
Modified Parameters of Rainbow in Response
to a Refined Analysis of the Rainbow Band

Separation Attack by the NIST Team and the
Recent New MinRank attacks

Rainbow Team

Updated September 18, 2020

Recently, the Rainbow team was notified by Ray Perlner and Daniel
Smith-Tone from the NIST PQC team of a new refined analysis of the
Rainbow Band Separation (RBS) Attack using the natural variable partition
of the polynomial system generated by the attack.

(A) Cryptology ePrint Archive: Report 2020/702 Rainbow Band
Separation is Better than we Thought, Ray Perlner and Daniel
Smith-Tone

This new analysis makes full use of the polynomial structure and therefore
gains a few bits in terms of attack efficiency. Since the parameters of the
submitted Rainbow instance were chosen almost exactly according to the
NIST requirement, we have to modify the parameters of the scheme slightly
to address this new refined analysis.

Furthermore, the Rainbow team has been paying close attention to the
recent development of a new method to improve the MinRank attack. This
line of work started with a paper coauthored by the NIST team, too:

(1) Javier A. Verbel, John Baena, Daniel Cabarcas, Ray A.
Perlner, Daniel Smith-Tone: On the Complexity of ”Superdetermined”
Minrank Instances. PQCrypto 2019: 167-186.

Before of that, the methods used to evaluate the complexity of the MinRank
attack mainly relied on the paper:

(2) Jean-Charles Faugere, Francoise Levy-dit-Vehel, Ludovic
Perret: Cryptanalysis of MinRank. CRYPTO 2008: 280-296,

in which the authors claimed that they proved the best attacking method
is to use the minors of the matrix generated by a linear combination of given
matrices.

1



Since the cost of a MinRank attack was very high according to this estimate,
the impact of the MinRank attack against the Rainbow cryptosystem was
believed to be very small.

However the paper (1) clearly shows that the proof in the Crypto 2008
was completely wrong and furthermore using the idea of by this work, another
paper:

(3) Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit,
Vincent Neiger, Olivier Ruatta, Jean-Pierre Tillich: An Algebraic
Attack on Rank Metric Code-Based Cryptosystems. EUROCRYPT
(3) 2020: 64-93,

breaks the Minrank based Code-based schemes in the NIST second round
submission.

Then in 2020, there was a new development in this direction:
(4) Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe

Gaborit, Ray A. Perlner, Daniel Smith-Tone, Jean-Pierre Tillich,
Javier A. Verbel: Algebraic attacks for solving the Rank Decoding
and MinRank problems without Gröbner basis. CoRR abs/2002.08322
(2020),

which further demonstrates the complete failure of the proof in (2), and
destroyed the MinRank based Code-based schemes in the NIST second round
submission. In this paper, the authors further applied their excellent methods
to attack Rainbow, which reduced the attack complexity tremendously. However,
the complexity of a MinRank attack against Rainbow is still above the NIST
security requirements.

We have been studying the paper (4) very carefully, and we believe it
gives the best possible attack using the MinRank method from the theoretical
perspective. Furthermore the authors shed new lights on how we should select
better parameters such that we can improve the security without much cost.
Therefore, we would like to adjust our parameters with full consideration of
these new attacks as well.

Overall, we would like to point out that the development of these new
attacks does not affect the fundamentals of the security analysis of Rainbow
and it actually increases our confidence in the overall design of Rainbow. The
modifications have very small impact on efficiency of the Rainbow signature
scheme.

We will recap first the work by NIST PQC team on the Rainbow Band
Separation attack using the Wiedemann XL algorithm and how to address
this problem (see Section 1 and 2). Secondly, in Section 3, we will address the
new MinRank attacks and our conclusions from it. Finally we will present in
Section 4 the new modified parameters for the Rainbow signature scheme.

2



1 Bipartite XL Attack and Parameters

We will for brevity call the specialized XL-like attack on equations of bi-
degree (2, 0) and (1, 1) a “Bipartite XL Attack”.

Note: By a bi-degree (a, b) polynomial, we mean a polynomial with a
partition of variables into two subsets X and Y , such that the highest degree
in X is a and the highest degree in Y is b. Given a collection of terms
and equations, we mean by N “missing equations” or “residual degrees of
freedom” that, after performing Gaussian Elimination on the equations, N
of the terms still remain uneliminated.

1.1 Basic Facts about Bipartite XL

1. The NIST PQC team proposed a generating function expression

h(α, β;nx, ny;mx,mxy) := [tαsβ]

(
(1− t2)mx (1− ts)mxy

(1− t)1+nx (1− s)1+ny

)
to characterize the remaining missing equations (e.g. residual degrees
of freedom) for bi-degrees less than (α, β) in a Bipartite XL algorithm,
for a generic system with nx X-variables, ny Y-variables, mx bi-degree
(2, 0) equations, and mxy bi-degree (1, 1) equations, in sufficiently large
fields, as long as it is greater than zero. In this Bipartite XL algorithm,
we multiply the quadratic system by monomials such that the maximum
degree allowed is a given bi-degree (α, β).

When this expression is nonpositive, the system can be solved using
Bipartite XL.

2. We want to use Block Wiedemann.

Let T = T (α,β) be the #terms with bi-degree less than (α, β).

In our range of parameters we have T (1,1) < T (2,0), so we will be using

T ′ = T − h(α, β;nx, ny;mx,mxy)

equations generated from bi-degree (1, 1) equations, and T−T ′ equations
generated from bi-degree (2, 0) equations.

The total #terms in these T equations is

K ′ =
(
T (1,1)T ′ + T (2,0)(T − T ′)

)
,

and a lower bound on the number of multiplications used in the Bi-
partite XL is thus 3T 2K ′.

3



If we set
R = R(α,β) = mxT

(α−2,β) +mxyT
(α−1,β−1)

to be the total #equations generated up to bi-degree (α, β), and

K = mxT
(2,0)T (α−2,β) +mxyT

(1,1)T (α−1,β−1)

to be the total #terms in those R equations, an upper bound on the
number of multiplications is 3RK.

This new refined analysis of the NIST PQC team is natural but very
clever and makes full use of the bipartite structure of the polynomial system
to derive a more precise analysis of the complexity.

1.2 RBS Complexities in View of Bipartite XL

From the refined analysis, it is very clear to us that to address the security
parameter modification, we only need to slightly increase the vinegar variables
on the first Rainbow layer.

Armed with the formulas from above, we may recompute the complexities
required for the Rainbow Band Separation (RBS) attack for proposed Rainbow
instances in Round 2 of the NIST PQC Competition below in Table 1.

Scheme bi-degree mult gates AES/SHA3 Required Level
Rainbow-Ia(32,32,32;16) (12, 4) 134 139 124

128 (AES) IRainbow-I ′a(34,32,32;16) (14, 3) 139 144 129
Rainbow-I ′′a(36,32,32;16) (13, 4) 141 147 132
Rainbow-IIIc(68,36,36;256) (15, 9) 197 204 186

192(SHA3) III
Rainbow-III ′c(72,36,36;256) (15, 10) 203 210 192
Rainbow-III ′′c(76,36,36;256) (18, 7) 208 215 197
Rainbow-III†c(68,32,48;256) (14, 12) 210 217 199
Rainbow-V c(92,48,48;256) (19, 12) 256 263 245

256(SHA3) V
Rainbow-V ′c(100,48,48;256) (21, 11) 267 274 256
Rainbow-V ′′c(104,48,48;256) (20, 13) 271 278 260
Rainbow-V †c(96, 36, 64; 256) (21, 12) 274 281 263

Table 1: Bipartite XL in RBS and Rainbow Instances

We should notice that these attacks assume a somewhat impractical
constant time memory access, since the memory requirements for these XL
attacks are huge. However, in the NIST Call for Proposals document about
Category 1, NIST says that every attack “must require computational resources
comparable to or greater than those required for key search on a block cipher
with a 128-bit key (e.g. AES128)”. This requirement must be met in ”all
metrics that NIST deems to be potentially relevant to practical security”.

4



One of the metrics already mentioned in the call is “classical gates”; NIST
estimates that AES-128 key search uses about 2143 “classical gates”.

In view of these revised estimates of this known attack, to which we agree,
Rainbow Ia, IIIc, and Vc do not meet their proposed security levels by a few
bits (4, 6, 9 respectively) and needs to be amended.

1.3 Modified Parameters in View of Bipartite XL

For each parameter set (v, o1, o2; q), we increased v until the complexity of
the RBS attack using Bipartite XL is at least equal to the required level. We
then continued to increase v until we get at least 24 times the required level.
Our new parameters will keep the oil variable size intact.

Besides increasing the complexity of Bipartite-XL attacks, increasing
the parameter v increases the complexity of the UOV attack significantly.
Furthermore, it slightly increases the complexities of the Rank attacks. On
the downside, increasing v might have a negative effect on the complexity of
direct attacks. If the number of variables n in the public system exceeds the
number of equations m by a factor of two, we can use a method of Thomae
to transform the public system into an equivalent system of m− 1 equations
in m − 1 variables. For the parameters for NIST security level I, we are
far away from this case, so the complexity of direct attacks is not changed
by increasing the parameter v. For the higher security levels we find that,
after increasing v, the number of variables now exceeds twice the number
of equations, which decreases the complexity of direct attacks against these
schemes. However we find that that the decrease in complexity is roughly 1
bit, which implies that the complexity of direct attacks against these schemes
is still well beyond the required security levels.

Overall these updates make essentially no difference in other standard
Rainbow attacks. RBS remains the most potent classical attack and is the
decisive factor in our parameter choices.

2 The Putative Bipartite XL2 Attack

The NIST PQC team also presented a security analysis based on the first
fall degree, which is also called the mutant degree. At this degree, due to a
non-trivial syzygy, new lower degree polynomial, mutants, are produced.

We agree that a modified XL-style algorithm will produce a degree fall
and therefore mutants at the lowest bi-degree (a, b) for which

h(a, b;nx, ny;mx,mxy) := [tasb]

(
(1− t2)mx (1− ts)mxy

(1− t)nx (1− s)ny

)
5



is negative. This means among other things that the first fall degree in a
F4 algorithm would be no higher than a + b. However, we present a refined
analysis on whether this will lead to a valid, faster attack. We show:

1. The attack using these mutants would happen under slightly different
conditions than what the NIST PQC team depicted; and

2. The attack using these mutants, even when it works, actually has a
higher cost than the full Wiedemann Bipartite XL attack in general.

We will take as an illustrative example the RBS system created when
attacking Rainbow-I ′′a(36, 32, 32; 16). In this attack, we need to solve a
system with 68 X-variables, 32 Y -variables, 64 bi-degree (2, 0)-equations
and 99 bi-degree (1, 1) equations. We have

h(9, 8; 68, 32; 64, 99) = 11622781589490522 & 253 > 0

h(9, 8; 68, 32; 64, 99) = −2564665346260512 & −251.2 < 0

Therefore, Bipartite XL is not expected to result in a solution at bi-
degree (9, 8). The reason for this is that there are h(9, 8; 68, 32; 64, 99) & 253

remaining missing equations, while there are h(9, 8; 68, 32; 64, 99) . 251.2

mutants at a lower degree (≤ 16) to be found whose highest order terms are
in general of degree 16, at bi-degree (8, 8) or degree (9,7).

The NIST team’s FirstFall attack suggests that a block Wiedemann on

a system with T
(9,8)

= 8765083866469273200 . 263 variables (where T
(a,b)

=
#terms at exactly bi-degree (a, b), as opposed to at that or lower), and at

least 68 × 32 terms per column, which takes around 3
(
T

(9,8)
)2

(68 × 32) &

2138.5, can eventually lead to a solution. We will show

1. that the first fall at bi-degree (9, 8) doesn’t lead to a solution, although
the first fall at bi-degree (10, 7) (or (11, 6), or (12, 5)) does; and

2. that finding enough mutants costs more than direct Bipartite XL; and

3. that going from the mutants through a final elimination also takes more
effort than the direct Bipartite XL.

2.1 Illustrative “First Fall” (Non-Bipartite) XL2

We will first recap a case where the Wiedemann XL2 idea seems to work.
Let there be n = 22 variables, and m = 44 equations. The Wiedemann XL

6



attack happens at degree D = 6 because

h(6; 22; 44) = [t6]

(
(1− t2)44

(1− t)22+1

)
= −33208 < 0,

h(5; 22; 44) = [t5]

(
(1− t2)44

(1− t)22+1

)
= 1288 > 0.

But, we are able to conduct a Wiedemann XL2 attack at D = 5 because

h̄(5; 22; 44) = [t5]

(
(1− t2)44

(1− t)22

)
= −2464 < 0.

To be more precise, let T̄ (D)(n) = [tD](1−t)−n and T (D)(n) = [tD](1−t)−(n+1)

be the number of terms at and up to degree D with n variables respectively.
If we randomly select T̄ (5)(22) − h̄(5; 22; 44) = 68244 equations from the
R̄(5)(22; 44) = 44 × T̄ (3)(22) = 89056 relations we obtain by multiplying
all degree-3 terms to the 44 original equations, we can likely obtain all
−h̄(5; 22; 44) nontrivial degree-falls at degree 5 by solving for vanishing linear
combinations of rows of the Macaulay matrix.

Note: the initial block Wiedemann takes about 3×
(
T̄ (5)(22)

)2×T̄ (2)(22) =
3284199375600 ≈ 241.5 multiplications. If we can somehow run this initial
block Wiedemann with a block size of 64 (or repeat the block Wiedemann a
few times with a block size of 16 or 32), then we can obtain 64 mutants each
with T (4)(22) = 14950 terms. By multiplying each of these mutants with
each variable, we obtain 22× 64 = 1408 equations, totalling 1408× 14950 =
21049600 = 224.3 terms in all. The Macaulay-like system at degree 5 had
R(5)(22; 44) = 44 × T (3)(22) = 101200 equations for 101200 × T (2)(22) =
27931200 ≈ 224.7 terms, totalling 48980800 = 225.5 terms in the system.
We can now run a second Wiedemann with T (5)(22) = 80730 variables and
complexity 3× 80730× 48980800 = 11862659952000 ≈ 243.5 multiplications,

versus the direct block Wiedemann XL at degree 6 using 3 ×
(
T (6)(22)

)2 ×
T (2)(22) = 243253449757720561500 = 246.7 multiplications.

Criteria for Wiedemann XL2: The reasons why this works, which we
shall verify to not hold for the putative Wiedemann Bipartite XL2, are:

1. One (or few) run of block Wiedemann finds enough nontrivial degree-
fall linear combinations (mutants) to make up for the missing equations;

2. mutants multiplied by variables add new equations without adding new
terms we must cater to (else the system size explodes); and

7



3. Few mutants and new equations need to be added (else the system
becomes much bigger, and sparse matrix methods becomes impossible).

This means that the system can only be solved using sparse XL if we have
not too many mutants of high degree.

2.2 The “First Fall” Bipartite XL2?

Now let’s go back to the RBS system system created when attacking Rainbow-
I ′′a(36, 32, 32; 16). There are 68 X-variables, 32 Y -variables, 64 bi-degree
(2, 0)-equations and 99 bi-degree (1, 1) equations. We multiply the 64 bi-
degree (2, 0)-equations by all bi-degree (7, 8) monomials and the 99 bi-degree
(1, 1) equations by all bi-degree (8, 7) monomials, and have sufficiently many
equations to eliminate all bi-degree (9, 8) monomials to get degree-16 mutants.

But these mutants have leading terms both of bi-degree (9, 7) and (8, 8).
If we plan to multiply the result by an X-variable, we would get terms of
bi-degree (10, 7); if we multiply by a Y -variable, we get terms of bi-degree
(8, 9). In either case, our collection of terms to eliminate has gotten larger.
With that, the number of extra equations we need to generate goes up,

by T
(10,7)

(68, 32) & 263 or T
(9,8)

(68, 32) & 262, and these equations will all
be dense not sparse equations once we generate them, with T (9,8)(68, 32) −
T

(9,8)
(68, 32) & 261.6 terms per equations. Surely 2123 terms in memory is not

tractable.

2.2.1 X-Mutants and Y -Mutants

We say an equation is an X-mutant from a collection of bi-degree (a, b)
equations, if all terms of bi-degree (a, i) have been eliminated. We can safely
multiply an X-mutant by an X-variable and get a new equation of bi-degree
(a, b) or lower. We define a Y -mutant similarly.

Can we find any X or Y mutants from bi-degree (9, 8)?
Let’s first take all equations at bi-degrees (9, i) and try to eliminate

all terms of bi-degrees (9, i) for i ≤ 8. We have −h(9, 8; 68, 32; 64, 99) −
h(9, 7; 68, 32; 64, 99) = 56509572816576 ≈ 245.7. This means that if we take
all equations at bi-degree (9, 8) or lower and try to eliminate the bi-degree
(9, 8) and (9, 7) terms, we find 56509572816576 ≈ 245.7 equations remaining,
which is insufficient to eliminate all bi-degree (9, 6) terms, since we still
need h(9, 6; 68, 32; 64, 99) = 1729160624511936 ≈ 250.6 extra equations at bi-
degree (9, 6). So there should be no X-mutants. If we multiply any mutant
equation by an X-variable, we find bi-degree (10, 6) or higher terms. XL2
therefore cannot continue this way without going again up in degree.

8



As h(8, 8; 32, 64; 64, 99) = 3415567098484728 ≈ 251.6 > −h(9, 8; 32, 64; 64, 99),
the mutants from the equations at bi-degree (9, 8) are not enough to eliminate
all terms of bi-degree (8, 8), so similarly there should be no Y -mutants.

2.2.2 Criteria for Finding X- and Y -Mutants

Under what condition do we see an X-mutant at a bi-degree (a, b)?
This should happen when the number of mutants is sufficient to complete

the elimination of all terms of bi-degree (a, i) for i < b from the original set
of equations at degree (a, b) or lower. One expects that this happens if the
number of mutants is greater than the sum of residual degrees of freedom in
the terms of bi-degree (a, i) in the equations of bi-degree (a, i), or when

−h(a, b;nx, ny;mx,mxy) ≥
b−1∑
i=0

h(a, i;nx, ny;mx,mxy).

We can re-write this as 0 ≥
∑b

i=0 h(a, i;nx, ny;mx,mxy), or,

b∑
i=0

[
[tasi]

(
(1− t2)mx(1− ts)mxy

(1− t)nx(1− s)ny

)]
= [tasb]

(
(1− t2)mx(1− ts)mxy

(1− t)nx(1− s)ny+1

)
≤ 0,

using generating function expressions, and similarly, for Y -mutants we have

[tasb]

(
(1− t2)mx(1− ts)mxy

(1− t)nx+1(1− s)ny

)
≤ 0.

We see that both these conditions hold for (nx, ny;mx,mxy) = (68, 32; 64, 99)
and (a, b) = (10, 7) but not (9, 8). Therefore, for the RBS system attacking
Rainbow-I ′′a(36, 32, 32), we believe that the possible Bipartite XL2 attack
suggested by the NIST team doesn’t happen at bi-degree (9, 8). For bi-degree
(10, 7), see the analysis below on the number of mutants needed.

2.3 The Task of Finding Enough Mutants

In the following we assume that the putative “First-Fall” Bipartite XL2
attack of the previous subsection somehow works as suggested by the NIST
team. The same computations would hold for bi-degrees (10, 7) instead of
(9, 8). In that case each large number mentioned below will be replaced by
one of comparable magnitude.

9



2.3.1 An Initial Wiedemann Run

A (block) Wiedemann on the transpose of the Macaulay-like matrix for terms
at bi-degree (9, 8) can reveal random nontrivial linear combinations from

the R
(9,8)

= 1428708670234491531600 ≈ 270 relations in the Macaulay-like

matrix (R
(a,b)

= #equations at exactly bi-degree (a, b)), up to h(9, 8; 68, 32; 64, 99) .
251.2 in all, such all bi-degree (9, 8) terms are eliminated.

At least T
(9,8)−h(9, 8; 68, 32; 64, 99) = 8767648531815533712 . 263 random

equations out of the R
(9,8)

are necessary for running this (block) Wiedemann
to find −h(9, 8; 68, 32; 64, 99) mutants. (This number is not much bigger than

T
(9,8)

)
In general, a block Wiedemann uses the same 3× (#columns)× (#terms)

multiplications independent of the block width if it is small, but at some
point the block Berlekamp-Massey will become painful, and we can estimate
a practical cap on the width. Let us say that a computing node in a cluster
running the block Wiedemann has 128GB = 240 bits of memory. If the block
is wider than 220, the node cannot hold the matrix, which is dense.

Notice that h(9, 8; 68, 32; 64, 99)/ − h(9, 8; 68, 32; 64, 99) ≈ 4.5, and that
h(9, 9; 68, 32; 64, 99) = −14405095991599302 ≈ −254 < 0. So we might
envision that if we multiply the mutants by each of the 32 Y -variables, we
can get a new nonredundant equation almost every time and complete the
elimination the moment we have sufficiently many equations. However, this
means we are going to need at least h(9, 8; 68, 32; 64, 99)/32 ≈ 248 mutants
out of −h(9, 8; 68, 32; 64, 99) ≈ 251.2 in our initial block Wiedemann runs.

Conclusion: To get all the nontrivial degree-16 reduced equations we
need, we must run the block Wiedemann at least 248/220 = 228 times.

Even assuming we need only 214 (square root of 228) block Wiedemanns,
this will take≥ 214×2138.5 > 2152 multiplications, wiping out all the advantages
of having a smaller system to solve initially.

For reference, we give the corresponding numbers for bi-degree (10, 7) —
note that for bi-degrees (11, 6) and (12, 5) the Bipartite XL works, but takes
more time than bi-degree (13, 4).

h(10, 7; 68, 32; 64, 99) = 11622781589490522 & 251 > 0

h(10, 7; 68, 32; 64, 99) = −9349017047523648 & −253.1 < 0

2.3.2 If We don’t use (Block) Wiedemann

A common argument that we see is to argue that we don’t need to use
(block) Wiedemann, instead using some dense form of Gaussian Elimination

10



and further say that it runs in Nω multiplications with ω ≈ 2.37 (where N
is the number of variables). This is absurd because the correct asymptotic is
Nω+o(1). However, there is a proportional constant cω which is astronomical
when we take ω ≈ 2.37, such that no one ever uses Coppersmith-Winograd or
even more complex methods of matrix multiplication in practice. A practical
asymptotic is 7N log2 7 ≈ 7N2.8 ≈ 2179 which again wipes out any gains of the
putative Bipartite XL2 over Bipartite XL. Of course we note that even the

absurdly overoptimistic
(
T

(9,8)
)2.37

≈ 2149 is too large to show a profit.

2.4 After the Initial Elimination

The result of the initial elimination at bi-degree (9, 8) is a collection of first-
fall results (mutants), which are dense equations at degree 16. Each such

equation has T (9,8) − T (9,8)
= 3641376753349367175 & 261.

At bi-degree (9, 8), the linear system still has h(9, 8; 68, 32; 64, 99) ≈ 248

missing equations. We need to generate approximately that many equations.
Note that Bipartite XL would terminate at bi-degree (10, 8) or (9, 9). So if we
take the mutants and multiply them by variables to generate new equations,
we expect the process to end with a solution. Unfortunately, the collection

of such mutant-generated equations has approximately
(
T (9,8) − T (9,8)

)
×

h(9, 8; 68, 32; 64, 99) ≈ 2115 terms, which rules out any sparse matrix methods.
Multiplications we would need in the follow-up elimination would be at
least (using the abovementioned wildly optimistic estimate) in the realm

of
(
T

(9,8)
)2.37

≈ 2149, which again clearly outnumbers what one would have

paid for a straight Bipartite XL with block Wiedemann.

2.5 Rainbow Ia(32, 32, 32)

We will take as a further illustrative example the RBS system created when
attacking Rainbow-Ia(32, 32, 32; 16). For this attack, we need to solve a
system with 64 X-variables, 32 Y -variables, 64 bi-degree (2, 0)-equations
and 95 bi-degree (1, 1) equations. We have

h(14, 2; 64, 32; 64, 95) = 997579892898379 ≈ 250 > 0, but

h(14, 2; 64, 32; 64, 95) = −4222561761072 ≈ −242 < 0.

Thus, the NIST team suggested that it might be possible to conduct an
XL2-like attack starting at bi-degree (14, 2).

11



X- and Y -Mutants: We can first check that there are no X- and Y -
mutants at bi-degree (14, 2) by checking that

[t14s2]

(
(1− t2)64(1− ts)95

(1− t)64(1− s)33

)
= 327013949718576 ≈ 248.2 > 0

[t14s2]

(
(1− t2)64(1− ts)95

(1− t)65(1− s)32

)
= 493968247129017 ≈ 248.8 > 0

Because these numbers are large, we know that attempting to run XL2 at
bi-degree (14, 2) will generate lots of extra monomials.

Number of Mutants Needed: h(14, 2; 64, 32; 64, 95)/(64 + 32) ≈ 243.
The same for (13, 3) would be 241.4, both needing > 220 Wiedemann runs.

Resulting System after X- or Y -extension: The resulting system has
T (13,3) ≈ T (14,2) ≈ 260 variables, and has at least 248 dense equations.

So, there is no hope for Wiedemann and the overoptimistic Coppersmith-
Winograd estimate gives 2142, which is more than what the Wiedemann
Bipartite XL attack at (12, 4) will cost. Thus Bipartite XL2 doesn’t work
well.

2.6 Rainbow III ′′c(76, 36, 36)

We will take as a further illustrative example the RBS system created when
attacking Rainbow-III ′′c(76, 36, 36). For this attack, we need to solve a
system with 112 X-variables, 36 Y -variables, 72 bi-degree (2, 0)-equations
and 147 bi-degree (1, 1) equations. We have

h(14, 11; 112, 36; 72, 147) = 1377541749643608527503980 ≈ 280 > 0, but

h(14, 11; 64, 32; 64, 95) = −103892717384965558825776 ≈ −276.5 < 0.

Thus, if we follow the suggestion of the NIST team, it might be possible to
conduct an XL2-like attack starting at bi-degree (14, 11).

X- and Y -Mutants: We can first check that there are no X- and Y -
mutants at bi-degree (14, 11) by checking that

[t14s11]

(
(1− t2)72(1− ts)147

(1− t)112(1− s)37

)
= 602315797005838403236840 ≈ 279 > 0

[t14s11]

(
(1− t2)72(1− ts)147

(1− t)113(1− s)36

)
= 260464711394354060327643 ≈ 277.8 > 0

12



Because these numbers are large, we know that attempting to run XL2 at
bi-degree (14, 11) will generate lots of extra monomials.

Number of Mutants Needed: h(14, 11; 112, 36; 72, 147)/(148) ≈ 273.
needing > 253 Wiedemann runs.

Resulting System after X- or Y -extension: The resulting system has
T (14,11) ≈ 294 variables, and has at least 280 dense equations.

Again, there is no hope for Wiedemann and the overoptimistic Coppersmith-
Winograd estimate gives 2223, more than what the Wiedemann Bipartite
XL attack at (18, 7) will cost. Thus Bipartite XL2 doesn’t work well, and
fundamentally this is again because elimination leads to dense equations.

2.7 Rainbow III†c(68, 32, 48)

We will take as a further illustrative example the RBS system created when
attacking Rainbow-III†c(68, 32, 48). For this attack, we need to solve a
system with 100 X-variables, 48 Y -variables, 80 bi-degree (2, 0)-equations
and 147 bi-degree (1, 1) equations. We have

h(20, 5; 100, 48; 80, 147) = 7134538083675446275000785 ≈ 282.5 > 0, but

h(20, 5; 100, 48; 80, 147) = −479241755204235341566080 ≈ −278.7 < 0.

Thus, if we follow the suggestion of the NIST team, it might be possible to
conduct an XL2-like attack starting at bi-degree (20, 5).

X- and Y -Mutants: We can first check that there are no X- and Y -
mutants at bi-degree (20, 5) by checking that

[t20s5]

(
(1− t2)80(1− ts)147

(1− t)101(1− s)48

)
= 2473371711814717423492860 ≈ 281 > 0

[t20s5]

(
(1− t2)80(1− ts)147

(1− t)100(1− s)49

)
= 2416153895705673915165045 ≈ 281 > 0

Because these numbers are large, we know that attempting to run XL2 at
bi-degree (20, 5) will generate lots of extra monomials.

Number of Mutants Needed: h(20, 5; 100, 48; 80, 147)/(148) ≈ 275.4.
needing > 255 Wiedemann runs.

13



Resulting System after X- or Y -extension: The resulting system has
T (20,5) ≈ 296 variables, and has at least 282 dense equations.

Again, there is no hope for Wiedemann and the overoptimistic Coppersmith-
Winograd estimate gives ≈ 2227, more than what the Wiedemann Bipartite
XL attack at (14, 12) will cost. Thus Bipartite XL2 doesn’t work well.

2.8 Rainbow V ′′c(104, 48, 48)

We will take as a further illustrative example the RBS system created when
attacking Rainbow-V ′′c(104, 48, 48). For this attack, we need to solve a
system with 152 X-variables, 48 Y -variables, 96 bi-degree (2, 0)-equations
and 199 bi-degree (1, 1) equations. We have

h(19, 13; 152, 48; 96, 199) = 332834514212532556308240711812488 ≈ 2108 > 0, but

h(19, 13; 152, 48; 96, 199) = −1600687433035468626342834076240 ≈ −2100 < 0.

Thus, if we follow the suggestion of the NIST team, it might be possible to
conduct an XL2-like attack starting at bi-degree (19, 13).

X- and Y -Mutants: We can first check that there are no X- and Y -
mutants at bi-degree (19, 13) by checking that

[t19s13]

(
(1− t2)96(1− ts)199

(1− t)153(1− s)48

)
= 80200124719585003586812560162920 ≈ 2106 > 0

[t19s13]

(
(1− t2)96(1− ts)199

(1− t)152(1− s)49

)
= 161939796466108210537693332119990 ≈ 2107 > 0

Because these numbers are large, we know that attempting to run XL2 at
bi-degree (19, 13) will generate lots of extra monomials.

Number of Mutants Needed: h(19, 13; 152, 48; 96, 199)/(200) ≈ 2100.4.
needing > 280 Wiedemann runs.

Resulting System after X- or Y -extension: The resulting system has
T (19,13) ≈ 2125 variables, and has at least 2108 dense equations.

There is no hope for Wiedemann and the overoptimistic Coppersmith-
Winograd estimate gives ≈ 2297, more than what the Wiedemann Bipartite
XL attack at (19, 13) will cost. We thus see that Bipartite XL2 doesn’t work
well.

14



2.9 Rainbow V †c(96, 36, 64)

We will take as a further illustrative example the RBS system created when
attacking Rainbow-V †c(96, 36, 64). For this attack, we need to solve a system
with 132 X-variables, 64 Y -variables, 100 bi-degree (2, 0)-equations, 195 bi-
degree (1, 1) equations. We have

h(18, 15; 132, 64; 100, 195) = 2099369496623115234879186961755620 ≈ 2110.7 > 0, but

h(18, 15; 132, 64; 100, 195) = −371675427752064100013163901852480 ≈ −2108 < 0.

Thus, if we follow the NIST team suggestion, it might be possible to conduct
an XL2-like attack starting at bi-degree (18, 15).

X- and Y -Mutants: We can first check that there are no X- and Y -
mutants at bi-degree (18, 15) by checking that

[t18s15]

(
(1− t2)100(1− ts)195

(1− t)133(1− s)64

)
= 493658677133282151171730895365520 ≈ 2108.6 > 0

[t18s15]

(
(1− t2)100(1− ts)195

(1− t)132(1− s)65

)
= 536178001671049801324155671099180 ≈ 2108.7 > 0

Because these numbers are large, we know that attempting to run XL2 at
bi-degree (18, 15) will generate lots of extra monomials.

Number of Mutants Needed: h(18, 15; 132, 64; 100, 195)/296 ≈ 2102.5.
needing > 282.5 Wiedemann runs.

Resulting System after X- or Y -extension: The resulting system has
T (18,15) ≈ 2128 variables, and has at least 2110 dense equations.

There is no hope for Wiedemann and the overoptimistic Coppersmith-
Winograd estimate gives ≈ 2304, more than what the Wiedemann Bipartite
XL attack at (19, 13) will cost. We thus see that Bipartite XL2 doesn’t work
well.

3 The new MinRank Attacks

Here we will recap briefly the new attack method in (4).
Suppose we are given k + 1 matrices Y,M1, ...,Mk of size m × n and we

want to find a linear combination

15



M = Y +
k∑
i=1

xiMi

of rank ≤ R.
Kipnis and Shamir proposed a method to solve this problem by introducing

a new matrix K of size n× r, which is a basis of the kernel of M . This gives
us the condition:

MK = 0.

Then we will try to solve this new equation but with much more additional
variables from K.

The work of (2) claims that they proved that the best method is actually
using the (r + 1)× (r + 1) minors of the matrix M to solve the system. But
the work of (1) gives new analysis along the direction of the Kipnis-Shamir
attack to show that the claim in (2) is wrong. The best attack of this new
direction is that of (4). Their idea has some new tools.

• The first is that they suggest that instead of the kernel, we use a new
matrix C, which is a basis of the row space of M . Here C is an r × n
matrix. Then we look at the new matrix

(
mi

C

)
, where mi is the i-th row

of M and derive equations from the (r+ 1)× (r+ 1) minors in this new
matrix.

• The second is that they suggest that we consider the (r× r) minors of
C as new variables. Then we solve the so derived bi-partite equations
in xi and the minors of C using Wiedemann.

The combination of these two, in particular, the application of Wiedemann
XL, changes the MinRank attack significantly.

Our new analysis derived 3 new insights which were not explained in (4).
we can prove the following:

• All the new equations can actually be derived directly from the KS
equations.

• When m = n = k + 1, the new attack and KS attack are identical.

This, to us, shows that the new MinRank attack is nothing but a new
efficient and very clever way of organizing the known equations through the
formal minors instead of the new set of variables in the kernel (and/or row
basis) of the desired MinRank matrix. We believe this is really the best
we can do in terms of improving the MinRank attack from the theoretical

16



perspective since minors are the only algebraic structure we can explore to
speed up the computations.

Remark In the originial document submitted to NIST on July 22, 2020,
one of the statements here was incorrect. We stated that ”The new equations
also contain equations that can not be derived trivially from the KS equations
without getting through finding mutants.” We actually found out that J. Ding
made a mistake in his toy-example programming test. What we can prove
now is that actually all the new equations can be derived directly from the KS
equations. We will put out soon a new paper to give the details.

The Rainbow parameters proposed in the NIST submission had very high
security estimates against the MinRank attack and therefore can withstand
the new attack. But this attack makes us think further if our design is indeed
the best with desired performance.

A key formula in the analysis of (4) is:

m

(
n

r + 1

)
≥ (k + 1)

(
n

r

)
− 1,

where the left side counts the number of equations and the right side
counts the number of variables. If this inequality holds, we can solve the
resulting system efficiently using a Wiedemann approach. For Rainbow we
find that the inequality even holds if we don’t consider all columns of the
matrices

(
mi

C

)
(thus replacing n by some n′ < n). This gives us an additional

reduction of the complexity of the attack.
Since the resulting linear system is sufficiently sparse, we can solve it using
the Wiedemann algorithm using

O

((
(k + 1) ·

(
n′

r

))2

((r + 1) · (k + 1))

)
.

operations.
Our analysis shows that the number k, which corresponds to o2 in the
Rainbow design, is extremely important in terms of the impact of the new
attack. In our new parameter recommendations, we therefore choose o2 > o1.
This increase of k will increase tremendously the attack complexity.

4 The Hybrid MinRank Attack

In this section we analyze the question if we can improve the attack by
guessing some of the k variables xi. When guessing a of the k variables, the

17



complexity of the attack turns out to be

comp = qa · 3 ·
(
n′(a)

r

)2

(k − a+ 1) · (r + 1).

Here, the notation n′(a) denotes that the optimal value n′ depends on the
number a of guessed variables.

We performed a number of experiments for the Rainbow instances I, III
and V. We have

• I: (q, v, o1, o2) = (16, 36, 32, 32) ⇒ r = v + o1 = 68, k = o2 = 32

• III: (q, v, o1, o2) = (256, 68, 32, 48) ⇒ r = v + o1 = 100, k = o2 = 48

• V: (q, v, o1, o2) = (256, 96, 36, 64) ⇒ r = v + o1 = 132, k = o2 = 64

For each of the three parameter sets and a ∈ {0, . . . , 9}, we computed the
smallest value n′ such that

n ·
(

n′

r + 1

)
≥ (k − a+ 1) ·

(
n′

r

)
− 1

is fulfilled. After that, we computed the complexity of the attack as

comp = qa · 3 ·
(
n′

r

)2

· ((r + 1) · (k − a+ 1)).

The result is shown by Tables 1, 2 and 3.
In the tables, we multiplied the above number of field multiplications with
the factor

2 · log2(q)
2 + log2 q.

As the tables show, the value n′ reduces only very slowly when increasing
the number a of guessed variables, due to which the complexity of the attack
increases for higher a. Therefore, guessing variables seems not to be a good
idea in the given scenario.

Furthermore, we computed the complexity when guessing all of the k = o2
variables xi. In this case we have to check in every iteration, if the rank of
the resulting matrix indeed is ≤ r. Therefore, the complexity of this attack
is given as

comp = qo2+1 · rω.
We find that the complexity of such an attack against the Rainbow instances
I, III and V is 152, 415 and 544 bits respectively, which is well beyond the
required security levels.

18



a k − a n′(a) complexity (bit)
0 33 91 168.1
1 32 91 172.0
2 31 90 171.8
3 30 89 171.6
4 29 89 175.5
5 28 88 175.2
6 27 87 174.7
7 26 86 174.2
8 25 86 178.0
9 24 85 177.3

Table 2: Complexity of the Attack against the Rainbow instance I (depending
on the number a of guessed variables)

a k − a n′(a) complexity (bit)
0 49 134 242.3
1 48 133 246.2
2 47 133 254.1
3 46 132 258.0
4 45 131 261.8
5 44 131 269.7
6 43 130 273.5
7 42 129 277.1
8 41 128 280.7
9 40 128 288.6

Table 3: Complexity of the Attack against the Rainbow instance III
(depending on the number a of guessed variables)

19



a k − a n′(a) complexity (bit)
0 65 177 314.0
1 64 176 318.0
2 63 175 321.9
3 62 175 329.9
4 61 174 333.8
5 60 173 337.6
6 59 173 345.5
7 58 172 349.3
8 57 171 353.0
9 56 170 356.7

Table 4: Complexity of the Attack against the Rainbow instance V
(depending on the number a of guessed variables)

5 Experiments with higher values of b

In many cases one gets better results when following a somewhat more general
approach:

1. Use the technique described above to generate multivariate equations
which are bilinear in the variables xi and the r×r minors of the matrix
C.

2. Multiply the equations found in 1) with monomials of degree b − 1 in
the variables λi. By doing so, one obtains equations of degree b + 1
which are linear in the r×r minors of C and of degree b in the variables
xi.

The number of monomials in the so obtained equations is(
k + b

b

)
·
(
n

r

)
.

The number of (linearly independent) equations is

b∑
i=1

(−1)i+1

(
n

r + i

)
·
(
m+ i− 1

i

)
·
(
k + b− i
b− i

)
.

Therefore, we can solve the system by linearization if and only if(
k + b

b

)
·
(
n

r

)
− 1 ≤

b∑
i=1

(−1)i+1

(
n

r + i

)
·
(
m+ i− 1

i

)
·
(
k + b− i
b− i

)

20



holds.
The resulting complexity is then((

k + b

b

)
·
(
n′

r

))2

· ((r + 1) · (k + 1))

field operations.
In the following we determine the optimal value n′ (number of columns of C
needed) such that the above equation is fulfilled and the complexity of the
attack. For the complexity, we multiply the number of field multiplications
with the factor

2 · log2(q
2) + log2 q.

We do this both for the parameter sets used in the second submission (Ia,
IIIc, and Vc) and for the new parameter sets (I, III and V).

• parameter set Ia (q, v, o1, o2) = (16, 32, 32, 32) ⇒ m = 96, k = 33, r =
64

b 1 2 3 4
n′ 87 84 82 81

complexity 167 164 163 165

• parameter set I (q, v, o1, o2) = (16, 36, 32, 32) ⇒ m = 100, k = 33, r =
68

b 1 2 3 4
n′ 91 89 87 86

complexity 171 171 170 172

• parameter set IIIc (q, v, o1, o2) = (256, 68, 36, 36) ⇒ m = 140, k =
37, r = 104

b 1 2 3 4
n′ 132 130 129 127

complexity 228 227 230 227

• parameter set III (q, v, o1, o2) = (256, 68, 32, 48) ⇒ m = 148, k =
37, r = 100

21



b 1 2 3 4 5 6
n′ 134 131 128 127 125 124

complexity 251 248 244 247 244 246

• parameter set Vc (q, v, o1, o2) = (256, 92, 48, 48) ⇒ m = 188, k =
49, r = 140

b 1 2 3 4
n′ 177 174 172 171

complexity 294 290 288 291

• parameter set V (q, v, o1, o2) = (256, 96, 36, 64) ⇒ m = 196, k =
65, r = 132

b 1 2 3 4 5 6
n′ 177 173 170 168 166 165

complexity 322 317 313 312 311 314

5.1 New Quantum attacks

As for the quantum attack along the line of RBS attack, one way is still to
do Grovers algorithm search, since the numbers of variables becomes much
bigger than the direct attack, the cost will be much higher than the direct
attack. The same can be applied to the New MinRank attack.

Recently, there are some works by Gao etc on using HHL to speed up the
XL algorithms. However the works of Ding, Gheorghiu and Gilyen

https://simons.berkeley.edu/talks/overview-attacks-elliptic-curve-

isogenies-based-systems

https://simons.berkeley.edu/talks/overview-quantum-algorithmic-tools

show that it is not efficient at all due to the large condition number in
the system.

In order to use the method in Gao etc for the RBS attack or the New
MinRank attack, one must first covert the system into a system of GF(2),
then convert the equation into equations over real numbers. This first will
make the systems much larger with much more variables. In the case of RBS
attack, the bi-degree argument will fail due to the new variables and the
solving degree will become much higher. In the case of the new MInRank
attack, the number of new variables need to be added is even much larger
as the original system, which will again make the original argument of using

22



XL linear fail. From what we can see now, using the argument by Ding,
Gheorghiu and Gilyen etc, we can show that this again will have much higher
cost that the original direct quantum attack. The detailed analysis requires
much more space, which we will address in a separate paper.

6 Parameters and Performance

Based on our observations from the previous sections, we propose the following
three parameter sets for Rainbow.

• (GF (16), 36, 32, 32) for security level I,

• (GF (256), 68, 32, 48) for security level III and

• (GF (256), 96, 36, 64) for security level V.

The complexity of known attacks against these Rainbow instances can be
computed as shown below. Note that the behavior of the RBS attack against
the parameter sets for level III and V was already analyzed in Sections 2.7
and 2.9. Furthermore note that the complexity estimates of all known attacks
are well beyond the NIST security requirements. In this sense, the modified
parameters are chosen in a much more conservative way than the 2nd round
parameters.

• Level 1: (GF(16),36,32,32) Requirement 143 / 74 (classic / quantum)

Direct attack: 164 / 122

UOV attack: 157 / 91

HighRank: 150 / 86

New MinRank attack: 162

New RBS attack: 147

• Level III: (GF(256),68,32,48) Requirement 207 / 137

Direct Attack: 234 /200

UOV attack: 437 / 233

High Rank: 410 / 218

New MinRank attack: 228

New RBS attack: 217

23



public key private key signature
Level parameters size (kB) size (kB) size (bit)

I (GF(16),36,32,32) 157.8 101.2 528
III (GF(256),68,32,48) 861.4 611.3 1,312
V (GF(256),96,36,64) 1,885.4 1,375.7 1,632

Table 5: Key and Signature Sizes for Standard Rainbow. The private key
can be generated from a small seed.

public key private key signature
Level parameters size (kB) size (kB) size (bit)

I (GF(16),36,32,32) 58.8 101.2 (99.0) 528
III (GF(256),68,32,48) 258.4 611.3 (603.0) 1,312
V (GF(256),96,36,64) 523.5 1,375.7 (1,361.8) 1,696

Table 6: Key and Signature Sizes for Cyclic Rainbow. The numbers in
brackets give the private key size if the linear maps S and T are generated
from a 256 bit seed

• Level V: (GF(256), 96,36,64) Requirement 272 / 202

Direct Attack: 285 / 243

UOV attack: 567 /299

High Rank: 539 / 283

New MinRank attack: 296

New RBS attack: 281

Key and signature sizes of the modified Rainbow instances are shown in
Tables 2 and 3.

It is clear from the performance perspective that these new changes do not
have significant impact. For the first parameter set, the only difference is the
slightly higher number of vinegar variables, which leads to a small increase
of the signing time. The cost of key generation and signature verification
basically stays the same. Since we have an extremely low signing cost, the
small slow down does not really matter much.

For our new parameters for Level III and V, the number of equations in
the system is slightly increased, which leads to a moderate slow down of the
key generation, signing and verification algorithms.

24


	Bipartite XL Attack and Parameters
	Basic Facts about Bipartite XL
	RBS Complexities in View of Bipartite XL
	Modified Parameters in View of Bipartite XL

	The Putative Bipartite XL2 Attack
	Illustrative ``First Fall'' (Non-Bipartite) XL2
	The ``First Fall'' Bipartite XL2?
	X-Mutants and Y-Mutants
	Criteria for Finding X- and Y-Mutants

	The Task of Finding Enough Mutants
	An Initial Wiedemann Run
	If We don't use (Block) Wiedemann

	After the Initial Elimination
	Rainbow Ia(32,32,32)
	Rainbow III''c(76,36,36)
	Rainbow III†c(68,32,48)
	Rainbow V''c(104,48,48)
	Rainbow V†c(96,36,64)

	The new MinRank Attacks
	The Hybrid MinRank Attack
	Experiments with higher values of b
	New Quantum attacks

	Parameters and Performance

