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Abstract

We would like to acknowledge the new attacks by Ward Beullens
[1] as being sound and his results as basically correct. We carefully
analyzed the new attacks and refined the analysis in these new attacks.
In addition, we tried to find all possible enhancements to these attacks.

In terms of security analysis, we present a new practical security
model by taking into consideration of the memory access cost. Under
this view, we find that our parameter sets I, III, and V as proposed to
NIST Round 3 still fit the corresponding NIST security levels in being
as hard to cryptanalyze as AES-128, -192, and -256 respectively.

Fundamentally, the Rectangular MinRank attacks are still vari-
ants of known exponential attacks. While [1] neatly summarizes and
clarifies the design of Rainbow and its results present a new and dif-
ferent perspective, the new modelling of MinRank developed in [2] by
Bardet et al probably served to take as many bits of security away
from Rainbow as the fact that there is a newer and better attack based
on MinRank. We may say that as a result of [1], we are actually more
confident that Rainbow will stay secure than before.

1 Synopsis

We acknowledge the new attacks by Ward Beullens [1] as being legitimate
and his results as basically correct. Indeed, following the announcement, we
actually worked with Mr. Beullens and improved his paper somewhat.

In the following we will therefore evaluate Beullens’ New (Rectangu-
lar) MinRank attack following the Support Minors Modeling methodology
of Bardet et al [2], and his new Intersection attack following the Bipartite
XL methodology of Perlner and Smith-Tone [3].

For the Intersection Attack, we assume that Beullens’ conjectured method-
ology to evaluate the bi-degrees of operation is valid as opposed to previ-
ous evaluations which simply throws away bilinear equations that lead to
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Round Instance
Intersection New MinRank Target
mults cost mults cost cost

Second
Ia (32, 32, 32,F16) 2116.8 2144.3 2120.2 2149.5 2143

IIIc (68, 36, 36,F256) 2405.0 2441.5 2145.8 2183.6 2207

Vc (92, 48, 48,F256) 2541.0 2587.8 2184.8 2232.6 2272

Third
I (36, 32, 32,F16) 2134.3 2162.1 2122.4 2152.3 2143

III (68, 32, 48,F256) 2205.4 2248.3 2171.8 2216.2 2207

V (96, 36, 64,F256) 2254.5 2309.9 2219.6 2276.2 2272

Table 1: Intersection and New MinRank Attack Complexities vs. Rainbow

bidegree-(2,1) syzygies. For the New (Rectangular) MinRank attack, we
take into account some other possibilities not covered in [1] (see below).

Where we differ from [1] is that in our cost model we are taking into
consideration of the memory access. Under this view, we find that our pa-
rameter sets I, III, and V as proposed to NIST Round 3 has the security
levels as given by Table 1, and still fit the corresponding NIST security levels
in being as hard to cryptanalyze as AES-128, -192, and -256 respectively.

1.1 Cost Analysis

Other Round 3 NIST PQC Candidates have submitted instances where the
analyzed cost in accepted models are lower than the NIST requirements, yet
argued that they meet those security levels. E.g., the Crystals-Kyber team,
which has Core-SVP security levels [7] of 118, 182, and 256 bits1 for the
Kyber level 1,3,5 instances (respectively), instead presumes security 2151.5,
2215.1, and 2287.3 (respectively) ”gates” [5].

We note that the Crystals-Kyber team doesn’t commit to 2151.5 gates,
but instead say that there is an error range of ±16 bits, and that their range
is between 2135 and 2167 “gates”. They further argue that even if it is 2135

it is okay because memory access (which they do not analyze) will be large
and push it above 2143.

For another example, the Crystals-Dilithium team, which has Core-SVP
security [7] of 2123, 2182, and 2252 for their level 2,3,5 instances respectively,
consider them to take 2159, 2217, and 2285 “gates” [6]. Note that the Dilithium
briefly surveys the Kyber analysis (citing from [5]), says that the analysis is
the basis of [6, Table 4], and briefly mentions that the ±16 also applies (so
that their level 3 instance could be below 2207 if not for memory costs).

1This number has been disputed as not according to the Core-SVP methodology of
Albrecht et al[7], but we follow the Crystals team’s numbers.
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We concur with the Crystals team that the memory cost can be significant
(even though they did not so state outright, and did not quantify it). We will
present our cost model below, in which Beullens’ attacks notwithstanding,
Rainbow-I, III, and V still have the required security levels.

2 Multiplication Costs

Again, where we differ from Beullens is that instead of assuming that multi-
plication takes 2(k2 +k) “gates”, where k = lg q is the bit-length of the field,
we take memory access costs into account. Citing Bernstein et al [4]:

Update for round 3: As in round 2, we report “free” secu-
rity estimates that disregard the cost of memory (such as “Core-
SVP”), and “real” security estimates that account for the cost
of memory. For round 2, we did not try to pin down constant
factors in the cost of memory. For round 3, we estimate the cost
of each access to a bit within N bits of memory as the cost of√
N/25 “bit operations”. Here 1/25 arises from comparing Intel’s

energy figures from [69]:

• Intel reported an energy cost of 6.4 pJ at 22nm for a double-
precision floating-point multiplication. This is roughly 2−11.3×
#bitops pJ, since a multiplication uses roughly 214 bit op-
erations.

• As noted above, Intel reported an energy cost of 11.20 pJ
“per 5 mm” to move 8 bytes at 22nm. Roughly 230 bits of
DRAM at 22nm fit in a 5mm× 5mm square; if moving 64
bits 5mm takes 11.20 pJ then moving 1 bit the full 5mm
horizontally plus the full 5mm vertically takes roughly 0.35
pJ, i.e., 2−16.5 ×

√
230 pJ. Smaller technology than 22nm

reduces the cost of bit operations, as noted above, while
also packing memory more densely. It is reasonable to guess
that these effects will stay approximately balanced: . . .

What we will take as the cost of multiplication is the bit-length of the
information that has to be sent to and from memory during that operation,
times the square root of the number of bits that needs to be randomly (non-
sequentially) accessed divided by 25, as a rough equivalent in “gates”. In
other words, if the vector length in the Wiedemann algorithm that domi-
nates the runtime of both the Intersection Attack and the New (rectangular)
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MinRank attack is V , then the cost of multiplication is lg V
√
kV /25 if we

have to make an equivalent cost in “gates”.
Note that this V is not the matrix size, since we simplistically assume that

we can recreate the matrix on the fly from the original equations (this un-
derestimates the complexity). We have also not considered losses that must
always result when we parallelize (this also underestimates the complexity).

As a result, we get Table 1. We conclude from this analysis that although
our numbers are lower than 2128, 2192, and 2256 in multiplications for our level
1,3,5 parameter sets proposed for Round 3, our practical security is greater
than what NIST requires.

3 Further Notes on Rainbow Cryptanalysis

3.1 Notes on Security Levels

Again without detracting from the basic correctness of the Beullens attacks,
one may note that Beullens’ evaluation and ours differ by a bit here and
there. For example, he evaluates the intersection attack against Rainbow-Ia
(32, 32, 32,F16) as taking 2123 “gates”. At 40 “gates” per multiplication, that
is off by one bit from our 2116.8. This seems to be a case where [1] assumes an
upper bound for the density, while we (as did Smith-Tone and Perlner in [3])
assume that the attacker takes as many of the less dense equations as possible.
In the case of the new MinRank attack against Rainbow-I (36, 32, 32,F16),
[1] has 2127 which is again off by about one bit from our evaluation, which
may have been caused by a rounding error.

3.2 A Recap, Prelude to New Modes of Attack

In our analysis, we also consider several possible extensions of the attacks
proposed by [1]. To introduce the new attacks, first we recap Beullens’
Rectangular MinRank attack. We refer the reader to [1, Fig. 2]. There
exists subspaces W ⊂ Fm

q and O2 ⊂ O1 ⊂ Fn
q such that

P ′(x, ·)(O2) ⊂ W,P(O1) ⊂ W,P(O2) = {0}.

where P ′(x,y) = P(x+y)−P(x)−P(y) is the polar form of P , the rainbow
public map. [1] introduce a new MinRank attack that exploits the property
that for y ∈ O2, we have that P ′(x,y) ∈ W,∀x. Let e1, . . . , en be the
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standard basis for Fn
q . For a vector x ∈ Fn

q Define the matrix

Lx =

 P
′(e1,x)

...
P ′(en,x)

 .

So if y ∈ O2, then all the rows of Ly are in W , which implies that the matrix
has rank at most dimW = o2. The matrices, Ly =

∑n
j=1 yjLej where Lej

are known. Furthermore, we can set the last o2 − 1 components of y to 0
and still expects a result. Thus, there is a nontrivial linear combination of
k = n− o2 + 1 matrices Le1 , . . . , Len−o2+1 of shape n×m that has rank o2.

Support Minors Modeling (as introduced in Bardet et al in [2]) of this
MinRank problem proceeds as follows: We take a basis of W and diagonalize
it, obtaining the o2×m matrix C. Take any row ri of the matrix Ly written
as linear forms in the yi. Consider the (o2 +1)×(o2 +1) minors of the matrix[

ri
C

]
and consider all o2×o2 minors of C plus the yi as variables. We have obtained
a bilinear system with n

(
m

o2+1

)
equations and can solve using (bipartite) XL,

immediately so if n
(

m
o2+1

)
≥ (n− o2 + 1)

(
m
o2

)
− 1.

3.3 Columns instead of Rows

A variant is to run the above attack with a transposition (swapping columns
and rows). For this MinRank problem there turns out to be no gain.

3.4 Two y’s and Elimination

As an extension of the Rectangular MinRank attack, we can set the last o2
components of y to either (1, 0, 0, . . . , 0) or (0, 1, 0, . . . , 0). Therefore, con-
sider that we have the rows ri of Ly and the rows r′i of Ly′ both of which span W .

Thus, we can repeat the Support Minors Modeling attack using both the

minors of

[
ri
C

]
and that of

[
r′i
C

]
. Assuming that n

(
m

o2+1

)
>
(
n− o2 + 1

2

) (
m
o2

)
,

we can eliminate the equations with y down to linear forms in just the C vari-
ables, and do the same with the y′ equations, and there will be sufficiently
many equations to solve for the C variables.

Note that this attack can be obviously extended to multiple y’s up to
o2−1. However, none of this seems to matter within the range of parameters
that we are discussing, and we did not spot any case where the above applies.
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3.5 Tripartite XL with two y’s

Let’s further consider an extension of the above idea. We simply try to solve
the bilinear equations in the y and the C variables, and those in the y′ and
the C variables, all together. We consider raising to the tri-degree (b, c, 1)
where b is the degree in the y variables, c is that of the y′ variables and still
linear in the C variables. There are((

n− o2 + b− 1

b− 1

)(
n− o2 + c

c

)
+

(
n− o2 + b

b

)(
n− o2 + c− 1

c− 1

))
×n
(

m

o2 + 1

)
equations and(

n− o2 + b

b

)(
n− o2 + c

c

)
× (n− o2 + 1)

(
m

o2

)
variables. However, not all equations are independent. As in the Rectangular

Minrank attack, we can derive syzygies from the minors of matrices

 ri
rj
C


and

 r′i
r′j
C

 but also the combination

 ri
r′j
C

 and so on with even more rows

from y and y′. We wrote scripts to enumerate over b, c to see if we arrive at
an improved attack.

Conclusion from the above: We checked over the Rainbow parameter
sets and this new variant attack turns out not to improve the complexity
over the Rectangular MinRank attack as described in [1].

4 Summary

Our parameter sets I, III, and V as proposed to NIST PQC Round 3 still
meet the corresponding NIST security level requirements2.

While Beullens’ paper centers on the new attacks, it neatly summarizes
and clarifies the design of Rainbow and identify attack vectors. Critics of
Rainbow had voiced the concern that with concentrated attention a new and
powerful attack might be found, completely breaking Rainbow. It seems
that the new attacks did come and they turned out to be still fundamentally
exponential, and in such a way that does not leave Rainbow-I in the range
achievable by humans.

2Indeed the parameter set Ia as proposed to NIST Round 1 and 2 still does too.
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To put things in perspective, had the new insight on the design of Rainbow
arrived prior to the new and improved MinRank analysis from [2], Rainbow-I
would have been assessed to have security greater than 2150 multiplications.
So the improved modelling by Bardet et al deserves some of the credit for
this reduction in assessed security levels.

Finally the new perspective from [1] also serves to reassure us that it is
unlikely that there will be future attacks heretofore unknown.
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