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Abstract—The “the internet of things” will require security infrastructure on small devices. This task is made more difficult as
large quantum computers may appear soon and break currently standard PKCs (public-key cryptosystems). In anticipation, PKCs
which can survive quantum computing (“postquantum cryptosystems”, or PQCs) are actively being studied. However, effort put
into building infrastructure for PQCs has been insufficient, in particular w.r.t. the lack a comprehensive library with a quantum-
computing-resilient option for each public-key task. We present such a postquantum SSL/TLS library using publicly available
parameters. We adapted this library from PolarSSL rather than the more popular OpenSSL because it was a much cleaner code
base to work from. We have also refactored the original PolarSSL codebase to facilitate the incorporation of future cryptosystems.
While testing is yet incomplete, both throughput and code size seem reasonable, facilitating adoption in resource-limited devices.
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1 INTRODUCTION

E human beings harbor an obvious need for se-
W curity (authenticity, integrity, and secrecy). This
is combined with (a) an insatiable appetite for (digital)
data collection, storage and archiving, and (b) perva-
sive and ever-increasing widgets. Many information-
security catastrophes are waiting to happen in modern
society. We describe one effort to make things better
by building better infrastructure. This let us phase
PKCs in and out more easily and lessen the blow
of catastrophic failure (as represented by quantum
computing). We demonstrate empirically that the ap-
proach works for PCs and embedded systems.

1.1 TLS and public-key cryptography

The Transport Layer Security (TLS), as successor
to the Secure Sockets Layer (SSL), is probably the
most widespread cryptographic protocol for provid-
ing communication security over today’s Internet. The
first step of TLS protocol is the handshake which let
two parties establish a shared secret for further use.
There are many Public Key Cryptography (PKC)
techniques that may be involved during a handshake.
One common mode includes a Diffie-Hellman (DH)
key exchange (in which two parties compute a shared
secret), and digital signatures which prevents man-
in-middle attacks in the DH protocol. Central in this
process is the Public Key Infrastructure (PKI) which
provides trusted public key for both parities by pre-
sharing a public key from a certificate authority (CA).

1.2 Why post-quantum public-key cryptography
(PQC)

Popular PKC primitives like RSA and elliptic curve
cryptography (ECC, mainly based on the hardness of
the discrete log problem) both have the same vulner-
ability to quantum computers [1]. It is unclear when
quantum computers will become widely available, but
we can choose post-quantum (PQ) cryptography, PKC
that is believed to be secure against quantum comput-
ers. Of course, PQCs are often PKCs of independent
merit, but one important reason to pursue PQC now is
to prevent “intercepted today, decrypted tomorrow”.

We incorporated two cryptographic schemes into
a standard TLS implementation for key exchange
and digital signature and proposed some new cipher-
suites for these schemes. The key exchange is based
on a lattice-based scheme from Zhang et al [2] and its
security depends on the hardness of finding short vec-
tors in a lattice. The security of the digital signatures
TTS and rainbow [3] depend mainly on the hardness
of solving systems of multivariate equations and the
MinRank problem.

1.3 What SSL library for an embedded system?

While SSL/TLS is now the de facto security stan-
dard in today’s Internet, it also became a big and
complex protocol which was specified by a dozens
of RFCs after many updates. For incorporating new
properties into SSL/TLS, it’s natural to start with a
well developed open-source implementation. Today’s
embedded systems, especially the sensors in today’s
“internet of things” has many resource restrictions
including computation power, storage, and energy. As
a result we have to wisely pick and carefully modulate



TABLE 1

a library while providing a standard SSL/TLS to Selected primitives for signature

embedded systems.

. . Scheme Security | Signature Digest Pubkey Seckey
Although the most popular implementation for (over F3) (bits) (Byte)  (Byte) (Byte)  (Byte)
SSL/TLS is OpenSSL [4], its codebase is also notorious TTS

for being an behemoth put together in ad-hoc fashion. ~ (2420,20) 80 . 24 55600 8608
(26,24,(2,4),24) 128 50 32 107900 13704

We want to make embedded systems a fundamental — 7 pow
concern instead of an afterthought so we started with (24,20,20) 80 40 24 53600 60960
PolarSSL [5], a more light-weighted implementation. (26,24/(24),24) 128 50 32 107900 112884

1.4 Related works and post-quantum TLS

J. W. Bos et al [6] implemented a Post-quantum key
exchange for TLS with hardness based on the RLWE
(ring learning with errors) problem. They replaced
only the key exchange part of the handshake in
OpenSSL, which is targeted to a general system. Other
earlier research using PKC in M2M world may be
found in [7] [8]. It is safe to say that no one has tried
for a comprehensive, clean approach to updating SSL
to be quantum-computing-resilient.

1.5 Our contributions

We present a full post-quantum TLS base on PolarSSL.
Our modification contains a Latticed based key ex-
change, multivariate public key signature schemes,
appropriate cipher suite additions, and has generic
interfaces for future additions. All of these new fea-
tures are implemented in a portable C manner which
is suitable for low resourced devices as well as generic
platforms.

2 SELECTION OF POST-QUANTUM PRIMI-
TIVES AND PARAMETERS

2.1

There are many lattice-based key exchange schemes
proposed recently [2], [6], [9]. We started with the
scheme from Zhang et al. [2] and adapted the protocol
for the use of PKI by sending the public key along the
key exchange, and verifying the validity of the key
later. The tweaked algorithm is shown in Fig. 1

Key exchange protocol

Fig. 1. Diffie-Hellman-like lattice-based key exchange

In the above protocol, Z denotes the ring of ratio-
nal integers, R denotrs Z[z]/(z" + 1), R, denotes
Zgy|z]/ (2™ + 1), and <, x, denotes a random choice
from x,, which is a discrete Gaussian distribution
centered at 0 with standard deviation «. The hash
function H; also has a output space of x~. The Cha()
function checks every coefficient to see if it is in
Zq), returns 0 if so and 1 otherwise. The function
Mods () — ((z+y(g—1)/2) mod q) mod 2 is also
applied to every coefficient of the polynomial. We im-
plemented from [2] Parameter Set III, where n = 2048,
a =3.397, v =161.131, and ¢ = 3845762179574480897
(designed for 128 bit security on par with AES128)
and Parameter Set I where n = 1024, a = 3.397,
~ = 101.919, and ¢ = 1099511627689 = 240 — 87 (80
bits design security).

2.2 Signature schemes

Multivariate public key cryptography (MPKC) [10]
is another one of typical PQCs. The public key of
MPKC is a trapdoored multivariate quadratic poly-
nomial map P which is (hopefully) hard to invert.
Its general form is: P : w = (wy,...,w,) — z =
(21,--.,2m), Where each z;, := >, Pjpw; + Y, Quw? +
ZD]. Rijrwiw; = pi(w). Therefore evaluating a
quadratic polynomial is the same as verifying a mul-
tivariate digital signature. The public map P decom-
pose as w S ox = Mgsw+cg ot y Loz = Mry+cr — 2,
where S and T are unknown linear maps forming part
of the private key, and the easily invertible quadratic
map ) may contain parameters.

We choose Rainbow and TTS as MPKC signature
schemes for authenticating the communications in

Party i Party j
Public Key: p; = as; + 2e; € Ry Public Key: p; = as; + 2e; € Ry
Secret Key: s; € Ryq Secret Key: s; € Ry
where s;, €; < Xa where s, € < Xa
z; =ar; +2f; € Ry y; =ar; +2f; € Rq
where 7, fi < X8 where 7, f; < x3

the DH-like key exchange protocols. For 80-bit se-
curity, we use Rainbow/TTS over the finite field
F3; with structure (24,20, 20), which corresponds to
m = 40, n = 64. This was proposed in [11]. For higher
design security, we propose a new structural param-
eters (26,24, (2,4),24), which has m = 52,n = 80.
Details for selected primitives are listed in table 1.

©i.pi
kj = (pictwi)(sjd+7;)+2g; € Rq
where g; < xp
w; = Cha(k;) € {0,1}"
vjwjpj
ki = (pjd+y;)(sic+ 1) + 2g;
where g; < X

o; = MOdQ(ki,wj) c {0, 1}“'
ski = Ha (4,7, x4, yj, wj, 04)

2.2.1 Size of public key and other consideration

TTS has smaller secret keys compared to Rainbow and
other MPKCs, saving storage resources. But MPKCs
have large public keys which also is a drawback of

g5 = MOdQ(k‘j,’UJj) S {O7 1}”
skj = Ha2(3, j, i, yj, wji, 05)

c¢c=Hi(4,j,z;) € R,d=H1(j,4,y;,z:) €ER



Rainbow /TTS in embedded systems. We can choose
like Petzoldt et al [12] with “circulant” variants of
MPKC with smaller public key. In such variants,
Pubkey can be reduced to about 10 kbytes with
similar parameters. We might also invest in a caching
mechanism of public keys on the server side in a local
network, this would also significantly reduce the issue
to an overhead of only the size of the digest(hash) of
the public key. This would work best in a sub-network
containing only small and static members, but a new
or un-cached public key might cause a cache miss and
request a re-start of handshake protocol. There is also
an extra communication which is not in current TLS.

2.2.2 Current Implementations

TTS is suitable for microcontroller, ASIP, or normal
windows computer implementation [11], [13], [14]. We
are using here F3; so it is important to accumulate
computations to postpone reduction modular 31. [11]
does this as well as using Wiedemann’s algorithm
for solving linear equations in signing process, which
makes the computational data flow less dependent
on the data (reducing the probability of side channel
attacks) and makes full use of SIMD at the same
time. As shown in [13], arithmetic over small fields
on microcontrollers today can be implemented well
using lookup tables, as well as SIMD instructions.

2.3 Post-quantum cipher suites for extending cur-
rent TLS

Since many constants had been specified for
identifying crypto elements in current TLS standard,
we had to add new identifying constants for
extending TLS to the chosen post-quantum primitives.
These new suites are proposed for our post-quantum
TLS: LATTICEE-TTS-WITH-AES128-GCM-SHA256
LATTICEE-RIANBOW-WITH-AES128-GCM-SHA256
LATTICEE-RSA-WITH-AES128-GCM-SHA256
LATTICEE-ECDSA-WITH-AES128-GCM-SHA256 We
choose these new constants and perform the protocol
by following current TLS standard, but we have to
mention these new constants can only be recognized
with our modified PolarSSL before becoming a
standard.

3 HACKING POLARSSL
3.1

PolarSSL is an open-source project to implement
SSL/TLS in a clean and modularized way to make
components less tightly coupled and more under-
standable. The top module directly depends on some
other components, including a TCP/IP module, a
RNG module, a Cipher module, a Public Key mod-
ule, a Hashing module, and an X.509 module. Po-
larSSL. has unified “generic crypto interfaces” for
several primitives but are lacking others, including

Introduction to PolarSSL

a Diffie-Hellman-like key exchange protocol. Because
PolarSSL today implements DH and ECDH separately
with some nontrivial differences, there is redundancy
in the codebase: Many almost-identical code snippets
related to Diffie-Hellman key exchange occur twice
for DH and ECDH. The ECDH is further restricted to
Weierstrass form, which has more potential vulnera-
bilities.

In contrast to OpenSSL which containing tremen-
dous assembly code for various hardware and crypto
primitives, most code in PolarSSL are in the portable
C manner. PolarSSL is also a self-contained library
which depended only on stand C library now. It's
hard to judge this self-contained property. Although
it diminished the necessity for extra library which is
good for small storage devices and increased the se-
curity from compromised outer libraries, a well-tuned
big-number library did improve the performance for
cryptographic primitives, see sec. 4.2.2. For target-
ing low resource devices in this work, We choose
to follow the self-contained and portable properties
in PolarSSL. Our modification started from PolarSSL
version 1.3.8 (git version: 1910aa).

3.2 A new Diffie-Hellman interface for PolarSSL

In order to add new key exchange mechanisms into
SSL, a unified interface for Diffie-Hellman-like pro-
tocols would be helpful, since almost no change in
the SSL part are needed to add a new key exchange
protocol when the implementation details are hidden
by the interface as a black box.

Fig. 2. A Typical DHE Workflow
TLS Client TLS Server
(client selected a key exchange method)

Set parameters
Generate PK 1, SK 1

Send parameters & PK 1

(read) <

Set parameters
Generate PK 2, SK 2
Compute Shared Secret

Send PK 2

Compute Shared Secret

A typical Diffie-Hellman-like workflow running in
ephemeral mode will have the pattern as shown in
Fig. 2. Basically there are only two computational
parts, one to generate a public-secret key pair, the
other to compute a shared secret after receiving the
peer’s public key. Because the actual data sent over
the wire with DH or ECDH is different, we also need



to carefully extract required Diffie-Hellman param-
eters, key pairs, and computation results from and
to the internal state of the SSL module. Therefore
our proposed interface for Diffie-Hellman-like key
exchange is responsible for the computations and I/O
utilities that are meant to be used directly by the top
SSL module. In the future, we may abstract further.

Our generic DHE currently performs these actions:

1) set_params : To specify the key exchange pa-
rameters.

2) gen_public : To compute a public key pair.

3) compute_shared : To compute a shared se-
cret.

4) {write,read}_ske_params : To process the
server-to-client ServerKeyExchange handshake
message.

5) {write,read}_public :To process the client-
to-server ClientKeyExchange handshake data.

6) write_premaster : To process the resulting
shared secret of a complete key exchange.

7) read_from {self,peer} pk_ctx : Extract
parameters and server’s public key from an
X.509 certificate.

3.3 Using our generic DH in PolarSSL

With the new Diffie-Hellman(DH) interface, we can
focus on the computation functions for a new DH-like
schemes without worrying about SSL/TLS interac-
tion. With all DH-like primitives in a unified interface,
it remains to clean the original PolarSSL code to be
consistent with the new DH interface. The original
PolarSSL key exchange primitives (DHM and ECDH)
is thus re-written with our new DH interface.

In the original PolarSSL implementation, the code
size was targetted using C macro preprocessors to
control the enabling or disabling of primitive hard-
cored into program flows. This feature resulted in
larger source code size in each function, redundant
run-time check to find the enabled options, and most
made the source code harder to read from a software
design viewpoint. Our approach unified the program
flow by using our abstracted DH interface in the SSL-
layer functionality. This makes the code smaller and
easier to read and understand. The results shows that
our approach has benefits in software engineering
without corresponding cost in te code size.

4 EXPERIMENTS AND BENCHMARKS
4.1 Regression Testing

At the moment the refactored PolarSSL structure
passes through black-box regression tests in 88 cipher-
suites dealing with Diffie-Hellman (as HTTPS server
and client) and signatures. We did not test any non-
DH key exchange (i.e., using a public-key encryption
method). We did not focus on non-DH PKC as a key
exchange method because it would expose the “break
once decrypt everything before” problem.

4.2 Benchmarking

Although post-quantum security is our first concern
for extending SSL/TLS implementation, we reported
some benchmarking results of our implementation to
show it’s applicable to small devices.

4.2.1

We measured the modified code size of static library
in X86_64 and ARM cortex platforms. The code size is
below 1MByte with all features on in both platforms
and can be further reduced by removing unneces-
sary crypto elements. The binary size with our DH
interface is slightly larger than that of the original
because we added a new wrapper for adapting orig-
inal ECDH and DHM functions to our new interface.
The memory footprint of the binary with our new
PQ features is below 1 MBytes and runtime memory
requirement for a handshake is about 128kByte (mea-
sured by valgrind [15]). This low requirement of
storage/memory resources are advantages inherited
from PolarSSL and easily satisfiable for today’s low
resource devices.

Code size

4.2.2 Benchmarking cryptographic primitives

We show the performance for DH and signature
primitives in table 2. The experiment was performed
in an Intel CPU Xeon E3-1245v3(3.40GHz) machine.
ECDHE, RSA, and ECDSA are original PolarSSL im-
plementations. Lattice exchange, TTS, and Rainbow
are our new post-quantum primitives for extending
TLS.

In the lattice exchange, we tried to change the
big-number library to GNU big-number arithmetic li-
brary(GMP) [16] and resulted a performance improve-
ment in order of magnitude from original PolarSSL
big-number library. We decided to maintain the self-
contained and portable C properties for minimizing
the resource requirement at latter experiments. These
are many big-number arithmetics in RSA and EC com-
putations, and the original PolarSSL implementation
could also be improved with a well-tuned arithmetic
library.

4.2.3 Throughput for handshake protocols

The performance of full TLS handshake is reported
in table 3. These data was measured in an Intel CPU
Xeon E3-1245v3(3.40GHz) machine. The other parts of
cipher-suite are AES128-GCM for authentication en-
cryption and SHA-256 for hash function. We slightly
modified the example HTTPS server and client which
finished a connection right after a successful hand-
shake in PolarSSL for benchmarking handshake only.
The PolarSSL HTTPS server running in the back-
ground listening on a port locally for TLS connection,
and we ran 100 client program sequentially in the
same machine to diminish the effect of networking.



TABLE 2
Performance of cryptographic primitives in PolarSSL
Computation | Throughput
ECDHE (secp521r1) exchange 189 exchange/s
RSA (2048-bit) sign 482 sign/s

ECDSA (secp256rl) sign

RSA (2048-bit) verify

ECDSA (secp256rl) verify

Lattice exchange [2, ]

Lattice exchange (using GMP) [2, 1]
Lattice exchange [2, III]

Lattice exchange(using GMP) [2, III]
TTS (80b) sign

TTS (128b) sign

Rainbow (80b) sign

Rainbow (128b) sign

TTS/Rainbow (80b) verify
TTS/Rainbow (128b) verify

1629 sign/s
15883 verify/s
434 verify/s

9.2 exchange/s
62.5 exchange/s
4.6 exchange/s
28.5 exchange/s
24666 sign/s
15381 sign/s
4056 sign/s
2199 sign/s
12302 verify/s
6136 verify /s

The ECDHE-RSA and ECDHE-ECDSA are original
PolarSSL. implementation and tested with example
certificates in the PolarSSL. Comparing to table 2, their
throughput in table 3 are lower because of computa-
tions in SSL/TLS layer. For experiments with TTS, the
TTS public key was communicated with a self-signed
certificate which is pre-trusted by both sides. We can
see the throughput of signature algorithms from table
2 are high above the the throughput of handshake
protocol which implying no significant effect from
signature algorithms. The full handshake throughput
of lattice key exchange is down to the same with only
lattice key exchange might be caused from our current
slower implementation in key exchange than other
parts in handshake of PolarSSL.

TABLE 3
Performance of full TLS handshake in PolarSSL

Cipher suite Throughput

handshakes/sec
ECDHE(secp521r1)-RSA(2048-bit) 20.0
ECDHE(secp521r1)-ECDSA (secp256r1) 18.1
ECDHE(secp521r1)-TTS(128b) 18.2
LATTICE(II)-TTS(128b) 4.5

5 CONCLUSION AND FUTURE WORKS

Making libraries extensible and clean is clearly a good
idea. OpenSSL is probably too laden with legacy code
to be salvaged this way but we have refactored most
of PolarSSL in this fashion and have successfully
passed regression tests on our new DH interface.
Note also that PolarSSL already have a generic PK
encrypt interface so there is no reason why the GPL'ed
libraries from NTRU [17], a PQ encryption scheme,
cannot be inserted instead of RSA as a key exchange
method if we are not concerned about forward secrecy
(which we are). One important refactoring lacking

now is probably an authenticated cipher interface for
new advanced authenticated encryption modes [18].

Work still remains to provide faster (and tested cor-
rect) code for the primitives we choose and optimize
them to the best of our ability for common platforms.
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