TTS (24, 24, 20, 20) 256b 5.6kB 83kB 175.7 Mclk 64.8 kclk 78.9 kclk

2IC+i (128,6,16) 144b 5 kB 165 kB 324.7 Mclk 8.3 kclk 52.0 kclk

2IC+i (128,6,16)64b 144b 5 kB 165 kB 324.9 Mclk 6.7 kclk 46.9 kclk

2IC+i (256,12,32) 288b 18.5 kB 1184 kB 4119.7 Mclk 26.7 kclk 385.6 kclk

2IC+i (256,12,32)64b 288b 18.5 kB 1184 kB 4418.2 Mclk 23.0 kclk 266.9 kclk

3IC-p(24, 32, 1) 380b 9 kB 148 kB 173.6 Mclk 503 kclk 699 kclk

pFLASH 292b 5.5 kB 72 kB 86.6 Mclk 2410 kclk 879 kclk

DSA/ElGamal 1024b 148B 128B 1.08 Mclk 1046 kclk 1244 kclk

RSA 1024b 148B 128B 108 Mclk 2950 kclk 121 kclk

ECC 256b 96B 64B 2.7 Mclk 2850 kclk 3464 kclk

Table 2. Comparison on One core of an Intel Core 2 (C2)

Scheme result SecrKey PublKey KeyGen SecrMap PublMap

PMI+(136, 6, 18, 8) 144b 5.5 kB 165 kB 425.4 Mclk 388.8 kclk 63.9 kclk

PMI+(136, 6, 18, 8)64b 144b 5.5 kB 165 kB 424.7 Mclk 393.3 kclk 60.4 kclk

rainbow (28, 18, 12, 12) 336b 24.8 kB 22.5 kB 234.6 Mclk 297.0 kclk 224.4 kclk

rainbow (24, 24, 20, 20) 256b 91.5 kB 83 kB 544.6 Mclk 224.4 kclk 164.0 kclk

rainbow (24, 24, 20, 20)64b 256b 91.5 kB 83 kB 396.2 Mclk 138.7 kclk 83.9 kclk

TTS (28, 18, 12, 12) 336b 3.5kB 22.5kB 20.4 Mclk 69.1 kclk 224.4 kclk

TTS (24, 24, 20, 20) 256b 5.6kB 83kB 225.2 Mclk 103.8 kclk 84.8 kclk

2IC+i (128,6,16) 144b 5 kB 165 kB 382.6 Mclk 8.7 kclk 64.2 kclk

2IC+i (128,6,16)64b 144b 5 kB 165 kB 382.1 Mclk 7.5 kclk 60.1 kclk

2IC+i (256,12,32) 288b 18.5 kB 1184 kB 5155.5 Mclk 31.1 kclk 537.0 kclk

2IC+i (256,12,32)64b 288b 18.5 kB 1184 kB 5156.1 Mclk 26.6 kclk 573.9 kclk

3IC-p(24, 32, 1) 380b 9 kB 148 kB 200.7 Mclk 645 kclk 756 kclk

pFLASH 292b 5.5 kB 72 kB 126.9 Mclk 5036 kclk 872 kclk

DSA/ElGamal 148B 148B 128B 0.864 Mclk 862 kclk 1018 kclk

RSA 1024b 148B 128B 150 Mclk 2647 kclk 117 kclk

ECC 256b 96B 64B 2.8 Mclk 3205 kclk 3837 kclk

Table 3. Comparison on One Core of an Opteron/Athlon64 (K8)
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[19] summarizes the state of the art against generalized Rainbow/TTS
schemes. The school of Stern et al developed differential attacks that breaks
minus variants [20,24] and internal perturbation [23]. Ways to circumvent these
attacks are proposed in [13,14].

The above attacks the cryptosystem as an EIP or “structural” problem. To
solve the system of equations, we have this

Problem MQ(q;n, m): Solve the system p1(x) = p2(x) = · · · = pm(x) = 0,
where each pi is a quadratic in x = (x1, . . . , xn). All coefficients and variables
are in K = GF(q), the field with q elements.

Best known methods for generic MQ are F4-F5 or XL whose complexities [11,
21,22,32] are very hard to evaluate; asymptotic formulas can be found in [2,3,32].

1.4 Summary and Future Work

Our programs are not very polished; it merely serves to show that MPKCs can
still be fairly fast compared to the state-of-the-art traditional PKCs even on the
most modern and advanced microprocessors. There are some recent advances in
algorithms also, such as computations based on the inverted twisted Edwards
curves [5–7], which shows that when tuned for the platform, the traditional
cryptosystems can get quite a bit faster. It still remains to us to optimize more
for specific architectures including embedded platforms. Further, it is an open
question on whether the TTS schemes, with some randomness in the central
maps, can be made with comparable security as equally sized Rainbow schemes.
So far we do not have a conclusive answer.

2 Rainbow and TTS Families

We characterize a Rainbow [17] type PKC with u stages:

– The segment structure is given by a sequence 0 < v1 < v2 < · · · < vu+1 = n.
– For l = 1, . . . , u + 1, set Sl := {1, 2, . . . , vl} so that |Sl| = vl and S0 ⊂ S1 ⊂
· · · ⊂ Su+1 = S. Denote by ol := vl+1− vl and Ol := Sl+1 \Sl for l = 1 · · ·u.

– The central map Q has component polynomials yv1+1 = qv1+1(x), yv1+2 =
qv1+2(x), . . . , yn = qn(x) — notice unusual indexing — of the following form

yk = qk(x) =
vl∑

i=1

n∑

j=i

α
(k)
ij xixj +

∑

i<vl+1

β
(k)
i xi, if k ∈ Ol := {vl + 1 · · · vl+1}.

In every qk, where k ∈ Ol, there is no cross-term xixj where both i and j
are in Ol at all. So given all the yi with vl < i ≤ vl+1, and all the xj with
j ≤ vl, we can compute xvl+1, . . . , xvl+1 .
Si is the i-th vinegar set and Oi the corresponding i-th oil set.

– To expedite computations, some coefficients (α(k)
ij ) may be fixed (e.g., set to

zero), chosen at random (and included in the private key), or be interrelated
in a predetermined manner.
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– To invert Q, determine (usu. at random) x1, . . . xv1 , i.e., all xk, k ∈ S1. From
the components of y that corresponds to the polynomials p′v1+1, . . . p

′
v2

, we
obtain a set of o1 equations in the variables xk, (k ∈ O1). We may repeat
the process to find all remaining variables.

For historical reasons, a Rainbow type signature scheme is said to be a TTS
[33] scheme if the coefficients of Q are sparse.

2.1 Known Attacks and Security Criteria

1. Rank (or Low Rank, MinRank) attack to find a central equation with least
rank [33].

Clow rank ≈
[
qv1+1m(n2/2−m2/6)/

]
m.

Here as below, the unit m is a multiplications in K, and v1 the number
of vinegars in layer 1. This is the “MinRank” attack of [25]. as improved
by [8, 33].

2. Dual Rank (or High Rank) attack [9, 25], which finds a variable appearing
the fewest number of times in a central equation cross-term [19,33]:

Chigh rank ≈
[
qon−v′n3/6

]
m,

where v′ counts the vinegar variables that never appears until the final seg-
ment.

3. Trying for a direct solution. The complexity is roughly as MQ(q;m,m).
4. Using the Reconciliation Attack [19], the complexity is as MQ(q; vu,m).
5. Using the Rainbow Band Separation from [19], the complexity is determined

by that of MQ(q;n,m + n).
6. Against TTS, there is Oil-and-Vinegar Separation [26,27,30], which finds an

Oil subspace that is sufficiently large (estimates as corrected in [33]).

CUOV ≈
[
qn−2o−1o4 + (some residual term bounded by o3qm−o/3)

]
m.

o is the max. oil set size, i.e., there is a set of o central variables which are
never multiplied together in the central equations, and no more.

2.2 Choosing Rainbow Instances

First suppose that we wish to use SHA-1, which has 160 bits. It is established
by [19] that using GF(28) there is no way to get to 280 security using roughly
that length hash, unpadded.

Specifically, to get the complexity of MQ(28,m,m), to above 280 (the direct
attack) we need about m = 24. Then we need MQ(28, n, n+m) to get above 280

(the Rainbow Band Separation), which requires at least n = 42. This requires
an 192-bit hash digest plus padding and a signature length of 336 bits with the
vinegar sequence (18, 12, 12)
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If we look at smaller fields, that’s a different story. If we use GF(24), we need
20 oil variables each in the last segment and at least 20 vinegar variables in the
first segment to get by the minrank and high rank attacks. To be comparable
to the sizes of 3IC-p, we choose the vinegar (structural) sequence (24, 20, 20).
The digest is 160 bits and the signature 192. We use random parameters under
this framework and don’t do TTS. The implementations are described below. In
each of the two instances, the central map is inverted by setting up and solving
two identically-sized linear systems.

2.3 Choosing TTS Instances

TTS of the same size over GF(28) or GF(24) are 2× or more the speed of than
a Rainbow instance. They also tend to have instances also have much lower
memory requirement. But we don’t really know about their security.

The following are TTS instances built with exactly the same rainbow struc-
tural parameters and called henceforth TTS/7. They have exactly the same size
input and output as the corresponding Rainbow instances:

TTS (28, 18, 12, 12) K =GF(28), n = 42, m = 24. Q is structured as follows:

yi = xi + ai1xσi + ai2xσ′i +
11∑

j=0

pijxj+18xπi(j)

+ pi,12xπi(12)xπi(15) + pi,13xπi(13)xπi(16) + pi,14xπi(14)xπi(17), i = 18 · · · 29
[indices 0 · · · 17 appears exactly once in each random permutation πi,
and exactly once among the σ, σ′ (where six σ′i slots are empty)];

yi = xi + ai1xσi + ai2xσ′i + ai3xσ′′i +
11∑

j=0

xj+29(pijxπi(j) + pi,j+12xπi(j+12))

+ pi,24xπi(24)xπi(27) + pi,25xπi(25)xπi(28) + pi,26xπi(26)xπi(29), i = 30 · · · 41
[indices 0 · · · 29 appears exactly once in each random permutation πi,
and exactly once among the σ, σ′, σ′′ (where six σ′′i slots are empty)].

TTS (24, 24, 20, 20) K =GF(24), n = 64, m = 40.

yi = xi + ai1xσi + ai2xσ′i +
19∑

j=0

pijxj+23xπi(j)

+ pi,20xπi(20)xπi(22) + pi,21xπi(21)xπi(23), i = 24 · · · 43
[indices 0 · · · 23 appears exactly once in each random permutation πi,
and exactly once among the σ, σ′ (there are only four σ′i)];

yi = xi + ai1xσi + ai2xσ′i + ai3xσ′′i +
19∑

j=0

xj+44(pijxπi(j) + pi,j+20xπi(j+20))

+ pi,40xπi(40)xπi(42) + pi,41xπi(41)xπi(43), i = 44 · · · 63
[indices 0 · · · 43 appears exactly once in each random permutation πi,
and exactly once among the σ, σ′, σ′′ (there are only four σ′′i )].
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3 The `-Invertible Cycle (`IC) and Derivatives

The `-invertible cycle [18] can be best considered an improved version or ex-
tension of Matsumoto-Imai, otherwise known as C∗ [28]. Let’s review first the
latter.

Triangular (and Oil-and-Vinegar, and variants thereof) systems are some-
times called “single-field” or “small-field” approaches to MPKC design, in con-
trast to the approach taken by Matsumoto and Imai in 1988. In such “big-field”
variants, the central map is really a map in a larger field L, a degree n extension
of a finite field K. To be quite precise, we have a map Q : L → L that we can
invert, and pick a K-linear bijection φ : L → Kn. Then we have the following
multivariate polynomial map, which is presumably quadratic (for efficiency):

Q = φ ◦ Q ◦ φ−1. (2)

then, one “hide” this map Q by composing from both sides by two invertible
affine linear maps S and T in Kn, as in Eq. 1.

Matsumoto and Imai suggest that we pick a K of characteristic 2 and this
map Q

Q : x 7−→ y = x1+qα

, (3)

where x is an element in L, and such that gcd(1 + qα, qn − 1) = 1. The last
condition ensures that the map Q has an inverse, which is given by

Q−1
(x) = xh, (4)

where h(1 + qα) = 1 mod (qn − 1). This ensures that we can decrypt any secret
message easily by this inverse. Hereafter we will simply identify a vector space
Kk with larger field L, and Q with Q, totally omitting the isomorphism φ from
formulas.

`IC also uses an intermediate field L = Kk and extends C∗ by using the
following central map from (L∗)` to itself:

Q : (X1, . . . , X`) 7→ (Y1, . . . , Y`) (5)

:= (X1X2, X2X3, . . . , X`−1X`, X`X
qα

1 ).

For “standard 3IC”, ` = 3, α = 0. Invertion in (L∗)3 is then easy.

Q−1 : (Y1, Y2, Y3) ∈ (L∗)3 7→ (
√

Y1Y3/Y2,
√

Y1Y2/Y3,
√

Y2Y3/Y1, ). (6)

Most of the analysis of the properties of the 3IC map can be found in [18] —
the 3IC and C∗ maps has a lot in common. Typically, we take out 1/3 of the
variables with a minus variation (3IC−).

For encryption schemes, “2IC” or ` = 2, q = 2, α = 1 is suggested.

Q2IC : (X1, X2) 7→ (X1X2, X1X
2
2 ), Q−1

2IC : (Y1, Y2) 7→ (Y1/Y 2
2 , Y2/Y1). (7)
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We construct 2ICi like we do PMI [12]: Take v = (v1, . . . , vr) to be an r-tuple of
random affine forms in the variables x. Let f = (f1, . . . , fn) be a random r-tuple
of quadratic functions in v. Let our new Q be defined by

x 7→ y = Q2IC(x) + f(v(x))

where the power operation assumes the vector space to represent a field. The
number of Patarin relations decrease quickly down to 0 as r increases. For every
y, we may find Q−1(y) by guessing at v(x) = b, finding a candidate x =
Q−1

2IC(y+b) and checking the initial assumption that v(x) = b. Since we repeat
the high going-to-the-h-th-power procedure qr times, we are almost forced to let
q = 2 and make r as low as possible.

3.1 Known Attacks to Internal Perturbation and Defenses

`IC has so much in common with C∗ that we need the same variations. In
other words, we need to do 3IC−p (with minus and projection) and 2IC+i (with
internal perturbation and plus), paralleling C∗−p and C∗+i (a.k.a. PMI+).

The cryptanalysis of PMI and hence 2ICi depends on the idea that for a
randomly chosen b, the probability is q−r that it lies in the kernel K of the
linear part of v. When that happens, v(x + b) = v(x) for any x. Since q−r is
not too small, if we can distinguish between a vector b ∈ T−1K (back-mapped
into x-space) and b 6∈ T−1K, we can bypass the protection of the perturbation,
find our bilinear relations and accomplish the cryptanalysis.

In [23], Fouque, Granboulan and Stern built a one-sided distinguisher using a
test on the kernel of the polar form or symmetric difference DP(w,b) = P(b +
w)− P(b)− P(w). We say that t(b) = 1 if dim kerw DP(b,w) = 2gcd(n,α) − 1,
and t(b) = 0 otherwise. If b ∈ K, then t(b) = 1 with probability one, otherwise
it is less than one. In fact if gcd(n, α) > 1, it is is an almost perfect distinguisher.
We omit the gory details and refer the reader to [23] for the complete differential
cryptanalysis.

Typically, to defeat this attack, we need to add a random equations to the
central map. For 2ICi as for PMI, both a and r are roughly proportional to
n creating 2IC+i like we did PMI+ [14]. PMI+(n, r, a, α) refers to a map from
GF(2n) with r perturbations, a extra variables, and a central map of x → x2α+1.
Similarly, 2IC+i(n, r, a) refers to 2IC with r perturbations dimensions and a
added equations.

3.2 Known Attacks to Minus Variants and Defenses

The attack found by Stern etc. can be explained by considering the case of C∗

cryptosystem. We recollect that the symmetric differential of any function G,
defined formally:

DG(a,x) := G(x + a)−G(x)−G(a) + G(0).
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is bilinear and symmetric in its variables a and x. Let ζ be an element in the
big field L. Then we have

DQ(ζ · a, x) + DQ(a, ζ · x) = (ζqα

+ ζ)DQ(a, x).

Clearly the public key of C∗− inherits some of that symmetry. Now not every
skew-symmetric action by a matrix Mζ that corresponds to an L-multiplication
that result in MT

ζ Hi + HiMζ being in the span of the public-key differential
matrices, because S := span{Hi : i = 1 · · ·n − r} as compared to span{Hi :
i = 1 · · ·n} is missing r of the basis matrices. However, as the authors of [20]
argued heuristically and backed up with empirical evidence, if we just pick the
first three MT

ζ Hi + HiMζ matrices, or any three random linear combinations of
the form

∑n−r
i=1 bi(MT

ζ Hi + HiMζ) and demand that they fall in S, then

1. there is a good chance to find a nontrivial Mζ satisfying that requirement;
2. this matrix really correspond to a multiplication by ζ in L;
3. applying the skew-symmetric action of this Mζ to the public-key matrices

leads to other matrices in span{Hi : i = 1 · · ·n} that is not in S.

Why three? There are n(n− 1)/2 degrees of freedom in the Hi, so to form a
span of n−r matrices takes n(n−3)/2+r linear relations among its components
(n− r and not n because if we are attacking C∗−, we are missing r components
of the public key). There are n2 degrees of freedom in an n× n matrix U . So, if
we take a random public key, it is always possible to find a U such that

UT H1 + H1U, UT H2 + H2U ∈ S = span{Hi : i = 1 · · ·n− r},
provided that 3n > 2r. However, if we ask that

UT H1 + H1U, UT H2 + H2U, UT H3 + H3U ∈ S,

there are many more conditions than degrees of freedom, hence it is unlikely to
find a nontrivial solution for truly random Hi. Conversely, for a set of public keys
from C∗, tests [20] shows that it almost surely eventually recovers the missing r
equations and break the scheme.

Similarly, [24] and the related [29] shows a similar attack (with a more
complex backend) almost surely breaks 3IC− and any other `IC−. For the
`IC case, the point is the differential expose the symmetry for a linear map
(X1, X2, X3) 7→ (ξ1X1, ξ2X2, ξ3X3). Exactly the same symmetric property is
found enabling the same kind of attacks.

It was pointed out [16] that Internal Perturbation is almost exactly equal to
both Vinegar variables and Projection, or fixing the input to an affine subspace.
Let s be one, two or more. We basically set s variables of the public key to be
zero to create the new public key. However, in the case of signature schemes,
each projected dimension will slow down the signing process by a factor of q. A
differential attack looks for an invariant or a symmetry. Restricting to a subspace
of the original w-space breaks a symmetry. Something like the Minus variant
destroys an invariant. Hence the use of projection by itself prevents some attacks.
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In [13], it was checked experimentally, for various C∗ parameters n and θ, the
effect of restricting the internal function to a randomly chosen subspace H of
various dimensions s. This is a projected C∗− instance of parameters (q, n, r, s).
We repeated this check for 3IC− and discover that again the attacks from [24,29]
are prevented. We call this setup 3IC−p(q, k, s).

3.3 Choosing Instances

For signature schemes, we choose C∗−p(24, 74, 22, 1), which uses 208-bit hashes
and is related to the original FLASH by the fact that it uses half as wide variables
and project one. We also choose 3IC−p(24, 32, 1), which acts on 256-bit hashes.

To invert the public map of projected minus signature schemes:

1. Put in random numbers to the “minus” coordinates.
2. Invert the linear transformation T to get y.
3. Invert the central map C∗ or 3IC to get x.
4. Invert the final linear transformation S to get w.
5. If the last component (nybble) of w is zero, return the rest, else go to step

1 and repeat.

For the encryptions schemes, we choose PMI+(136, 6, 18, 8) and 2IC (128,6,16)
and (256,12,32).

To invert the public map of internally perturbed plus encryption schemes:

1. Invert the linear transformation T to get y.
2. Guess the vector b = v(x).
3. Invert the central map C∗ or 3IC on y − b to get x.
4. Verify b = v(x) and the extra a central equations; if they don’t hold, then

return to step 2 and repeat.
5. Invert the final linear S to get w.

4 Implementation Techniques

Most of the techniques here are not new, just implemented here. However, we
do suggest that the bit-sliced Gaussian Elimination idea is new.

4.1 Evaluation of Public Polynomials

We pretty much follow the suggestions of [4] for evaluation of the public poly-
nomials. I.e., over GF(28) we use traditional methods, i.e., logarithmic and ex-
ponential tables (full 64kB multiplication is faster for long streaming work but
has a much higher up-front time cost for one-time use). Over GF(24) we use bit-
slicing and build lookup tables of all the cross-terms. Over GF(2) we evaluate
only the non-zero polynomials.
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4.2 Operating on Tower Fields

During working with the inversion of the central map, we operate the big-field
systems using as much of tower fields as we can. We note that firstly, GF(2) =
{(0)2, (1)2}, where (·)2 means the binary representation. Then t2 + t + (1)2 is
irreducible over GF(2). We can implement GF(22i

) recursively. With a proper
choice of αi, we let GF(22i

) = GF(22i−1
)[ti]/(t2i + ti + αi).. One can also verify

that αi+1 := αiti will lead to a good series of extensions.
For a, b, c, d ∈ GF(22i−1

), we can do Karatsuba-style

(ati + b)(cti + d) = [(a + b)(c + d) + bd]ti + [acαi + bd]

where the addition is the bitwise XOR and the multiplication of expressions of
a, b, c, d and αi are done in GF(22i−1

). Division can be effected via (ati + b)−1 =
(ati + a + b)(ab + b2 + a2αi)−1.

While most of the instances we work with only looks at tower fields going
up powers of two, a degree-three extension is similar with the extension being
quotiented against t3+t+1 and similar polynomials, and a three-way Karatsuba
is relatively easy. We can do a similar thing for raising to a power of five.

4.3 Bit-sliced GF(16) Rainbow Implementations

It is noted in [4] that GF(4) and GF(16) can be bitsliced for good effect. Actually,
any GF(2k) for small k can be bitsliced this way. In particular, it is possible to
exploit the bitslicing to evaluate the private map.

1. Invert the linear transformation T to get y from z. We can use bitslicing
here to multiply each zi to one columne of the matrix M−1

T .
2. Guess at the initial block of vinegar variables
3. Compute the first system to be solved.
4. Solve the first system via Gauss-Jordan elimination with bitslice.
5. Compute the second system to be solved.
6. Solve the second system via Gauss-Jordan elimination with bitslice. We have

computed all of x.
7. Invert the linear transformation S to get w from x.

Note that during the bitslice solving, every equation can be stored as four bit-
vectors (here 32-bit or double words suffices), which stores every coefficient along
with the constant term. In doing Gauss-Jordan elimination, we use a sequence
of bit test choices to multiply the pivot equation so that the pivot coefficient
becomes 1, and then use bit-slicing SIMD multiplication to add the correct
multiple to every other equation. Bit-Sliced GF(16) is not used for TTS since
the set-up takes too much time.
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4.4 TTS implementations

There are a few things to note:

1. Due to the sparsity of the central maps, setting up the Gaussian elimination
to run using bitslice takes too much time. Hence, for TTS in GF(16) we
complete the entire computation of the private map expressing each GF(16)
element as a nybble (4 bits or half a byte) and start the evaluation of the
public map by converting the nybble vector packed two to a byte, to the
bitslice form.

2. Again for GF(16), we maintain two 4kByte multiplication tables that allows
us to lookup either abc or ab and ac at the same time.

3. We use the special form of key generation mentioned in [33, 34]. That is,
following Imai and Matsumoto [28], we divide the coefficients involved in
each public key polynomial into linear, square, and crossterm portions thus:

zk =
∑

i

Pikwi+
∑

i

Qikw2
i +

∑

i<j

Rijkwiwj =
∑

i

wi


Pik + Qikwi +

∑

i<j

Rijkwj


 .

Rijk, which comprise most of the public key, may be computed as in [34]:

Rijk =
n−1∑

`=n−m


(MT )k,(`−n+m)


 ∑

p xαxβ in y`

p ((MS)αi(MS)βj + (MS)αj(MS)βi)






The second sum is over all cross-terms p xαxβ in the central equation for
y`. For every pair i < j, we can compute at once Rijk for every k in O(n2)
totalling O(n4). Similar computations for Pik and Qik take even less time.

The instances that we chose are tested not to suffer the same kind of attacks
that fell previous TTS schemes, but we still don’t have any conclusive evidence
one way or the other of how likely this type of system can stand in the long run.
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