
Moti Yung · Liehuang Zhu
Yanjiang Yang (Eds.)

 123

LN
CS

 9
47

3

6th International Conference, INTRUST 2014
Beijing, China, December 16–17, 2014
Revised Selected Papers

Trusted Systems

Lecture Notes in Computer Science 9473

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Moti Yung • Liehuang Zhu
Yanjiang Yang (Eds.)

Trusted Systems
6th International Conference, INTRUST 2014
Beijing, China, December 16–17, 2014
Revised Selected Papers

123

Editors
Moti Yung
Google
New York, NY
USA

Liehuang Zhu
Beijing Institute of Technology
Beijing
China

Yanjiang Yang
Institute for Infocomm Research
Singapore
Singapore

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-27997-8 ISBN 978-3-319-27998-5 (eBook)
DOI 10.1007/978-3-319-27998-5

Library of Congress Control Number: 2015957794

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

These proceedings contains 27 papers presented at the INTRUST (International Con-
ference on Trustworthy Systems) 2014 conference, held in Beijing, China, in
December 2014. INTRUST 2014 was the sixth international conference on the theory,
technologies, and applications of trusted systems. It was devoted to all aspects of
trusted computing systems, including trusted modules, platforms, networks, services,
and applications, from their fundamental features and functionalities to design prin-
ciples, architecture, and implementation technologies. The goal of the conference was
to bring academic and industrial researchers, designers, and implementers together with
end-users of trusted systems, in order to foster the exchange of ideas in this challenging
and fruitful area.

INTRUST 2014 built on a series of highly successful international conferences,
previously held as INTRUST 2013 (Graz, Austria), INTRUST 2012 (London, UK),
INTRUST 2011 (Beijing, China), INTRUST 2010 (Beijing, China), and INTRUST
2009 (Beijing, China). The program of INTRUST 2014 consisted of five keynote
speeches from Moti Yung (Columbia University and Google), Sheng Zhong (Nanjing
University), Kui Ren (University at Buffalo, the State University of New York), Jinjun
Chen (University of Technology, Sydney), and Rui Zhang (Institute of Information
Engineering, Chinese Academy of Sciences).

All submissions were blind-reviewed, i.e., the Program Committee members pro-
vided reviews on anonymous submissions. Each submission was reviewed by at least
two, and on average 3.2, Program Committee members. The individual reviewing
phase was followed by in-depth discussions about the papers, which contributed greatly
the quality of the final selection. A number of accepted papers were shepherded by
some Program Committee members in order to make sure the review comments were
addressed properly. We are very grateful to our hard-working and distinguished Pro-
gram Committee for doing such an excellent job in a timely fashion.

For the proceedings, the papers have been divided into seven main categories,
namely, signature and authentication, secure protocols and access control, cloud
security, cryptographic aspects, software security, security analysis, and secure com-
munication and privacy.

We would like to thank the conference General Chair Heyan Huang, the conference
Honorary Chairs Liqun Chen and Yongfei Han, and the Publicity Chairs Xinyi Huang
and Mingzhong Wang, for valuable guidance and assistance and for handling the
arrangements in Beijing. We also would like to thank the program committee and the
reviewers for their hard work. Thanks are also due to easyChair for providing the
submission and review webserver.

On behalf of the conference organization and participants, we would like to express
our appreciation to Beijing Institute of Technology, the National Nature Science
Foundation of China, and the Technical Committee on Intelligent Information Network

of the Chinese Association for Artificial Intelligence for their generous sponsorship of
this event.

We would also like to thank all the authors who submitted their papers to the
INTRUST 2014 conference, all external reviewers, and all the attendees of the con-
ference. Authors of accepted papers are thanked again for revising their papers
according to the feedback from the conference participants. The revised versions were
not checked by the Program Committee, and thus the authors bear full responsibility for
their contents. We thank the staff at Springer for their help in producing the
proceedings.

July 2015 Moti Yung
Liehuang Zhu
Yanjiang Yang

VI Preface

Organization

Honorary Chairs

Liqun Chen HP Laboratories, UK
Yongfei Han BJUT and ONETS, China

General Chair

Heyan Huang Beijing Institute of Technology, China

Program Chairs

Moti Yung Google and Columbia University, USA
Liehuang Zhu Beijing Institute of Technology, China
Yanjiang Yang Institute for Infocomm Research, Singapore

Publicity Chairs

Xinyi Huang Fujian Normal University, China
Mingzhong Wang Beijing Institute of Technology, China

Program Committee

Endre Bangerter Bern University of Applied Sciences, Switzerland
Zhen Chen Tsinghua University, China
Zhong Chen Peking University, China
Naccache David Ecole Normale Superieure, France
Kurt Dietrich NXP Semiconductors, Austria
Xuhua Ding Singapore Management University
Dieter Gollmann Hamburg University of Technology, Germany
Sigrid Guergens Fraunhofer Institute for Secure Information

Technology SIT, Germany
Weili Han Fudan University, China
Jingyu Hua Nanjing University, China
Xuejia Lai Shanghai Jiaotong University, China
Jianxin Li Beihang University, China
Shujun Li University of Surrey, UK
Peter Lipp Graz University of Technology, Austria

Jiqiang Liu Beijing Jiaotong University, China
Javier Lopez University of Malaga, Spain
Andrew Martin University of Oxford, UK
Shin’Ichiro Matsuo National Institute of Information and Communications

Technology, Japan
Yi Mu University of Wollongong, Australia
David Naccache Ecole Normale Suprieure, France
Raphael C.-W. Phan Loughborough University, UK
Bart Preneel Katholieke Universiteit Leuven - COSIC, Belgium
Scott Rotondo Oracle Corporation, USA
Kouichi Sakurai Kyushu University, Japan
Willy Susilo University of Wollongong, Australia
Qiang Tang University of Luxembourg, Luxembourg
Claire Vishik Intel Corporation (UK)
Qian Wang Wuhan University, China
Jian Weng Jinan University, China
Fan Wu Shanghai Jiao Tong University, China
Yi Xie Sun Yat-sen University, China
Chang Xu Beijing Institute of Technology, China
Shouhuai Xu University of Texas at San Antonio, USA
Rui Xue Chinese Academy of Sciences, China
Huanguo Zhang Wuhan University, China
Rui Zhang Institute of Information Engineering, CAS, China
Xing Zhang Beijing University of Technology, China
Xinwen Zhang Huawei Research Center, China
Yuan Zhang Nanjing University, China
Zijian Zhang Beijing Institute of Technology, China
Sheng Zhong Nanjing University, China
Yan Zhou Beijing University, China
Yongbin Zhou Institute of Information Engineering, Chinese Academy

of Sciences, China

Steering Committee

Yongfei Han BJUT and ONETS, China
Moti Yung Google and Columbia University, USA
Liqun Chen HP Laboratories, UK
Robert Deng SMU, Singapore
Chris Mitchell RHUL, UK

VIII Organization

Additional Reviewers

Anada, Hiroaki
Dong, Wenyu
Fernandez, Carmen
Guo, Fuchun
Han, Jinguang
King-Lacroix, Justin
Ma, Ge
Mao, Xianping
Matsumoto, Shinichi
Mendel, Florian
Moyano, Francisco
Spreitzer, Raphael

Su, Chunhua
Wei, Yu
Weng, Jian
Xu, Chang
Xu, Kun
Xu, Lei
Xue, Weijia
Yang, Guomin
Yang, Rupeng
Yuan, Wei
Zhang, Su
Zheng, Qingji

Organization IX

Contents

Identity-Embedding Method for Decentralized Public-Key Infrastructure 1
Hiroaki Anada, Junpei Kawamoto, Jian Weng, and Kouichi Sakurai

Diversification of System Calls in Linux Binaries . 15
Sampsa Rauti, Samuel Laurén, Shohreh Hosseinzadeh,
Jari-Matti Mäkelä, Sami Hyrynsalmi, and Ville Leppänen

Outsourced KP-ABE with Enhanced Security . 36
Chao Li, Bo Lang, and Jinmiao Wang

A Simulated Annealing Algorithm for SVP Challenge Through y-Sparse
Representations of Short Lattice Vectors . 51

Dan Ding and Guizhen Zhu

Rerandomizable Threshold Blind Signatures . 70
Veronika Kuchta and Mark Manulis

Verifiable Computation of Large Polynomials. 90
Jiaqi Hong, Haixia Xu, and Peili Li

A Characterization of Cybersecurity Posture from Network Telescope Data 105
Zhenxin Zhan, Maochao Xu, and Shouhuai Xu

Key-Exposure Protection in Public Auditing with User Revocation in Cloud
Storage . 127

Hua Guo, Fangchao Ma, Zhoujun Li, and Chunhe Xia

Software Behavior Model Measuring Approach of Combining Structural
Analysis and Language Set . 137

JingFeng Xue, Yan Zhang, ChangZhen Hu, HongYu Ren,
and ZhiQiang Li

On Cache Timing Attacks Considering Multi-core Aspects in Virtualized
Embedded Systems . 151

Michael Weiß, Benjamin Weggenmann, Moritz August, and Georg Sigl

How to Choose Interesting Points for Template Attacks More Effectively?. . . 168
Guangjun Fan, Yongbin Zhou, Hailong Zhang, and Dengguo Feng

NeuronVisor: Defining a Fine-Grained Cloud Root-of-Trust 184
Anbang Ruan and Andrew Martin

http://dx.doi.org/10.1007/978-3-319-27998-5_1
http://dx.doi.org/10.1007/978-3-319-27998-5_2
http://dx.doi.org/10.1007/978-3-319-27998-5_3
http://dx.doi.org/10.1007/978-3-319-27998-5_4
http://dx.doi.org/10.1007/978-3-319-27998-5_4
http://dx.doi.org/10.1007/978-3-319-27998-5_5
http://dx.doi.org/10.1007/978-3-319-27998-5_6
http://dx.doi.org/10.1007/978-3-319-27998-5_7
http://dx.doi.org/10.1007/978-3-319-27998-5_8
http://dx.doi.org/10.1007/978-3-319-27998-5_8
http://dx.doi.org/10.1007/978-3-319-27998-5_9
http://dx.doi.org/10.1007/978-3-319-27998-5_9
http://dx.doi.org/10.1007/978-3-319-27998-5_10
http://dx.doi.org/10.1007/978-3-319-27998-5_10
http://dx.doi.org/10.1007/978-3-319-27998-5_11
http://dx.doi.org/10.1007/978-3-319-27998-5_12

A Privacy-Aware Access Model on Anonymized Data. 201
Xuezhen Huang, Jiqiang Liu, and Zhen Han

Functional Signatures from Indistinguishability Obfuscation 213
Li Wang, Hongda Li, and Fei Tang

Lightweight Protocol for Trusted Spontaneous Communication 228
Przemysław Błaśkiewicz, Marek Klonowski, Mirosław Kutyłowski,
and Piotr Syga

Using TPM Secure Storage in Trusted High Availability Systems 243
Martin Hell, Linus Karlsson, Ben Smeets, and Jelena Mirosavljevic

APP Vetting Based on the Consistency of Description and APK. 259
Weili Han, Wei Wang, Xinyi Zhang, Weiwei Peng, and Zheran Fang

Traitor Tracing Based on Partially-Ordered Hierarchical Encryption 278
Yan Zhu, Dandan Li, and Liguang Yang

SCIATool: A Tool for Analyzing SELinux Policies Based on Access
Control Spaces, Information Flows and CPNs. 294

Gaoshou Zhai, Tao Guo, and Jie Huang

Faster Pairing Computation on Jacobi Quartic Curves with High-Degree
Twists . 310

Fan Zhang, Liangze Li, and Hongfeng Wu

DATAEvictor: To Reduce the Leakage of Sensitive Data Targeting
Multiple Memory Copies and Data Lifetimes . 328

Min Zhu, Bibo Tu, Ruibang You, Yanzhao Li, and Dan Meng

Template Attacks Based on Priori Knowledge . 346
Guangjun Fan, Yongbin Zhou, Hailong Zhang, and Dengguo Feng

Some Observations on the Lightweight Block Cipher Piccolo-80 364
Wenying Zhang, Jiaqi Zhang, and Xiangqian Zheng

A Memory Efficient Variant of an Implementation of the F4 Algorithm for
Computing Gröbner Bases . 374

Yun-Ju Huang, Wei-Chih Hong, Chen-Mou Cheng, Jiun-Ming Chen,
and Bo-Yin Yang

Efficient Public Key Encryption with Field-Free Conjunctive Keywords
Search . 394

Chenggen Song, Xin Liu, and Yalong Yan

mOT+: An Efficient and Secure Identity-Based Diffie-Hellman Protocol
over RSA Group. 407

Baoping Tian, Fushan Wei, and Chuangui Ma

XII Contents

http://dx.doi.org/10.1007/978-3-319-27998-5_13
http://dx.doi.org/10.1007/978-3-319-27998-5_14
http://dx.doi.org/10.1007/978-3-319-27998-5_15
http://dx.doi.org/10.1007/978-3-319-27998-5_16
http://dx.doi.org/10.1007/978-3-319-27998-5_17
http://dx.doi.org/10.1007/978-3-319-27998-5_18
http://dx.doi.org/10.1007/978-3-319-27998-5_19
http://dx.doi.org/10.1007/978-3-319-27998-5_19
http://dx.doi.org/10.1007/978-3-319-27998-5_20
http://dx.doi.org/10.1007/978-3-319-27998-5_20
http://dx.doi.org/10.1007/978-3-319-27998-5_21
http://dx.doi.org/10.1007/978-3-319-27998-5_21
http://dx.doi.org/10.1007/978-3-319-27998-5_22
http://dx.doi.org/10.1007/978-3-319-27998-5_23
http://dx.doi.org/10.1007/978-3-319-27998-5_24
http://dx.doi.org/10.1007/978-3-319-27998-5_24
http://dx.doi.org/10.1007/978-3-319-27998-5_24
http://dx.doi.org/10.1007/978-3-319-27998-5_25
http://dx.doi.org/10.1007/978-3-319-27998-5_25
http://dx.doi.org/10.1007/978-3-319-27998-5_26
http://dx.doi.org/10.1007/978-3-319-27998-5_26

Secure ðMþ 1Þst-Price Auction with Automatic Tie-Break 422
Takashi Nishide, Mitsugu Iwamoto, Atsushi Iwasaki, and Kazuo Ohta

Author Index . 439

Keyword Index . 441

Contents XIII

http://dx.doi.org/10.1007/978-3-319-27998-5_27
http://dx.doi.org/10.1007/978-3-319-27998-5_27

Identity-Embedding Method
for Decentralized Public-Key Infrastructure

Hiroaki Anada1(B), Junpei Kawamoto2, Jian Weng2,3, and Kouichi Sakurai1,2

1 Institute of Systems,
Information Technologies and Nanotechnologies, Fukuoka, Japan

{anada,sakurai}@isit.or.jp
2 Department of Informatics, Faculty of Information Science and Electrical

Engineering, Kyushu University, Fukuoka, Japan
{kawamoto,sakurai}@inf.kyushu-u.ac.jp

3 Department of Computer Science, College of Information Science and Technology,
Jinan University, Guangzhou, China

cryptjweng@gmail.com

Abstract. A public key infrastructure (PKI) is for facilitating the
authentication and distribution of public keys. Currently, the most com-
monly employed approach to PKI is to rely on certificate authorities
(CAs), but recently there has been arising more need for decentralized
peer-to-peer certification like Webs of Trust. In this paper, we propose an
identity-embedding method suitable for decentralized PKI. By embed-
ding not only ID of the candidate public-key owner itself but also IDs of
his guarantors into PK, we can construct Web of guarantors on public
keys. Here guarantors can be chosen arbitrarily by the candidate public-
key owner. Our embedding method uses a combination of two public-key
cryptosystems; the first cryptosystem is for PKI directly. Here we employ
a technique to embed a string into a public key of the first cryptosys-
tem. As such a string, we choose a concatenation of ID of a candidate
public-key owner, IDs of his guarantors, and a public key of the second
cryptosystem. This embedded public key of the second cryptosystem
is used by the candidate public-key owner that he certainly knows the
secret key that corresponds to the public key of the first cryptosystem.
Then, with an aid of a broadcast mechanism of an updated public-key
list on a peer-to-peer network, we can attain the decentralized PKI. Such
an embedding method is concretely realized by the RSA encryption with
the Lenstra’s algorithm, which can be used as the first cryptosystem. As
the second cryptosystem, we employ an elliptic curve encryption whose
security is equivalent to the security of the RSA encryption, where the
former achieves shorter key size than the latter. We write down concrete
values of parameters for a realization of the embedding.

Keywords: Identity management · Public key infrastructure ·
Decentralized system · RSA · Elliptic curve

c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 1–14, 2016.
DOI: 10.1007/978-3-319-27998-5 1

2 H. Anada et al.

1 Introduction

A network is for participants, so trusted identity management among partic-
ipants is a must requirement. Transactions are certainly available when they
are based on reliable identities of participants; we can communicate each other,
even in broadcasting, only when one party recognize the other with certainty.
Concerning a trusted identity management, a public key infrastructure (PKI) is
responsible for facilitating the authentication and distribution of public keys. It
maintains a database of (ID,PK) pairs, where ID represents an identity, and PK
represents a corresponding public key.

Currently, the most commonly employed approaches to PKIs are classified into
two categories: centralized PKI with certificate authorities (CAs) and decentral-
ized PKI of peer-to-peer certification, often referred to as Webs of Trust. CA acts
a trusted third party that is responsible for distributing and managing digital cer-
tificates for a network of users. A typical example is the use of CA in the Secure
Sockets Layer protocol (SSL). In the use case, an identity of a server (or a client) is
an IP address and it is assured by a certificate issued. Here the certificate has, as an
evidence, a digital signature generated by the certificate authority. Then the iden-
tity of the certificate authority is assured by a certificate with a signature issued by
another certificate authority. Hence, there arises a chain of signatures, which forms
a hierarchy of certificates with a top; that is, a root certificate. Thus the use of CAs
creates single points of failure in PKI. There have been numerous recent incidents
showing that too much trust is being placed in CAs. CAs have been hacked, and
have even accidentally issued subordinate root certificates to customers. Addition-
ally, while the CA system is centralized enough to introduce single points of failure,
it is not centralized enough to ensure consistency. Since there exist multiple CAs,
they may certify different public keys corresponding to the same identity that may
yield violation of identity retention [7]1.

In contrast, in the second major PKI, Web of Trust, authentication is entirely
decentralized; users are able to designate others as trustworthy by signing their
public keys. A user thus accumulates a certificate containing his public key and
digital signatures from entities that have assured him as trustworthy. The cer-
tificate is trusted by another user if he is able to verify that the certificate
contains the signature of someone he trusts. As for motivation, Web of Trust
needs relatively lower fee (in some cases, free) compared to the fee for CA-based
hierarchical (centralized) certification. Another motivation of decentralized cer-
tification comes from risk control mentioned above; in a general theory of risk
control, it is better to have PKI with more than one root to avoid single point
failure. Ultimately saying, it is more desirable to do identity management in a
flat manner, where flat means that any participant can be a guarantor. However,
PGP [21] does not offer identity retention, because much like in the case of CAs

1 In the research of functional encryption, there is a notion of multi-authority (for
instance, in Lewko and Waters [15]), which means there can be more than one author-
ities that issue private secret keys without violation of identity retention. But in this
paper, we consider this type of decentralization as introducing multiple CAs.

Identity-Embedding Method for Decentralized Public-Key Infrastructure 3

there is no guarantee of consistency, and nothing prevents multiple users from
creating public keys for the same identity illegally.

In this paper, we propose an identity-embedding method for decentralized
PKI like Webs of Trust. Our identity-embedding method does not resolve the
problem of identity retention directly, but can be used as a building block for
decentralized PKI. This is because it does not need any issuing center of certifi-
cates of public keys. Instead, it needs for a participant to prove that he certainly
knows the secret key to a participant, as follows.

Our decentralized PKI is on its underlying P2P network. When the network
is initiated, our decentralized PKI assumes that the network has more than one
participants. Each initiator generates a pair of public key and secret key and writes
it into a public-key list. When a candidate public-key owner wants to take part in
the underlying network, two processes are done in our decentralized PKI.

The first process is an authentication process. We use two public key cryp-
tosystems in the first process; a candidate public-key owner generates a pair of
public key and secret key of the first cryptosystem. Then, by using the second
cryptosystem, the candidate public-key owner tries to prove that he certainly
knows the corresponding secret key to verifiers who have been already partici-
pants. Here the verifiers are chosen as guarantors arbitrarily by the candidate
public-key owner. Hence our PKI can be decentralized in a flat manner.

The second process is a broadcast process. One of guarantors adds the newly
generated public key of the candidate public-key owner to the public-key list.
Then the guarantor broadcasts the updated public-key list along the underlying
P2P network.

The features of our decentralized PKI can be summarized in Table 1. Here,
we also compare our decentralized PKI with identity-based PKI that has been
realized with the invention of identity-based encryption [4], where any public
string can be a public key.

Table 1. PKI: Centralized versus Identity-Based versus Decentralized.

Item Centralized PKI Identity-Based PKI Our Decentralized PKI

Need of CA:
√

- -

Need of KI Center: -
√

-

PK is verified by: Checking Certificate PK itself Cha.-Res. Protocol

Trust is made by: Root CA KI Center Web of Guarantors

KI: Key Issuing; PK: Public Key; Cha.-Res.: Challenge-and-Response

As is stated in the above, our decentralized PKI does not need any CA. It
is also notable that our decentralized PKI does not need any key issuing center,
whereas identity-based PKI needs a private secret-key issuing center that yields
the key-escrow problem [11,13].

4 H. Anada et al.

1.1 Previous Work

It is well known that there has been a history on decentralized identity manage-
ment and PKI. Zimmermann, who developed PGP [21], can be considered as the
pioneers of decentralized trust management. Keeping the spirit of low cost man-
agement, PGP uses a concept of a Web of Trust to establish the authenticity of
the binding between a public key and its owner. Its decentralized trust model is
an alternative to the centralized trust model of a public key infrastructure (PKI),
which relies exclusively on a certificate authority (or a hierarchy of such).

Following Zimmermann’s work, there appeared a lot of work. Blaze et al. [3]
proposed a trust management system which they call PolicyMaker. Sander and
Ta-Shma [18] proposed an auditable anonymous electronic cash system, whose
security relies on ability of an underlying network to maintain the integrity of
a public database. Concerning a digital rights management (DRM), we can see
recent years several work like Qiu et al. [17], which proposed a model of social
trust between content sharers of DRM-related content.

As for the Lenstra’s algorithm, Lenstra [14] proposed a more efficient algo-
rithm that allows us to embed any string I into a modulus N of the RSA encryp-
tion. The length of embeddable string I is almost the half of the bit length of N .
Following this work, Kitahara et al. [13] proposed a modified algorithm to pro-
duce the two factors (N = pq) of the same length. Upper bounds of the length of
embeddable string I have been provided by Graham and Shparlinski [9], Meng
[16] and Kitahara et al. [13]. Applications have been proposed, for example, in
Kitahara et al. [12].

As for a broadcast mechanism of an updated public-key list, proof-of-work
is an exciting area of research [2,7,8]. It originates from the work of Dwork
and Naor of CRYPTO ’92 paper [6]. We only rely on the result of Fromknecht,
Velicanu and Yakoubov [7] and Andrychowicz and Dziembowski [2], and employ
their broadcast mechanisms to update a public-key list.

1.2 Our Contributions

Following the traditional spirit [3,17,18,21], we contribute in two points. The
first contribution is to propose an identity-embedding method for a decentralized
PKI. The embedded string is taken as a concatenation of identity data of a
candidate public-key owner, identity data of his guarantors, and a public key
of the second cryptosystem (that is, we embed a second public key into a first
public key). Like a digital signature, this embedding structure functions as a
preventer of manipulations on public keys and hence our embedding method
prevents falsification on the public-key list.

The second contribution is to provide the above identity-embedding method
concretely. It is known that elliptic curve encryption with shorter public key
achieves the same level of security as RSA encryption. Using this fact, we can
embed a public key of an elliptic curve encryption into a modulus of an RSA
encryption. we provide a security proof, for this concrete construction of pub-
lic key, that our embedding method prevents impersonation that an adversary

Identity-Embedding Method for Decentralized Public-Key Infrastructure 5

tries to pretend an honest public-key owner without the corresponding secret
key. Actually we give a security proof based on the theory of key encapsulation
mechanism (KEM): our KEM is secure against adaptive chosen-plaintext attacks
on one-wayness based on the Gap-CDH assumption in the random oracle model.

We note that our ID-embedding method can be used, for example, in the
RSA encryption and signature in SSL. As a result, we can exit the hierarchy of
certificate authorities.

Parameter values of our concrete decentralized PKI can be as follows. Here
IFP denotes the Integer Factorization Problem and ECDLP denotes the Elliptic
Curve Discrete Logarithm Problem. λ is the security parameter against exhaus-
tive search, N is a modulus of the RSA encryption and p0 is a prime order of
the employed cyclic group of ECDLP. Table 2 shows parameter values.

Table 2. Parameter Size (bit).

Sec. Param. against Exhaustive Search λ 112 128 192

Equiv. Length of Modulus for IFP λRSA = |N | 2048 3072 7680

Max. Length of Embed. Info |I| = |N |/2 − log2(|N |) − 1 1012 1523 3826

Equiv. Length of Order for ECDLP |p0| = 2 λ 224 256 384

Length of Expression for a Point on EC |P | = 2|p0| 448 512 768

Room for IDs to be Embedded |I| − |P | 564 1011 3058

One notable thing is that an equivalent length of prime order p0 of a cyclic
group on a elliptic curve for ECDLP is shorter than the factor p of a modulus
N of the RSA encryption. Therefore we can make room to embed a public key
of the elliptic curve cryptosystem into the public key of the RSA encryption.

When we use e-mail address for identity data ID, 70 characters are available
because in Table 2 there are 564 bits remaining for identity data. That is, 70
byte. On condition that 1 character needs 1 byte, we can use 23 characters for
identity data of a candidate public-key owner and 23 characters for identity
data of two guarantors, like: alice@decentralized.com, bob@flat.com and
charlie@lowfee.com.

As for the efficiency of the embedding method, the work of Kitahara et al.
[13] assures that it is as efficient as the usual RSA cryptosystem in the key
generation as well as encryption and decryption.

1.3 Organization of This Paper

In Sect. 2, we explain required notations and notions. In Sect. 3, we state our
generic decentralized PKI. In Sect. 4, we describe our concrete decentralized
PKI in the RSA and elliptic curve encryption setting. In Sect. 5, we conclude
our work.

6 H. Anada et al.

2 Preliminaries

The security parameter against exhaustive search is denoted by λ. A multiplica-
tive cyclic group of order p0 is denoted by Gp0 . The ring of the exponent domain
of Gp0 , which consists of integers from 0 to p0 − 1 with modulo p0 operation, is
denoted by Zp0 . When an algorithm A with input a outputs z, we denote it as
z ← A(a).

2.1 Embedding Technique into a Modulus of RSA Encryption

As a variant of the RSA encryption, In 1995, Vanstone and Zuccherato [19]
proposed an algorithm that allows us to embed any string I into a modulus N
of the RSA encryption. But it has a trade off between the time to generate the
modulus N and the bit length of I. This is because that the algorithm needs
factorization of I as an integer. So, when we embed I whose bit length is a half
of that of N , the algorithm needs quite long time both in theory and in practice.

After that, in 1998, Lenstra [14] proposed a more efficient algorithm that
allows us to embed any string I into a modulus N of the RSA encryption. The
length of embeddable string I is almost the half of the bit length of N . The
time to generate the modulus N is almost the same as the time to generate the
modulus N of the normal RSA. The following algorithm is a modified version
by Kitahara et al. [13]. Here we denote the length of a modulus N of RSA
encryption that has λ-bit security against exhaustive search as λRSA.

Lenstra’s Algorithm (a Modified Version [13])

1. Put N ′ = I ‖ 00 · · · 0 s.t. |N ′| = λRSA.
2. Choose a prime p s.t. |p| = λRSA/2 at random.
3. Compute q′ = �N ′/p�.
4. Compute the minimum positive integer t s.t. q′ + t is a prime.
5. Put q = q′ + t.
6. Compute N = pq.
7. If the higher bits of N is equal to I, then return (p, q, N) else go back to 2.

Note here that (1) and (2) can be swapped.

2.2 The CDH and the Gap-CDH Problems and Assumptions

A quadruple (g, X, Y, Z) of elements in Gp0 is called a Diffie-Hellman (DH) tuple
if (g, X, Y, Z) is written as (g, gx, gy, gxy) for some elements x and y in Zp0 . A
CDH problem instance is a triple (g, X = gx, Y = gy), where the exponents
x and y are random and unknown to a solver. A DDH problem instance is a
quadruple (g, X, Y, Z). The DDH oracle DDH is an oracle which, queried about a
DDH problem instance (g, X, Y, Z), replies the correct boolean decision whether
(g, X, Y, Z) is a DH-tuple or not.

Identity-Embedding Method for Decentralized Public-Key Infrastructure 7

A CDH problem solver S that is allowed to access DDH polynomially many
times is called a Gap-CDH problem solver. We define the following experiment.

Exprmtgap-cdhS,Gp0
(1λ)

x, y ← Zp0 ,X := gx, Y := gy, Z ← SDDH(g, X, Y)
If Z = gxy then return Win else return Lose.

We define the Gap-CDH advantage of S over Grp as:

Advgap-cdh
S,Gp0

(λ) def= Pr[Exprmtgap-cdhS,Gp0
(1λ) returns Win].

We say that the Gap-CDH Assumption holds for Grp if, for any PPT algorithm
S, Advgap-cdh

S,Gp0
(λ) is negligible in λ.

2.3 Key Encapsulation Mechanism [10, 1]

A key encapsulation mechanism (KEM) KEM is a triple of PPT algorithms (KG,
Enc, Dec). KG is a key generator which returns a pair of a public key and a
matching secret key (PK,SK) on an input λ. Enc is an encapsulation algorithm
which, on an input PK, returns a pair (K, ψ), where K is a random string
and ψ is an encapsulation of K. Dec is a decapsulation algorithm which, on
an input (SK, ψ), returns the decapsulation ̂K of ψ. We require KEM to satisfy
the completeness condition that the decapsulation ̂K of a consistently generated
ciphertext ψ by Enc is equal to the original random string K with probability
one. For this requirement, we simply force Dec deterministic.

2.4 Adaptive Chosen Ciphertext Attack on One-Wayness of KEM

An adversary A performs an adaptive chosen ciphertext attack on one-wayness
of a KEM (called one-way-CCA2, for short) in the following way [1].

Exprmtow-cca2
A,KEM (1λ)

(pk, sk) ← KG(1λ), (K∗, ψ∗) ← Enc(pk)
̂K∗ ← ADEC(sk,·)(pk, ψ∗)

If ̂K∗ = K∗ ∧ ψ∗ �∈ {ψi}qdec
i=1 then return Win

else return Lose.

In the above experiment, ψi, i = 1, . . . , qdec mean ciphertexts for which A queries
its decapsulation oracle DEC(sk, ·) for the answers. Here the number qdec of
queries is polynomial in k. Note that the challenge ciphertext ψ∗ itself must not
be queried to DEC(sk, ·), as is described ψ∗ �∈ {ψi}qdec

i=1 in the experiment.
We define the one-way-CCA2 advantage of A over KEM as:

Advow-cca2
A,KEM (λ) def=Pr[Exprmtow-cca2

A,KEM (1λ) returns Win].

8 H. Anada et al.

We say that a KEM is secure against adaptive chosen ciphertext attacks against
one-wayness (one-way-CCA2-secure, for short) if, for any PPT algorithm A,
Advow-cca2

A,KEM (λ) is negligible in k.
Note that if a KEM is IND-CCA2 secure [5], then it is one-way-CCA2 secure.

So IND-CCA2 security is a stronger notion than one-way-CCA2 security.

3 Our Generic Description of Embedding Method
and Decentralized PKI

In this section, we describe our generic embedding method and a related decen-
tralized PKI. We first state an assumption for the underlying network. Next, we
explain a design principle of our embedding method. Then, we describe a related
decentralized PKI.

Assumption for Underlying Network. Our decentralized PKI utilizes a
public-key list that is public to the underlying network. The public-key list
should be examined and maintained by all participants who are active in the
network. The security of our decentralized PKI will partially rely on the ability
of an underlying network to maintain the integrity of the public-key list.

3.1 Components and Procedures of Our Generic Decentralized PKI

Initiation. We start with at least n initiators. n must be equal to the number
of guarantors for a candidate public-key owner. Each initiator generates a pair
of public key and secret key and writes it to a public-key list.

Generation of Candidate Public-Key Owner’s New Key. When a can-
didate public-key owner wants to join the underlying network, he executes the
following.

1. Generate a secret key sk0 by running KG(λ).
2. Compute a value of the one-way function at sk0: sk0 := f(sk0).
3. Put I = IDcand ‖ IDgrnt1 ‖ · · · ‖ IDgrntn ‖ sk0.
4. Put pk′ = I ‖ 00 · · · 0.
5. Apply the embedding algorithm to pk′ to obtain (pk, sk).
6. Put PKcand = pk, SKcand = sk.

Identification of Candidate Public-Key Owner

1. A verifier generates a random challenge according to a challenge-and-response
identification protocol and send it to the candidate public-key owner.

2. Receiving the random challenge, the candidate public-key owner generates a
response according to the protocol, and send it to the verifier.

3. Receiving the response, the verifier verifies it and outputs accept or reject.

The above protocol is executed by all guarantors, i = 1, . . . , n, and any partici-
pant who wants to verify the identity of other participant with whom the former
communicates.

Identity-Embedding Method for Decentralized Public-Key Infrastructure 9

Local Update of Public-Key List. After finishing the above verification,
one of the guarantors adds the newly generated public key PKcand of the new
participant to the public-key list.

Broadcast of the Updated Identity List. The same guarantor broadcasts
the updated public-key list along the underlying network. Integrity of the public-
key list is assured by the above assumption.

4 Instantiation

In this section, we instantiate our generic decentralized PKI by employing the
RSA encryption as the first cryptosystem and the elliptic curve encryption as the
second cryptosystem. We use the modified version [13] of the Lenstra’s algorithm
[14] as our main tool.

4.1 Components and Procedures of Our Decentralized PKI:
Instantiation.

We assume that the Elliptic Curve Discrete-Logarithm problem for the employed
cyclic group Gp0 of prime order p0 and the Integer-Factorization problem for the
employed RSA modulus N have almost the same difficulty ([20]).

Initiation. This phase is executed generically according to the description in
Sect. 3.1.

Generation of Candidate Public-Key Owner’s New Key.

1. Generate a prime p s.t. |p| = λRSA/2 at random.
2. Compute P := gp in Gp0 .
3. Put I = IDcand ‖ IDgrnt1 ‖ · · · ‖ IDgrntn ‖ P .
4. Put N ′ = I ‖ 00 · · · 0 s.t. |N ′| = λRSA.
5. Apply the modified Lensra’s algorithm to obtain (N, q) and (e, d) s.t. ed = 1

mod φ(N).
6. Put PKcand = (N, e), SKcand = (q, d).

Identification of Candidate Public-Key Owner.

1. The verifier chooses a random exponent t from Zp0 , computes h = P t in Gp0 ,
and send it to the candidate public-key owner.

2. Receiving the random challenge h, the candidate public-key owner computes
K ′ = hq by using his secret key q, then compute its hash value K = Hμ(K)
a response, and then send it to the verifier.

10 H. Anada et al.

3. Receiving the response K, the verifier verifies it by examining the following
equation, and outputs accept or rejectaccordingly.

K
?= Hμ(gNt).

The above protocol is executed by all guarantors, i = 1, . . . , n, and any partici-
pant who wants to verify the identity of other participant with whom the former
communicates.

Correctness of the above protocol is assured by:

K = Hμ(K ′) = Hμ((P t)q) = Hμ((P q)t) = Hμ(((gp)q)t) = Hμ(gNt).

Note that we can view the above procedures as a hashed key encapsulation
mechanism [1,10], h-EGKEM, via putting g := P , x := q and X = gx = P q := gN

in its algorithm described in Fig. 1.
Note that, for a prime q (a factor of the RSA modulus N) that is longer

than p0 (the equivalent prime order of the group Gp0 of the elliptic curve cryp-
tography), collision resistance of the secret keys x = q mod p0 is assured by the
Dirichlet’s Theorem on Primes in Arithmetic Progressions.

Note also that, if a candidate candidate public-key owner generate a modulus
N illegally, say, N = pqr (three factors), the candidate public-key owner merely
weaken his security of RSA.

Key Generation
• KG: given λ as an input;
– (p0, p0 , g) ← Grp(λ), x ← p0 , X := gx

– PK0 := (g, X), SK0 := (g, x), return (PK0, SK0)

Encapsulation
• Enc: given PK0 as an input;
– a ← p0 , K′ := Xa, K := Hµ(K′), h := ga, ψ := h, return (K, ψ)

Decapsulation
• Dec: given SK0 and ψ = h as an input;
– ̂K′ := hx

– ̂K := Hµ(̂K′), return ̂K

Fig. 1. Our Hashed ElGamal KEM: h-EGKEM.

Local Update and Broadcast of Public-Key List. These phases are exe-
cuted generically according to the description in Sect. 3.1.

Identity-Embedding Method for Decentralized Public-Key Infrastructure 11

4.2 Attack and Security in Our Instantiation

An attack to be considered on the above verification procedure is an imper-
sonation by a cheating verifier. More precisely, in the phase that an honest
public-key owner tries to prove that he knows a factoring of N to an honest
verifier, a man-in-the-middle adversary can execute impersonation. In our case,
the security against this attack is reduced to the one-way-CCA2 security of our
h-EGKEM.

Theorem 1. If the key encapsulation mechanism h-EGKEM is one-way-CCA2
secure, then the protocol of identification of a candidate public-key owner is
secure against man-in-the-middle attacks of impersonation.

Proof. Suppose that there is a PPT, man-in-the-middle adversary M. Then,
putting g := P and X := gN , we can make a PPT adversary that attacks on
h-EGKEM and that has the same success probability. 	

Theorem 2. The key encapsulation mechanism h-EGKEM is one-way-CCA2
secure based on the Gap-CDH assumption for Grp in the random oracle model.
More precisely, for any PPT one-way-CCA2 adversary A on h-EGKEM, and
assuming that A issues a hash query every time when A computes a hash value,
there exist a PPT Gap-CDH problem solver S on Grpwhich satisfies the follow-
ing tight reduction.

Advow-cca2
A,h-EGKEM(λ) � Advgap-cdh

S,Gp0
(λ).

Proof. Employing any given adversary A on h-EGKEM as subroutine, we con-
struct, in the random oracle model, a PPT Gap-CDH problem solver S as follows
(see Fig. 2).

S is given a CDH problem instance (g, X, Y) as input. S initialize the hash
table T, whose row consists of the format (h, K′,K). S sets PK0 := X and
φ : ∗ := Y , where the latter is the challenge message that should be responded
by A. S invokes A on input PK0 := X and φ : ∗.

S must answer decapsulation queries and hash queries of A. Those answers
can be made as is in the Fig. 2.

Finally, when A responds an answer ̂K∗, S can extract the answer Z := K ′

of the CDH problem instance (g, X, Y). 	

4.3 Discussion

Multiple Identities. As we can see from our procedures, there is a possibility
that more than one public key N are issued on the same IDcand. That is, N1 and
N2 (N1 �= N2) both have the same IDcand. It would be desirable if guarantors
could control this phenomenon.

12 H. Anada et al.

Given (g, X, Y) as input;

Initial Setting
– Initialize the hash table T
– PK0 := (g, X), ψ∗ := Y
– Invoke A on (PK0, ψ

∗)

Answering A’s Queries and Extracting the Answer

• When A queries its decap. oracle DEC(SK, ·) for the answer of ψ = h;

– If ψ = ψ∗, then ̂K := ⊥
– else if h is in T, then pick K in the same row, then ̂K := K
– else if h is not in T, then search K′ s.t. DDH(g, X, h, K′) = 1

– – If there is such K′, then pick K in the same row, ̂K := K,T := T∪{(h, K′, K)}
– – else K′ $← p0 , ̂K := K := H(K′),T := T ∪ {(h, K′, K)}
– Reply ̂K to A

• When A queries its hash oracle H(·) for the hash value of K′;
– If K′ is in T, then pick K in the same row
– else if K′ is not in T, search h s.t. DDH(g, X, h, K′) = 1
– – If there is such h, then pick K in the same row, T := T ∪ {(h, K′, K)}
– – else K′ $← p0 , K := H(K′),T := T ∪ {(h, K′, K)}
– Reply K to A

• When A responds ̂K∗;
– Search K in T s.t. K = ̂K∗, pick K′ in the same row
– Return Z := K′

Fig. 2. A Gap-CDH problem solver S for the proof of Theorem 2.

Revocation. As is discussed for PGP and a web of trust, our decentralized
PKI also has the problem revocation. A simple way to enable revocation is to
maintain a revocation list as well as our public-key list. We have to rely on
an assumption that the underlying network can maintain the integrity of the
revocation list, too.

Anonymity of Guarantors. In the real world it might be better to anonymise
guarantors. This is a matter to be pursued. Using an anonymous credential
system can be considered to resolve this matter though it needs a (centralized)
issuer of credentials.

5 Conclusions

We proposed an embedding method for a decentralized PKI; ID of a candi-
date public-key owner, IDs of his guarantors, and a public key of the second

Identity-Embedding Method for Decentralized Public-Key Infrastructure 13

cryptosystem was embedded into a public key of the first cryptosystem. This
embedding functions as a preventer of manipulations on public keys. But it pre-
vents not only falsification but also impersonation. We realized our decentralized
PKI concretely; we could embed a public key of an elliptic curve encryption into
a modulus of an RSA encryption. We note that the resulting decentralized PKI
can be used as an alternative of the RSA encryption and signature in SSL.

Acknowledgements. The third author was partially supported by the Invitation Pro-
grams for Foreign-based Researchers provided by the National Institute of Information
and Communications Technology (NICT), Japan.

The first, second and forth authors were partially supported by the Bilateral Joint
Research Projects/Seminars FY2014 by Japan Society for the Promotion of Science
under the research project name “Computational Aspects of Mathematical Design
and Analysis of Secure Communication Systems Based on Cryptographic Primitives”,
who appreciate sincere thanks for discussion with Sushmita Ruj in Indian Statistical
Institute and Avishek Adhikari in University of Calcutta.

References

1. Anada, H., Arita, S.: Identification schemes from key encapsulation mechanisms.
In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp.
59–76. Springer, Heidelberg (2011)

2. Andrychowicz, M., Dziembowski, S.: Distributed cryptography based on the proofs
of work. Cryptology ePrint Archive, Report 2014/796 (2014). http://eprint.iacr.
org/

3. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. In: Pro-
ceedings of the 1996 IEEE Symposium on Security and Privacy, pp. 164–173. IEEE
Computer Society Press (1996)

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 213. Springer, Heidelberg (2001)

5. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, p. 13. Springer, Heidelberg (1998)

6. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993)

7. Fromknecht, C., Velicanu, D., Yakoubov, S.: A decentralized public key infrastruc-
ture with identity retention. Cryptology ePrint Archive, Report 2014/803 (2014).
http://eprint.iacr.org/

8. Garman, C., Green, M., Miers, I.: Decentralized Anonymous Credentials. In: IACR
Cryptology ePrint Archive vol. 2013, p. 622 (2013)

9. Graham, S.W., Shparlinski, I.E.: On RSA moduli with almost half of the bits
prescribed. Discrete Appl. Math. 156(16), 3150–3154 (2008)

10. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

14 H. Anada et al.

11. Kitahara, M., Yasuda, T., Nishide, T., Sakurai, K.: Embedding method of owner’s
information into public key of RSA encryption and its application to digital rights
management system. In: IPSJ SIG Technical report, vol. 2014-CSEC65, p.3. Infor-
mation Processing Society of Japan (2014)

12. Kitahara, M., Nishide, T., Sakurai, K.: A method for embedding secret key infor-
mation in RSA public key and its application. In: Proceedings of the Sixth Interna-
tional Conference on Innovative Mobile and Internet Services in Ubiquitous Com-
puting, pp. 665–670. IEEE (2012)

13. Kitahara, M., Yasuda, T., Nishide, T., Sakurai, K.: Upper bound of the length
of information embedd in RSA public key efficiently. In: AsiaPKC@AsiaCCS, pp.
33–38. ACM (2013)

14. Lenstra, A.K.: Generating RSA moduli with a predetermined portion. In: Ohta, K.,
Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 1–10. Springer, Heidelberg
(1998)

15. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

16. Meng, X.: On RSA moduli with half of the bits prescribed. J. Number Theory
133(1), 105–109 (2013)

17. Qiu, Q., Tang, Z., Li, F., Yu, Y.: A personal DRM scheme based on social trust.
Chin. J. Electron. 21(4), 719–724 (2012)

18. Sander, T., Ta-Shma, A.: Auditable, anonymous electronic cash (extended
abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 555–579.
Springer, Heidelberg (1999)

19. Vanstone, S.A., Zuccherato, R.J.: Short RSA keys and their generation. J. Cryp-
tology 8(2), 101–114 (1995)

20. Yasuda, M., Shimoyama, T., Kogure, J., Izu, T.: On the strength comparison of
the ECDLP and the IFP. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS,
vol. 7485, pp. 302–325. Springer, Heidelberg (2012)

21. Zimmermann, P., and associates llc (2014). http://www.philzimmermann.com/
EN/background/index.html. Accessed 20 September 2014

http://www.philzimmermann.com/EN/background/index.html
http://www.philzimmermann.com/EN/background/index.html

Diversification of System Calls in Linux Binaries

Sampsa Rauti(B), Samuel Laurén, Shohreh Hosseinzadeh,
Jari-Matti Mäkelä, Sami Hyrynsalmi, and Ville Leppänen

University of Turku, 20014 Turku, Finland
{sjprau,smrlau,shohos,jmjmak,sthyry,villep}@utu.fi

Abstract. This paper studies the idea of using large-scale diversification
to protect operating systems and make malware ineffective. The idea is
to first diversify the system call interface on a specific computer so that
it becomes very challenging for a piece of malware to access resources,
and to combine this with the recursive diversification of system library
routines indirectly invoking system calls. Because of this unique diversi-
fication (i.e. a unique mapping of system call numbers), a large group of
computers would have the same functionality but differently diversified
software layers and user applications. A malicious program now becomes
incompatible with its environment. The basic flaw of operating system
monoculture – the vulnerability of all software to the same attacks –
would be fixed this way.

Specifically, we analyze the presence of system calls in the ELF bina-
ries. We study the locations of system calls in the software layers of
Linux and examine how many binaries in the whole system use sys-
tem calls. Additionally, we discuss the different ways system calls are
coded in ELF binaries and the challenges this causes for the diversifica-
tion process. Also, we present a diversification tool and suggest several
solutions to overcome the difficulties faced in system call diversification.
The amount of problematic system calls is small, and our diversifica-
tion tool manages to diversify the clear majority of system calls present
in standard-like Linux configurations. For diversifying all the remaining
system calls, we consider several possible approaches.

1 Introduction

Malicious software, or malware, is one of the main security challenges in today’s
information security. Malware uses knowledge about the identical interfaces of
operating systems to achieve its goals. To access resources on a computer, a
malicious program has to know the interface that provides the resources. Because
of the prevailing operating system monoculture, an adversary can create a single
malicious program that works for hundreds of millions of computers that use the
same operating system.

The operation of malware would become considerably more difficult if it could
not issue system calls and successfully use resources on a computer. Therefore,

This research has been funded by MATINE project 3301.

c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 15–35, 2015.
DOI: 10.1007/978-3-319-27998-5 2

16 S. Rauti et al.

our approach is to make malware ineffective by using large-scale system call
diversification. All software on a certain computer can be diversified so that it
becomes very challenging for a malicious program to access resources. As a result
of this, a large set of computers would have exactly the same functionality but
differently diversified software layers and user applications. Because of the diver-
sification of software layers, a piece of malware no more knows the “language”
used in the system and becomes incompatible with its environment.

Even if a piece of malware would be able to find out how the resources are
accessed on one computer, large-scale attacks are still very difficult, as malware
knows the secret of applied diversification on one computer only. A costly analysis
needs to be separately performed on each host. In other words, the diversification
can be seen as a computer-specific secret. Our diversification scheme does not
affect the work of a software developer because it is done on the binary level. Only
some problematic cases, often found in libraries, may have to be dealt on source
code level. The diversification of binaries does not change the user experience
in any way, because the semantics and functionality of programs are preserved.
Changing the system call numbers or mangled names of library routines does
not affect performance either.

One part of this diversification process is to diversify the system calls that
are used to access resources in an operating system. The idea of this paper is to
study the diversification of system calls in Linux (see Sect. 2). More specifically,
we discuss the challenge of recognizing and diversifying the direct system calls in
Linux ELF (Executable and Linkable Format) binaries. We present a method for
API diversification and describe a concrete tool used to achieve diversification.
Based on the tests performed with this tool, we also present an experimental
study of presence and distribution of system calls in Linux ELF binaries. We
also discuss several possible solutions for the challenges faced when recognizing
the system calls from binary files. By using our tool and these methods together,
we believe 100 % accuracy in system call diversification can be achieved.

1.1 Our Goal

In this paper, our first goal is to characterize where the system calls are applied,
what can be said about their distribution in the different software layers of
an operating system that will be diversified. For example, how many binaries
perform system calls and how often system calls are used in libraries and user
applications. It obvious that libraries perform the majority of system calls, but
statistics of the role of direct system calls in application binaries is also important
for considering schemes for securing a whole system. If applications often perform
such calls, an automatic binary transformation tool seems necessary instead of
just recompiling the diversified libraries from sources.

As the second goal, we want to find out how system calls are coded in ELF
binaries. Understanding this is essential to successfully diversify all the system
calls in binary files. We study the different ways system calls can be coded in
ELF files. We chose to diversify applications and libraries on binary level rather
than on source code level. This way, we do not need to have diversifiers for several

Diversification of System Calls in Linux Binaries 17

high-level programming languages. It is also easier to handle updates that arrive
in binary form. Moreover, commercial applications or device drivers are usually
not available in source code form.

The third goal is to present different ways to diversify the system calls in
ELF binaries. Because system calls are not always presented in binaries in the
same straightforward way, we may need to make use of several approaches to
ensure that the system call diversification scheme is as perfect as possible.

1.2 Contributions and Structure of the Paper

To the best of our knowledge, our work is the first detailed study of static
system call diversification in Linux ELF binaries. We also provide a concrete
implementation of an automatic diversifier tool. This paper makes the idea of
static system call number remapping, previously presented by Chew and Song
[3], more concrete. We apply the system call diversification in practice to solve a
more general problem of rendering malware useless. Unlike some earlier work on
system call diversification (see for example [10,13]), our tool performs the diver-
sification statically after compilation and thus does not introduce any runtime
performance loss. Compared to the earlier similar solutions, our approach is also
more system-wide because it also diversifies the kernel. We implement a proof of
concept diversifier and test our solution using two popular Linux distributions.
We provide a detailed description of this tool and also present results on its
accuracy.

One of the contributions of this paper is an empirical study of the presence of
system calls in ELF binaries. We conclude that most system calls in two Linux
distributions we tested are found in libraries like libc. Also, the vast majority of
binaries do not contain direct system calls at all, which makes their diversification
much easier. Another contribution of this paper is to present various solutions to
diversify the differently coded system calls in ELF binaries. We believe that even
though there are many challenges, diversifying 100 % of system calls is feasible
by applying the different methods we consider in Sect. 6.

The rest of the paper is organized as follows. Section 2 presents an overview
of our API diversification method for operating system protection. Section 3
covers some basic concepts needed to understand our diversification method and
experimental tool in more concrete sense, like Linux layer structure and ELF
binary files.

Section 4 discusses coding of system calls in ELF binaries and the challenges
faced when trying to identify and diversify them. Section 5 presents our study of
presence of system calls in the ELF binaries. We discuss our diversifier tool imple-
mentation and the experimental setting. We also present some results; where in
the system are system calls located, and how many binaries contain direct sys-
tem calls in the tested Linux distributions? Many possible solutions for these
challenges and achieving 100 % diversification accuracy are covered in Sect. 6.
Section 7 concludes the paper.

18 S. Rauti et al.

2 An Overview of Our API Diversification Scheme
and Threat Scenarios

2.1 Our API Diversification Scheme

An operating system provides a variety of services that user application can
utilize in a shared manner [25]. Therefore, the operating system and its system
call interface can be thought as an abstraction between user applications and the
services provided by hardware of a computer. System calls are a fundamental
set of services in an operating system [23].

In order to interact with its environment, an application needs to use system
calls. This can be achieved by either calling the system call interface directly
or using libraries that provide wrappers for system calls. Therefore, in our view
preventing a piece of malware from accessing the system call interface consists
of two separate parts:

1. Diversify the system call numbers.
2. Diversify the system call implementations in the kernel and all the functions

calling them directly or indirectly.

Diversification refers to meaning-preserving mapping in a programming lan-
guage. That is, the program code is transformed to a different form, but its
semantics are preserved so that the user of the program experiences no visible
change when using the program. In this paper, system call diversification simply
refers to changing the mapping of system call numbers.

The first part of our scheme means that we change the system call numbers
defined in the operating system kernel. As a consequence, all code in libraries
and user applications that call system calls directly using these numbers must
be diversified accordingly as well, or they will stop working.

On the other hand, when a system call is not invoked directly, the call passes
through several software layers before it reaches the system call implementa-
tion. In order to prevent a piece of malware from invoking system calls, we
have to recursively diversify all the functions that make these system calls. We
refer to the set of these functions directly or indirectly calling the system call
implementations as the transitive closure. All these functions must be diversified
(by changing their function signature, for example) to prevent a piece malware
from using them to access a computer’s resources. Trusted applications that are
diversified correctly can still access the resources.

This paper deals with changing the system call numbers and diversifying all
the direct system calls accordingly in user applications and libraries. Another
part of our protection scheme, diversifying the transitive closure, has already
been discussed in our other publication [17] and is not covered in this paper.

The trusted software layers and user applications are diversified with a secret
diversification function which makes them compatible with new system call num-
bers defined in the kernel. As a result, the entry points that lead to the system
calls are diversified in the whole system, preventing malware and any untrusted
applications from using them to invoke system calls.

Diversification of System Calls in Linux Binaries 19

2.2 Threat Scenarios

Our solution is meant to protect computers from the malicious code that is
either executed as its own process or as a part of another executing process. In
the second case, the malicious code can observe the system calls its host pro-
gram invokes and gradually learn the system call mappings used in the system.
However, this would still require advanced analysis.

Without observing any program’s actions, it is very difficult to guess correct
system call numbers. Linux currently only uses around 320 system calls and their
numbers are 32-bit, so there is a very high chance that our function can map
calls so that malware cannot make valid system calls even by mistake. Of course,
the mapping function should be designed so that it never maps an ID to itself.
Illegal system calls could also be logged for further inspection. A program that
randomly tries invoking large amount of system calls can be seen as suspicious.

It is important to note that in our approach we assume that a piece of
malware has no access to the file system, for example, and has no way to analyze
files or our secret diversification function that has been applied to binary files.
File system access requires using system calls and thus an external malware does
not have an easy access to the file system.

Our approach adopts a proactive view by preventing malware from harmfully
interacting with its environment before its execution. As the number of malicious
programs keeps growing and they keep transforming, traditional fingerprint-
based antivirus software is becoming increasingly inefficient in the fight against
malware [1]. Also, antivirus programs often only detect the threats they are
already aware of. This is why complementary approaches are needed.

Together with diversifying the transitive closure, the system call number
diversification should make it much harder for malicious programs from opening
any resources on a computer. Untrusted programs do not know either the system
call numbers nor the names of functions in other applications or libraries that
lead to system calls.

3 Linux Layer Structure and ELF Binary Files

3.1 Linux Layer Structure

Linux system calls are implemented as named routines in the operating system
kernel. In the user-space facing system call ABI, each call routine corresponds
to a kernel-defined system call number. There are around 320 system calls in
Linux, each with its own number [27].

The software layer structure of Linux is very roughly illustrated in Fig. 1.
Linux contains wrappers in order to make it easier to issue system calls, which
are implemented in different parts of kernel. However, as explained in Sect. 2,
in this paper we are only interested in the cases where either libraries or user
applications call the system call interface directly. We aim at recognizing and
diversifying all these entry points in the binaries of the whole system.

20 S. Rauti et al.

Fig. 1. Linux layer structure.

The most important library making the system calls in Linux is libc, which
most user applications use to access operating system services. However, several
other libraries, many command line tools and even some web browsers also make
direct system calls. The distribution of system calls will be examined closer in
two test environments in Sect. 4.2.

3.2 Structure of ELF Files

The Executable and Linkable Format (ELF) is a standard file format for executa-
bles, object code and shared libraries. It is used on many different platforms and
in several operating systems. It is the standard binary file format for Unix-like
systems.

Figure 2 shows the structure of an ELF file. An ELF header in the begin-
ning of the ELF file describes the file’s organization. The header also contains
information on object file type and the instruction set architecture, for example.

Sections contain lots of miscellaneous information: instructions, data, symbol
table, relocation information etc. Some sections are special, like sections for unini-
tialized and initialized data, sections holding debug information and comments,
sections for read-only data and strings and sections for symbol tables [6].

A program header table is an optional part of ELF files. It tells the system
how to create a process image and execute the program. Relocatable files do not
need a process image. Information in a section header table describes the ELF
file’s sections. Each section has its own entry in the table. Every entry provides
information such as the section name, the section size etc. Files used during
linking always have a section header table, otherwise it is optional.

The sections in ELF files have a type attribute. For example, PROGBITS-type
sections are reserved for program-specific data. This can be either executable
code or other data. In order to diversify the system calls in ELF files, our diver-

Diversification of System Calls in Linux Binaries 21

Fig. 2. ELF file structure.

sifier tool analyzes the PROGBITS-type sections that are marked the be executable
with SHF EXECINSTR flag.

4 On Coding of System Calls in ELF Files

For the purposes of this paper, a system call can be seen consisting of two
separate phases. As we have already seen, the first phase puts the value of the
system call into a predefined register. The second phase transfers control to
the operating system’s system call handler. The exact mechanism for this is
architecture and operating system dependent. On x86-64 Linux system calls are
made using the SYSCALL instruction. For instance, the following commands are
used to invoke sys write (system call number 1):

mov $1, %eax
syscall

However, there are several factors that make identifying the system calls more
difficult. For example, there might be a jump command between the two phases:

cmp $1, %eax
je equal
mov $0, %eax
jmp over

equal:
mov $1, %eax

over:
syscall

22 S. Rauti et al.

Here, system call 1 is invoked if the value in EAX register is 1, otherwise system
call 0 is invoked. It is much harder for the analyzer to deduce what system call
will be invoked.

Also, when the analysis is restricted to simple mov commands that directly
move a value to a register where a system number is stored, many problems
arise. For example, this leaves out a complicated setting where a value is moved
to a register indirectly through other registers. Also, it seems compilers often
write the binary so that the register value is first put to the memory and then
into an appropriate register. These kind of indirect approaches are difficult to
analyze without tracing the control flow of the program. There might also be
other commands affecting the register values before the system call is made, say
incrementing EAX register, for example.

Of course, it is interesting to ask whether these different ways to code the
system calls in binaries have any visible reasons in the source code. It is pretty
clear some of them do. For example, the jump we saw in the example earlier
is probably created as a result of a conditional statement, like an if-statement,
in the source code. It also seems that loop structures in the source code often
create coding in the binary where the two phases the system call consists of are
not consecutive. For example, we noticed that setting register values indirectly
through other registers can be a result of a loop structure in the source code.
Use of function pointers in the source code probably also affects the coding of
the binary file.

On the other hand, all the binary codings of system calls do not seem to have
clear explanations in the source code. For example, the fact that register values
are sometimes circulated through memory seems very arbitrary and apparently
associated with optimization made by the compiler. We noticed the version of
compiler may greatly affect the coding of system calls in the binaries it creates.
The compiler configuration and compiling environment probably also have an
effect on this. Many compilers have switches that can be used to configure the
level of optimization.

One more noteworthy problem is alignment, that is, the way data is arranged
and accessed. Because our tool disassembles the binary file in a straightforward
manner by processing it from the beginning to the end, any excessive data or
empty space between instructions (zero bytes) lead to failure. There is no reli-
able way to detect when this failure takes place. In the worst case scenario, an
erroneous system call could be found from a binary file. In practice, however,
compilers usually should not produce this kind of faulty program code. Pro-
grams that somehow determine the system call at runtime based on the user
input would naturally also be problematic, as it is impossible to identify the
correct system call number in this case with static analysis. Some commercial
products may also use different obfuscation methods in their binaries, which
ironically makes our diversification task much harder. Moreover, different kinds
of self-modifying programs are always difficult to handle for diversifiers.

Diversification of System Calls in Linux Binaries 23

5 Experimental Study on the Presence of System Calls
in Linux Binaries

To find out how system calls are distributed between different parts and binaries
in Linux distributions, we performed an experimental study on the presence of
system calls in all binaries in tested systems.

5.1 Settings of Studied Linux Environments

We conducted our study using 64-bit Fedora and Gentoo Linux distributions.
Fedora Linux was selected because it provided a full-fledged desktop environ-
ment with all the associated software out of the box. In contrast, the Gentoo
installation we used was fairly minimal with only a few packages outside of
the default/linux/amd64/13.0 profile. Additionally, we conducted separate
tests with C standard library implementation glibc. We concentrated on glibc
specifically because it is one of the main libraries containing system calls. Char-
acterization of test environment was deemed to be especially important since
there are multiple factors that can cause results to vary considerably. When
analyzing binary files, the most obvious source of differentiation is the compiler
used to create the said binaries. Using a different compiler and even different
version of the same compiler can lead to differences in produced binaries, which
in turn might affect the results our system call analysis. Aside from the com-
piler version, the compiler settings used to produce the binaries play a central
role. For example, we noticed that our analysis tool performed radically worse
when the binaries were compiled with no optimizations at all. Because our tools
performance is highly dependent upon how the register allocation is done, all
compiler settings that might affect this can potentially alter our results.

Because we are analyzing all the installed applications and shared libraries,
precisely describing our experimental setting would require us to list all the
specific versions of the installed packages including potential distribution specific
changes. Also we would have to record detailed information about the build
environment, including compiler versions and settings.

Because of how compiler dependent our analysis is, conducting experimental
studies using Linux distributions with binary based packaging, presents us with
certain challenges. As we are using precompiled binaries we cannot know how
they were produced, let alone control the specific compiler settings. This might
make precisely replicating our results more complicated, but at the same time,
it means that our test environment resembles a real-world test scenario more
closely, since we assume that a typical end-user does not have control over how
their binaries have been produced.

We used 64-bit Fedora Linux version 20 based installation (kernel version
3.14.4) as our test platform. We had also installed various other applications
and libraries that were needed during the development of our analysis software.
Of course, knowing only the release number of the distribution leaves out many
details about the system, since the software has received various updates during

24 S. Rauti et al.

the release cycle. The Gentoo installation (kernel version 3.6.0) was considerably
more minimal and contained relatively small number of packages. No desktop
environment was installed for this system.

5.2 Distribution of System Calls in Binaries

We analyzed the direct system calls found in the binary files of two Linux distri-
butions, Fedora and Gentoo. In addition to amount and distribution of system
calls, we also wanted to see how well our diversification tool could identify the
system calls in binaries.

In Fedora, 5649 binaries were analyzed. Only 18 of those contained any sys-
tem calls. These binaries are shown in Table 1. For each binary, the amount of
system calls successfully identified by our tool, the amount of unidentified calls
and the total amount of system calls in that binary are shown. In this context,
identifying refers to successfully recognizing the correct system call number. In
unidentified cases, we find a SYSCALL command but cannot recognize a system
call number associated with it.

Table 1. System calls found in binaries of Linux Fedora distribution.

Binary path Identified Not identified Total calls

/lib64/libunwind-x86 64.so.8.0.1 1 0 1

/lib64/libcrypt-2.18.so 1 0 1

/lib64/librt-2.18.so 24 5 29

/lib64/libc-2.18.so 394 35 429

/lib64/libanl-2.18.so 3 3 6

/lib64/libnss db-2.18.so 1 0 1

/lib64/libgomp.so.1.0.0 17 13 30

/lib64/libaio.so.1.0.0 5 0 5

/lib64/libaio.so.1.0.1 5 0 5

/lib64/ld-2.18.so 31 5 36

/lib64/libunwind.so.8.0.1 2 0 2

/lib64/rtkaio/librtkaio-2.18.so 45 14 59

/lib64/xulrunner/crashreporter 0 6 6

/lib64/xulrunner/libxul.so 3 56 59

/lib64/firefox/crashreporter 0 6 6

/lib64/firefox/libxul.so 3 56 59

/sbin/ldconfig 109 9 118

/sbin/sln 79 8 87

Total 723 216 939

Diversification of System Calls in Linux Binaries 25

We can see that large amount of system calls is located in libc, the C
standard library. With this library, our diversifier performs well, recognizing over
90 % of calls. A few other libraries like rtkaio – a library used for asynchronous
I/O – also contain direct system calls.

Some command line tools like ld, a dynamic linker, ldconfig, which is used
configure dynamic linker run-time bindings, and sln, symbolic link creator also
seem to make quite many system calls. Our tool performs well with all of these
binaries.

There are also a few problematic binaries, like Mozilla’s libxul library in
this case. This binary encodes system calls in difficult ways, as it seems to favor
using intermediate registers for passing values instead of direct assignments to
appropriate registers to make a system call (see Sect. 4). Because of this prob-
lematic library, which appears in the system two times, our tool identifies about
70 % of the system calls in binaries in this system.

In the same way as with Fedora, binaries in Gentoo distribution were also
analyzed. Only 9 of 569 binaries contained direct system calls. These binaries are
shown in Table 2. There was no desktop environment installed in this system,
which explains the smaller amount of binaries. Most system calls are in libraries,
and about half of system calls are made in libc. Our tool performs well in this
distribution, identifying 92 % of the system calls.

We can conclude from these results that even in rather large standard dis-
tributions, there are very few binaries with direct system calls. User application
very rarely make direct system calls and use libc instead. This makes our diver-
sification task easier. Especially in restricted environments with only a few user
programs our diversifier would perform well.

However, even though our tool can recognize the system calls pretty well,
there are still some problematic cases that were not identified correctly. We will
look at some solutions to these problems in Sect. 6.

Table 2. System calls found in binaries of Linux Gentoo distribution.

Binary path Identified Not identified Total calls

/lib64/libanl-2.17.so 1 5 6

/lib64/libc-2.17.so 411 19 430

/lib64/librt-2.17.so 24 5 29

/lib64/libnss db-2.17.so 1 0 1

/lib64/ld-2.17.so 32 5 37

/lib64/libcrypt-2.17.so 3 0 3

/lib64/libpthread-2.17.so 144 23 167

/sbin/sln 84 5 89

/sbin/ldconfig 102 5 107

Total 802 67 869

26 S. Rauti et al.

5.3 A Closer Look at Diversification of System Calls in Libc

In the experiments, we also analyzed and diversified different versions of libc
library. Because most of the system calls are located in standard libraries and
not in the application’s code (see Sect. 4.2), these libraries are a good target
for analysis. User applications do not usually have any need to use the system
call interface directly, and invoking the system calls indirectly using a standard
library makes the application less dependent on certain operating system version
by including an additional abstraction level.

We studied glibc version 686554bff63dff0f8b20c84e9bdca45e643f9d9c,
which we compiled with gcc (GCC) 4.8.2 20131212 (Red Hat 4.8.2-7). This
library was analyzed with our diversification tool both on Fedora 20 (64-bit)
and on Gentoo. The results for both distributions are shown in Table 3.

Table 3. The system calls found in libc.

Distribution Identified Not identified Total calls

Fedora 380 35 415

Gentoo 398 18 416

As, we can see, over 90 % of calls were successfully diversified in Fedora and
over 95 % in Gentoo. Identifying the system calls succeeded well in our tests,
because many routines in standard libraries are just simple wrappers for system
calls. These routines simply take a set of parameters for system calls, put them
into appropriate registers so that the system call can use them, and then invoke
the system call with a predefined number.

However, some of the routines in libc include conditional execution of system
calls. That is, these routines decide the system call to be invoked based on some
external factor or invoke system calls as a part of a loop. These cases are of
course more problematic. Additionally, standard libraries also usually contain
routines that can be used to invoke an arbitrary system call. These routines take
a system call number as their parameter, which makes it hard to rewrite them
statically.

We also studied systems calls in musl, an implementation of C standard li-
brary. The version we used was 8a2d8719873a46d5cc5c54e688d47ea134c67c84.
This library was compiled with several different optimization settings, which
demonstrates well the effects that optimization performed by the compiler may
have on our diversifier tool. musl was tested on Fedora and the same compiler
was used as in previous tests with libc.

musl was compiled using several different optimization options. Results are
shown in Table 4. Switch -O0 means no optimization. As shown in Table 4 results
for the library with no optimization are really bad. However, with all optimized
binaries, our tool performs well, identifying over 90 % of system calls. The switch

Diversification of System Calls in Linux Binaries 27

-Os means the binary is optimized for size. -O1, -O2 and -O3 refer to increas-
ing level of optimization. Generally, it seems that optimization performed by a
compiler is a big advantage for our tool.

We can also see that there are much less system calls in total in the binary
that has not been optimized. It seems that leaving the optimization out results
in more calls to the functions wrapping system calls in libc instead of inlining
the syscall instruction in each function. This also explains why our tool does
not perform that well with non-optimized binaries. This is because the wrappers
circulate the system call number through the stack instead of putting it directly
to a register, which causes problems for our diversifier tool.

It would be interesting to test more libc implementations with several ver-
sions of different compilers and see how well our tool performs when analyzing
the compiled binaries.

Table 4. The effects of compiler optimization to diversification of musl library.

Optimization Identified Not identified Total calls

-O0 7 291 298

-Os 372 27 399

-O1 379 27 406

-O2 373 29 402

-O3 375 31 406

6 Methods for System Call Diversification

Basically, the idea of system call diversification simply means that a system call
number is replaced with another number. The easiest part in diversifying system
calls is changing their numbers in the kernel code. How this is done depends on
the architecture and kernel version. In x86-64 architecture, for example, the sys-
tem call numbers are listed in arch/x86/syscalls/syscall 64.tbl. On com-
piling, definitions in this file are propagated to several header files.

The part that causes more problems is changing the system calls numbers
in all binary files to correspond the new numbers we have set in the kernel. As
we have seen, the system calls take place in several phases in the binary code,
which causes several problems described in the previous section. In this section,
we take a look at our own diversification tool and then present some solutions
that would help to increase its accuracy to 100 %.

6.1 Our Tool and Recognizing the System Calls

To demonstrate the feasibility of system call diversification, we implemented
an experimental diversification tool as a proof of concept. Our tool rewrites

28 S. Rauti et al.

the system calls in x86-64 ELF-64 binaries by making use of a simple linear
sweep algorithm [22]. This is a straightforward disassembly method that decodes
everything appearing in sections of the executable that are typically reserved for
machine code. We limit the analysis to executable PROGBITS-type sections in
ELF binaries. The diversification is done after compile time before execution.

The tool tries to find system calls by walking through the program code sec-
tions linearly. It looks for SYSCALL commands used in x86-64 architecture. When
such a command is found, it starts searching the system call number associated
with this call. This is done by backtracking from the location of SYSCALL com-
mand and trying to find the command where the system call number is set. As
the number of system call to be invoked is put into a register, our tool looks for
commands that change values of RAX, EAX, AX, AH or AL registers.

Therefore, our diversifer tool uses the following two methods to identify the
system calls:

1. Recognize two consecutive phases. As we have seen, in the simplest scenario
we simply recognize two consecutive phases of the system call in the binary
code. However, when there are other commands between these phases, this
trivial approach will not work.

2. Recognize two phases with a gap. When the two phases of the system call
are not consecutive, we have to find the command making the system call
first and then backtrack to the call that puts the system call number into a
register. Here, the potential jumps between the two phases should be somehow
recognized and handled.

Table 5. Amount of gaps in system calls in Fedora and Gentoo.

Gap size Fedora Gentoo

0 722 736

1 34 29

2 15 19

3 17 8

4 42 6

5 4 7

Over 5 0 2

Total 834 807

Table 5 shows the amount of gaps found in Fedora and Gentoo distributions.
In Fedora, 87 % of the system calls have no gaps and in Gentoo, 91 % of the
system calls have no gaps. The vast majority of system calls are trivial in this
sense. Fedora did not have any gaps bigger than 5 instructions. Gentoo has only
two of these, the largest gap being 9 instructions.

Diversification of System Calls in Linux Binaries 29

When testing our tool, we used SysTap, a tool for real time analysis of running
processes in user and kernel spaces. This way, we made sure that the programs
that had been diversified with our tool worked correctly during this dynamic
instrumentation – that is, they used the new system call numbers changed by
our diversifier tool.

As seen from the results in Sect. 5.2, our tool still needs improvement. Next,
we will take a look at many approaches that could be used to further improve
our diversifier tool.

6.2 Challenges

During the development of our tool, we identified some problems in our approach
to system call identification. Most of the challenges were linked to the use of a
simple linear-sweep based disassembly algorithm. These problems are well known
in literature and have for example been discussed by Schwarz et al. [22].

Our algorithm works by first disassembling the executable PROGBITS-type
sections of the ELF files. After the initial disassembly we scan the binary for
x86-64 specific SYSCALL instructions. If we find such instructions we stop the dis-
assembly process and start backtracking. The backtracking process starts looking
for preceding instructions that could assign a value to one of the accumulator
registers RAX, EAX, AX, AH, AL. These registers are used for storing the system call
number, and as our intention is to patch the system call numbers, we have to
figure out what the original system call number was. The backtracking process
might fail if it finds a control flow instruction or an instruction that might mod-
ify one of the accumulators in an unknown way. Also, we can only identify the
system call numbers if the assignments assigning them use only immediate values
for storing the numbers. This leaves out all cases where the system call number
is assigned indirectly from memory or from another register.

There are various problems in this approach. First of all, the linear-sweep
based disassembly process is susceptible to several hard to identify errors. If
there is empty space or program data between instructions this might cause the
disassembly to produce incorrect results. The fact that the malfunction might
not be identified makes the situation even worse, the disassembly process might
continue as if nothing unusual had happened producing false instructions or it
might stop if the disassembler confronts an invalid instruction.

To solve this problem we would have to utilize a recursive disassembly algo-
rithm. Such algorithm would first start the disassembly from a prespecified offset
and continue until a control flow instruction is found. Then the algorithm would
have to figure out the possible targets of the control flow instruction and continue
the decoding process from there. This approach would solve some of the prob-
lems but increases the complexity of the tool considerably, because the recursive
approach requires us to figure out the potential control flow paths. For example,
if a jump target is specified to be in a certain register we have to figure out how
that register gets its value. We would have to perform some form of data-flow
analysis to be able to handle these kinds of indirect jumps. The situation is even
more complicated. In order to build a control-flow graph we need a data-flow

30 S. Rauti et al.

graph which in turn requires a control-flow graph to be in place. Henrik Theiling
[26] refers to this as a chicken and egg problem.

Reconstruction of control-flow graphs from binaries has been widely stud-
ied. Theiling presented an bottom-up approach for the flow graph approxima-
tion [26]. Cooper et al. introduced an algorithm for building a control flow
graph approximation and then refines it [7]. Kinder et al. devised an abstract
interpretation-based framework that produces the most precise overapproxima-
tion of the control-flow graph with respect to the used abstract domain [12].

Performing a proper data-flow analysis would also help us figure out how
the system call numbers are assigned. With a data-flow graph in place we could
backtrack through the indirect assignments and find out how the registers’ values
are formed. The control-flow graph would also help us solve challenges like the
ones presented in Sect. 6.2.

6.3 Methods to Improve System Call Diversification

There are several methods we can use to improve the system call diversifier so
that it can handle the remaining problematic system calls:

1. Include the diversification calculation in the binary. We can embed the diversi-
fication calculation – that is, the calculation determining the new diversified
system call number – somewhere in the binary. However, this might cause
some relocation problems. This approach would also make a potential leak-
age of diversified code quite dangerous. As a result, the secret new system call
mappings defined by the diversification function would be revealed. However,
considering we assume a piece of malware should not be able to perform sys-
tem calls and get access to the file system in order to analyze the diversified
binary code, this approach should be pretty safe. If the malware finds some
way to get into the memory space of an executing process, however, it can
try to analyze the meanings of diversified system calls.

2. Change compiler or compiler switch settings. Sometimes the order of com-
mands in the machine code can be changed as an optimization made by the
compiler and system call numbers can be circulated through registers and
memory before they are put in the appropriate registers in order to make a
system call. This could probably often be prevented with correct compiler
settings. This method naturally has some problems. For example, we cannot
expect all software developers – like the major browser suppliers – to compile
their binaries for us using a certain compiler or some specific configuration.
Many open source applications could be compiled from source codes on the
target machine using a specific compiler, though.

3. Rewriting parts of the source code. Many problems faced in the binary code
diversification process can probably be traced back to the source code. As
a consequence, rewriting some of the source code differently might solve the
problem. In many systems, rewriting would cause too much work if it would
be done for all user applications. However, it is a possible solution for example
for many standard libraries like libc.

Diversification of System Calls in Linux Binaries 31

4. Hard-code the diversification. For some of the most problematic code sec-
tions, the diversification could be hard-coded in binaries. While not usually a
preferable solution, this could be done for some standard parts of the Linux
operating system.

The various methods for more accurate diversification we have discussed in
this section all have some challenges. However, they can still be successfully used
at least for some standard set of libraries and applications. Also, these methods
are very feasible in some more or less restricted environments. Systems used in
industry or military and embedded systems in general are easier to adapt this
way, and security is often a major concern for these systems. In these systems,
we believe we can reach 100 % diversification accuracy.

7 Related Work

To better position our work in the Linux based software ecosystem, we shortly
discuss existing related technologies in this section and provide a summary of
related research in the field.

7.1 Related Technologies

The traditional UNIX point of view to security is based on a discretionary user
and group based restriction of file/process privileges to perform operations, with
the exception of a superuser with access to all such resources. The system is
binary in nature, i.e. an operation is either prohibited or allowed to full extent.
It was later extended with more flexible access control lists (ACL) and policy
based controlling mechanisms (PolKit) [9].

Another way to control actions is sandboxing. The chroot mechanism [9]
provides an isolated view of the file system. As the superuser is allowed to break
out from the chroot “jail”, local root exploits pose a security threat. The chroot
also has other attack vectors such as the ptrace system call. For mount points
there is a noexec flag that prevents the execution of binaries from that file system,
but will not prevent interpreting scripts from such locations.

Sandboxing is not limited to file systems. For example, Linux provides
namespace isolation for process identifiers, network interfaces, firewall rules,
routing, and inter-process communication and a related container framework
(LXC) [11]. Other types of resource limits can be imposed via the ulimits,
sysctl, and control group interfaces. The Linux Secure Computing Mode (sec-
comp) mechanism can be used to isolate a process from system on system call
level with only a very limited interface to outside system via already-open file
descriptors.

A more disciplined approach to security is mandatory access control. Frame-
works such as SELinux and AppArmor introduce a policy based mechanism to
security with modular hooks directly on kernel level. The policy is enforced by
kernel, but its definition comes from userspace, which also deals with logging

32 S. Rauti et al.

and informing about policy violations. The frameworks enable a fine-grained
policy control with a small runtime overhead, and while the framework can be
transparently set up on a system without changing the userspace applications,
programs that are not designed for such a rigorous enforcement of permissions
may trigger false warnings with careless resource usage patterns.

7.2 Related Research

In 1993, Cohen [4] introduced a general method of program diversity to protect
operating systems. He proposed the exploitation of the evolutionary defenses to
produce more complex and unique program instances. The higher complexity
of the program increases the work an attacker has to do to understand the
program’s behavior in order to perform an attack. Moreover, with the uniqueness
of the program, the attacker is no longer able to impact a substantial number of
program versions with a single attack. This way, the attacker is forced to design
individual attack versions for each of the program instances.

According to the classification of Collberg [5], there are various obfuscation
techniques available: code obfuscation, data obfuscation, layout obfuscation, and
preventing transformation. Based on the distribution format of the software,
different techniques are applicable [15]. In [15] these techniques are used at the
binary level.

Binary obfuscation makes reverse engineering the software significantly
harder. In the reverse engineering process the machine code is disassembled into
assembly code. The assembly code is then decompiled and the high-level code
is recovered [14]. Linn and Debray [14] propose adding “junk bytes” into the
instructions where the disassembler is expecting code. This method can disrupt
the disassembly process to produce disassembly errors or at least make disassem-
bled code more complex. The candidate instruction code should be incomplete
(to confuse disassembler) and unreachable during the execution (to save the pro-
gram’s semantics). In [16], similar to [14], the goal is to make the disassembly
of the machine code and thus the reverse engineering harder. They propose two
different obfuscation techniques that make it more difficult for the disassembler
to find the actual control flow of the binary code. One technique is to modify the
control transfer instructions so that they cause traps and signals. The other tech-
nique is to add new bogus instructions (e.g., adding the conditional jumps that
are disassembled but are never taken, or adding junk bytes that cause incorrect
disassembly). Falcarin et al. [8] propose a novel binary obfuscation technique
that is based on code mobility and code splitting at binary level. Their approach
aims at obstructing the static and dynamic analysis and therefore the reverse
engineering. Mimimorphism [28] is another binary obfuscation technique that
the malware can use to hide itself from static and semantic analysis.

The idea of system call diversification was introduced by Chew and Song[3]
for the first time, to mitigate the computer intrusions. In [3], the randomization
is applied to operating system to defeat buffer overflows. One of their proposed
methods is randomizing the system call mappings. Each system call is mapped

Diversification of System Calls in Linux Binaries 33

to a corresponding numbers in a table. By altering (randomizing) the mappings,
the original system call will no longer work.

System call diversification has also been studied in [13]. The authors pro-
pose it as a countermeasure against injection code attacks. This work is contin-
ued in [10], where the authors apply instruction set randomization and address
space layout randomization simultaneously. These papers advocate randomiza-
tion (diversfication) that happens dynamically at load time or run time, which
causes some performance loss. They also require de-randomization, because the
kernel is not diversified. We diversify binaries after they have been compiled so
that the run-time performance is not affected. Unlike these earlier papers, our
approach also provide system-wide protection by also diversifying the kernel.

Srivastava et al. [24] have designed an attack called Illusion. Illusion obfus-
cates the kernel’s system calls that are used by the attacker to hide the actual
operation of the malicious program. With the help of Illusion, attackers can stay
invisible to the malware analyzers; since these analyzers rely on the standard sys-
tem call interface to detect any changes and also the analyzers do not consider
the actual execution behavior of the system call in the kernel. Moreover, Illusion
is not detected by the tools checking the integrity of the kernel; because it does
not make any alteration in data structure or code of the kernel. In addition, they
have designed a detection system for detecting their attack.

The basic behavior of a program is recognizable by following its execution
flow, i.e. by tracing the sequence of the system calls the program invokes in
execution phase. Brusch et al. [2], proposed an obfuscator that works at kernel-
level and randomizes the sequence of the invoked system calls. Randomization
makes the program’s execution flow unpredictable for attacks.

In our previous research we have studied the applicability of diversification
techniques in different levels of software. In [17] we aim at concealing the system
call interface in order to protect the operating system, while in [21] we focus
on diversification at higher levels, i.e. Ajax applications. We propose a proxy-
like obfuscator [21] to defeat the online banking Trojans. We implemented our
approach in [19] and illustrated its efficiency. In two other papers [18,20] we
consider the use of diversification techniques to mitigate the man-in-the-browser
attacks.

8 Conclusions

In this paper, we have presented a scheme for large-scale system call diversifica-
tion for operating system protection and also implemented a concrete diversifier
tool to demonstrate feasibility of our approach. Our experiments show that a
large majority of system calls is handled well by our tool, but there are still some
challenges. Still, the numbers of unidentified calls were usually relatively small
for analyzed binary files.

To overcome the challenges, we have also discussed several ways to increase
the accuracy of our diversification scheme to 100 %. Based on this, we believe
system call diversification is a feasible approach for protecting operating systems

34 S. Rauti et al.

from malware. This is especially true for systems where a certain set of well-
known libraries and applications is used and in many embedded systems that
are more restricted in nature.

The small total amount of system calls also makes things easier. As we have
seen, very few binaries in the tested Linux distributions contained direct system
calls. Most direct system calls are in standard libraries and well-known command
line tools, not in the ordinary applications.

There are still many open questions related to our diversification scheme.
How and where do we store the system call number mapping as a secret? How
would we invoke our diversification tool in an operating system? Would it run in
the kernel or in user space? How is it protected? These details will be discussed
in future work.

Only Linux has been covered in this paper. It would be interesting to also
study our diversification scheme in other operating systems. Most likely, similar
methods can be used and there are similar challenges present in the contexts of
those systems, too.

References

1. Apvrille, A., Strazzere, T.: Reducing the window of opportunity for android mal-
ware gotta catch ’em all. Int. J. Ambient Comput. Intell. 8(1–2), 61–71 (2012)

2. Bruschi, D., Cavallaro, L., Lanzi, A.: An efficient technique for preventing mimicry
and impossible paths execution attacks. In: Performance, Computing, and Commu-
nications Conference, 2007, IPCCC 2007. IEEE Internationa, pp. 418–425, April
2007

3. Chew, M., Song, D.: Mitigating buffer overflows by operating system randomization
(2002)

4. Cohen, F.B.: Operating system protection through program evolution. Comput.
Secur. 12(6), 565–584 (1993)

5. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscation tranformations.
Technical report 148, The University of Auckland (1997)

6. TIS Committee: Tool Interface Standard. Executable and Linking Format (ELF)
Specification. Version 1.2. Submitted to Journal of Information Security and Appli-
cations (Elsevier), under evaluation (1995)

7. Cooper, K.D., Harvey, T.J., Waterman, T.: Building a control-flow graph from
scheduled assembly code. Technical report 02–399, Rice University (2002)

8. Falcarin, P., Carlo, S.D., Cabutto, A., Garazzino, N., Barberis, D.: Exploiting
code mobility for dynamic binary obfuscation. In 2011 World Congress on Internet
Security (WorldCIS), pp. 114–120, February 2011

9. Jang, M.H., Jang, M.: Security Strategies in Linux Platforms and Applications.
Jones & Bartlett Publishers, Burlington (2010)

10. Jiang, X., Wang, H.J., Xu, D., Wang, Y.-M.: Randsys: thwarting code injection
attacks with system service interface randomization. In: IEEE International Sym-
posium on Reliable Distributed Systems, SRDS 2007, pp. 209–218 (2007)

11. Kerrisk, M.: The Linux Programming Interface. No Starch Press, San Francisco
(2010)

12. Kinder, J., Zuleger, F., Veith, H.: An abstract interpretation-based framework for
control flow reconstruction from binaries. In: Jones, N.D., Müller-Olm, M. (eds.)
VMCAI 2009. LNCS, vol. 5403, pp. 214–228. Springer, Heidelberg (2009)

Diversification of System Calls in Linux Binaries 35

13. Liang, Z., Liang, B., Li, L.: A system call randomization based method for coun-
tering code injection attacks. In: International Conference on Networks Security,
Wireless Communications and Trusted Computing, NSWCTC 2009, pp. 584–587
(2009)

14. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to sta-
tic disassembly. In: Proceedings of the 10th ACM Conference on Computer and
Communications Security, CCS 2003, pp. 290–299. ACM, New York, USA (2003)

15. Madou, M., Anckaert, B., De Bus, B., De Bosschere, K., Cappaert, J., Preneel,
B.: On the effectiveness of source code transformations for binary obfuscation. In:
Proceedings of the International Conference on Software Engineering Research and
Practice (SERP06), pp. 527–533. CSREA Press (2006)

16. Popov, I.V., Debray, S.K., Andrews, G.R.: Binary obfuscation using signals. In:
USENIX Security (2007)

17. S. Rauti, J. Holvitie, and V. Leppänen. Towards a Diversification Framework for
Operating System Protection. In: Proceedings of International Conference on Com-
puter Systems and Technologies, CompSysTech 2014 (2014)

18. Rauti, S., Leppänen, V.: Browser extension-based man-in-the-browser attacks
against Ajax applications with countermeasures. In: Proceedings of International
Conference on Computer Systems and Technologies, CompSysTech 2012, pp. 251–
258. ACM Press (2012)

19. Rauti, S., Leppänen, V.: A proxy-like obfuscator for web application protection.
Int. J. Inf. Technol. Secur. 5(1) (2014)

20. Lee, J.W., Lee, Y.J., Kim, H.K., Hwang, B., Ryu, K.H.: Discovering temporal rela-
tion rules mining from interval data. In: Shafazand, H., Tjoa, A.M. (eds.) EurAsia-
ICT 2002. LNCS, vol. 2510, pp. 57–66. Springer, Heidelberg (2002)

21. Rauti, S., Leppänen, V.: Resilient code protection by JavaScript and HTML obfus-
cation for Ajax applications against man-in-the-browser attacks. Submitted to
Journal of Information Security and Applications (Elsevier), under evaluation
(2014)

22. Schwarz, B., Debray, S., Andrews, G.: Disassembly of executable code revisited.
In: Proceedings of Ninth Working Conference on Reverse Engineering, pp. 45–54
(2002)

23. Sobell, M.G.: A Practical Guide to Linux. Addison-Wesley, Boston (1999)
24. Srivastava, A., Lanzi, A., Giffin, J., Balzarotti, D.: Operating system interface

obfuscation and the revealing of hidden operations. In: Holz, T., Bos, H. (eds.)
DIMVA 2011. LNCS, vol. 6739, pp. 214–233. Springer, Heidelberg (2011)

25. Tanenbaum, A.S.: Modern Operating Systems, 3rd edn. Prentice Hall Press, Upper
Saddle River (2007)

26. Theiling, H.: Extracting safe and precise control flow from binaries. In: Proceed-
ings of Seventh International Conference on Real-Time Computing Systems and
Applications, pp. 23–30. IEEE (2000)

27. Wang, S.P.: Mastering Linux. CRC Press, Boca Raton (2011)
28. Wu, Z., Gianvecchio, S., Xie, M., Wang, H.: Mimimorphism: a new approach to

binary code obfuscation. In: Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS 2010, pp. 536–546. ACM, New York, USA
(2010)

Outsourced KP-ABE with Enhanced Security

Chao Li (B), Bo Lang, and Jinmiao Wang

State Key Laboratory of Software Development Environment,
Beihang University, Beijing, China

{lichao,wangjinmiao}@nlsde.buaa.edu.cn, langbo@buaa.edu.cn

Abstract. Although Key-Policy Attribute-Based Encryption (KP-
ABE) has been widely applied to protect data in cloud computing, it is
always criticized for its inefficiency drawbacks, coming from both key-
issuing and decryption. Recently, some papers proposed the outsourcing
solutions. But adversaries in the attack model of these researches were
divided into two categories, and it is assumed that the two cannot com-
municate with each other, which is obviously unrealistic. In this paper, we
first proved that there are severe security vulnerabilities in these schemes
for this assumption, and then proposed a security enhanced Chosen Plain-
text Attack (SE-CPA) model, which eliminates the improper limitations.
By utilizing Proxy Re-Encryption (PRE), we also constructed a concrete
KP-ABE Outsourcing scheme (O-KP-ABE) and proved its security under
SE-CPA model. Comparisons with existing schemes show that our con-
struction has comprehensive advantages in security and efficiency.

Keywords: KP-ABE · Cloud computing · Computation outsourcing ·
Attack model · Proxy re-encryption

1 Introduction

As a new vision of public key based encryption, ABE [18] has attracted a great
deal of attentions. For the first time, ABE enables efficient fine-grained access
control on ciphertexts. In an ABE cryptosystem, the private key and the cipher-
text are associated with an attribute group or an access policy respectively,
and a particular key can decrypt a particular ciphertext only if the associated
attribute group and access policy are matched. ABE can be classified as KP-ABE
[11] and Ciphertext-Policy Attribute Based Encryption [4,13,19] (CP-ABE). In
KP-ABE, the access policy is assigned to key and the attribute group is assigned
to ciphertext. CP-ABE is just the opposite. Also, they are suitable for differ-
ent application scenarios. The former is data-centered with data attributes; the
latter is user-centered with user attributes.

Though ABE is a promising primitive to design fine-grained access control
systems, it is being criticized for the inefficiency drawbacks, which is firstly
reflected in decryption. The decryption of ABE is based on the expensive bilin-
ear pairing operations whose number is in proportion to the complexity of access
policy. This drawback appears more serious on resource-constrained equipment
c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 36–50, 2015.
DOI: 10.1007/978-3-319-27998-5 3

Outsourced KP-ABE with Enhanced Security 37

such as mobile devices and sensors. Beyond decryption, another cause for ABE’s
inefficiency is key-issuing, which requires a great quantity of modular exponen-
tiations. When a large number of users request for their private keys, the Public
Key Generator (PKG) may be overloaded. Moreover, in most of the existing
ABE schemes the revocation of any single user requires key-update at PKG for
all the remaining users who share common attributes with the revoked one. All
of these heavy tasks centralized at PKG would make it a bottleneck of the whole
system. Furthermore, user revocation is very common in a scalable ABE system.
Since the policy is bound to key, in KP-ABE more tasks are needed in gener-
ating a key and it is also more difficult to recognize the users affected by the
revocation. Thus the problems above are more serious to KP-ABE.

To address the aforementioned inefficiency drawbacks of ABE, Green et al.
[12] firstly introduced the notion of outsourcing the decryption of ABE, which
largely eliminates the decryption overhead from users. Based on the existing
ABE schemes [11,19], Green et al. also constructed concrete schemes. In these
schemes, a pair of keys (SK, TK) is generated during the key-issuing phase by
utilizing the key-blinding technique, in which SK is the user Secret Key and TK
is the Transformation Key. When decrypting a ciphertext CT, the user firstly
provides his TK to an untrusted server, say a proxy maintained by a Cloud
Service Provider (CSP) which can be called D-CSP (Decryption CSP)[1]. Then
the D-CSP can translate the ciphertext CT into a simple ciphertext CT’ with
TK if the attribute group and access policy associated with CT and TK are
matched. And then the user can restore the message from CT’ with SK by only
one ElGamal [10] decryption. We will henceforth refer to this paper as Green11.

However, Green et al. have not considered the key-issuing computation over-
head at PKG. Li et al. [15] did that. They extended the outsourcing idea to key-
issuing of KP-ABE and proposed a new scheme model called Outsourced ABE
(OABE). The system model of OABE can be represented in Fig. 1. In OABE, three
CSPs are involved, i.e. D-CSP, S-CSP (Store CSP), and KG-CSP (Key Genera-
tion CSP), among which the KG-CSP is a new added party compared to Green11.
The function of KG-CSP is to complete the delegated key-issuing computation to
relieve the PKG’s load. When a user applies for his key pair, he first submits to
PKG his AP (Access Policy), with which the PKG can work out the relative OK
(Outsourcing Key) and sends it to the KG-CSP. Then the KG-CSP can use OK to
compute TK and returns back TK to PKG. At last, the PKG calculates the final
key pair (SK, TK) and sends it to the user. This is the whole process of key-issuing,
and the decrypting process is the same to Green11. We will refer to this paper
as LCLJ13. Although LCLJ13 can outsource decrypting and key-issuing simulta-
neously, it still requires the user to do two pairings during the decryption phase.
In another paper [16] aiming at the checkability of outsourced ABE, the authors
achieving the same decryption efficiency as Green11 by adopting the key-blinding
technique. However, in this scheme the key-blinding work is done by PKG, thus it
hasn’t eased the PKG’s burden compared to the traditional non-outsourced KP-
ABE. We will henceforth refer to this paper as LHLC13 and it has the same system
model with LCLJ13.

38 C. Li et al.

Fig. 1. The system model of OABE (The numbers on the arrows represent the execu-
tion sequence.)

LCLJ13 and LHLC13 also share the same attack model, in which the adver-
saries were classified into two types: a curious user colluding with D-CSP; a
curious KG-CSP. But the two types of adversaries are not allowed to collude.
In the system of OABE, all CSPs are from third parties, thus they cannot be
completely trusted. So the above assumption is obviously unrealistic. Actually,
in their schemes, by colluding with KG-CSP, a curious user can decrypt any
ciphertext. We will give the proof in Sect. 4.1.

Our Contributions. In this paper, we focus on the KP-ABE outsourcing scheme
which can outsource decryption and key-issuing simultaneously. Although
LCLJ13 and LHLC13 can do that, their efficiency and security have yet to be
improved, especially security. We will firstly prove that there are severe secu-
rity vulnerabilities in these schemes for their assumption of no collusion between
curious users and KG-CSP. Then, based on the analysis of the features of KP-
ABE and all the possible attacks in real world to the outsourcing schemes, we
propose a security enhanced CPA (SE-CPA) model. SE-CPA assumes all CSPs
are honest but curious, which means they will follow our protocols, but try to
find out as much secret information as possible based on their possessions. Thus,
curious users may collude with any CSP, which eliminates the limitation in the
attack model of LCLJ13 and LHLC13 where KG-CSP is not allowed to collude
with users.

Then by utilizing the technique of PRE, we construct a new concrete KP-
ABE outsourcing scheme (O-KP-ABE) with proved enhanced security under SE-
CPA. In addition, compared with existing schemes, O-KP-ABE has the relatively
highest comprehensive efficiency in key-issuing and decrypting.

Outsourced KP-ABE with Enhanced Security 39

Organization. The rest of the paper is organized as follows. In Sect. 2, we intro-
duce the related work. We give the necessary background information in Sect. 3.
In Sect. 4, we first give a detailed security analysis of existing schemes and then
we describe our new KP-ABE outsourcing model and security enhanced CPA
(SE-CPA) model. We present a new concrete KP-ABE outsourcing scheme (O-
KP-ABE) and prove its security under SE-CPA in Sect. 5. In Sect. 6, we compare
our scheme with the relevant schemes in security and efficiency. Finally, we con-
clude our work.

2 Related Work

ABE outsourcing. Green et al. [12] firstly proposed the idea of outsourcing
ABE and constructed the concrete schemes with outsourced decryption. Then
Zhou et al. [20] and Li et al. [17] proposed ABE schemes with outsourced encryp-
tion and decryption respectively. Green et al. and Zhou et al. both use the key-
blinding technique to achieve the outsourcing of decryption. In key-blinding, the
user firstly chooses a random value as the blind factor, and then he runs exponen-
tiations on the original key components with that blind factor. However, they all
didn’t consider the computation overhead at PKG. Li et al. [15] firstly considered
that issue and proposed a concrete scheme which can outsource decryption and
key-issuing simultaneously. They proposed a different method by introducing
a default attribute. The default attribute is appended to each data’s attribute
group and each user’s access policy. In addition, there are also some papers
[14,16] researching on the verification of outsourcing results. They generally did
that by appending a redundancy with ciphertext.

Proxy Re-Encryption (PRE): Blaze et al. [5] first propose the notion of PRE
and give a simple concrete scheme. PRE can be represented by the formula
D(

∏

(E(m, eA), πA→B), dB) = m, which means that the ciphertext encrypted by
A’s public key eA after being re-encrypted by proxy key πA→B can be decrypted
by B’s secret key dB . πA→B is public and the re-encryption work can be done by
an untrusted proxy server without fearing the leakage of message m, and user
secret keys dA, dB . Further research about PRE was made by Ateniese et al. [2],
which concludes the features a PRE scheme should possess and its application
scenarios. They also put forward an improved PRE scheme. Besides, some papers
[7] search for the PRE technique with more security.

3 Background

3.1 Bilinear Maps

Let G1 and GT be two multiplicative cyclic groups of prime order p and g be a
generator of G1. e : G1 × G1 → GT is a bilinear map with the properties:

– Bilinearity: for all u, v ∈ G1 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
– Non-degeneracy: e(g, g) �= 1.

40 C. Li et al.

We say that G1 is a bilinear group if the group operation in G1 and the
bilinear map e : G1 ×G1 → GT are both efficiently computable. Notice that the
map e is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

3.2 DBDH Assumption

The security of our construction is based on the complexity of Decisional Bilinear
Diffie-Hellman (DBDH) assumption [19] below.

Firstly, we define the DBDH problem as follows. A challenger chooses a group
G of prime order p according to the security parameter. Let a, b, c ∈ Zp be chosen
at random and g be a generator of G. The adversary when given (g, ga, gb, gc)
must distinguish a valid tuple e(g, g)abc ∈ GT from a random element R in GT .

Then we can get the definition of DBDH assumption:

Definition 1. (DBDH Assumption) We say that the DBDH assumption holds
if no polytime algorithm has a non-negligible advantage in solving the DBDH
problem.

3.3 Access Structure

Definition 2. (Access Structure [3]) Let {P1, P2, . . . , Pn} be a set of parties.
A collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆
C then C ∈ A. An access structure (respectively, monotone access structure)
is a collection (respectively, monotone collection) A of non-empty subsets of
{P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn}/{∅}. The sets in A are called the autho-
rized sets, and the sets not in A are called the unauthorized sets.

In the context of ABE, the role of the parties is taken by the attributes.
Thus, the access structure A will contain the authorized sets of attributes.

4 New Models for KP-ABE with Outsourcing

4.1 Security Analysis of Existing Schemes

In Sect. 1, we have pointed out the security problems in LCLJ13 and LHLC13,
but haven’t given the detailed proofs. For the outline of these two schemes,
please refer to the Sect. 1 section and Fig. 1. In this section, we take LCLJ13
for example to prove that if curious users collude with the KG-CSP, they can
decrypt any ciphertext CT. LHLC13 has the same problem. The concrete process
is as follows.

Assume a curious user will collude with KG-CSP, and his secret key is SK =
(SK1,SK2), in which SK2 = (dθ0 = gx2

2 (g1h)rθ , dθ1 = grθ). As KG-CSP computes
all delegated key-issuing work, it may store the copies of all OKs, including
the curious user’s, and assume it is OK = x1. Given a ciphertext CT=(C0 =
Me(g1, g2)s, C1 = gs, Eθ = (g1h)s), the curious user performs the following
steps:

Outsourced KP-ABE with Enhanced Security 41

Firstly, with public parameter g2, OK and C1 in CT, he can calculate
e(g, g2)x1s; with SK2 and Eθ in CT, he can calculate e(C1,dθ0)

e(dθ1,Eθ)
= e(g1, g2)x2s.

Secondly, as the master key is x = x1+x2, he is able to get e(g, g2)xs through
calculation.

Thirdly, as C0 = m.e(g, g2)xs, the curious user can recover m.
As CT in the above process can be any ciphertext, the curious user can

decrypt all ciphertexts by colluding with KG-CSP. This is obviously incorrect.
Thus there exist severe security vulnerabilities in LCLJ13 and LHLC13.

4.2 Model of KP-ABE with Outsourcing

In this section, we give our KP-ABE outsourcing model by modifying the model
of KP-ABE with outsourced decryption in Green11. Our model also supports the
outsourcing of decryption and key-issuing simultaneously. The model is similar
to LCLJ13 shown in Fig. 1, but it needs no subsequent processing of outsourced
key-issuing, i.e. the PKG in our model needn’t do any further computation after
receiving TK from KG-CSP. By distinguishing OK and TK, on one hand the
user could decrypt the ciphertext himself when the network is unavailable, on
the other hand the D-CSP needn’t generate TK from OK whenever it translates
ciphertext. Our new KP-ABE outsourcing scheme consists of six algorithms,
rather than seven like LCLJ13.

Setup(U). The setup algorithm takes the attributes universe U and the implicit
security parameter as input. It is used to initialize the system and output the
public parameter PK and master key MK. This algorithm is performed by PKG.

Encrypt(PK, M, S). The encryption algorithm takes as input the public para-
meters PK, a message M and a set of attributes S. It will encrypt M and produce
a ciphertext CT. This algorithm is performed by Data Owner (DO).

Keygen IN(A, MK, PK). This algorithm is the first step of key-issuing and
is performed by PKG. It takes as input the access structure A, the master key
MK and the public parameters PK. It outputs the outsourcing key OK and user
private key SK.

Keygen OUT(OK, PK). This algorithm is the second step of key-issuing and
is performed by KG-CSP. It takes as input the outsourcing key OK and public
parameters PK. It will output the transformation key TK and return it to PKG.

Transform OUT(TK, CT). This algorithm complete the preprocessing of
ciphertext and is performed by D-CSP. It firstly checks whether the attribute
set S in CT satisfies the access structure A in TK. It outputs the partially
decrypted ciphertext CT’ if S ∈ A, otherwise it outputs ⊥.

Decrypt (CT, CT’, SK). This algorithm takes as input the ciphertext CT,
partially decrypted ciphertext CT’ and user private key SK. It output the mes-
sage M if S ∈ A, otherwise ⊥.

42 C. Li et al.

4.3 Enhanced Security Model

This section analyzes all possible attacks to the KP-ABE outsourcing model
given in Sect. 4.2 under CPA and proposes a new Security Enhanced CPA model
SE-CPA.

As the above outsourcing model will outsource the majority of work during
key-issuing and decrypting to the third party which is not completely trusted,
more information will be leaked. Even though the computations of key-issuing
and decryption are outsourced to different parties, they may collude with each
other. Thus, the outsourcing model above will face attacks different from any
previous ones, which results in a different attack model.

Through careful analysis of the new outsourcing model, we find attackers
under CPA may get the following information or services:

• Like the basic ABE schemes, the attacker is able to achieve the service of
key-issuing, and thus get the key pair (SK, TK) corresponding to the specific
access policy A.

• Since KG-CSP is not trusted, it may save the copies of all OKs sent from PKG
and the corresponding TKs. So the attacker may get all of the (OK, TK).

• Combining the above two points, the attacker can get the tuple of keys (OK,
TK, SK) corresponding to the specific policy A.

• As S-CSP and D-CSP are both untrusted and the TK corresponding to any
access policy A can be achieved, the attacker is able to get the transforming
service to all ciphertexts.

Based on these observations, we can propose the new CPA model SE-CPA,
and the model is defined as follows:

Init. The adversary A declares the set of attributes S∗ and submits it to the
challenger C.

Setup. The challenger C runs the Setup algorithm of KP-ABE outsourcing
scheme and gives the public parameters PK to adversary A.

Phase 1. The adversary A is allowed to make any of the following queries
repeatedly:

i. Query for (SK,OK,TK) corresponding to the access structure A with the
restriction that for all x ∈ YA, x �∈ S∗, in which YA is the collection of the
attributes in A.

ii. Query for (OK,TK) corresponding to the access structure A, with the restric-
tion that for all x ∈ YA, x ∈ S∗, in which YA is the collection of the attributes
in A.

iii. Query for the transforming ciphertext CT’ corresponding to CT encrypted
with S∗.

Outsourced KP-ABE with Enhanced Security 43

Challenge. A sends to C two equal length messages m0,m1. Then C flips a
random coin b, and encrypts mb with S∗. The ciphertext CT will be sent to A.

Phase 2. The adversary repeats Phase 1.

Guess. A outputs a guess b′ of b.

Definition 3. (SE-CPA Secure KP-ABE with Outsourcing) An KP-ABE out-
sourcing scheme is SE-CPA secure if all polynomial time adversaries have at
most a negligible advantage in the game of SE-CPA.

5 O-KP-ABE Scheme

In this section, we give the concrete construction of our new Outsourcing KP-
ABE scheme (O-KP-ABE) based on the scheme model described in Sect. 4.2. The
access structure of O-KP-ABE is represented by a tree. After the description of
O-KP-ABE, we will prove its security under the enhanced security model SE-
CPA.

5.1 Access Trees

Our construction uses tree-based access structure which is represented by T .
Each interior node of the tree is a threshold gate and the leaves are associated
with attributes. This structure is very expressive. For example, we can represent
a tree with “AND” and “OR” gates by using respectively 2 of 2 and 1 of 2
threshold gates. A user is able to decrypt a ciphertext if and only if the attributes
in ciphertext satisfies the access structure in the user private key. The definitions
of T and relative functions are identical to paper [11], for more information about
T please refer to [11].

5.2 Construction of O-KP-ABE

Let G1 be a bilinear group of prime order p, and let g be a generator of G1.
In addition, let e : G1 × G1 → GT denote the bilinear map. We also define the
Lagrange coefficient Δi,S for i ∈ Zp and a set, S, of elements in Zp: Δi,S(x) =
∏

j∈S,j �=i
x−j
i−j .

Our construction consists of 6 algorithms.

Setup(U). First, choose a bilinear group G1 of prime order p with a generator g
and a bilinear map e : G1×G1 → GT . Next, determine the universe of attributes
according to the actual application situation U = {a1, a2, . . . , an}, and let i
represent the index of attribute ai in U . Finally, choose α, ti, βi ∈ Zp, 1 ≤ i ≤ n
and g2 ∈ G1, in which ti and βi correspond to ai. Then the master key is MK
= {α, ti, βi}, 1 ≤ i ≤ n, and the public parameters PK are

PK = {U, g, g1 = gα, g2, Ti = gti , Pi = g
t−1
i βi

2 }, 1 ≤ i ≤ n.

44 C. Li et al.

Encrypt(PK, M, S). To encrypt a message M ∈ GT under a set of attributes
S, choose a random value s ∈ Zp and publish the ciphertext as:

CT= {S,C0 = M.e(g1, g2)s = M.e(g, g2)αs, {Cy = T s
i }y∈S}, in which y

represents an attribute and i is the index of y in the universe of attributes U .

Keygen IN(T , MK, PK). The algorithm proceeds as follows. Firstly, choose
a random value z ∈ Zp, and calculate δ = α/z. Then, choose a polynomial qx for
each node x (including the leaves) in the tree T . These polynomials are chosen
in the following way in a top-down manner, starting from the root node r.

For each node x in the tree, set the degree ηx of the polynomial qx to be one
less than the threshold value kx of that node, that is ηx = kx − 1. Then, for the
root node r, set qr(0) = δ and ηr other points of the polynomial qr randomly to
define it completely. For any other node x, set qx(0) = qparent(x)(index(x)) and
choose ηx other points randomly to completely define qx.

Once the polynomials have been decided, for each leaf node x, we can get
the value of qx(0), and then calculate dx = qx(0)/βi, in which i is the index of x
in the universe of attributes.

Thus, the outsourcing key is OK= {T , {dx}x∈YT }, in which YT is the
attributes set of leaves in T . And the user private key is SK = z.

Keygen OUT(OK, PK). For each element dx in OK calculate:

Dx = P dx
i = g

t−1
i βi

qx(0)
βi

2 = g
t−1
i qx(0)
2 ,

in which i is the index of attribute x in the universe of attributes U . The trans-
formation key is: TK= {T , {Dx}x∈YT }, in which YT is the attributes set of leaves
in T .

Transform OUT(TK,CT). The transformation procedure is defined as a
recursive algorithm TransformNode(x, TK, CT) which takes as input the cipher-
text CT, the transformation key TK and a node x in the tree. This recursive
algorithm outputs a group element of GT or ⊥.

If the node x is a leaf node then:

TransformNode(x,TK,CT) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e(Dx, Cx) = e(gt−1
i qx(0)
2 , gtis)

= e(g, g2)qx(0)s if x ∈ S

⊥ otherwise

If x is not a leaf node, the algorithm TransformNode(x, TK, CT) proceeds as
follows: for all nodes z that are children of x, it calls TransformNode (z, TK, CT)
and stores the output as Fz. Let Sx be an arbitrary kx sized set of child nodes
z such that Fz �=⊥. If no such set exists then the node was not satisfied and the
function returns ⊥.

Outsourced KP-ABE with Enhanced Security 45

Otherwise, we compute:

Fz = TransformNode(x,TK,TK)

=
∏

z∈Sx

FΔiS′ (0)
z , where

i = index(z)
S′

x = {index(z) : z ∈ Sx}

=
∏

z∈Sx

(e(g, g2)sqz(0))Δi,S′ (0)

=
∏

z∈Sx

(e(g, g2)sqparent(z)(index(z)))Δi,S′ (0)

=
∏

z∈Sx

e(g, g2)sqx(i)Δi,S′ (0)

= e(g, g2)sqx(0)

Thus we can know that CT’=TransformNode(r,TK,CT)=e(g, g2)sδ =
e(g, g2)sα/z if and only if CT satisfies the TK.

Decrypt(CT, CT’, SK). If the user has the privilege to access the data, then
upon receiving CT’ from D-CSP, the user completely decrypts the ciphertext
and gets the message M= C0/CT ′z.

5.3 Proof of Security Under SE-CPA

We prove the following theorem:

Theorem 1. If an adversary can break the scheme of O-KP-ABE under the
SE-CPA model, then a simulator can be constructed to solve the DBDH problem
with a non-negligible advantage.

Proof. Suppose there exists a polynomial adversary A who can attack our scheme
under the SE-CPA model with the advantage ε, then we can build a simulator S
who can win DBDH problem with a non-negligible advantage ε/2. The process
of simulation is as follows:

Firstly, the challenger C set the groups G1 and GT with an efficient bilinear
map e, and a generator g. Then C flips a fair binary coin u, outside of S ′s view. If
u = 0, the challenger sets (A,B,C,Z) = (ga, gb, gc, e(g, g)abc); otherwise it sets
(A,B,C,Z) = (ga, gb, gc, e(g, g)z) for random a, b, c, z. We assume the universe
of attributes, U is defined.

Init. A chooses the set of attributes S∗ it wishes to be challenged upon and
sents it to S.

Setup. The simulator S sets g1 = A = gα (thus, a = α) and g2 = B. For
each ai ∈ U , it chooses random values t′i, β

′
i ∈ Zp. If ai ∈ S∗, the simulator sets

Ti = gt′
i and Pi = Bt′−1

i β′
i = g

t′−1
i β′

i

2 (thus, ti = t′i, βi = β′
i); if ai �∈ S∗,S sets Ti =

At′
i = gat′

i and Pi = Bt′−1
i β′

i = g
t′−1
i β′

i

2 = g
(αt′

i)
−1αβ′

i
2 (thus, ti = αt′i, βi = αβ′

i).

46 C. Li et al.

So the public parameters are PK= {U, g, g1 = A, g2 = B, Ti, Pi}, 1 ≤ i ≤ n and
they will be sent to A.

Phase 1. The adversary A is allowed to make any of the following queries
repeatedly:

i A submits an access tree T with the restriction that for all x ∈ YT , x �∈ S∗,
in which YT is the attribute set of leaves in T . And S must construct the
corresponding key tuple (SK,OK,TK).
S chooses a random value z ∈ Zp and sets SK=z.
Then, set qr(0) = z and calculate the value of qx(0) of each leaf node x in
tree T following the steps of Keygen IN. Next, let Qx(0) = α · qx(0), thus
Qr(0) = α/z. Since the simulator sets βi = αβ′

i for all x �∈ S∗, we can calculate
dx = Qx(0)/βi = qx(0)/β′

i. So, OK= {T , {dx}x∈YT }.
For each element dx in OK calculate Dx = P dx

i = Bt′−1
i β′

idx = Bqx(0)/t′
i ,

in which i is the index of attribute x in the universe of attributes U . The
transformation key is TK= {T , {Dx}x∈YT }, in which YT is the attributes set
of leaves in T .
Finally, S sends (SK,OK,TK) to A.

ii A submits an access tree T with the restriction that for all x ∈ YT , x ∈ S∗,
in which YT is the attributes set of leaves in T . And S must construct the
corresponding key tuple (OK,TK).
S chooses a random value z′ ∈ Zp, and sets δ = 1/z′ (thus z = αz′). Then,
set qr(0) = 1/z′ and calculate the value of qx(0) of each leaf node x in tree
T following the steps of Keygen IN. Since the simulator sets βi = β′

i for all
x ∈ S∗, we can calculate dx = qx(0)/βi = qx(0)/β′

i. So, OK={T , {dx}x∈YT }.
Next, for each element dx in OK calculate Dx = P dx

i = Bt′−1
i β′

idx = Bqx(0)/t′
i ,

and TK= {T , {dx}x∈YT }.
Finally, S sends (OK,TK) to A.

iii A submits a ciphertext CT encrypted by S∗, the simulator must transform
it to CT’.
Firstly, S should construct an access tree T which is satisfied by S∗. The
simplest method may be choosing one attribute from S∗ to construct such
a tree T . Then, by query ii S can get the corresponding transformation key
TK which can be used to transform CT to CT’.

Challenge. The adversary A submits two challenge messages m0,m1 with equal
length to S. The simulator S will flip a fair binary coin b, and returns an
encryption of mb. The ciphertext is outputted as CT= {S∗, C0 = mb · Z, {Cy =
Ct′

i}y∈S∗}.
If u = 0 then Z = e(g, g)abc. If we let s = c, then we have C0 = mb ·

e(g, g)abc = mb · e(ga, gb)c = mb · e(g1, g2)s, Cy = Ct′
i = gt′

is = T s
i . Therefore,

the ciphertext is a valid random encryption of message mb.

Outsourced KP-ABE with Enhanced Security 47

If u = 1, then Z = e(g, g)z. Thus, C0 = mb · e(g, g)z. Since z is random, C0

will be a random element of GT from adversaries view and the message contains
no information about mb.

Phase 2. Repeat Phase 1.

Guess. A will submit a guess b′ of b. If b′ = b, the simulator will output u′ = 0
to indicate it was given a valid BDH-tuple, otherwise it will output u′ = 1 to
indicate it was given a random 4-tuple.

In the case where u = 1 the adversary gains no information about b. There-
fore, we have Pr(b �= b′ | u = 1) = 1

2 . Since the simulator guess u′ = 1 when
b′ �= b, we have Pr(u′ = u | u = 1) = 1

2 .
If u = 0 then the adversary sees an encryption of mb. The adversary’s

advantage in this situation is ε by definition. Therefore, we have Pr(b = b′ |
u = 0) = 1

2 + ε. Since the simulator guess u′ = 0 when b′ = b, we have
Pr(u′ = u | u = 0) = 1

2 + ε.
Thus, the overall advantage of simulator in the DBDH game is 1

2Pr(u′ = u |
u = 0) + 1

2Pr(u′ = u | u = 1) − 1
2 = ε/2.

6 Analysis and Discussions

6.1 Analysis

This section compares our scheme with other existing KP-ABE outsourcing
schemes in efficiency and security. The results are shown in Table 1.

Table 1. Comparison in efficiency and security between our scheme and others. G
and P stand for the maximum time to compute an exponentiation in G and a pairing
respectively. |Y| denotes the number of leaves in access tree. SS represents the time to
share a secret in key-issuing phase.

Scheme KG Ops Dec Ops Security level

Green11 5|Y|G 1G RCCA

LCLJ13 3G 2P CPA

LHLC13 (2|Y|+5)G 1G CPA

O-KP-ABE SS 1G SE-CPA

As Green11 has not considered the outsourcing of key-issuing, the number of
exponentiations that it must accomplish is proportional to the size of the access
tree. Thus, its efficiency is relatively low. LCLJ13 can outsource decrypting and
key-issuing simultaneously and PKG only needs to complete three exponentia-
tions during the key-issuing phase. However, the user still has to complete two
times pairings when decrypting ciphertexts. LHLC13 improves the decryption
efficiency of LCLJ13, and the user only needs to complete one exponentiation

48 C. Li et al.

in decryption. But its efficiency in key-issuing decreases sharply, even no bet-
ter than the original scheme [11] without outsourcing. Thus, the outsourcing of
LHLC13 seems meaningless.

Our O-KP-ABE scheme has the highest efficiency of decryption, in which the
user only needs one exponentiation. And during key-issuing, PKG only needs to
do the work of secret sharing. We can divide the process of key-issuing into two
phases: secret sharing and key components calculating. The former consists of
multiplication and division, and the latter consists of exponentiations. Experi-
ments show that the former only accounts for a few portion of the latter.

In the aspect of security, Green11 can resist the Replayable Chosen Cipher-
text Attack (RCCA)[8]. The traditional notion of security against chosen-
ciphertext attacks (CCA) is a bit too strong, since it does not allow any bit
of the ciphertext to be altered. However, there exist encryption schemes that
are not CCA secure, but seem sufficiently secure “for most practical purposes”.
For these reasons, Canetti et al. proposed the notion of RCCA. On one hand,
RCCA security accepts as secure some non-CCA schemes; on the other hand,
it suffices for most of existing applications of CCA security. Thus, the security
of RCCA lies between CPA and CCA. Although the authors of LCLJ13 and
LHLC13 declared that their schemes are CPA secure, we have proved that they
have severe security vulnerability when collusion is considered. We have proved
the security of our scheme under the SE-CPA model, which means O-KP-ABE
has remove the security vulnerability in LCLJ13 and LHLC13. Thus our scheme
has a relatively higher security compared with LCLJ13 and LHLC13.

6.2 Discussions

Achieving Higher Security. In this work, we considered the selectively CPA secu-
rity in which the adversary must declare the attribute sets he wishes to challenge
on before starting the game. This may be a little bit unrealistic in practice, as
this means no security can be guaranteed if the adversary chooses the attributes
after he saw the public parameters. Thus we should consider higher security
without that limitation, namely eliminating the Init stage in the security model
[12]. Besides, we should also search for an ABE outsourcing scheme which can
resist CCA. There are many techniques can be used to promote a CPA secure
public key encryption to be CCA secure, for example, the one-time-signature
technique [6,9]. Both of them can be our future work.

Verifiability. Although in our scheme the proxy servers, namely CSPs, cannot
learn anything useful, there is no guarantee on the correctness of the outsourcing
results. In some applications users or PKG often requests to check whether the
outsourcing work is indeed done correctly. This is another important issue in
outsourcing KP-ABE, and some approaches have been proposed. For example,
Lai et al. [14] and Li et al. [16] addressed this problem by appending a redun-
dancy with ciphertext. However, both of them only considered the verification
of outsourced decrypting, they have not considered the same request for out-

Outsourced KP-ABE with Enhanced Security 49

sourced key-issuing. In our future work, we will consider the verification issue of
our O-KP-ABE scheme.

7 Conclusion

Existing KP-ABE outsourcing schemes assume that KG-CSP and the curious
user will not collude, which is obviously unrealistic. This paper first proposed a
new security enhanced attack model SE-CPA. In SE-CPA, all CSPs are thought
to be curious and allowed to collude with curious users, which is more practical.
Then, we constructed a concrete outsourcing scheme O-KP-ABE and proved
its security under SE-CPA. Except for the relative higher security, O-KP-ABE
also has relative higher efficiency. Hence, our construction has a comprehensive
advantage over existing schemes in security and efficiency.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (Grant No.61170088) and Foundation of the State Key Laboratory of
Software Development Environment (Grant No. SKLSDE-2014ZX-05).

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. (TISSEC) 9(1), 1–30 (2006)

3. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Technion-Israel Institute of Technology, Faculty of Computer Science (1996)

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, 2007, SP 2007, pp. 321–334.
IEEE (2007)

5. Blaze, M., Bleumer, G., Strauss, M.J.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

6. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004)

7. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 14th ACM Conference on Computer and Communications Secu-
rity, pp. 185–194. ACM (2007)

8. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003)

9. Cheung, L., Newport, C.: Provably secure ciphertext policy abe. In: Proceedings of
the 14th ACM Conference on Computer and Communications Security, pp. 456–
465. ACM (2007)

50 C. Li et al.

10. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

11. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

12. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of abe cipher-
texts. In: USENIX Security Symposium, p. 3 (2011)

13. Ibraimi, L., Tang, Q., Hartel, P., Jonker, W.: Efficient and provable secure
ciphertext-policy attribute-based encryption schemes. In: Bao, F., Li, H., Wang,
G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 1–12. Springer, Heidelberg (2009)

14. Lai, J., Deng, R.H., Guan, C., Weng, J.: Attribute-based encryption with verifiable
outsourced decryption. IEEE Trans. Inf. Forensics Secur. 8(8), 1343–1354 (2013)

15. Li, J., Chen, X., Li, J., Jia, C., Ma, J., Lou, W.: Fine-grained access control sys-
tem based on outsourced attribute-based encryption. In: Crampton, J., Jajodia,
S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 592–609. Springer, Hei-
delberg (2013)

16. Li, J., Huang, X., Li, J., Chen, X., Xiang, Y.: Securely outsourcing attribute-based
encryption with checkability. IEEE Trans. Parallel Distrib. Syst. 25, 2201–2210
(2013)

17. Li, J., Jia, C., Li, J., Chen, X.: Outsourcing encryption of attribute-based encryp-
tion with mapreduce. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS, vol.
7618, pp. 191–201. Springer, Heidelberg (2012)

18. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

19. Waters, Brent: Ciphertext-policy attribute-based encryption: an expressive, effi-
cient, and provably secure realization. In: Catalano, Dario, Fazio, Nelly, Gennaro,
Rosario, Nicolosi, Antonio (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer,
Heidelberg (2011)

20. Zhou, Z., Huang, D.: Efficient and secure data storage operations for mobile cloud
computing. In: Proceedings of the 8th International Conference on Network and
Service Management, pp. 37–45. International Federation for Information Process-
ing (2012)

A Simulated Annealing Algorithm for SVP
Challenge Through y-Sparse Representations

of Short Lattice Vectors

Dan Ding1(B) and Guizhen Zhu2

1 Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China

dingd09@mails.tsinghua.edu.cn
2 Data Communication Science and Technology Research Institute,

Beijing 100191, China
zhugz08@gmail.com

Abstract. In this paper, we propose a novel simulated annealing algo-
rithm for the shortest vector problem through y-sparse representations of
short lattice vectors. A Markov analysis proves that the algorithm guar-
antees to converge to the shortest vector at a probability 1, under cer-
tain conditions to ensure strong ergodicity of its inhomogeneous Markov
chain. After that, we propose a polynomial-time approximation version of
our algorithm, and the experimental results under benchmarks in SVP
challenge [27] show that the simulated annealing one outperforms the
famous Kannan’s algorithm in two aspects: it runs exponentially faster
and it succeeds in searching the shortest vectors in lattices of higher
dimensions. Therefore, our newly-proposed algorithm is a fast and effi-
cient SVP solver and paves a completely new road for SVP algorithms.

Keywords: Lattice-based cryptography · Simulated annealing · Short-
est vector problem · Inhomogeneous markov chain · Strong ergodicity

1 Introduction

A lattice is a discrete additive subgroup of a Euclidean space R
m. The lattice

amounts for the set of all the integral linear combinations of n linear independent
vectors b1, . . . ,bn ∈ R

m. The fact that lattice vectors are discrete implies that
there exists a nonzero shortest vector in the lattice, which leads to the two most
famous lattice problems: the shortest vector problem (SVP), which is, given a
lattice, to find the shortest nonzero vector in the lattice, and the closet vector
problem (CVP), which is, given a lattice and a target vector, to find the lattice
vector closest to the target vector.

D. Ding—National Natural Science Foundation of China (Grant No. 61133013) and
973 Program (Grant No. 2013CB834205).
G. Zhu—National Development Foundation for Cryptological Research (No.
MMJJ201401003).

c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 51–69, 2015.
DOI: 10.1007/978-3-319-27998-5 4

52 D. Ding and G. Zhu

Both problems are of prime importance to the public-key cryptography in
recent years, because, as a promising candidate for post-quantum cryptosystems,
a variety of new public-key cryptography [4,12,26] and one-way functions [2,21,
22] are proposed based on the hardness of the two famous lattice problems and
their variants. CVP has long been proved to be NP-hard by P. van Emde Baos
in 1981 through classical Cook/Karp reduction [31], and the proof is refined by
D. Miccancio et al. [20], while, at the same time, the hardness of other lattice
problem SVP remains an open problem until SVP is proved to be NP-hard under
a randomized reduction by M. Ajtai in 1998 [3]. Therefore, both CVP and SVP
are hard enough to afford the security of lattice-based cryptography.

Due to the hardness of SVP, SVP algorithms for searching the exact or
approximate shortest lattice vector are attracting more and more attention from
the cryptology community. In the past 30 years, a number of algorithms are pro-
posed to attempt the shortest (short) vectors in lattices, since the seminal paper
by A. K. Lenstra et al. [18] presents the celebrated LLL algorithm for a short
lattice basis in 1982. We divide the variety of SVP algorithms into two cate-
gories: the theoretically sound algorithms and the practically sound ones. The
algorithms that are included in the former category enjoy rigorous theoretical
proofs of time and space complexity, but they are mostly of exponential space
complexity, which defies practical implementations for high-dimensional lattices
due to shortage of computational resources. The sieve algorithms [5,25,32] and
the Voronoi-cell computation-based algorithm [23] are of this category, which
are both proved to be 2O(n) in time and space complexity. The algorithms in
the latter category, though some of them might fail to have theoretical analysis
of time complexity, are mostly of polynomial space complexity and amenable
for practical realization and gains fabulous experimental results in searching the
short vectors in lattices of high-density (SVP challnge). The BKZ algorithms
[8,28], and enumeration algorithms (such as the Kannan-Helfrich algrotihm [15]
and enumeration with extreme pruning [10]) fall into this category, all of which
are of polynomial space complexity. A novel genetic algroithm for the shortest
vector problem is proposed in 2014 [9], and it behaves well in experimental results
and running time, though it is still an open problem to estimate theoretically
its time complexity.

In this paper, we aims at propose a SVP algorithm of a completely new type
using the ideas of simulated annealing. Annealing is a process in condensed mat-
ter physics: it, firstly, heats a solid up to a temperature at which all particles
in the solid are free to rearrange themselves randomly, and, then, it cools down
gradually the solid to make its particles forms into a regularly-arranged, crystal-
lized structure. The simulated annealing apologizes the annealing of solids and
simulation of solving large-scale NP-hard combinatorial optimization problems.
For this reason, the name “simulated annealing” comes into being. Simulated
annealing algorithms [7,16,19] have widely studied and applied to a variety
of NP-hard problems for searching optimum solutions, such as the traveling
salesman problem (TSP). The simulated annealing proceeds as follows: first, it
generates a sequence of solutions by choosing randomly from the neighbours

A Simulated Annealing Algorithm for SVP Challenge 53

of current solution, and a control parameter was adopted to decide whether a
newly-generated solution is accepted; at first, the new solution is always accepted
no matter how good it is, and, the control parameter decreasing slowly (cooling
down), the algorithm are more and more likely to accept better solutions, and
finally it only accept better ones, and the best solution ever found is returned.

Our contributions in this paper are twofold: first, we propose a novel simu-
lated annealing algorithm for the shortest vector problem, and prove theoreti-
cally that the algorithm will guarantee to converge to the shortest vector under
certain conditions, by proving strong ergodicity of the Markov chain we build
up for the algorithm; second, we implement a practical approximation algo-
rithm with some implementation details (choosing suitable parameters for the
algorithm to be of polynomial time complexity) and perform a plethora of exper-
iments to show that the algorithm is efficient in searching the shortest vectors
in a variety of lattices in SVP challenge [27]. Therefore, our simulated anneal-
ing algorithm for the shortest vector problem is a fast and efficient SVP solver,
which paved a completely new direction for both practically and theoretically
sound SVP algorithms.

The rest of the paper is organized as follows: Sect. 2 provides some necessary
backgrounds, including lattices, LLL- and BKZ-reduced basis, y-sparse repre-
sentations, and Markov processes; In Sect. 3, we describe in detail our simulated
annealing algorithm for shortest vector problem; A Markov analysis is performed
in Sect. 4, and a fast approximation algorithm of simulated annealing is proposed
in Sect. 5. Experimental results are reported and compared in Sect. 6, and the
conclusion and future work are proposed in Sects. 7 and 8 respectively.

2 Preliminaries

Let n be an integer, and let R
n be the n-dimensional Euclidean space with

the inner product, denoted as 〈·, ·〉, and the Euclidean norm of v is defined as
‖v‖ =

√
∑n

i=1 vi
2, in which v = (v1, . . . , vn) ∈ R

n. The closed sphere in R
n

is denoted as Bn(O, r) with O as its origin and r its radius. The linear space
spanned by a set of vectors is denoted by span(·) and its orthogonal complement
span(·)⊥, and BT is the transpose of a matrix B. We denote �·� as the closest
integer to a real number.

2.1 Lattices

A lattice L is defined as the set of all integral combinations of n linear inde-
pendent vectors b1,b2, . . . ,bn ∈ R

m(m ≥ n), where the vectors are referred
to as the basis of the lattice, and n as its rank. If m = n, the lattice is called
full-rank. All the lattices we discuss throughout this paper are full-rank lattices
unless specified otherwise.

Conveniently, if we have a matrix B = [b1, . . . ,bn] ∈ R
n×n with the n linear

independent vectors as its columns, we define the lattice L generated by the

54 D. Ding and G. Zhu

basis B, denoted as L(B), as

L(B) = {Bx|x ∈ Z
n} = {v ∈ R

n |v =
n

∑

i=1

bixi, xi ∈ Z}.

A single lattice can be generated by a series of equivalent bases, or, in other
words, the basis of one lattice is not unique. For a specific basis B, we define the
fundamental parallelepiped P(B) of the lattice as

P(B) = {Bx|x = (x1, . . . , xn) ∈ R
n, for all 0 ≤ xi < 1, i = 1, 2, . . . , n}.

The determinant det(L) of a lattice L is defined as the volume of the fundamental
parallelepiped P(B) by selecting any basis B. More precisely, for any basis B of
a lattices L, the determinant of L is:

det(L) =
√

det(BTB) =
√

det(〈bi,bj〉)0≤i,j≤n.

The determinant of a lattice is well-defined in the sense that the determinant
does not depend on the choice of the basis. The ith successive minimum λi(L)
of a lattice L is defined by the smallest radium of a sphere within which there
are i linearly independent lattice points, or:

λi(L) = inf{r ∈ R
n|dim{span(L ∩ Bn(O, r))} = i}.

For a basis B = [b1, . . . ,bn] of a lattice L(B) ∈ R
n×n, we define its Gram-

Schmidt Orthogonalization B∗ = [b∗
1, . . . ,b

∗
n] as the Gram-Schmidt orthogonal-

ization procedure:

b∗
i = bi −

i−1
∑

j=1

μi,jb∗
j ,

where

μi,j =
〈bi,b∗

j 〉
〈b∗

j ,b
∗
j 〉

, for 1 ≤ i < j ≤ n.

In other words, the Gram-Schmidt procedure is projecting bi to the space orthog-
onal to the space spanned by b1, . . . ,bi−1.

Provided with a basis B = [b1, . . . ,bn], we have:

[b1,b2, . . . ,bn]n×n = [b∗
1,b

∗
2, . . . ,b

∗
n]n×n

⎡

⎢

⎢

⎢

⎣

1 μ2,1 . . . μn,1

1 . . . μn,2

. . .
...
1

⎤

⎥

⎥

⎥

⎦

n×n

. (1)

Thus we have

bi = b∗
i +

i−1
∑

j=1

μi,jb∗
j , for 1 ≤ i ≤ n (2)

and det(B) =
∏n

i=1‖b∗
i ‖.

For more details about lattices, refer to [20].

A Simulated Annealing Algorithm for SVP Challenge 55

2.2 Korkin-Zolotarev Basis and Blockwise Korkin-Zolotarev Basis

Let B = [b1, . . . ,bn] be a basis of a lattice L ∈ R
n. We define an operator

πi : Rn �→ span(b1, . . . ,bi−1)⊥ as the projection on the orthogonal complement
of the span of the first i − 1 bases of B, for all i ∈ {1, 2, . . . , n}. We define L(k)

i

as the lattice of rank k generated by the basis [πi(bi), . . . , πi(bi+k−1)] in which
i+k < n+1. Clearly, it is true that L(n−i+1)

i = πi(L), which denotes the lattice
of rank n − i + 1 generated by basis [πi(bi), . . . , πi(bn)]. Hence, we have
[

πi(bi), πi(bi+1), . . . , πi(bn)
]

n×(n−i+1)
=

[

b∗
i ,b

∗
i+1, . . . ,b

∗
n

]

n×(n−i+1)

⎡

⎢

⎢

⎢

⎣

1 μi+1,i . . . μn,i

1 . . . μn,i+1

. . . μn,n−1

1

⎤

⎥

⎥

⎥

⎦

(n−i+1)×(n−i+1)

,

(3)

which yields that πi(bj) = b∗
j +

∑n
k=i μj,kb∗

k for i < j, and, in particular, we
have πi(bi) = b∗

i and πi(bj) = 0 for j < i.
In terms of the denotations aforementioned, we define a basis B =

[b1, . . . ,bn] as reduced in the sense of Korkin and Zolatarev or Korkin-Zolatarev
basis if it satisfies that:

1. its |μi,j | ≤ 1/2, for 1 ≤ j < i ≤ n;
2. πi(bi) is the shortest vector of the lattice L(n−i+1)

i under the Euclidean norm,
for 1 ≤ i ≤ n.

Similarly, we can further define a basis B = [b1, . . . ,bn] as a blockwise
Korkin-Zolotarev basis with block size β, or BKZ -reduced if the following holds:

1. its |μi,j | ≤ 1/2, for 1 ≤ j < i ≤ n;
2. πi(bi) is the shortest vector of the lattice L(min(β,n−i+1))

i under the Euclidean
norm, for 1 ≤ i ≤ n.

2.3 y-Sparse Representations of Short Lattice Vectors: Lattice
Vectors from Another Point of View

As defined in Subsect. 2.1, a lattice vector v ∈ L(B) can be represented as
v = Bx, in which x is an integer vector. Then x can corresponds to a specific
lattice vector v under a basis B. The y-sparse representation is to regards the
lattice v from another point of view, which is endowed with some excellent
properties.

Given a lattice basis B = [b1, . . . ,bn] and its Gram-Schmidt orthogonaliza-
tion B∗ = [b∗

1, . . . ,b
∗
n] with its factor matrix μ = {μij}1≤i,j≤n ∈ R

n×n such that
B = B∗μT , for any vector v ∈ L(B), or v = Bx, in which x = [x1, . . . , xn] ∈ Z

n,
we define another vector t = [t1, . . . , tn] ∈ R

n as, for 1 ≤ i ≤ n,

ti =

{

0 for i = n,
∑n

j=i+1 μj,ixj for i < n.

56 D. Ding and G. Zhu

and another vector y = (y1, y2, . . . , yn) ∈ Z
n as, for 1 ≤ i ≤ n,

yi = �xi + ti�.
Thereby, the definition establishes a one-to-one correspondence between a lattice
vector v and its y as below:

y
y=x+�t�←−−−−→ x v=Bx←−−−→ v,

We call v is correspondent to y, or, v ∼ y.
We call such a representation as sparse because most of the elements in y

corresponding to short lattice vectors under a BKZ-reduced basis are zero’s.
For example, the shortest vector of the 40-dimensional lattice (generated by
seed = 0) in SVP challenge v is (-398 -305 -268 125 96 214 284 -108 37 -2 402
228 -243 -33 -76 -265 -3 558 323 552 -419 -408 217 2 440 375 -153 108 79 80 -299
-81 385 -80 -53 -294 -170 380 164 172), (and ‖v‖ = 1702), and its corresponding
y under its 5-BKZ reduced basis is (0 1
0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 1). We can see that only 4 nonzero elements in
y and they are all distributed in the second half with absolute value of 1.

Actually, most y-sparse representations of the short vectors in the lattice
under a BKZ-reduced basis shares this excellent property. Therefore, for an
integer vector y = (y1, y2, . . . , yn) corresponding to a short vector in a lattice
under a BKZ-reduced basis, we have the following two heuristics as follows:

1. The first half integer elements y1, . . . , y�n/2� in y are all zero’s;
2. The absolute value y�n/2�+1, . . . , yn of the second half integers in y is bounded

by
√

λ1
‖b∗

i ‖ instead of λ1
‖b∗

i ‖ , for �n/2� + 1 ≤ i ≤ n;

Moreover, we call an lattice vector v is feasible if its corresponding y =
(y1, y2, . . . , yn) satisfies the following condition:

n
∑

i=1

y2
i ‖b∗

i ‖2 ≤ 4λ2
1(B). (4)

Since, as discussed in [9], any lattice vector corresponding to y has a maximum
squared norm of

∑n
i=1 y2

i ‖b∗
i ‖2, the vector can be the shortest vector under

the condition that its maximum squared norm is smaller than the squared first
minima λ1(B)2. Equivalently, that a vector is feasible is the same as that it lies
in the hypersphere as expressed in Eq. 4.

For a more rigorous treatment of y-sparse representation, refer to [9].

3 Simulated Annealing: A Novel Algorithm
for the Shortest Vector Problem

In this section, we will described in detail our simulated annealing algorithm for
the shortest vector problem.

A Simulated Annealing Algorithm for SVP Challenge 57

3.1 Motivations: The Annealing Process from Condensed Matter
Physics

The simulated annealing algorithm, as its original form in [7,16], attempts to
solve the large scale optimization problems by simulating the annealing process
of solids. For this reason, the algorithm is called “simulated annealing”. In con-
densed matter physics, annealing denotes a process as: a solid is heated up to the
maximum temperature at which all the particles of the solid are free to rearrange
themselves randomly in a liquid phase, followed by a cooling process in which the
temperature is lowered such that the particles arrange themselves in the ground
energy state into a regularly rearranged, crystallized phase, under the conditions
that the maximum temperature is high and the cooling process is slow enough.
To be more precise, the annealing starts off at the maximum temperature, say
T0, and the cooling phase of the annealing process can be described as follows:
at each temperature T (T < T0), the probability that particles of the solid are
at the energy state E (and the ground state is 0) is given by the Boltzmann
distribution:

Pr{E = E} =
1

N(T)
· exp(− E

kBT
),

in which N(T) is the normalization factor, and kB is Boltzmann constant. As
the temperature T deceases, the Boltzmann distribution concentrates the on
the state with lowest energy, or the ground energy state, and, finally, when
the temperature T = 0, only the ground state gains a non-zero probability of
occurrence. That is, the particle can only be at the ground state at last, and the
process of annealing ends up.

As far as a combinatorial optimization problem is concerned, the energy state
can be taken as the cost function C for each configuration and the control para-
meter c replaces the temperature T . Then, the simulated annealing algorithm
can be viewed similarly as a procedure in which a sequence of configurations is
generated as the control parameter c is decreasing slowly, and finally it gener-
ates the configuration with the smallest value of cost function, or the optimum
solution for the combinatorial problem. The algorithm can be described as fol-
lows. First, the control parameter c is set as a high value, and, then, a sequence
of configurations is generated as the control parameter c decreases: a genera-
tion mechanism is defined to, given a current configuration i, choose at random
another configuration j from i’s neighbourhood, corresponding to a small per-
turbation added to i. Let the ΔCij be the difference of the values cost function
of the two configurations i and j, or C(j) − C(i), then the probability that j is
chosen as the next configuration in the sequence is given as follows: if ΔCij < 0,
or j is better than i, j is accepted at a probability 1, and, if ΔCij ≥ 0, or j
is no good as i, i is accepted by the Boltzmann distribution at a probability of
exp(−ΔCij

c), as shown as below

Pr{j is chosen from i} =

{

1 if ΔCij < 0,

exp(−ΔCij

c) if ΔCij ≥ 0.

58 D. Ding and G. Zhu

Table 1. The Simulated Annealing Algorithm for SVP The Simulated Annealing Algo-
rithm for SVP

Input: A β-BKZ reduced basis B = [b1, . . . ,bn] of a lattice L.

Output: The Shortest Nonzero Vector v′ in the lattice L(B)

1. Compute B’s Gram-Schmidt Orthogonalizations B∗ = [b∗
1, . . . ,b

∗
n]

and its factor matrix μ = {μij}1≤i,j≤n;

2. Estimate the first minima λ1 of the lattice by Gaussian Heuristic;

3. Initialize α = (α1, . . . , αn) as αi ← 0, for 1 ≤ i < �n
2
�,

and αi ←
√

λ1

‖b∗
i ‖ , for �n

2
� ≤ i ≤ n;

4. Choose a y-sparse representation of a starting vector y at random;

5. v′′ = SimulatedAnnealing(B,B∗, α,y);

6. Return v′′;

Clearly, as the control parameter c is decreasing, the worse configurations are
accepted at a smaller and smaller probability, and, finally, while the control
parameter c is approaching zero, only better ones are accepted (that is only
configurations with smaller value of cost function enjoy a nonzero probability
and all the worse ones a probability of zero). Therefore, the simulated annealing
is reduced into a hill climbing, or local search, as the control parameter is zero.

In the following three subsections, we apply the simulated annealing to the
shortest vector problem, or SVP, which is a classical combinatorial optimization
problem, and the section that follows we will prove that the simulated annealing
algorithm will be doomed to converge to the shortest lattice vector under the
circumstances that the control parameter c is, initially, high, and decreases slowly
enough.

3.2 Overview

In this subsection, we will discuss the main body of our simulated annealing
algorithm. As shown in Table 1, given a β-BKZ reduced lattice basis B, the
algorithm first computes its Gram-Schmidt orthogonalization B∗ = [b∗

1, . . . ,b
∗
n],

as well as its factor matrix μ = {μi,j}1≤i,j≤n. Second, it estimates the Euclidean
length of the first minima, or the shortest vector, using the Gaussian heuristic [8].
Third, we bound the first half of the y-sparse representation of the short lattice
vectors as 0 and the second half as

√

λ1/‖b∗
i ‖, by the heuristic for random

lattices from SVP challenge as in Sect. 2. After that, an initial vector (its y-
sparse representation y) in lattice L(B) is chosen at random, and the algorithm
invokes the simulated annealing procedure SimulatedAnnealing() by giving
y as the parameter to find the shortest vector v′′. Finally, the shortest vector is
returned and the whole algorithm terminates.

3.3 Simulated Annealing

SimulatedAnnealing() is the main procedure of our simulated annealing algo-
rithm for SVP, which, on an input of an initial lattice vector, it simulates the

A Simulated Annealing Algorithm for SVP Challenge 59

cooling process, or annealing, to find the shortest vector in the given lattice.
Before devoting to describing the procedure, we should define the generation
mechanism, the cooling schedule, which denotes the scheme how the control
factor deceases, and the cost function for the simulated algorithm as aforemen-
tioned in the first subsection: the cost function is defined as the Euclidean norm,
or the �2-norm, of the lattice vectors, and the optimum solution is, thence, the
shortest lattice vector under the Euclidean norm (the first minimum λ1); the
cooling schedule as in [19] by multiplying the current control parameter ck with
a decreasing coefficient β < 1, i.e.,

ck+1 = β · ck, (k = 0, 1, . . .),

and we have
ck = βk · c0;

the generation mechanism is defined to choose a new vector from the current
vector from its neighbourhood by adding a small perturbation to the current
vector, which we implement by Perturb() in the next subsection.

As in Table 2, the procedure proceeds as follows. Initially, it set the initial
control parameter c0 and the decreasing coefficient β, and, second, it sets k
as 0 and the final value of the control parameter cfinal is set as a small real
number approximate to 0. Note that the initial control parameter c0 must be
high enough to accept all the neighbour vectors enjoys a good accept probability,
and the decreasing coefficient β should be close to 1 and the cfinal must be close
to 0 so that the cooling schedule is slow, because that the next control parameter
is updated as ck+1 = β · ck. In fact, β and cfinal is set to fix the steps before
the termination of simulated annealing procedure, which will be discussed in
Sect. 5. Third, the procedure initializes the optimum solution, or the current
shortest vector, v′′ as the last basis vector bn, or its y-sparse representation
(0, . . . , 0, 1). Fourth, we compute the lattice vector v that corresponds to the
y-sparse representation of the initial vector y.

After that, the procedure enters a while-loop which performs the cooling
process iteratively and search the shortest vector. Entering the loop, it generates
a new vector y′ from our current vector y by calling the subroutine Perturb() as
in the next subsection, which choose a new vector from the neighbourhood of the
current vector at random. Note that the perturbation process, or the generation
mechanism, operates on the y-sparse representations of the lattice vectors. Then,
we compute the lattice vector v′ corresponding the newly-generated y-sparse
representation y′. After that, the procedure decides whether we accept the new
vector v′ as follows: if the new vector v′ is shorter than the current vector v,
i.e., ‖v′‖ < ‖v‖, we accept that new one by setting accept as 1; however, if
the new vector v′ is longer, we first choose a random value r from [0, 1), and,
then, compare it to the exponential of the minus difference of the lengths of the
two vector divided by the current control parameter ck, i.e., exp(−‖v′‖−‖v‖

ck
),

and, finally, if r is smaller, we accept v′, and we reject v′ if r is not. Clearly,
we accept the new vector v′ at a 100% probability if v′ is shorter than v,
and the acceptance probability for the v′ that is longer obeys the Boltzmann

60 D. Ding and G. Zhu

Table 2. SimulatedAnnealing()

Input: B = (b1,b2, . . . ,bn), B∗, the bound α, and the initial vector y = (y1, . . . , yn);

Output: The shortest vector v′′ = (v′′
1 , . . . , v′′

n) ∈ L(B).

1. Initialize c0, β, and cfinal; //c0 is high, β is close to 1, and cfinal is close to 0

2. Let k ← 0;

3. Let v′′ ← bn, y′′ ← (0, . . . , 0, 1);

4. Compute v ∼ y;

5. While ‖v‖ ≤ λ1 and ck > cfinal do

(a) y′ ← Perturb(B,B∗, α,y);

(b) Compute v′ ∼ y′;
(c) If ‖v′‖ < ‖v‖ then accept ← 1

(d) else

(1) Choose r ∈ [0, 1) randomly;

(2) If r < exp(−‖v′‖−‖v‖
ck

) then accept ← 1

(3) else accept ← 0;

(e) If accept = 1 then

(1) Let y ← y′, v ← v′;
(2) Let ck+1 ← β · ck, k ← k + 1;

(3) If ‖v‖ < ‖v′′‖ then v′′ ← v, y′′ ← y;

6. Return v′′.

distribution under the current control parameter ck. Finally, if the new vector
is not accepted, the subroutine goes back to the start of the loop and generates
new vectors and decide whether to accept again in the same way, and, if the
new vector is accepted (accept = 1), it updates the current vector as the newly-
generated one by v′ ← v and y′ ← y, and updates the control parameter ck+1

as β · ck, and replaces k by k + 1. If the newly-generated vector v′ is shorter
than the current optimum solution, or the current shortest vector, v′′, the v′′ is
updated as v′ and y′′ is set as y′.

The loop iterates itself until the shortest vector is found, i.e., ‖v′′‖ < λ1,
or the control parameter has been approaching 0, i.e., ck < cfinal. Finally, the
subroutine returns the best vector v′′ ever found during the process of annealing.

3.4 Perturbation: The Generation Mechanism

In this subsection, we describe in detail the generation mechanism of the simu-
lated annealing algorithm for the shortest vector problem. As shown in Table 3,
the subroutine Perturb() generates, on a given vector y, a new vector y′,
which is feasible (in the hypersphere of short vectors as discussed in Sect. 2),
from its neighbourhood randomly, by adding a small perturbation, on the space
of y-sparse representations of lattice vectors.

The subroutine starts with setting the loop control variable p as 0, and enters
a while-loop. In the loop, the subroutine chooses an index i from the second
half of the elements in y randomly, since only the second half elements are

A Simulated Annealing Algorithm for SVP Challenge 61

considered as discussed in Sect. 2. After that, it generates a new vector y′ by
updating the ith element yi in y as yi+1 or yi−1 at random. Equivalently, if we
define the neighbourhood set of a vector y as the set of all vectors y′ satisfying
that the �1-distance between the new vector y′ and the starting vector y is 1,
i.e., ‖y′ − y‖1 = 1, or

neighbour(y) = {y′ ∈ Z
n| ‖y′ − y‖1 = 1},

or, likewise, under the notation of lattice vectors,

neighbour(v) = {v′ ∈ L(B)| ‖y′ − y‖1 = 1,v ∼ y,v′ ∼ y′},

then the process of generation mechanism is choosing a vector from its neigh-
bourhood set randomly, and the probability of each neighbour vector obeys the
uniform distribution. However, if the newly-generated vector is the zero vector,
then p is set as 1 to execute the loop one more time; likewise, if the ith element
yi in y is larger than the bound αi or if the sum of all the squared norm ‖b∗

i ‖2

multiplied by the squared elements y2
i is larger than λ1, the new vector y′ is

not feasible, that is, the new vector y′ is beyond the hypersphere of the short
vectors:

n
∑

i=1

y2
i ‖bi‖2 < 4λ2

1, (5)

and, therefore, p should also be set as 1 to choose another vector. The loop
terminates while a feasible and nonzero vector y′ is generated, and, after that,
the newly-generated vector y′ is returned.

4 Convergence Proof of the Simulated Annealing
Algorithm

In this section, we presents the convergence proof of our simulated annealing
algorithm for the shortest vector problem. In Subsect. 4.1, we build a mathe-
matical model for our simulated annealing by means of a Markov chain, and in
Subsect. 4.2, based on the Markov chain, we prove that our simulated annealing
will always converge to the shortest vector under certain conditions.

4.1 Mathematical Model: An Inhomogeneous Markov Chain

As in Sect. 3, the simulated annealing algorithm for the shortest vector problem
can be viewed as an algorithm that consecutively transform the current con-
figuration (vector) into a new configuration from its neighbourhood set. This
mechanism is best described mathematically as a Markov chain: generating a
sequence of configurations, or trials, in which the new trial is only dependent
on the previous one as in [17]. In the case of our simulated annealing algorithm
for the shortest vector problem, it is clear that the newly-generated vector only

62 D. Ding and G. Zhu

Table 3. Perturb()

Input: B, B∗ = (b∗
1, . . . ,b

∗
n), α = (α1, . . . , αn), and an integer vector y = (y1, . . . , yn);

Output: Another feasible integer vector y′ = (y′
1, . . . , y

′
n) such that y′ ∈ neighbour(y).

1. Let p ← 0;

2. While p = 0 do

//choose a new vector y′ ∈ neighbour(y)

(a) Choose i ∈ {�n
2
�, . . . , n} randomly;

(b) Choose sgn ∈ {0, 1};

(c) If sgn = 0 then

(1) y′ ← (y1, . . . , yi−1, yi + 1, yi+1, . . . , yn)

(d) else

(1) y′ ← (y1, . . . , yi−1, yi − 1, yi+1, . . . , yn);

(e) If y′ = (0, 0, . . . , 0) then p ← 0

(f) else if |y′
i| > αi then p ← 0

(g) else

(1) sum ← ∑n
j=1 y2

j · ∥

∥b∗
j

∥

∥

2
;

(2) If sum > λ2
1 then p ← 0

(3) else p ← 1;

4. Return y′ = (y′
1, . . . , y

′
n).

depends on the current vector, and has nothing to do with the vectors before
the current one.

We define the S = {vi}1≤i≤|S| as the state set of all feasible vectors in
hypersphere of short vectors as Eq. 5 in which we assume that the vectors are
in a nondescending order in terms of their Euclidean norms (those with the
same norm is in an arbitrary order), which is clearly finite. As far as the simu-
lated annealing is concerned, the conditional probability pij(k − 1, k) in which
1 ≤ i, j ≤ |S| and k ∈ Z

n denotes the probability that the kth trial is a tran-
sition from the ith vector to the jth vector in S. Therefore, we can define the
q(k) = [p(k)

1 , p
(k)
2 , . . . , p

(k)
|S|] as the probabilities for all the vectors in S after k tran-

sitions, and the transition probabilities are pij(k − 1, k) and the |S| × |S|-matrix
P = {pij(k − 1, k)}1≤i,j≤|S| constitutes the transition matrix for the simulated
annealing algorithm. Thereby, we build a Markov chain {Xk}k=0,1,... with its
probability transition matrix P.

The transition probabilities depend on the value of the control parameter ck

at the kth trial. Since the control parameter ck is deceasing during the process of
simulated annealing, the transition probabilities are not constant and, thence,
the Markov chain is inhomogeneous. To be more precise, the transition prob-
ability transition matrix P = {pij(ck)}1≤i,j≤|S|,k=0.1,... at the kth trial can be
defined as:

pij(ck) =

{

gij(ck) · aij(ck) if j �= i,

1 − ∑|S|
�=1,� �=i gij(ck) · aij(ck) if j = i.

A Simulated Annealing Algorithm for SVP Challenge 63

in which gij(ck) denotes the generation probability of generating vj from vj

and aij(ck) the acceptance probability of accepting vj from vi (vi,vj ∈ S).
Clearly, P is a stochastic matrix. Since the generation mechanism of our simu-
lated annealing is to choose a new vector from the neighbourhood set uniform
randomly and each vector has exactly 2n vectors in its neighbourhood, the gen-
eration probability gij(ck) is:

gij(ck) =

{

1
2n if vj ∈ neighbour(vi),
0 otherwise.

Therefore, the generation probability is a constant independent of ck, i.e.,
gij(ck) = gij . Similarly, since the acceptance probability obeys the Boltzmann
distribution, the acceptance probability aij(ck) can be expressed as:

aij(ck) =

{
min{1, exp(− ‖vj‖−‖vi‖

ck
)} if vj ∈ neighbour(vi), nonzero, and feasible,

0 otherwise.

Thus, an inhomogeneous Markov chain {Xk}k=0,1,... is built up for the simulated
annealing algorithm for the shortest vector problem, by which we will propose
the convergence proof of the algorithm in the next subsection.

4.2 Convergence Proof

Theorem 1 (Convergence of the simulated annealing for SVP). If
{Xk}k=0,1,... is the inhomogeneous Markov chain aforementioned in Subsect. 4.1
for the simulated annealing algorithm for the shortest vector with the control
parameter ck as described in Sect. 3, the Markov chain will converge to the short-
est lattice vector, or:

lim
k→∞

Pr{Xk ∈ Sopt} = 1,

under the three following conditions that

ck > ck+1,

lim
k→∞

ck = 0,

and
ck >

Γ

log2 k
,

in which k = 0, 1, . . ., and the optimum set Sopt = {v ∈ L(B)| ‖v‖ = λ1(B)},
and Γ is a constant, whatever the initial distribution is.

Proof. The theorem that inhomogeneous Markov chain converges to the global
minima is a direct consequence of the proof in [24] by proving the strong ergodic-
ity of the inhomogeneous Markov chain (see [29] for weakly and strongly ergodic
inhomogeneous Markov chain), and an explicit expression for Γ can be found in
[6,11,24]. ��

64 D. Ding and G. Zhu

Theorem 1 ensures the convergence of the simulated annealing algorithm for
the shortest vector problem to the globally minimal solution, or the shortest
vector, under the circumstances that the control parameter decreases at a rate
as slow as ck > Γ

log2 k for some constant Γ . Therefore, the simulated annealing
will guarantee to, at a probability 1, find the shortest vector if it cools down
slowly enough and the algorithm runs long enough.

5 A Practical Simulated Annealing Algorithm:
Worst-Case Time Complexity

Although the simulated annealing algorithm for the shortest vector problem
guarantees to converge to the optimum solution, or the shortest lattice vector,
with probability 1 if it satisfies the three conditions as aforementioned in Theo-
rem 1, yet any practical implementation will only be an approximation algorithm
for the reasons that the algorithm cannot runs for an infinite time to make prob-
ability converge to 1, and, therefore, the tiny probability of failure always existed
for any practical simulated algorithm. In this section we devote to the imple-
mentation details for a practical simulated algorithm will find as short a lattice
vector as possible within a fixed number of transitions (or steps), and, there-
after, estimate the time complexity of the approximation simulated annealing
algorithm.

The implementation details refers to fixing the three parameters: the initial
and final control parameters, c0 and cfinal, and the decreasing coefficient β for
cooling scheduling. We follows the methodology in [19] as follows. The initial
control parameter is chosen to be large enough for the initial distribution is
close to uniform, or, i.e., (n denotes the rank of the lattice below)

exp(−maxi{‖vi‖ − λ1}
c0

) > χ0,

in which χ0 is close to 1, and we have c0 > maxi{‖vi‖−λ1}
− ln(χ0)

. In our simulated
annealing algorithm, we set χ0 as 0.9 and approximates maxi{‖vi‖ − λ1} as
n × ‖bn‖.

The final control parameter cfinal is chosen to make sure that the probability
for the current configuration in the Markov chain to be ε more than λ1 is less
than a small real number θ, and, then, as in [19], we have

cfinal ≤ ε

ln(|S| − 1) − ln θ
,

in which S is the set of feasible lattice vectors in the hypersphere as described
in Subsect. 2.3. In our algorithm, we set θ as 10−n and ε as λ1/n.

As for the decreasing coefficient for the control parameter β, it is necessary
for the decrement to satisfy the third condition in Theorem 1: ck > O((ln k)−1),
and, [19] shows that the decrement for the control

ck+1 = ck · (

1 +
γ · ck

maxi{‖vi‖ − λ1}
)−1

.

A Simulated Annealing Algorithm for SVP Challenge 65

for a small real number δ. Still, we set maxi{‖vi‖ − λ1} as n × ‖bn‖ and δ as
1/n, and, thereby, figure out β.

If we choose the parameters in this way, [1,19] and clearly proves that
our algorithm will terminate within O(ln(|S|)) steps in terms of cooling the
control parameter, or, namely, the worst-case time complexity for our simu-
lated annealing. Moreover, Theorem 2 in [13] implies that there exists at most
poly(n) · n

n
2e+o(n) feasible lattice vectors in the hypersphere, or, that is,

|S| = O(n) · n
n
2e+o(n).

Therefore, we have

O(ln(|S|)) = O(ln n · n

2e
· ln n) = O(n · ln2 n),

which means that our simulated annealing algorithm will be of polynomial time
complexity, thereby obtaining our worst-case time complexity.

One might argue that, though the algorithm terminates within polynomial
time, there is no guarantees for proximity of the final vector to optimal solutions,
or, the shortest vector. Therefore, we perform experiments in the next section
to show the efficiency of the simulated annealing algorithm.

6 Experimental Results

In this section, we perform some experiments of our simulated annealing algo-
rithm for the shortest vector problem. All algorithms are impelemnted using
C++ with Victor Shoup’s Number Theory Library (NTL) version 6.1.0 [30],
and we perform our experiments on a workstation with 16 Intel Xeon 2.6 Ghz
CPUs and 64 G RAM under a Red Hat Linux Server release 5.6. Experiments
of our random algorithm are performed on the random lattices of dimension
20-100 from SVP challenge benchmarks [27], and the running times are com-
pared to those of Kannan-Helfrich enumeration algorithm [14]. All the random
bases are all generated by seed = 0, and are all preprocessed by a subroutine of
at least n

6 -BKZ reduction before experiments. The running times of simulated
annealing algorithm is output by averaging the running times of 20-100 attempts
for each dimensions (only the successful attempts are considered). Note that all
the implementation details (parameters) follows the discussion in Sect. 5 that
precedes.

Figure 1 shows the sequence of the newly-generated vectors by one successful
attempt of our simulated annealing algorithm for the random lattices of dimen-
sion 40 (seed 0), and the algorithm generates in sequence 1355 lattice vectors
and consumes 0.720881 seconds before it reaches the shortest vector of a Euclid-
ean norm approximately 1702. As shown in the figure, the lengths (Euclidean
norms) of the sequence of vectors takes on an quite chaotic look (ranged between
3500 and 1500), which is averaged at almost 2500 and shows no obvious trend
of decreasing. Therefore, we can see that the control parameter should ensure
that the algorithm should at any time escape from any local minimum, which

66 D. Ding and G. Zhu

Fig. 1. Norms of the sequence of Newly-Generated vectors by simulated annealing
(Dimensional 40)

require that the cooling schedule should be slow as discussed in Subsect. 4.2 (a
decreasing coefficient close to 1 is necessary).

Figure 2 compares the running time of our simulated annealing algorithm for
the shortest vector problem to the famous Kannan-Helfrich algorithm. As shown
in the figure, our simulated annealing algorithm runs less than 1 s for lattices
of dimension less than 40, and it runs still quite fast up to dimension 100. The
running time comparison implies that our simulated annealing algorithm gains
advantages over Kannan-Helfrich algorithm in two aspects: first, it enjoys an
exponential speedup to Kannan’s algorithm (as discussed above in Sect. 5 our
simulated algorithm will terminates within a polynomial time complexity), and,
second, it succeeds in finding the shortest vector of the lattice of dimension up to
100 while Kannan’s algorithm found up to dimensional 72 before the running
time becomes extremely long. Therefore, the simulated annealing algorithm out-
performs the famous Kannan’s algorithm and is an efficient and fast algorithm
for the shortest vector problem.

7 Conclusion

In this paper, we propose a novel simulated annealing algorithm for the short-
est vector problem through y-sparse representations of short lattice vectors. The
algorithm is, thereafter, proved to converge to the shortest vector at a probability
1, under the conditions that the initial control parameter is high and that cooling
scheduling of the control parameter is slow enough. Then, an approximation ver-
sion of the algorithm as described before is proposed, which is of polynomial time
complexity, and it is implemented to perform experiments on a variety of lattices
in SVP challenges. The experimental results show that this new algorithm out-
performs the famous Kannan’s algorithm for SVP and output shortest vectors
in lattices of higher dimensions. In conclusion, our newly-proposed simulated
annealing algorithm for the shortest vector problem is an completely new and
efficient SVP solver, which paves a new road for research into SVP algorithms.

A Simulated Annealing Algorithm for SVP Challenge 67

Fig. 2. Running time comparison of SVP algorithms

8 Future Work

In the future, we will continue to challenge some random lattices in SVP chal-
lenge with higher dimensions (more than 100) using our simulated annealing algo-
rithm, and compare the results with more currently widely-used practical SVP
algorithms: such as the enumeration with extreme pruning, and the genetic algo-
rithm for SVP.Additionally,wewill attempts to establish a theoretical relationship
between quality of the final vector in simulated annealing (howclose the final vector
is to the shortest one in lattices) and the running time.

References

1. Aarts, E.H., Laarhoven, V.P.: Statistical cooling: a general approach to combina-
torial optimization problems. Philips J. Res. 40(4), 193–226 (1985)

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC, pp. 99–108 (1996)

3. Ajtai, M.: The shortest vector problem in �2 is np-hard for randomized reductions.
In: Proceeding of the 30th Symposium on the Theory of Computing (STOC 1998),
pp. 284–406 (1998)

4. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In STOC, pp. 284–293 (1997)

5. Ajtai, M., Kumar, R., Sivaumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proceedings of the 33th annual ACM symposium on Theory of
computing (STOC 2001) 33, pp. 601–610 (2001)

6. Anily, S., Federgruen, A.: Simulated annealing methods with general acceptance
probabilities. J. Appl. Probab. 24, 657–667 (1987)

68 D. Ding and G. Zhu

7. Černỳ, V.: Thermodynamical approach to the traveling salesman problem: an effi-
cient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)

8. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011)

9. Ding, D., Zhu, G., Wang, X.: A genetic algorithm for searching shortest lattice vec-
tor of svp challenge. Cryptology ePrint Archive, Report 2014/489 (2014). http://
eprint.iacr.org/

10. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010)

11. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

12. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski Jr, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
112–131. Springer, Heidelberg (1997)

13. Hanrot, G., Stehlé, D.: Improved analysis of kannan’s shortest lattice vector algo-
rithm. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 170–186.
Springer, Heidelberg (2007)

14. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: Proceedings of the 15th Symposium on the Theory of Computing (STOC
1983) 15, pp. 99–108 (1983)

15. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12, 415–440 (1987)

16. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simmulated
annealing. Science 220(4598), 671–680 (1983)

17. Lawler, G. F. Introduction to Stochastic Processes. CRC Press, Boca Raton (1995)
18. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational

coefficients. Mathematische Annalen 261(4), 513–534 (1982)
19. Lundy, M., Mees, A.: Convergence of an annealing algorithm. Math. Prog. 34(1),

111–124 (1986)
20. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic

Perspective. The Springer International Series in Engineering and Computer Sci-
ence, vol. 671. Kluwer Academic Publishers, Boston (2002)

21. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measure. In: Proceedings of the 45rd annual symposium on foundations of com-
puter science - FOCS 2004 (Rome, Italy), October 2004, pp. 371–381. IEEE. Jour-
nal verion in SIAM Journal on Computing

22. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measure. SIAM J. Comput. 37(1), 267–302 (2007). Preliminary version in FOCS
2004

23. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm
for most lattice problems based on voronoi cell computations. In: Proceedings of
the 42th annual ACM symposium on Theory of computing (STOC 2010) 42, pp.
351–358 (2010)

24. Mitra, D., Romeo, F., Sangiovanni-Vincentelli, A.: Convergence and finite-time
behavior of simulated annealing. In: 24th IEEE Conference on Decision and Con-
trol, vol. 24, pp. 761–767. IEEE (1985)

25. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. J. Math. Crypt. 2(2), 181–207 (2008)

http://eprint.iacr.org/
http://eprint.iacr.org/

A Simulated Annealing Algorithm for SVP Challenge 69

26. Regev, O.: New lattice-based cryptographic constructions. J. ACM 51(6), 899–942
(2004)

27. Schneider, M., Gamma, N.: Svp challenge (2010). http://www.latticechallenge.org/
svp-challenge/

28. Schnorr, C.P.: A hierarchy of polynomial lattice basis reduction algorithms. Theor.
Comput. Sci. 53, 201–224 (1987)

29. Seneta, E.: Non-negative Matrices and Markov Chains, 2nd edn. Springer Publish-
ers, New York (2006)

30. Shoup, V.: Number theory c++ library (ntl) vesion 6.0.0 (2010). http://www.
shoup.net/ntl/

31. van Emde Boas, P.: Another np-complete partition problem and the complexity
of computing short vectors in a lattice. Technical Report, Mathematisch Instituut,
Universiteit van Amsterdam 81–04 (1981)

32. Wang, X., Liu, M., Tian, C., Bi, J.: Improved nguyen-vidick heuristic sieve algo-
rithm for shortest vector problem. In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security. ACM, pp. 1–9 (2011)

http://www.latticechallenge.org/svp-challenge/
http://www.latticechallenge.org/svp-challenge/
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

Rerandomizable Threshold Blind Signatures

Veronika Kuchta(B) and Mark Manulis

Department of Computing, University of Surrey, Guildford, UK
v.kuchta@surrey.ac.uk, mark@manulis.eu

Abstract. This paper formalizes the concept of threshold blind signa-
tures (TBS) that bridges together properties of the two well-known signa-
ture flavors, blind signatures and threshold signatures. Using TBS users
can obtain signatures through interaction with t-out-of-n signers without
disclosing the corresponding message to any of them. Our construction
is the first TBS scheme that achieves security in the standard model
and enjoys the property of being rerandomizable. The security of our
construction holds according to most recent security definitions for blind
signatures by Schröder and Unruh (PKC 2012) that are extended in this
work to the threshold setting.

Rerandomizable TBS schemes enable constructions of distributed
e-voting and e-cash systems. We highlight how TBS can be used to con-
struct the first e-voting scheme that simultaneously achieves privacy,
soundness, public verifiability in the presence of distributed registra-
tion authorities, following the general approach by Koenig, Dubuis, and
Haenni (Electronic Voting 2010), where existence of TBS schemes was
assumed but no construction given. As a second application, we discuss
how TBS can be used to distribute the currency issuer role amongst
multiple parties in a decentralized e-cash system proposed by Miers
et al.(IEEE S&P 2013).

1 Introduction

Blind Signatures. Blind signatures, introduced by Chaum [21], allow users to
obtain a signature on some message through interaction with the signer in a
way that doesn’t expose the message. This property, which is called blindness
is the distinctive property of blind signatures, in addition to the unforgeabil-
ity requirement, which guarantees that no more signatures can be produced in
addition to those output through the interaction with the signer. Blind signa-
tures are considered as an important building block for a variety of applications,
including e-voting [9,10,31,45] and e-cash schemes [21], anonymous credential
systems [15] and oblivious transfer [19]. Security properties and constructions of
blind signatures have been explored in numerous subsequent works: Pointcheval
and Stern [52] defined and proved the security requirements for blind signatures
in the random oracle model. Juels et al. [41] defined a blind signature scheme
which is secure under general complexity assumptions. Recently, Schröder and
Unruh [54] showed that security definitions from [52] have some drawbacks and
came up with an improved definition of honest-user unforgeability. A lot of
c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 70–89, 2015.
DOI: 10.1007/978-3-319-27998-5 5

Rerandomizable Threshold Blind Signatures 71

work has been done on the constructions of blind signature schemes, both in
the random oracle model, e.g. [1,4,7,11,53], and in the standard model, e.g.
[3,9,17,32,39,42,48,51].

Threshold Signatures. Threshold signatures, introduced by Desmedt [26] dis-
tribute the ability to sign a message across t-out-of-n signers. This distribution
process is typically carried out using secret sharing techniques and is there-
fore helpful for the distribution of trust in various cryptographic applications.
In addition, threshold signatures can be used to achieve reliability and thus
improve on the availability of services. Security properties and constructions of
threshold signatures have been explored in [33,47,56]. Well-known constructions
of threshold signatures in the random oracle model under the RSA assumptions
have been proposed by Desmedt and Frankel [27] and Shoup [56]. Boldyreva [11]
showed how to construct threshold signatures in the random oracle model in
Gap Diffie-Hellman groups. More recently, Li et al. [46] distributed the signing
process of the well-known Waters signature scheme in the standard model under
the CDH assumption in bilinear groups.

Our Contribution: Threshold Blind Signature Schemes. In this work
we formalize the concept of threshold blind signatures (TBS) and present an
instantiation that enables the user to obtain a signature through interaction with
a distributed set of n signers on some message of user’s choice without revealing
any information about the message. Each signer is in possession of a secret key
share which is used in the signing process. The distribution of secret key shares
in our scheme is performed by a trusted dealer, albeit alternative methods, e.g.
[34], can also be applied. The signature generation process cannot be forged
unless the adversary corrupts t signers. The blindness property ensures that
even if all n potential signers are corrupted no information about the message is
leaked. When defining these properties for TBS we adapt new security definitions
from Schröder and Unruh [54], introduced originally for blind signatures, to the
threshold setting. The requirements modeled for blind signatures in [54] are
considered as being stronger than those given previously by Pointcheval and
Stern [52]. In particular, they prevent an attack by which the adversary queries
the signing oracle twice on the same message and then outputs a forgery on a
different message.

Our TBS scheme is built based on the techniques underlying the blind signa-
ture scheme introduced by Okamoto [51] that deploys bilinear groups. Our TBS
is more than an adaptation of the scheme from [51] to a threshold setting since
we introduce further changes to the original construction to enhance its per-
formance. In particular, by using non-interactive zero-knowledge (NIZK) proof
techniques from [35,37] we can remove several rounds of interaction between
the user and the signers, thus obtaining the same round-optimality as in case
of (non-threshold) blind signatures in [29]. The NIZK proof from [35], which is
based on the DLIN assumptions, gives us concurrent security for the overall TBS
construction in the Common Reference String (CRS) model.

The standard assumptions and stronger definitions of security make our
scheme superior to the existing TBS constructions from [43,57] that were proven

72 V. Kuchta and M. Manulis

secure in the random oracle model with respect to the (weaker) definitions
from [52], which in turn makes them vulnerable to attacks against blind sig-
natures identified in [54]. Our TBS construction enjoys the re-randomization
property, which makes it especially attractive for a range of applications such as
distributed e-voting and e-cash. We show how our TBS scheme can be used to
realize e-voting in presence of distributed registration authorities and decentral-
ized e-cash in presence of distributed currency issuers.

Applications of TBS. The use of blind signatures in e-voting schemes goes
back to Chaum [21] and various e-voting schemes utilizing blind signatures have
been introduced since then, e.g. [6,8,9,22,31,50]. The blindness property in most
e-voting constructions is necessary to ensure privacy of the submitted votes,
while the unforgeability property is used for authentication. The corresponding
signature is typically issued by the registration authority, which is supposed to
check the voter is eligible to participate in the election. The use of threshold blind
signatures in this context is a helpful alternative for the case where the regis-
tration authority needs to be distributed across multiple not necessarily fully
trustworthy entities. Such distributed approach for voter registration has been
proposed by Koenig, Dubuis, and Haenni [44] assuming existence of threshold
blind signatures, yet without offering concrete constructions of this primitive.
As proven in [44], existence of a public registration board is necessary in order
to prevent potential abuses. Public verifiability, originally defined in [40], is a
property that guarantees the validity of the election outcome, preventing vot-
ing authorities from biasing the results. We show that our re-randomizable TBS
construction can be used to obtain an e-voting scheme where the registration
authority can be distributed across multiple parties and where the property of
public verifiability holds simultaneously. In our construction we follow the tem-
plate from [44]. Our scheme also achieves public verifiability as it was required
in [44] because the voters send their votes together with signatures to a public
board such that each voter can complain if he does not find his vote on the board
or if he is generally suspicious about the content on the board. We provide an
publicly verifiable e-voting scheme, which guarantees extended security in the
signing process because of the threshold setting. Since the power of one signing
authority is distributed amongst a number of signers, the signature on a vote
will be accepted if and only if t out of n signers provide their signatures on the
blinded vote to public board.

Our TBS scheme can be used to construct distributed e-cash. The concept
of e-cash was introduced by Chaum [21] and later refined in [13,14,23,30,41,52].
A threshold approach was used by Camenisch et al. [18] in the design of endorsed
e-cash schemes to provide fairness for the user. By utilizing threshold setting, the
user creates n endorsements for one coin, of which any t can be used to reconstruct
the coin. The e-cash scheme by Zhou [59] uses threshold cryptography to enable
traceability of the issued e-coins. The secret sharing of the key and probabilistic
encryption algorithm enable threshold management of private key and the scheme
avoids the misuse of identity tracing and currency tracing in fair e-cash scheme.
Miers et al. [49] recently described the common problem of many e-cash protocols

Rerandomizable Threshold Blind Signatures 73

that fundamentally rely on the issuer of e-coins being trusted and mentioned the
distribution of his role amongst multiple issuers as a possible solution. We describe
how our TBS scheme can offer such a standard-model solution for distributed e-
cash schemes.

2 Building Blocks and Hardness Assumptions

In this section we recall several hardness assumptions and building blocks that
will be used in our work.

Definition 1 (Bilinear Groups). Let G(1λ), λ ∈ N be an algorithm that on
input a security parameter 1λ outputs the description of two cyclic groups G1 =
〈g1〉 and G2 = 〈g2〉 of prime order q with |q| = 1λ, where possibly G1 = G2,
and an efficiently computable e : G1 × G2 → GT with GT being another cyclic
group of order q. The group pair (G1,G2) is called bilinear if e(g1, g2) �= 1 and
∀u ∈ G1, v ∈ G2, ∀a, b ∈ Z : e(ua, vb) = e(u, v)ab.

Definition 2 (DLin-Assumption). Let G be a cyclic group of order q. The
DLin assumption states that given a tuple

(

g, gx, gy, gxa, gyb, gc
)

for random
a, b, x, y, c ∈ Z

∗
q , it is hard to decide whether c = a + b. When (g, u = gx, v = gy)

is fixed, a tuple
(

ua, vb, ga+b
)

is called a linear tuple, whereas a tuple
(

ua, vb, gc
)

for a random and independent c is called a random tuple. Adversaries advantage
in solving the assumption is negligible.

Definition 3 (CDH-Assumption). Let G,GT be two groups of prime order
q. Let e : G × G → GT be a bilinear map and let 〈g〉 = G be the generator of
G. Let ACDH be an adversary taking as input the security parameter λ. Suppose
that a, b ← Z

∗
q are randomly chosen. ACDH is to solve the following problem:

Given g, ga, gb compute the gab. Let ε be the advantage of algorithm A in solving
the CDH assumption if

∣

∣Pr[A(g, ga, gb) = gab]
∣

∣ ≥ ε(λ).

Non-Interactive Zero-Knowledge Proof [36]. A non-interactive proof sys-
tem (G,K,P,V) for a relation R with setup consists of four PPT algorithms: a
setup algorithm G, a common reference string (CRS) generation algorithm K,
a prover P and a verifier V. The setup algorithm outputs public parameters I
and a commitment key ck. The CRS generation algorithm takes I as input and
outputs a CRS ρ. The prover P takes as input (I, ρ, x, ω), where x is the state-
ment and ω is the witness, and outputs a proof π. The verifier V takes as input
(I, ρ, x, π) and outputs 1 if the proof is acceptable and 0 otherwise. (G,K,P,V)
is non-interactive proof system for R if it has the following properties:

Completeness. A non-interactive proof is complete if an honest prover can
convince an honest verifier whenever the statement belongs to the language
and the prover holds a witness testifying to this fact. For all adversaries A we
have: Pr[(I, ck) ← G(1λ); ρ ← K(I, ck); (x, ω) ← A(I, ρ);π ← P(I, ρ, x, ω) :
V(I, ρ, x, π) = 1 if (I, x, ω) ∈ R] = 1.

74 V. Kuchta and M. Manulis

Soundness. A non-interactive proof is sound if it is impossible to prove a false
statement. We say (G,K,P,V) is perfectly sound if for all adversaries A we
have: Pr[(I, ck) ← G(1λ); ρ ← K(I, ck); (x, π) ← A(I, ρ);π ← P(I, ρ, x, ω) :
V(I, ρ, x, π) = 0 if x /∈ L] = 1.

Knowledge Extraction. We say that (G,K,P,V) is a proof of knowledge for
R if there exists a knowledge extractor E = (E1, E2) with the following prop-
erties: For all PPT adversaries A we have Pr[(I, ck) ← G(1λ); ρ ← K(I, ck) :
A(I, ρ) = 1] = Pr[I ← G(1λ); (ρ, ξ) ← E1(I) : A(I, ρ) = 1]. For all adver-
saries A holds Pr[(I, ck) ← G(1λ); (ρ, ξ) ← E1(I, ck); (x, π) ← A(I, ρ);ω ←
E2(ρ, ξ, x, π) : V(I, ρ, x, π) = 0 or (x, ω) ∈ R] = 1.

Zero-Knowledge. We say that (G,K,P,V) is a NIZK proof if there exists
a PPT simulator (S1,S2) such that for all PPT adversaries A we have
Pr[(I, ck) ← G(1λ); ρ ← K(I, ck) : A(I, ρ) = 1] ≈ Pr[I ← G(1λ); (ρ, τ) ←
S1(I) : A(I, ρ) = 1], and for all adversaries A: Pr[(I, ck) ← G(1λ); (ρ, τ) ←
S1(I, ck); (x, ω) ← A(I, ρ, τ);π ← P(I, ρ, x, ω) : A(π) = 1] = Pr[(I, ck) ←
G(1λ); (ρ, τ) ← S2(I, ck); (x, ω) ← A(I, ρ, τ);π ← P(I, ρ, x, ω) : A(π) = 1],
where A outputs (I, x, ω) ∈ R.

3 Threshold Blind Signatures

A threshold blind signature scheme gives the user the ability to get a signature on
a message without revealing its content and it distributes the secret key among
a certain number of signers. We observe a t−out-of-n threshold blind signature
scheme. It means that it is not possible to construct a valid blind signature on a
message by contacting less than t-out-of-n servers. The threshold blind signature
scheme is applicable to many constructions of cryptographic schemes because of
its role in the decentralization the power of the signer.

Definition 4 (Threshold Blind Signature). A t-out-of-n threshold blind sig-
nature scheme TBS in a Common Reference String model consists of the follow-
ing four algorithms:

TBParGen(1λ): A PPT algorithm takes as input the security parameter 1λ and
outputs public parameters I (possibly containing a common reference string
crsTBS).

KGen(I): On input public parameters I this algorithm outputs a secret share ski

for each signer Si, i ∈ {1, . . . , n} and a public key pk.
TBSign(·): This is a protocol between a user U and the signers Si, i ∈ {1, . . . , n}.

The input of U is pk and a message m. The input of each server Si is the
secret share ski. The protocol results in a signature σ output by U .

TBVerify(pk,m, σ): A deterministic algorithm which on input a public key pk,
message m, a signature σ outputs 1 if the signature is valid and 0 otherwise.

TBS Unforgeability. We recall the unforgeability definition for blind signa-
tures by Schröder and Unruh [54] and adopt it to the threshold setting. This
definition requires that (m∗

i , σ
∗
i) �= (mj , σj) for all i, j and (m∗

i , σ
∗
i) �= (m∗

j , σ
∗
j)

Rerandomizable Threshold Blind Signatures 75

for i, j with i �= j, which in comparison to the earlier definition by Pointcheval
and Stern [52] allows to tell which message is being signed in a given interaction.
It is assumed that the adversary randomly chooses up to (t−1) out of n servers.
When an adversary corrupts a server, it is given the entire computation history
of that server, and it gets control of the server for the running time of the system.
An adversary against unforgeability of TBS has the target to generate qS + 1
valid message/signature pairs after it has interacted at most qS times with the
honest signer.

Definition 5 (Unforgeability). A threshold blind signature scheme TBS =
(TBParGen, KGen, TBSign, TBVerify) is unforgeable if for all PPT adversaries
A the probability that the following experiment UnforgeTBS

A (λ) evaluates to 1 is
negligible in the security parameter λ.

1. I ← TBParGen(1λ)
2. (ski, pk) ← KGen(I) for all i ∈ {1, . . . , n}
3. {i1, . . . , in−t+1} ← A(pk)
4.

(

σ∗
1 ,m

∗
1, . . . ,

(

σ∗
qS+1,m

∗
qS+1

)) ← AOTBSign(·)(sk1, . . . , skt−1).
5. If TBVerify(pk,m∗

i , σ
∗
i) = 1 for all i ∈ [1, qS + 1] and (m∗

i , σ
∗
i) �= (m∗

j , σ
∗
j)

for all j ∈ [1, qS+1], j �= i then return 1, otherwise return 0.

OTBSign(·) is an oracle that executes the TBSign(ski,m) protocol on behalf of all
uncorrupted servers i1, . . . , in−t+1. The total number of invoked TBSign protocol
sessions is denoted by qS.

TBS Blindness. The TBS blindness property prevents signers from linking
generated signatures to corresponding sessions of the signing protocol. Therefore,
it should be impossible for a malicious signer A to decide on the order in which
two messages, m0 and m1, were signed in two protocol sessions with an honest
user U .

Definition 6 (Blindness). A threshold blind signature scheme TBS =
(TBParGen, KGen, TBSign, TBVerify) is called blind if for any PPT adversary A
the probability that the following experiment TBlindTBSA (λ) evaluates to 1 exceeds
1/2 by at most a negligible amount in the security parameter λ.

1. I ← TBParGen(1λ)
2. (m0,m1, pk, stfind) ← A(I, find)
3. Choose b

r← {0, 1}
4. Execute σb ← TBSign(pk,mb) and σ1−b ← TBSign(pk,m1−b) sessions on

behalf of user U . If σb = ⊥, or σ1−b = ⊥ then (σb, σ1−b) ← (⊥,⊥).
5. b∗ ← A(guess, σ0, σ1).
6. If b = b∗, then return 1, otherwise return 0.

A Note on Key Generation. There exist several approaches for the distri-
bution of keys amongst multiple signers. The approach by Shamir [55] applies
secret sharing and distributes secret key shares to corresponding signers through
a trusted dealer. The protocol by Feldman [28] minimizes this trust assumption

76 V. Kuchta and M. Manulis

on the dealer by requiring the latter to broadcasts information that can then be
used by the signers to individually check the validity of their shares and detect
incorrect shares at reconstruction time. The key generation protocol by Gennaro
et al. [34] proceeds in a pure distributed fashion, where each signer defines its
own share of the secret key and participates in a protocol with all remaining sign-
ers to setup the key. During the protocol parties can determine malicious signers
those contributions will be dropped. The distributed key generation protocol by
Abe and Fehr [2] for discrete logarithm-based keys achieves adaptive security in
the non-erasure model and avoids the use of interactive zero knowledge proofs.

4 TBS Construction in the Standard Model

4.1 Our TBS Scheme

In this section we present our TBS scheme based on the techniques underlying
the Okamoto’s blind signature scheme [51] and the NIZK proof from [36]. We
assume existence of a trusted dealer for the distribution of secret key shares.

Parameter Generation: The algorithm TBParGen(1λ) outputs the common
reference string CRS = (G,GT , q, g, e, ck), where ck = (u

′

k, uk,j), j = {1, . . . , n},
and k = {1, 2, 3} is the commitment key. The perfect binding key consists of

the following values u1,j =
(

u
′

1

)ξ1,j

, u2,j =
(

u
′

2

)ξ2,j

, u3,j =
(

u
′

3

)ξ1,j+ξ2,j+ζ

;

ξ1,j , ξ2,j , ζ
r← Z

∗
q and u

′

1 = gρ, u
′

2 = gτ , u
′

3 = g. The corresponding extraction
key is given by xk = (ck, ρ, τ, ζ). During the generation process of perfectly
hiding key, the algorithm outputs the following trapdoor key tkj = (ck, ξ1,j , ξ2,j),
j = {1, . . . , �}.

Key Generation: The algorithm KGen(I) picks x
r← Zq, computes g1 = gx, It

then picks a random polynomial f
r← Zq[Z] of degree t − 1, with t ≤ n being

a threshold and f(0) = x. Let f(z) =
∑t−1

i=1 aizi. The algorithm computes xi =
f(i) for each server i ∈ {1, . . . , n}. Let vk = (vk1, . . . , vkn) = (gx1 , . . . , gxn).
The outputs consists of the public key pk = (g1, g2,vk) and a separate secret
share ski = gxi

2 for each Si, i ∈ {1, . . . , n}.

Signature generation: The TBSign protocol on a �-bit message m =
(μ1, . . . , μ�) proceeds in two stages:

Stage 1: For all i = {1, . . . , n}, user U chooses a random ri
r← Z

∗
q and com-

putes Xi ←
(

u
′

1

∏�
j=1 u

μj

1,j

)ri

. U then prepares a NIZK proof for the well-

formedness of Xi. This proof consists of two parts π
(1)
i and π

(2)
i . It first part

π
(1)
i proves that all μj are bits using the NIZK proof from [37]. The user ran-

domly selects αk,j
r← Z

∗
q for k = 1, 2, 3 and computes Ak,j =

(

u
′

k

)αk,j

u
μj

k,j

for j = {1, . . . , �}, k = {1, 2, 3}. U proves to each server Si knowledge of αj

such that Ak,j =
(

u
′

k

)αk,j

for μj = 0 or Ak,j =
(

u
′

k

)αk,j

uk,j for μj = 1

Rerandomizable Threshold Blind Signatures 77

and j = {1, . . . , �}, k = {1, 2, 3}. For each Si the corresponding NIZK proof
π
(1)
i = (π̄1, . . . , π̄�) consists of � components π̄j , j = {1, . . . , �}. Each of

these proofs π̄j = (π11, π12, π13, π21, π22, π23) is computed as follows using a
randomly chosen tj

r← Z
∗
q :

π11 =
(

u
2μj−1
1,j

(

u
′

1

)α1,j
)α1,j

π12 = u
(2μj−1)α2,j

2,j

(

u
′

2

)α1,jα2,j−tj

π13 = u
(2μj−1)α1,j

3,j

(

u
′

3

)(α1,j+α2,j)α1,j+tj

π21 = u
(2μj−1)α2,j

1,j

(

u
′

1

)α1,jα2,j+tj

π22 =
(

u
2μj−1
2,j

(

u
′

2

)α2,j
)α2,j

π23 = u
(2μj−1)α2,j

3,j

(

u
′

3

)(α1,j+α2,j)α2,j−tj

U sends the proofs πi and the commitments {Ak,j}k={1,2,3},j={1,...,�} to the
corresponding server Si that checks the following verification equations:

e(u
′

1, π11) = e(A1,j , A1,ju
−1
1,j),

e(u
′

2, π22) = e(A2,j , A2,ju
−1
2,j),

e(u
′

3, π33) = e(A3,j , A3,ju
−1
3,j),

e(u
′

1, π12)e(u
′

2, π21) = e(A1,j , A2,ju
−1
2,j)e(A2,j , A1,ju

−1
1,j),

e(u
′

1, π13)e(u
′

3, π31) = e(A1,j , A3,ju
−1
3,j)e(A3,j , A1,ju

−1
1,j),

e(u
′

3, π23)e(u
′

3, π32) = e(A2,j , A3,ju
−1
3,j)e(A3,j , A2,ju

−1
2,j),

for each j = {1, . . . , �} and π33 = π1tπ2t, t = {1, 2, 3}. The server accepts
π
(1)
i if all verification equations hold.

In the second part π
(2)
i user U proves to each server Si the knowledge of

{ri, βk,i, δi,j}k∈[3],j∈[�] using the NIZK techniques from [35] and values Ak,j ,
αk,j k ∈ {1, 2, 3}; j ∈ {1, . . . , �} that were used to compute π

(1)
i by proving

that Xi =
(

∏�
j=1 A1,j

)ri

(u
′

1)
β1,i and Xi = (u

′

1)
ri

∏�
j=1 u

δi,j

1,j , where β1,i =

ri − ri

∑�
j=1 α1,j and δi,j = riμj , j ∈ [�], i ∈ [n]. This proof involves building

commitments Bk,i =
(

∏�
j=1 Ak,j

)ri

(u
′

k)βk,i and B̂k,i = (u
′

k)ri
∏�

j=1 u
δi,j

k,j ,

k = {1, 2, 3}, i = {1, . . . , n}, j = {1, . . . , �}. Note that B1,i = B̂1,i = Xi. This
effectively binds both parts of the proof to Xi. U splits Bk,i and B̂k,i into

� commitments such that Bk,i,j = Ari

k,j

(

u
′

k

)βk,i

and B̂k,i,j =
(

u
δi,j

k,j (u
′

k)ri

)

.

78 V. Kuchta and M. Manulis

The user makes then a NIZK proof for the Pedersen commitment for each
of these components. We refer to Sect. 4.5 [35] for further details on the
construction of π

(2)
i proof that is used in this second part. Each π

(2)
i consists

of 6(� − 1) + 2 components. Each server Si, i = {1, . . . , n} verifies π
(2)
i and

proceeds if the proof is valid.
Stage 2: If Si accepts the NIZK proof in Stage 1, it randomly chooses di

r←
Z

∗
q and uses its secret key share ski = gxi

2 to compute Yi1 ← skiX
di
i and

Yi2 ← gdi . Finally, Si sends its signature share σi = (Yi1, Yi2) to U . For
each received σi = (σi1, σi2), U checks the equation e(Yi1, g) = e(g2, vki) ·
e(Xi, Yi2) using the corresponding verification key vki ∈ vk and if successful
chooses a random si

r← Z
∗
q , and computes

σi1 ← Yi1

⎛

⎝u′
�

∏

j=1

u
μj

j

⎞

⎠

si

and σi2 ← Y ri
i2 gsi .

Assume that U collected t shares σi from corresponding servers Si, i =
1, . . . , t. U first computes the Lagrange coefficients λ1, . . . , λt ∈ Zq such that
x = f(0) =

∑t
i=1 λif(i) and then σ1 =

∏t
i=1(σi1)λi and σ2 =

∏t
i=1(σi2)λi .

Finally, U outputs σ = (σ1, σ2) as the resulting signature. (Note that σ has
the same form as in the Okamoto’s blind signature scheme from [51]).

Verification: The algorithm TBVerify(pk,m, σ) first parses pk as (g1, g2, u′,
(u1, . . . , u�)), m as (μ1, . . . , μ�), and σ as (σ1, σ2) and outputs 1 if and only if
e(σ1, g) = e(g2, g1) · e

(

u′ ∏�
j=1 u

μj

j , σ2

)

.

4.2 Security Analysis

The unforgeability of our TBS scheme is proven in Theorem 1 through a direct
reduction to the CDH assumption. Note that the blind signature scheme by
Okamoto [51] those techniques we partially apply in TBS was proven to be
unforgeable using a reduction to the original Waters signature scheme [58] that
in turn holds under the CDH assumption.

Theorem 1 (Unforgeability). Our TBS scheme is unforgeable in the com-
mon reference string model assuming the hardness of the CDH assumption from
Definition 3 and the soundness property of the NIZK proof from [36].

Proof To prove the above theorem we construct a simulator C which is given the
CDH challenge (g, ga, gb) from Definition 3 and is internally using the unforge-
ability adversary A to compute gab. By ε we denote the success probability of A
in forging the threshold blind signature. The interaction of C with A proceeds
according to the following description.

Setup: To generate the public parameters the challenger C sets l = 4qS and
chooses a random vector of length �: a = (a1, . . . , a�), where each is chosen

Rerandomizable Threshold Blind Signatures 79

uniformly and random in the interval between 0 and l − 1 and � denotes the
number of bits of a message m. Then it chooses a random b′ r← Zq, and the
vector b = (b1, . . . , b�)

r← Zq. Next the challenger C sets the following public
parameters u′ = gq−tl+a′

1 gb′
and uj = g

aj

1 gbj , where t is the threshold number of
the scheme. The public parameters (g, g1, g2, u

′,u) are sent to the adversary A.
We assume for our scheme that the adversary corrupts t−1 servers Si1 , . . . , Sit−1 .
Let Ŝ be the set of indexes ik of corrupted servers.
The challenger C generates secret shares ski of the private key sk for the cor-
rupted servers in the following way: It picks t−1 random integers x1, . . . , xt−1 ∈
Zq. Let f ∈ Zq[Z] be the t − 1 polynomial, which satisfies f(0) = xi for
i = 1, . . . , t − 1. The challenger C gives the secret key shares ski = gxi

2 to
the adversary A.
The challenger C also generates the verification keys vki, which are useful to
prove the correctness of secret shares. It sets vki = gf(i), such that the veri-
fication keys generate a vector

(

vk1, . . . , vkn) = (gf(1), . . . , gf(n)
)

for the above
defined polynomial f . It is easy for the challenger C to construct the verification
keys for the corrupted servers from the set Ŝ, because f(i) equals to xi, which
are known to the challenger C. Let S̃ denote the set of uncorrupted servers
(Sit

, . . . , Sin
). C has to compute the Lagrange coefficients λ0,i, . . . , λt−1,i ∈ Zq

such that f(i) = λ0,if(0) +
∑t−1

k=1 λk,if(k), where {i1, . . . , it−1} are the indexes
from the set Ŝ of corrupted servers and {it, . . . , in} are the indexes of uncor-
rupted servers. The Lagrange coefficients are then computed as follows:

λk,i =
∏

k′∈S̃\{i}

(k − k′)
(i − k′)

,

where k ∈ Ŝ is the index of a corrupted server and k′ is the index of an uncor-
rupted server. It is easy to determine these Lagrange coefficients because they
are independent from f . As a next step, C sets for i ∈ S̃ and g1 = gx:

vki = g
λ0,i

1 vk
λ1,i

1 · · · vk
λt−1,i

t−1 = g
λ0,i

1 gf(1)λ1,i · · · gf(t−1)λt−1,i

= g
λ0,i

1 g
∑t−1

k=1 f(k)λk,i = gf(i).

Once C has computed all the verification keys vki, it outputs them to A.

Signature Share Query: Once the adversary A has the verification keys
it provides up to qS signature share generation queries to the TBSign ora-
cle according to the experiment in Definition 5. The oracle queries are
processed by C that has to output a signature share σi = (Yi1, Yi2) on input
(Xi, Ak,j , Bk,i, B̂k,i, π

(1)
i , π

(2)
i), for i = {1, . . . , n}, j = {1, . . . , �}, k = {1, 2, 3}.

The proofs π
(1)
i and π

(2)
i ensure that Xi =

(

u
′

1

∏�
j=1 u

μj

1,j

)ri

due to their sound-
ness property as proven in [35,37]. We note that the perfect binding property of
the commitment scheme guarantees the soundness of the NIZK proof (π(1)

i , π
(2)
i).

Since our commitment scheme in Sect. 4.1 contains perfect binding keys it pro-
vides the existence of an extraction key which allows extraction of the values ri

80 V. Kuchta and M. Manulis

and μ1, . . . , μ�. For more details on the proof we refer to [35,37]. The challenger
C extracts ri, μ1, . . . , μ� and prepares a signature on these values using the CDH
challenge. C first defines two functions for m = (μ1, . . . , μ�):

F (m) = (q − tl) + a′ +
�

∑

i=1

aiμi and G(m) = b′ +
�

∑

i=1

biμi.

Additionally we define the following binary function:

K(m) =
{

0, if a′ +
∑�

j=1 ajμj ≡ 0 mod l

1, otherwise.

Upon the computation of u′ ∏�
j=1 u

μj

j = gq−tl+a′

1 gb′ ∏�
j=1 g

ajμj

1 gbjμj and using
F (m) and G(m) the challenger has to return signature shares σi = (Yi1, Yi2).
These are computed by C using the Lagrange coefficients λ0,i, λ1,i, . . . , λt−1,i ∈
Zq such that f(i) = λ0,if(0) +

∑t−1
k=1 λk,if(k) using the technique from Boneh

and Boyen [12]. C then picks r′
i ∈ Zq, and outputs the following signature tuple

σi = (Yi,1, Yi,2), where Yi,1 = gb(λ0,if(0)+
∑t−1

k=1 λk,if(k))gaF (m)r′
igG(m)r′

i and Yi,2 =
gr′

i , where r′
i = ri − bλ0,i

F (m) . Note that f(0) = −G(m)
F (m) . The signature σi satisfies

the verification equation e(Yi1, g) = e(g2, vki)e(u′ ∏�
j=1 u

μj

j , Yi2) since

e(g2, vki)e(u′
�

∏

j=1

u
μj

j , Yi,2)

= e
(

gb, gλ0,if(0)+
∑t−1

k=1 λk,if(k)
)

e
(

gaF (m)gG(m), gr′
i

)

= e
(

g, gb(λ0,if(0)+
∑t−1

k=1 λk,if(k))
)

e
(

gaF (m)r′
igG(m)r′

i , g
)

= e

(

gb(λ0,if(0)+
∑t−1

k=1 λk,if(k))gaF (m)
(

ri− bλ0,i
F (m)

)

g
G(m)

(
ri− bλ0,i

F (m)

)

, g

)

= e(Yi,1, g).

In order to complete the simulation without aborting, it is required that all
signature queries on m have K(m) �= l. In this case, if F (m) �= 0 then C is able
to simulate the signature on the requested m; otherwise, C will not be able to
generate such signature and the simulation aborts.

Extraction: The execution of this step corresponds to the fourth step from the
experiment in Definition 5, where A sets σ∗

i = (σ∗
i1, σ

∗
i2) for i ∈ {1, qS} as a valid

signature share for a message m∗ = (μ∗
1, . . . , μ

∗
�), which was not queried before.

As next, we define a function Q(m∗, q, A′), where A′ = (a′, a1, . . . , a�) are the
simulated values, and q = (q1, . . . , qS) as

Q(m∗, q, A′) =
{

0, if ∀s
j=1qj : Kqj

(mj) = 1, and a′ +
∑�

j=1 ajμ
∗
j ≡ 0 mod l

1, otherwise.

Rerandomizable Threshold Blind Signatures 81

The function evaluates to 0 if all signature queries will not cause an abort for a
given choice of values A′ and the function a′ +

∑�
j=1 ajμ

∗
j mod l which equals

F (m∗) mod l vanishes for the values m∗ = (μ∗
1, . . . , μ

∗
�). That means if F (m∗) =

0 then C can extract gab by computing

gab =

(

σi1

σ
G(m)di

i2 (gb)
∑t−1

k=1 λk,if(k)

)− 1
diλ0,i

.

Therefore we can consider the probability over the simulation values (μ∗
1, . . . , μ

∗
�)

as If F (m∗) is not 0, then we have Q(m∗, q, A′) = 1 and the extraction aborts
with probability Pr[Q(m∗, q, A′) = 1]. C repeats the above showed steps qS

times. If all qS rounds are completed, A outputs at least qS + 1 valid signa-
tures with different messages, where at least one valid message-signature pair is
different from the qS valid messages-signatures given from C algorithm.

Analysis: The probability of success of an adversary A can be compared with
the probability that C aborts in the simulation, which happens either if F (mi) =
0 for a signature query on mi or if F (m∗) �= 0. The probability for F (m∗) �= 0
can be bounded using following lemma.

Lemma 1 ([38]). Let X,Y1, . . . , Yq ⊆ [l] such that holds |X| , |Yi| ≥ d and
|(X \ Yi) ∪ (Yi \ X)| ≥ d for some d ≥ 1 and all i. Then, we have

Pr [a(X) = 0 ∧ ∀i ∈ [q] : a(Yi) �= 0] ≥
(

1 − C · q ·
√

�

d · √
w

)

· D√
d · w

for a(X) =
∑

i∈X xi and for fixed constants C,D that do not depend on values
�, w, d, q,X and the Yi

To apply this lemma to our analysis we set X := m∗ and Yi = mi for i ∈
[1, . . . , qS], a(X) = F (m∗) and a(Yi) = Kqj

(mj). � denotes the bit-length of the
message and w equals in our scheme to the length of the vector a, such that
w = �. It also holds that | (X \ Yi)∪ (Yi \ X) | ≥. We consider that abort denotes
the event that the simulation fails. This happens either because F (mi) = 0 for
a signature query on mi, or because F (m∗) �= 0. The lemma above provides an
upper bound of 1−Θ(1/q). We conclude that Pr [a(X) = 0 ∧ ∀i ∈ [q] : a(Yi) �= 0]
corresponds to Pr[abort]. The proof in [38] for Lemma 1 showed that the upper
bound can be estimated by D

√
χ

4C
1

qS
, where χ = d/�. Since χ is a constant, then

the probability P [abort] has a lower bound of Θ(1/q). That means that the
lower bound of the probability Pr[abort] is ε(1/q). This completes the proof of
unforgeability of our TBS scheme. ��
Theorem 2 (Blindness). Our TBS scheme is blind in the common reference
string model assuming the hardness of the DLin assumption from Definition 2,
the perfect hiding property and the zero-knowledge property of the NIZK proof
from [35,37].

Proof. The full proof of blindness is given in AppendixB.

82 V. Kuchta and M. Manulis

5 Applications

Having introduced a new TBS construction, we highlight now its application to
distributed e-voting and to distributed e-cash systems.

Distributed Verifiable E-voting. We recall first the general concept of an e-
voting scheme and highlight functionalities of its algorithms based on [20]: a voter
V is a party that is authorized by a voting authority to submit votes. The tallying
authority collects individual votes and tally the results of the election to obtain
the outcome. A public board which can be considered as a broadcast channel
makes its content public to all parties and each party can add information to
the board but not remove or modify any of the published contents. This board
is typically used for the purpose of universal verifiability [25] of the e-voting
process.

Koenig et al. [44] presented a generic template for e-voting protocols with
distributed voting authorities assuming existence of threshold blind signatures,
yet without offering concrete constructions of the latter schemes. Their generic e-
voting protocol was shown to satisfy the security properties from [45]. By using
our rerandomizable threshold blind signature scheme we therefore enable the
actual construction of such distributed e-voting scheme.

The resulting scheme proceeds as follows. Each voting authority Ai, i =
1, . . . , n is in possession of the secret share ski from our TBS construction,
and the corresponding public key pk is assumed to be published on the public
board. Each voter encrypts its vote using the public key of the tallying authority
and executes the TBSign protocol with each of n voting authorities to obtain a
threshold blind signature σ on the encrypted vote if at least t out of n authorities
provide their shares. It combines all signature share to a common threshold blind
signature σ. This signature and the encrypted vote are sent to public board. The
tallying authority decrypts each vote and publishes its content on the board
together with the corresponding proof of decryption. The votes can then be
counted and verified publicly.

In general, an e-voting scheme is required to provide the following properties
that we recall informally here. More formal definitions can be found in [8,31,
45] The first important property is privacy, which means that individual votes
remain hidden. The soundness property prevents dishonest voters from biasing
the voting process. Finally, the public verifiability property ensures that anyone
can check that the votes has been counted to prevent potential falsifications of
counting process.

We briefly discuss why our construction offers privacy, soundness and public
verifiability. Privacy follows from the fact, that the e-voting scheme is based on
our TBS scheme. This guarantees in case that all authorities collude against a
voter, the voter’s privacy remains preserved due to the blindness property of the
TBS scheme. Soundness is satisfied because of the TBS unforgeability. Public
verifiability is satisfied because the decrypted votes, corresponding ciphertext as
well as proofs for correct decryption of votes are published on the public board.

Rerandomizable Threshold Blind Signatures 83

Distributed E-cash. We recall the basic functionality of an e-cash scheme [23].
The parties involved are the banks, users and merchants. Any user can withdraw
an e-coin from her account at the bank and then spend it at some merchant.
The merchant can then deposit the received coin on its account in the bank. In a
distributed e-cash the role of the bank is split amongst n currency issuers, who
are involved in the process of coin generation. This distributed approach helps
to mitigate the threat of dishonest banks as suggested by Miers et al. [49].

Our TBS scheme can be used as a building block for a distributed e-cash
scheme as discussed in the following. Upon withdrawal the user requests a coin
by choosing a random unique coin identifier r and by executing the TBSign
protocol over a secure channel with n issuers, each in possession of a secret
key share ski. After obtaining at least t valid signature shares on r the user
can compute the blind signature σ which resembles the coin. The coin spending
protocol is performed over a secure channel through which the user sends its
coin (σ, r) to the merchant, who in turn can check the validity of the coin by
executing the TBVerify algorithm. If the coin is valid, the merchant establishes
a secure connection with the bank aiming to deposit it on its account. In order
to avoid double-spending the bank must check that no coins with identifier r
were previously spent using the coin database that is maintained by the bank. If
the coin passes this check then the bank deposits it on the merchant’s account.

A (distributed) e-cash scheme is supposed to fulfill the following three com-
mon properties [16,18]. The anonymity property means that even if t−1 dishon-
est issuers conspire with malicious merchants, the coin withdrawal and spending
phases performed by the user should remain unlinkable. The balance property
prevents coalitions of malicious users and merchants from depositing more coins
than were originally withdrawn. The (ex)culpability property implies that any
dishonest user who is willing to spend one coin twice is caught and that no
coalition of at most t − 1 malicious issuers with merchants is able to accuse an
honest user of double-spending.

We discuss briefly the security of the above approach. The anonymity prop-
erty follows from the blindness of TBS signatures, which guarantees that spend-
ing of a coin (r, σ) cannot be linked to the corresponding withdrawal phase. The
balance property follows from unforgeability of TBS signatures and the require-
ment on the bank to check that coin identifiers r do not repeat. If r does not
repeat and more coins were deposited than issued then at least of those coins
would resemble a TBS forgery. The (ex)culpability property does not rely on
the security of the TBS scheme and follows from the authentication property of
secure channels between the user and the issuers upon withdrawal and between
the user and the merchant upon spending. More precisely, from the authentica-
tion requirement on such channels. In order to accuse an honest user of double
spending malicious issuers and merchants would need to come up with a tran-
script of the spending protocol authenticated by the user that shows the attempt
to spend the same coin (r, σ) twice. Similarly, in order to catch a dishonest user
who double-spends a coin honest issuers and merchants would be able to present
two transcripts of the spending protocol authenticated by this user.

84 V. Kuchta and M. Manulis

6 Conclusion

We proposed the first standard-model construction of (re-randomizable) thresh-
old blind signatures (TBS), where signatures can be obtained in a blind way
through interaction with n signers of which t are required to provide their sig-
nature shares. The stronger security notions for TBS schemes formalized in our
work extend the definitions from [54] to the threshold setting. We further showed
how our TBS construction can be used to realize a distributed e-voting protocol
following the template from [44] that guarantees privacy, soundness and public
verifiability in presence of distributed voting authorities. As a second applica-
tion we discussed construction of a distributed e-cash scheme, which achieves
the desirable properties of anonymity, balance, and (ex)culpability, and where
n issuers are involved in the generation of coins, a measure suggested in [49] to
address the trust problem in non-distributed e-cash scenarios.

A Blind Signature Scheme by Okamoto [51]

Our construction is influenced by the techniques underlying the following blind
signature scheme from [51].

BParGen(1λ): Generate the public bilinear group parameters I = (G,GT , q, g, e).
KGen(I): Pick x

r← Z
∗
q and generators g2, u

′, u1, . . . , un
r← G and set g1 ← gx.

Output pk = (g, g1, g2, u
′, u1, . . . , un) and sk = gx

2 .
BSign(·): Let m ∈ {0, 1}n be a message and μi the i-th bit of m. User U selects

r
r← Z

∗
p and computes X ←

(

u′ n
∏

i=1

uμi

i

)r

and sends X to the signer S. U

additionally provides to S that it knows (r, μ1, . . . , μn) with μi ∈ {0, 1} for
X using the following witness indistinguishable Σ protocol:
U selects δ1, . . . , δn

r← Z
∗
p, computes Mi = uμi

i (u′)δi , (i = 1, . . . , n) and
sends (M1, . . . ,Mn) to S.

U proves to S that U knows δi such that Mi = (u′)δi for μi = 0 or Mi =
ui(u′)δi for μi = 1, where i ∈ [1, n]. This proof can be realized by a Σ
protocol which was described in [5].

U proves to S that U knows (t, β, γ1, . . . , γn) such that X =
(

n
∏

i=1

Mi

)t

·

(u′)β , and X = (u′)t
n
∏

i=1

uγi

i , where β ← t−t(
n
∑

i=1

δi) mod p and γi ← tμi.

If S accepts in the above protocol then it selects d
r← Z

∗
p, computes Y1 ←

gx
2Xd, Y2 ← gd, and sends (Y1, Y2) to U . U eventually selects s

r← Z
∗
p and

computes a blind signature σ = (σ1, σ2), where

σ1 ← Y1

(

u′
n

∏

i=1

uμi

i

)s

and σ2 ← Y r
2 gs.

Rerandomizable Threshold Blind Signatures 85

–BVerify(pk,m, σ): Parse pk as (g, g1, g2, u
′, u1, . . . , un) and σ as (σ1, σ2). If

e(σ1, g) = e(g1, g2)e
(

σ2, u
′ n
∏

i=1

uμi

i

)−1

output 1; otherwise output 0.

The unforgeability and blindness of the scheme were proven in [51] based on the
unforgeability of the Waters scheme [58] and the security of “OR” proofs [24].

B Proof of Theorem 2 (Blindness)

Proof. We assume that the proposed signature scheme is not blind. That means
the existence of a dishonest signer S∗, which can guess b correctly with a non-
negligible advantage 1/2 + ε. We construct an algorithm C which can break
the security of the DLIN assumption as follows. Given the public parameters
pp = (G,GT , q, e, g), the DLIN problem instance (ga, gb, gc) = (u

′

1, u
′

2, u
′

3) the

challenger C computes (u1,j , u2,j , u3,j) =
(

(

u
′

1

)ξ1,j

,
(

u
′

2

)ξ2,j

,
(

u
′

3

)ξ3,j
)

, with

ξ1,j , ξ2,j , ξ3,j ∈ Z
∗
q , and ξ3,j = ξ1,j +ξ2,j , j ∈ {1, . . . , �}. C gives (pp, pk, u

′

1, u
′

2, u
′

3,
u1,j , u2,j , u3,j) to S∗ as CRS. S∗ gives C a public key pk = (g1, g2,vk) and two
messages m0,m1 ∈ Z

∗
q . The challenger C checks if pk ∈ G and m0,m1 ∈ Z

∗
q . If

it holds C picks a random bit b ∈ {0, 1}. C chooses ri ∈ Z
∗
q and computes Xi,0 =

(u
′

1

∏�
j=1 u

μj,0
1,j)ri and Xi,1 = (u

′

1

∏�
j=1 u

μj,1
1,j)ri for mb = (μ1,b, . . . , μ�,b), b ∈

{0, 1}. C executes the both NIZK protocols from Sect. 4.1 to prove S∗ that C
knows (ri, μ1,b, . . . , μ�,b) for both messages mb = {m0,m1}. From the proofs in

[35,37] follows that for u3,j =
(

u
′

3

)ξ1,j+ξ2,j

the commitments are perfect hid-
ing and the two parameter initializations are indistinguishable under the DLIN
assumption. Therefore the commitments on the messages mb and m1−b leak no
information about the message. The perfect hiding property of commitments
allows to simulate NIZK proofs (π(1)

i,0 , π
(2)
i,0) and (π(1)

i,1 , π
(2)
i,1), that remain indis-

tinguishable from real proofs as shown in Sect. 4.4, [35]. C outputs Xi,bXi,1−b

and the simulated NIZK proofs (π(1)
i,b , π

(2)
i,b) and (π(1)

i,1−b, π
(2)
i,1−b), where π

(1)
i,b is the

first part of NIZK proof, which is built to the commitment Xi,b and π
(2)
i,b is the

corresponding second part of NIZK proof to the commitment Xi,b. Analogously
are defined the proofs (π(1)

i,1−b, π
(2)
i,1−b). After completing the NIZK protocol the

challenger C acts as a honest user and proceeds in the same manner as the real
one. C sends his outputs to the dishonest signer S∗. The challenger C executes
the signing process first on behalf of Ub on input (pk,Xi,b, π

(1)
i,b , π

(2)
i,b) and then

on behalf of U1−b on input pk,Xi,1−b, π
(1)
i,1−b, π

(2)
i,1−b). Since the commitments

and the proofs do not leak any information about the message, the output σi,b

of the signing protocol on behalf of Ub is indistinguishable from the output
σi,1−b of the protocol on behalf of U1−b. If S∗ rejects to sign one of the inputs
(Xi,b, π

(2)
i,b) or (Xi,1−b, π

(2)
i,1−b), then for the corresponding output holds σb = ⊥

or σ1−b = ⊥. This means that the both resulting signatures are set to ⊥, and S∗,

86 V. Kuchta and M. Manulis

does not gain any advantage if he would try to hinder the game execution. Oth-
erwise, after finishing the signing phase of the blind signature for Ub and U1−b,
C checks the validity of the obtained signatures for U0, U1 by computing the
follows e(Yi,b,1, g) = e(g2, vki)e(Xi,b, Yi,b,2). If both of the signatures σi,b, σi,1−b

are valid, C gives them to S∗. If only one of them is valid, C outputs ⊥. C obtains
then the output b′ of S∗. If b = b′, C outputs β ← 0, otherwise it outputs β ← 1.

Analysis: Observe that if b = b′ then (u1,j , u2,j , u3,j) for j = {1, . . . , �} are DLIN

tuples with (u1,j , u2,j , u3,j) =
(

(

u
′

1

)ξ1,j

,
(

u
′

2

)ξ2,j

,
(

u
′

3

)ξ3,j
)

, with ξ3,j = ξ1,j +

ξ2,j and (u
′

1, u
′

2, u
′

3) = (ga, gb, bc). In this case the challenger outputs bDLIN = 1
and σb, σ1−b are perfectly simulated. Therefore Pr[bDLIN = 1|b = b′] = 1/2
Whether the challenger C outputs ⊥ or two valid signatures σ0, σ1 depends only
the adversary’s reply, i.e. whether its reply σi satisfies the verification process or
not. Therefore it is completely independent from b, since the distribution of X0

and X1 are indistinguishable from each other. Hence Pr[bDLIN = 0|b �= b′] =
1/2 + ε. Eventually it follows that the success probability in DLIN problem is
1/2(1/2) + 1/2(1/2 + ε) = 1/2 + ε/2, which contradicts the DLIN assumption,
for negligible ε. ��

References

1. Abe, M.: A secure three-move blind signature scheme for polynomially many signa-
tures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151.
Springer, Heidelberg (2001)

2. Abe, M., Fehr, S.: Adaptively secure Feldman VSS and applications to universally-
composable threshold cryptography. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 317–334. Springer, Heidelberg (2004)

3. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

4. Abe, M., Ohkubo, M.: A framework for universally composable non-committing
blind signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
435–450. Springer, Heidelberg (2009)

5. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000)

6. Baudron, O., Fouque, P., Pointcheval, D., Stern, J., Poupard, G.: Practical multi-
candidate election system. In: Proceedings of the Twentieth Annual ACM Sym-
posium on Principles of Distributed Computing, PODC 2001, pp. 274–283. ACM
(2001)

7. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The power of RSA
inversion oracles and the security of Chaum’s RSA-based blind signature scheme.
In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 309–328. Springer, Heidel-
berg (2002)

8. Benaloh, J.C., Tuinstra, D.: Receipt-free secret-ballot elections (extended
abstract). In: Proceedings of the 26th Annual ACM Symposium on Theory of
Computing, pp. 544–553. ACM (1994)

Rerandomizable Threshold Blind Signatures 87

9. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomiz-
able ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011)

10. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Short blind signatures.
J. Comput. Secur. 21(5), 627–661 (2013)

11. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

12. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

13. Brands, S.: Untraceable off-line cash in wallets with observers. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)

14. Brands, S.A.: An efficient off-line electronic cash system based on the representa-
tion problem. Technical report, Amsterdam, The Netherlands (1993)

15. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: Pro-
ceedings of the 2008 ACM Conference on Computer and Communications Security,
CCS 2008, pp. 345–356. ACM (2008)

16. Camenisch, J.L., Hohenberger, S., Lysyanskaya, A.: Compact e-Cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005)

17. Camenisch, J.L., Koprowski, M., Warinschi, B.: Efficient blind signatures without
random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp.
134–148. Springer, Heidelberg (2005)

18. Camenisch, J., Lysyanskaya, A., Meyerovich, M.: Endorsed e-cash. In: 2007 IEEE
Symposium on Security and Privacy (S&P 2007), pp. 101–115. IEEE Computer
Society (2007)

19. Camenisch, J.L., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer,
Heidelberg (2007)

20. Cetinkaya, O., Cetinkaya, D.: Verification and validation issues in electronic voting.
Electron. J. e-Government 5, 117–126 (2007)

21. Chaum, D.: Blind signatures for untraceable payments. CRYPTO 1982, pp. 199–
203. Springer, Heidelberg (1982)

22. Chaum, D.: Elections with unconditionally-secret ballots and disruption equivalent
to breaking RSA. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330,
pp. 177–182. Springer, Heidelberg (1988)

23. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990)

24. Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

25. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997)

26. Desmedt, Y.G.: Society and group oriented cryptography: a new concept. In:
Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Hei-
delberg (1988)

27. Desmedt, Y.G., Frankel, Y.: Shared generation of authenticators and signatures.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer,
Heidelberg (1992)

88 V. Kuchta and M. Manulis

28. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
28th Annual Symposium on Foundations of Computer Science, pp. 427–437. IEEE
Computer Society (1987)

29. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006)

30. Franklin, M., Yung, M.: Towards provably secure efficient electronic cash. Technical
report TR CUSC-018-92, Columbia University, Department of Computer Science
(1993). Also in: Lingas, A., Carlsson, S., Karlsson, R. (eds.): ICALP 1993. LNCS,
vol. 700. Springer, Heidelberg (1993)

31. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993)

32. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011)

33. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signa-
tures. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371.
Springer, Heidelberg (1996)

34. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)

35. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006)

36. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010)

37. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive Zaps and New Techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006)

38. Hofheinz, D., Jager, T., Knapp, E.: Waters Signatures with Optimal Security
Reduction. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 66–83. Springer, Heidelberg (2012)

39. Horvitz, O., Katz, J.: Universally-composable two-party computation in two
rounds. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129.
Springer, Heidelberg (2007)

40. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society,
WPES 2005, pp. 61–70. ACM (2005)

41. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski
Jr, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997)

42. Kiayias, A., Zhou, H.-S.: Equivocal blind signatures and adaptive UC- security. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 340–355. Springer, Heidelberg
(2008)

43. Kim, J.-H., Kim, K., Lee, C.S.: An efficient and provably secure threshold blind
signature. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 318–327. Springer,
Heidelberg (2002)

Rerandomizable Threshold Blind Signatures 89

44. Koenig, R.E., Dubuis, Haenni, R.: Why public registration boards are required in e-
voting systems based on threshold blind signature protocols. In: Electronic Voting
2010, EVOTE 2010, 4th International Conference, Co-organized by Council of
Europe, Gesellschaft für Informatik and E-Voting.CC, vol. 167 LNI, pp. 255–266.
GI (2010)

45. Lee, B., Kim, K.: Receipt-free electronic voting scheme through collaborationf of
voter and honest verifier. In: Proceeding of JW-ISC 2000, pp. 101–108 (2000)

46. Li, J., Yuen, T.H., Kim, K.: Practical threshold signatures without random oracles.
In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 198–207.
Springer, Heidelberg (2007)

47. Lysyanskaya, A., Peikert, C.: Adaptive security in the threshold setting: from cryp-
tosystems to signature schemes. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol.
2248, pp. 331–350. Springer, Heidelberg (2001)

48. Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on transformations from
composite-order to prime-order groups: the case of round-optimal blind signatures.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538. Springer,
Heidelberg (2010)

49. Miers, I., Garman, C., Green, M., Rubin, A.D. : Zerocoin: Anonymous distributed
e-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
pp. 397–411. IEEE Computer Society (2013)

50. Okamoto, T.: An electronic voting scheme. In: Terashima, N., Altman, E. (eds.)
Advanced IT Tools. IFIP, pp. 21–30. Springer, Heidelberg (1996)

51. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer,
Heidelberg (2006)

52. Pointcheval, D., Stern, J.: Provably secure blind signature schemes. In: Kim, K.,
Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 252–265. Springer,
Heidelberg (1996)

53. Pointcheval, D., Stern, J.: New blind signatures equivalent to factorization
(extended abstract). In: Proceedings of the 4th ACM Conference on Computer
and Communications Security CCS 1997, pp. 92–99. ACM (1997)

54. Schröder, D., Unruh, D.: Security of blind signatures revisited. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 662–679.
Springer, Heidelberg (2012)

55. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
56. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.

LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)
57. Vo, D.L., Zhang, F., Kim, K.: A new threshold blind signature scheme from pairings

(2003)
58. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,

R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

59. Zhou, X.:Threshold cryptosystem based fair off-line e-cash. In: Proceedings on the
2nd International Symposium on Intelligent Information Technology, pp. 692–696
(2008)

Verifiable Computation of Large Polynomials

Jiaqi Hong1,2, Haixia Xu1(B), and Peili Li1,2

1 Institute of Informassurance and Communication Security Research Center,
CAS, Beijing, China

2 Graduate University of the Chinese Academy of Sciences, Beijing, China
{hongjiaqi,xuhaixia,lipeili}@iie.ac.cn

Abstract. Due to the proliferation of powerful cloud service, verifi-
able computation, which makes a computationally weak client perform
intensive computations possible through outsourcing tasks to a powerful
server, is attracting increasing attention. The correctness of the returned
result should be verified as the server may be not trusted.
In this paper, we present a verifiable computation protocol on large poly-
nomials, which can be publicly verified by any parties in the network.
Compared with verifiable computation protocol presented by Backes
et al., which is on quadratic, multi-variable polynomials, our verifiable
computation protocol is on high degree, multi-variable polynomials and
publicly verifiable.

Keywords: Verifiable computation · Amortized · Pre-computation ·
Public verification

1 Introduction

Verifiable computation makes it possible for personal computers to perform
intensive computations through outsourcing computation tasks to a powerful
cloud. In the age of cloud, resources are becoming more centralized. Individu-
als lacking computational capacity need only to buy the corresponding service
in the cloud instead of purchasing their own expensive equipments to perform
computation tasks. In this way, not only individual performs its computations
cheap, but also resources in the cloud shared by many individuals are made full
use of. So this kind of service model is attracting increasing attention.

In this paper, we name those who want to outsource intensive tasks clients,
and those who have powerful resources servers. As the server may be not hon-
est, the returned result should be verified by client to avoid malicious behavior
from dishonest server. The cost of verification must be cheaper than the cost
of preforming the computation, otherwise this outsourcing task will make no
sense. In many instances, other parties in the network except for the client want
to use this computation result. It will be better if the returned result can be
publicly verified by all parties. For example, a doctor asks a server to perform a
computation on the data of his patient, nurses need the computation result for
better nursing. If the nurses have the ability to verify the result, they can get
access to the correct result even if the doctor is not online. Many cases like this.
c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 90–104, 2015.
DOI: 10.1007/978-3-319-27998-5 6

Verifiable Computation of Large Polynomials 91

1.1 Related Work

Verifiable computation has a large body of prior works. There are two branches,
one is on general functions, the other is on specific functions. Researches on general
functions often used the method of knowledge proofs to verify the correctness of the
returned result [10,11,17,18,25]. Until Gentry et al. constructed a fully homomor-
phic encryption over idea lattices [13], several verifiable computation protocols on
general functions using the fully homomorphic encryption appeared [1,8,16,21].
A representative is Gennaro et al.’ research work [16]. The authors combined fully
homomorphic encryption with Yao’s garbled circuit and used the range of the cir-
cuit to verify the result. Researches on specific functions utilized the special struc-
ture of the outsourcing function. So those researches often focused on polynomial
and matrix computations [2,4,12,26]. Of course, there were some other researches
on linear algebra [23] and exponential operations [19]. Our verifiable computation
protocol is on large polynomials which have a large scale of variables and are in
high degree. This kind of polynomials has an extensive use in important statistics.
We will introduce two notions most relevant with our work in the following, one is
amortized verifiable computation, the other is public verification.

Amortized Verifiable Computation. This notion was proposed by Gennaro
et al. [16], it was widely used in many of the later works about verifiable computa-
tion [2,4,7,12,26]. The client performs a pre-computation for a specific function,
then the returned result from server can be verified by client in a cheap cost.
Although the pre-computation cost may be as expensive as the cost of performing
the outsourcing function, this function can be performed several times on differ-
ent inputs by server. After several computations, this expensive pre-computation
cost can be amortized.

Benabbas et al. [4] followed this amortized notion and they proposed a novel
method on verifiable polynomial computations. They utilized pseudorandom
functions which have closed-form efficiency to generate a series of numbers as
new polynomial coefficients according to specific polynomial structure. Clients
use the reconstructed polynomial to verify the correctness of the returned result.
As the reconstructed polynomial can be efficiently computed, this protocol is effi-
cient on the amortized notion. The randomness of their pseudorandom functions
are based on decisional Diffie-Hellman assumption.

Backes et al. [2] proposed another brand new method on verifiable quadratic
polynomial computations. They combined homomorphic MAC with verifiable
computation and this is also a representative of amortized verifiable computa-
tion. Clients preform a pre-computation on the multi-variable, quadratic polyno-
mial first, then the returned result from the server can be verified by computing
a quadratic polynomials on two variables. The verification is pretty efficient.
Though their protocol is on quadratic polynomials, their work is irradiative.
The security of their homomorphic MAC is based on decision linear assumption.

Public Verification. Recently, two works on verifiable computation can be pub-
licly verified. Parno et al. [24] used the primitive of attribute-based encryption.

92 J. Hong et al.

As we know, the ciphertext of an attribute-based encryption can be decrypted
only if the attribute makes a function true. They used the result of an attribute
under a one way function as public verification key. Any verifier performs this
one-way function on the returned result to check the equality with the public
verification key to verify the result. Their protocol was suitable for functions
that can be expressed as poly-size Boolean Formulas. Another work is by Fiore
et al. [12]. They followed the work of Benabbas et al. [4] and made the result pub-
licly verifiable by combining it with a bilinear map. They used a pseudorandom
function proposed by Lewko and Waters [22], and reduced the security of their
verifiable computation protocol on co-computational Diffie-Hellman assumption.

In publicly verifiable computation protocols, the client performs an off-line
pre-computation according to the function only, and then performs on-line pre-
computations under inputs. The result of the on-line pre-computation should be
public to allow a public verification. Expensive off-line pre-computation cost will
be amortized to each on-line pre-computation if this function will be outsourced
many time to server under different inputs.

1.2 Our Contribution

In this paper, we present a verifiable computation protocol on large polynomials.
We call polynomials of a large scale of variables and in high degree large polyno-
mials. This kind of polynomials has a significant use in statistics. We follow the
idea of Backes et al. [2] and extend their protocol to a more generally applicable
case. Their protocol is about verifiable computation on quadratic polynomials,
while our protocol is on high degree polynomials and the result can be publicly
verified. One challenge is that their protocol restricted in quadratic polynomial
because their basic tool, homomorphic MAC, was constructed over a bilinear
map. In a bilinear map setting, multiplication of exponents can be performed
at most once. If we want to construct a verifiable computation protocol on high
degree polynomials, the multilinear map is intuitive. Fortunately, Garg et al.
[14] made a plausible lattices-based construction of multilinear map. Though
this multilinear map is not efficient enough now, this cannot stop people from
using it for new constructions [6,15,20,26]. This multilinear map makes sense
in our verifiable computation protocol as the pre-computation is performed on
integers first, and then encodes the result to a group element in multilinear
map. Another challenge is that the randomness of their pseudorandom function
used for constructing homomorphic MAC is based on decision linear assumption
which will no longer hold in a multilinear map setting. So we construct a new
pseudorandom function based on subgroup decisional assumption to build our
verifiable computation protocol. What’s more, this pseudorandom function has
a better performance in reducing the pre-computation cost than the pseudo-
random function used by Backes et al.. The last challenge is to realize public
verification. We follow the idea of Fiore et al. [12] to make a publicly verifiable
computation protocol. The security is based on co-computational Diffie-Hellman
assumption.

Verifiable Computation of Large Polynomials 93

Assume the outsourcing polynomial is of m variables and degree at most d
in each monomial. The main features of our protocol are as follows:

– Our protocol is a publicly verifiable computation protocol on large polynomi-
als.

– We follow the idea of amortized verifiable computation. The off-line pre-
computation cost is O((m + 1)d), same as the cost of performing the out-
sourcing polynomial computation. The on-line pre-computation cost is O(d)
in addition with a multilinear map operation. After several computations on
different inputs, off-line pre-computation cost can be amortized.

2 Preliminaries

Notation. If S is a set, x
U←− S denotes uniformly choosing an element x from S.

If A is an algorithm, x ← A(·) denotes the process of running A on some appropri-
ate input and assigning its output to x. Let n ∈ N be the security parameter, lastly
we abbreviate param for public parameter, PPT for probabilistic polynomial time
and PRF for pseudorandom function.

2.1 Multilinear Maps

One of our basic tool is the multilinear map. Garg et al. [14] made a plausible
lattices based construction, then Coron et al. [9] made another construction
over integers. Their multilinear map is a graded encoding system in fact, here
we review an intuitive definition of it. The groups in this paper are all cyclic
groups with order N = pq, where p, q are both n-bit primes.

Definition 1 (Multilinear Map). Let
−→
G = (G1, . . . ,Gk) be a sequence of

cyclic groups each of order N , and gi be a canonical generator of Gi. There exist
a set of bilinear maps {ei,j : Gi ×Gj → Gi+j |i, j ≥ 1 ∧ i + j ≤ k}, which satisfy
the following operations:

ei,j(ga
i , gb

j) = gab
i+j : ∀a, b ∈ ZN .

when the context is obvious, we drop the subscripts i and j, such as, e(ga
i , gb

j) =
gab

i+j.

Let G(1n, k) denote a multilinear map generator with a security parameter n
and a positive integer k which indicates the required encoding level as its inputs.
The output of G(1n, k) is a multilinear map Γk = (N,G1, . . . ,Gk, g1, . . . , gk, e) as
described before. In a multilinear map setting, multiplication of the exponents
in high degree is possible without restriction of degree 2 as in a bilinear map
setting.

94 J. Hong et al.

2.2 Pseudorandom Function

Here, we review a definition of PRF. A PRF consists of two algorithm, KeyGen
and FK(·). Assume that the domain of the PRF is X and the range is Y, KeyGen
produces a secret key K while FK(·) produces y ∈ Y according to K and an
input x ∈ X . A definition of PRF is as follows:

Definition 2 (PRF). F is a pseudorandom function if for every PPT adversary
A, there exists a negligible function neg(·) such that for all n:

|Pr[AFK(·)(1n, param) = 1] − Pr[AR(·)(1n, param) = 1]| ≤ neg(n)

where R : X → Y is a random function.

2.3 Computational Assumptions

Let Γk = (N,G1, . . . ,Gk, g1, . . . , gk, e) ← G(1n, k) be a k-linear map. We review
the (k, l)-Multilinear Diffie-Hellman Inversion assumption suggested by Sahai
et al. [20]:

Definition 3 ((k, l)-MDHI). Given Γk and g1, g
a
1 , . . . , gal

1 ∈ G1, where a
U←−

ZN , the advantage of an adversary A in finding out gakl+1

k is

Advmdhi
A = |Pr[A(Γk, ga

1 , . . . , gal

1) = gakl+1

k]|.
For any PPT adversary A, there exists a negligible function neg(·) such that

for all n, Advmdhi
A (n) ≤ neg(n).

The subgroup decisional assumption was first suggested by Boneh et al. [3].
Given Gi with order N = pq and u

U←− Gi, it is hard to determine whether u
belongs to subgroup G

q
i or not.

Definition 4 (SDAi). Given Gi and u
U←− Gi, the advantage of an adversary

A in determining whether u belongs to subgroup G
q
i or not is

Advsdai

A = |Pr[A(Gi, u) = 1] − Pr[A(Gi, u
p) = 1]|.

For any PPT adversary A, there exists a negligible function neg(·) such that
for all n, Advsdai

A (n) ≤ neg(n).

Zhang et al. [26] proved that subgroup decisional assumption holds for Γk if
SDAi holds for every Gi, i = 1, . . . , k.

The last one is the co-computational Diffie-Hellman assumption suggested
by Boneh et al. [5].

Definition 5 (co-CDH Assumption). Given Γk and ga
1 , gb

2, where a, b
U←−

ZN , the advantage of an adversary A in finding out gab
1 is

Advcdh
A = Pr[A(Γk, ga

1 , gb
2) = gab

1].

For any PPT adversary A, there exists a negligible function neg(·) such that
for all n, Advcdh

A (n) ≤ neg(n).

Verifiable Computation of Large Polynomials 95

2.4 Basic Model

Now we review a basic publicly verifiable computation model. The client per-
forms an off-line pre-computation according to the outsourcing function only
through the following KeyGen algorithm, and then performs an on-line pre-
computation on specific inputs through the following ProbGen algorithm. The
result of the on-line pre-computation should be public to allow a public verifi-
cation. The server runs the Compute algorithm and returns a σy. Any third
party can verify the returned computation result and output a value y or an
error ⊥.

Let F be a family of functions. A publicly verifiable computation protocol
VC for F is as follows:

– KeyGen(1n, f) → (SK,PK,EK). With a security parameter n and f ∈
F , key generation algorithm produces secret key SK, public key PK, and
evaluation key EK. Send EK to server. This is the off-line pre-computation
on f .

– ProbGen(PK,SK, x) → (σx, V Kx). With an input x in the domain of f , the
problem generation algorithm allows the client to produce an input encoding
σx and a public verification key V Kx. This is the on-line pre-computation on
specific input x.

– Compute(PK,EK, f, σx) → σy. With PK, EK, f and σx, this algorithm
allows server to perform a computation on f and return a σy to the verifier.

– Verify(PK, V Kx, σy) → y/⊥. With PK, V Kx, and σy, this algorithm allows
any party to verify the result and return a value y or an error ⊥.

A verifiable computation protocol is secure if it holds the following properties:
correctness and soundness. Simply, correctness is the value output by an honest
server can be verified correctly.

Definition 6 (Correctness). For any f ∈ F , any (SK,PK,EK) ←
KeyGen(1n, f), any x ∈ Dom(f), if (σx, V Kx) ← ProbGen(PK,SK, x) and
σy ← Compute(PK,EK, f, σx), then the output of Verify(PK, V Kx, σy) is
f(x) with all but negligible probability.

Soundness is any PPT adversary A cannot persuade a verifier to accept an
incorrect computation result. Define the following experiment:

ExpPubVer
A [VC, f, l, n] :

(SK,PK,EK) ← KeyGen(1n, f),
For i = 1 to l:

xi ← A(PK,EK, σx,1, V Kx,1, . . . , σx,i−1, V Kx,i−1),
(σx,i, V Kx,i) ← ProbGen(PK,SK, xi);

x∗ ← A(PK,EK, σx,1, V Kx,1, . . . , σx,l, V Kx,l),
(σx∗ , V Kx∗) ← ProbGen(PK,SK, x∗),
σ̂y ← A(PK,EK, σx,1, V Kx,1, . . . , σx,l, V Kx,l, σx∗ , V Kx∗),
ŷ ← Verify(PK, V Kx∗ , σ̂y),
If ŷ
=⊥ and ŷ
= f(x∗), output 1, else output 0.

96 J. Hong et al.

For any n ∈ N, any function f ∈ F , the advantage of an adversary A making
at most l = poly(n) queries in the above experiment against VC is

AdvPubVer
A (VC, f, l, n) = Pr[ExpPubVer

A [VC, f, l, n] = 1]

Definition 7 (Soundness). A verifiable computation protocol VC is sound for
F , if for any f ∈ F and any PPT adversary A there exists a negligible function
neg(·) such that for all n, AdvPubVer

A (VC, f, l, n) ≤ neg(n).

3 Multi-labeled Program

The idea of our work is inspired by Backes et al.’ multi-labeled verifiable com-
putation protocol [2]. Briefly describing the conception of multi-labeled program
and its corresponding verifiable computation protocol will help readers appreci-
ate our work more easily.

In a multi-labeled program, a pair of labels L = (Δ, τ) is used to identify
a set of input message, where Δ is data set identifier and τ is input identifier.
For an instance, if we want to record the weather condition per hour in a day,
then we should keep track of temperature, humidity, sunlight and so on hourly.
τ = (τ1, τ2, · · ·) labels temperature, humidity, sunlight etc. respectively, while
Δ labels time. Regard the recordings in each hour as one data set. Different Δi

labels different data sets, then τ can be reused to label inputs in different data
sets. A pair L = (Δ, τ) can uniquely identify a set of inputs while any single Δ
or τ can not. Please refer to [2] for details.

The authors proposed a verifiable computation protocol on quadratic poly-
nomials of m variables using multi-label. The verification cost is the cost of
performing a quadratic polynomial on two variables. This verifiable computa-
tion protocol is efficient if m is large enough. We briefly review their protocols
in the following:

Assume that the outsourcing function f is a quadratic polynomial of m vari-
ables. For every input xi, i = 1, . . . ,m, client generates two pairs of pseudoran-
dom values according to their labels such as: (ui, vi) ← FK1(τi), (a, b) ← FK2(Δ),
where F is a PRF and K1,K2 are secret keys of F . Client chooses α

U←− ZN

as its secret key and sets y
(i)
0 = xi, Y

(i)
1 = (guia+vib−xi)

1
α , Y

(i)
2 = 1 ∈ G1 for

i = 1, . . . , m, sends m tuples (y0, Y1, Y2) to server. Server computes σy according
to the arithmetic circuit of f gate by gate:

– Addition. If the gate is an addition gate, assume values on two input wires
are respectively y

(1)
0 and y

(2)
0 . Compute (y0, Y1, Y2) as follows:

y0 = y
(1)
0 + y

(2)
0 , Y1 = Y

(1)
1 · Y

(2)
1 ,

Y2 = Y
(1)
2 · Y

(2)
2 .

Verifiable Computation of Large Polynomials 97

– Multiplication. If the gate is a multiplication gate, assume values on two
input wires are respectively y

(1)
0 and y

(2)
0 . Compute (y0, Y1, Y2) as follows:

y0 = y
(1)
0 · y

(2)
0 , Y1 = (Y (1)

1)y
(2)
0 · (Y (2)

1)y
(1)
0 ,

Y2 = e(Y (1)
1 , Y

(2)
1).

– Mulplication with constant. If the gate is a multiplication gate, the value
of one input wire is a constant c, the value of another input wire is y

(1)
0 .

Compute (y0, Y1, Y2) as follows:

y0 = c · y
(1)
0 , Y1 = (Y (1)

1)c,

Y2 = (Y (1)
2)c.

After finishing the computation, server sets σy = (y0, Y1, Y2) and returns it to
client. The verification equation is:

W = e(g, g)y0 · e(Y1, g)α · Y α2

2 , (1)

where W is computed by client in two steps. Firstly, the client performs a pre-
computation on the outsourcing quadratic polynomial f to obtain a quadratic
polynomial on two variables:

ρ(z1, z2) = f(ρ1(z1, z2), . . . , ρm(z1, z2))

where ρi(z1, z2) = uiz1+viz2, (ui, vi) ← FK1(τi). Then, when the client wants to
outsource this polynomial computation on specific inputs, it generates (a, b) ←
FK2(Δ) according to data set label Δ and computes W = ρ(a, b). If Eq. (1) holds,
the returned σy is honestly computed and y0 is the correct computation result.
Otherwise, client outputs ⊥. This polynomial f can be outsourcing many times
on different inputs and the verification cost is the cost of performing a quadratic
polynomial computation on two variables. The correctness and soundness of this
protocol have been proved by Backes et al. [2].

This verifiable computation protocol can deal with polynomials in degree
at most 2 as it is in the setting of bilinear map. If we just extend it to high
degree polynomial using multilinear map, the verification cost will be a two
variables polynomial of the same high degree. Unfortunately, the decision linear
assumption which the protocol reduces the randomness of its PRF on no longer
holds in a multilinear map setting. We construct a variant of the PRF which
has a better performance in reducing the on-line pre-computation cost while
realizing public verification.

4 Our Protocol

In this section, we present a publicly verifiable computation protocol on large
polynomials. Assume that the outsourcing polynomial f is of m variables and
degree at most d. We follow the idea of multi-labeled program and use a pair of
labels L = (Δ, τi) to identify input xi, for all i = 1, . . . ,m. In the following, we
will introduce our PRF first, then give a detailed verifiable computation protocol
built on our PRF.

98 J. Hong et al.

4.1 PRF with Amortized Closed-Form Efficiency

The randomness of our PRF is based on the subgroup decisional assumption.

PRF:

– KeyGen(1n): Let Γk = (N,G1, . . . ,Gk, g1, . . . , gk, e) ← G(1n, k). Choose two
secret keys k1, k2 for PRFs F ′

k1,2
: {0, 1}n → ZN . Output K = {p, q, k1, k2}

and public parameter param = Γk.
– FK(x): On input x, generate a pair of values (a, b) according to its label

L = (Δ, τ) such as: a ← F ′
k1

(τ), and b ← F ′
k2

(Δ), where Δ ∈ {0, 1}n and
τ ∈ {0, 1}n. Output FK(x) = gpab

1 .

Theorem 1. If F′ is a pseudorandom function and the SDA assumption holds
for Γk, then PRF is a pseudorandom function.

Proof. The proof follows by a standard hybrid argument.

Game 0: this is the real game described above for PRF.
Game 1: this is Game 0 except that F ′

k1
(τ) is replaced by a random function

Φ1 : {0, 1}n → ZN . It is easy to argue that Game 1 is indistinguishable with
Game 0.

Game 2: this is Game 1 except that F ′
k2

(Δ) is replaced by a random function
Φ2 : {0, 1}n → ZN . Similarly to the previous case, one can easily argue that
Game 2 is indistinguishable with Game 1.

Game(3, j): let QΔ be the upper bound on the number of distinct Δ queried
by adversary A. If S = {Δ1, . . . ,ΔQΔ

} is the ordered set of Δ queried
by A, then, for 0 ≤ j ≤ QΔ, we define the following partial sets of S:
S≤j = {Δi ∈ S : i ≤ j} and S>j = {Δi ∈ S : i > j}. Then we define
Game (3, j) same as Game 2 except that queries (Δ, τ) where Δ ∈ S≤j are
answered with a random value R chosen uniformly in G1, whereas queries
(Δ, τ) where Δ ∈ S>j are answered with R = gpab where a ← Φ1(τ) and
b ← Φ2(Δ).

As one can notice, Game (3, 0) is the same as Game 2, while Game (3, QΔ) is
the game where all queries are answered with freshly random values in G1, just
like A is getting access to a truly random oracle from X to G1. If for every
1 ≤ j ≤ QΔ, Game (3, j − 1) is computationally indistinguishable from Game
(3, j) under the subgroup decisional assumption holds for Γk, the proof can be
done. So we prove the following lemma:

Lemma 1. If subgroup decisional assumption holds for Γk, then |Pr[G3,j−1] −
Pr[G3,j]| is negligible for 1 ≤ j ≤ QΔ.

The key tool of our proof is the following lemma which shows the function
fb(U) = Upb is a weak PRF under the subgroup decisional assumption.

Lemma 2. If the subgroup decisional assumption holds for Γk then function
fb(U) = Upb, where b

U←− ZN , is a weak PRF.

Verifiable Computation of Large Polynomials 99

Proof. For a tuple (g1, ga
1 , gpab

1), we rename ga
1 as U and gpab

1 as V . Given such
(U, V), challenger can create polynomially-many binary pairs (Ui, Vi) which have
the same form, all Vi are random values in subgroup G

q
1. If there exist a PPT

adversary who can distinguish fb(Ui) with a random function, whose output is
a random value in G1, in a non-negligible probability, then the challenger can
solve subgroup decisional problem with the same probability.

Proof (Lemma 1). Now we show that any PPT adversary A who has non-
negligible probability in distinguish Game (3, j −1) with Game (3, j) can build a
PPT challenger C who distinguishes the weak PRF fb(U) = Upb with a random
function in the same probability.

C receives as input param = Γk and gets access to an oracle which outputs a
binary pair (U, V) on each query. Recall that if O = Of , then V = Upb where b
is the secret key of the weak PRF f . Otherwise, if O = OR, then V is randomly
chosen in G1. In both case, U is randomly chosen at every new query.

C runs the simulation for A as follows.
Assume that Qτ is the upper bound on the number of distinct τ queried by A.

Let (Δ, τ) be query from A, and assume that (Δ, τ) = (Δk, τi) for 1 ≤ k ≤ QΔ

and 1 ≤ i ≤ Qτ . C answers (Δk, τi) as follows.

– If k ≤ j − 1, then C chooses R
U←− G1 uniformly and returns R.

– If k > j, then C chooses bk
U←− ZN and queries the oracle Of . Return R =

fbk
(Ui).

– If k = j, then C returns R = Vi

Basically, the simulator is implicitly setting bj = b where b is the secret key
of the weak PRF f . Let G3,j be the event that Game (3, j) outputs 1 which is
run by adversary A. Finally, C outputs the same bit b as A outputs b.

When C gets access to the weak PRF, where Vi = fb(Ui), then C is simulating
Game (3, j − 1). On the other hand, when C gets access to a random function,
where Vi is random and independent of Ui, then C simulates the view of Game
(3, j). That are Pr[COf = 1] = Pr[G3,j−1] and Pr[COR = 1] = Pr[G3,j]. We
have:

|Pr[COf = 1] − Pr[COR = 1]| = |Pr[G3,j−1] − Pr[G3,j]|
The simulation is perfect, and Lemma 1 has been proved.

The PRF helps to amortize the pre-computation cost. For a specific poly-
nomial f , which is of m variables and in degree d, the client performs the pre-
computation in two steps. In Step 1, the client transforms this polynomial to a
one variable, degree d polynomial ρ in a cost O((m+1)d), the same as the cost of
performing the computation on f . In Step 2, the client performs a computation
on ρ with cost O(d). Details as follows:

Step 1.
This is off-line pre-computation. Generate ai ← F ′

k1
(τi) according to input

identifier τi for i = 1, . . . ,m, where F ′
k1

(·) is the pseudorandom function to
produce an exponent a. Set ρi(z) = pai · z for i = 1, . . . , m. Obviously, all ρi(z)

100 J. Hong et al.

are degree-1 polynomial on variable z with no constant. Perform the computation
of f on ρ1(z), . . . , ρm(z) to get a new one variable, degree d polynomial ρ(z):

ρ(z) = f(ρ1(z), . . . , ρm(z)).

It is worth noting that the above computation can be done off-line by client as
it is only related to function. The input identifier can be reused many times for
a specific polynomial f as long as data set identifier is different. The cost of this
step is O((m + 1)d).

Step 2.
This is on-line pre-computation. Generate b ← F ′

k2
(Δ) according to data set

identifier, where F ′
k2

(·) is the pseudorandom function to produce an exponent b.
Perform the computation of ρ(z) on b, the result is ρ(b) and computation cost
is O(d).

When performing Step 2, the input of polynomial f has been identified.
Step 2 can be performed many times on different inputs for a specific polynomial
f , the cost of off-line pre-computation can be amortized if this polynomial f will
be performed many times on different inputs. So, the cost of pre-computation
will be low on average.

4.2 Construction

Our verifiable computation protocol on large polynomials utilizes the PRF above.
Let f be the outsourcing polynomial, assume it is a polynomial of m variables
and in degree d. Details as follows:

– KeyGen(1n, k, f) → (SK,PK,EK). This is key generation algorithm run
by client. Generate a k-linear map, Γk = (N,G1, . . . ,Gk, g1, . . . , gk, e) ←
G(1n, k), where k = d + 2. Choose α

U←− ZN uniformly. Choose secret keys
of PRF as described before, K = (k1, k2). Run Step 1 to generate a one
variable, degree d polynomial ρ(z). Set ek = (ek0, ek1, . . . , eki, . . . , ekd) where
eki = gαi

d−i+1.
The secret key SK = (k1, k2, p, q, α), the public key PK = Γk. The evaluation
key EK = ek, send it to server.

– ProbGen(SK,PK, x) → (σx, V Kx). This is problem generation algorithm
run by client. Run Step 2 to get the result ρ(b) and set the public verifica-
tion key as V Kx = g

ρ(b)
d+2.

Run PRF to get Ri = gpaib
1 for each input xi, i = 1, . . . ,m. Set σi =

(y(i)
0 , Y

(i)
1 , Y

(i)
2), where y

(i)
0 = xi ∈ ZN , Y

(i)
1 = (Ri · g−xi

1)
1
α ∈ G1, Y

(i)
2 =

1 ∈ G1. Set σx = (σ1, . . . , σm), send it to server.
– Compute(PK,EK, f, σx) → σy. Given the evaluation key EK, σx, PK and

the outsourcing polynomial f , server computes a σy as follows. For our con-
venience to describe, we interpret f(x) as f(x) =

∑s
i=1 fipi(x), where for

each monomial fipi(x) we interpret it further as fipi(x) = fi

∏d
j=1 xij

, where
0 ≤ i1, . . . , id ≤ m, x0 denotes constant 1, while x1, . . . , xm denote the m

Verifiable Computation of Large Polynomials 101

variables. Server computes σy = (y0, Y1, Y2) according to each monomial first
and then adds the s triples (y0, Y1, Y2) together, details as follows:
Initiate y0 = 0, Y1 = 1 ∈ Gd+1, Y2 = 1 ∈ Gd+1.

For i = 1, . . . , s:

If i1 = . . . = id = 0, then:

y0i = fi, Y1i = ek0, Y2i = ek0;

Else, let j be such that ij ≥ 1 and ij+1 = · · · = id = 0:

Y2i = e(Y
(i1)
1 , Y

(i2)
1 , . . . , Y

(ij)

1 , ekj),

Y1i =e(Y
(i1)
1 , . . . , Y

(ij−1)

1 , ekj−1)
y
(ij)
0 · e(Y (i1)

1 , . . . , Y
(ij−2)

1 , Y
(ij)

1 , ekj−1)
y
(ij−1)
0

· · · e(Y (i1)
1 , Y

(i3)
1 . . . , Y

(ij)

1 , ekj−1)
y
(i2)
0 · e(Y (i2)

1 , . . . , Y
(ij)

1 , ekj−1)
y
(i1)
0

· e(Y (i1)
1 , . . . , Y

(ij−2)

1 , ekj−2)
y
(ij−1)
0 ·y

(ij)
0 · · · e(Y (i3)

1 , . . . , Y
(ij)

1 , ekj−2)
y
(i1)
0 ·y(i2)

0

· · ·

e(Y
(i1)
1 , ek1)

y
(i2)
0 ···y

(ij)
0 · · · e(Y

(ij)

1 , ek1)
y
(i1)
0 ···y

(ij−1)
0 ,

y0i = y
(i1)
0 · · · y

(ij)

0 ,

set y0i = fiy0i, Y1i = (Y1i)
fi , and Y2i = (Y2i)

fi ;

set y0 = y0 + y0i, Y1 = Y1 · Y1i, and Y2 = Y2 · Y2i.
Server sets σy = (y0, Y1, Y2) and returns σy to verifier.

– Verify(PK, V Kx, σy) → y/⊥. Any third party who wants to verify the result
checks the following equation:

gy0
d+2 · e(Y1, g1) · e(Y2, g1) = V Kx (2)

If the equation holds, verifier outputs y0 as the correct computation result.
Otherwise, outputs an error symbol ⊥.

First we show the correctness of the protocol briefly. Recall that eki = gαi

d−i+1,
if σy is honestly calculated by server, there is

gy0
d+2 · e(Y1, g1) · e(Y2, g1) = g

ρ(b)
d+2, (3)

Notice that V Kx = g
ρ(b)
d+2, then Eq. (2) holds. The honest result returned from

server can be verified correctly.
Now we show the soundness of our protocol. If (k, l)-MDHI assumption holds

in Γk, any PPT adversary can’t get any secret keys from public key PK and
evaluation key EK.

Theorem 2. If co-CDH assumption holds in Γk, then any PPT adversary A
making at most l = poly(n) queries has advantage

AdvPubV er
A (VC, f, l, n) ≤ neg(n),

where neg(·) is a negligible function.

102 J. Hong et al.

Proof. The proof follows by a standard hybrid argument based on the following
games:

–Game 0: this is the real game same as ExpPubV er
A (VC, f, l, n).

–Game 1: this is Game 0 except for the following change in the evaluation of
ρ(b). For any x asked by the adversary during the game, instead of computing
ρ(b) using the Step 1 and Step 2, which is efficient in an amortized notion,
an inefficient one step evaluation ρ(b) = f(ρ1(b), . . . , ρm(b)) is used. One can
easily argue that Game 1 is indistinguishable with Game 0.

–Game 2: this is Game 1 except that PRF is replaced by a truly random function
R : {0, 1}n ×{0, 1}n → G1. Let R be a set of m random values generated by
this random function where R is a set of m numbers. One can easily argue
that Game 2 is indistinguishable with Game 1 as the randomness of our
PRF.

Now we show if there exists a PPT adversary A who can win in Game 2
with a non-negligible probability, then there is a challenger C who can solve the
co-CDH problem with the same probability.

C takes as input a group description Γk, chooses r
U←− ZN . For a query

x = (x1, . . . , xm) from A, C chooses m random values β1, . . . , βm ∈ ZN , sets
R(i) = gβi

1 , for i = 1, . . . ,m. all R(i) = gβi

1 are random values in G1. Set σx =
(σ1, . . . , σm) where σi = (y(i)

0 , Y
(i)
1 , Y

(i)
2), y

(i)
0 = xi, Y

(i)
1 = (R(i) · g−xi

1)
1
r , Y

(i)
2 =

1 ∈ G1. Set ek = (ek0, ek1, . . . , eki, . . . , ekd) where eki = gri

d−i+1. C computes
V Kx = g

f(β1,...,βm)
d+2 and returns V Kx and σx to A. The distribution of V Kx and

σx are exactly the same as the one in Game 2.
Finally, let σ∗

y = (y∗
0 , Y

∗
1 , Y ∗

2 ,W ∗) be the output of A at the end of the game,
such that for some x∗ chosen by A it holds Verify(PK, V Kx∗ , σy∗) = y∗, y∗
= ⊥
and y∗
= f(x∗). By verification, this means that

g
y∗
0

d+2 · e(Y ∗
1 · Y ∗

2 , g1) = V Kx. (4)

Let σy = (y0, Y1, Y2,W) be the correct output of the computation. Then, by
correctness it also holds:

gy0
d+2 · e(Y1 · Y2, g1) = V Kx. (5)

Dividing the verification Eq. (4) by (5),

g
y∗
0−y0

d+2 = e(Y1/Y ∗
1 · Y2/Y ∗

2 , g1). (6)

That is, for a false y∗
0 , A can find a Y ∗

1 and a Y ∗
2 to satisfy Eq. (6) in a

non-negligible probability, then B solves the co-CDH problem with the same
probability.

Verifiable Computation of Large Polynomials 103

5 Conclusion

In this paper, we propose a delegated computation protocol on high degree poly-
nomials over a large amount of variables which allows public verification. Assume
that the delegated polynomial is of m variables and degree at most d. The off-
line pre-computation cost is O((m + 1)d), same as the cost of performing the
outsourcing polynomial computation. The on-line pre-computation cost is O(d)
in addition with a multilinear map operation. Using the notion of amortization,
off-line pre-computation cost can be amortized if the client delegates the same
function f several times on different inputs. This protocol is efficient in average.

Acknowledgment. This work is supported by the National Natural Science Foun-
dation of China (No.61379140) and the National Basic Research Program of China
(973 Program) (No. 2013CB338001). The authors wish to acknowledge the anonymous
referees for helpful suggestions.

References

1. Barbosa, M., Farshim, P.: Delegatable homomorphic encryption with applications
to secure outsourcing of computation. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 296–312. Springer, Heidelberg (2012)

2. Backes, M., Fiore, D., Reischuk., R. M.: Verifiable delegation of computation on
outsourced data. In: CCS 2013, pp. 863–874. ACM press (2013). A full version is
avaliable at http://eprint.iacr.org/2013/469 (2013)

3. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

4. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011)

5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

6. Catalano, Dario, Fiore, Dario, Gennaro, Rosario, Nizzardo, Luca: Generalizing
homomorphic MACs for arithmetic circuits. In: Krawczyk, Hugo (ed.) PKC 2014.
LNCS, vol. 8383, pp. 538–555. Springer, Heidelberg (2014)

7. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013)

8. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using
fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 483–501. Springer, Heidelberg (2010)

9. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

10. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical Verified Computation with
Streaming Interactive Proofs. In: ITCS 2012, pp. 90–112. ACM press, New York
(2012)

http://eprint.iacr.org/2013/469

104 J. Hong et al.

11. Cormode, G., Thaler, J., Yi, K.: Verifying computations with streaming interactive
proofs. Proc. VLDB Endowment 5(1), 25–36 (2011)

12. Fiore, D., Gennaro, R.: Publicly Verification delegation of large polynomials and
matrix computations, with applications. In: CCS 2012, pp. 501–512. ACM press,
New York (2012)

13. Gentry, C.: A fully homomorphic encryption scheme. In: Stanford University (2009)
14. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.

In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

15. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

16. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

17. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In STOC 2008, pp. 113–122. ACM press, New York (2008)

18. Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without rejec-
tion problem from designated verifier cs-proofs. In: IACR Cryptology ePrint
Archive, avaliable at http://eprint.iacr.org/2011/456 (2011)

19. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005)

20. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear
maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013)

21. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC 2012, pp. 1219–
1234. ACM press (2012)

22. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the dicisional
linear assumption and weaker variants. In: CCS 2009, pp. 112–120. ACM press,
New York (2009)

23. Mohassel, P.: Efficient and secure delegation of linear algebra. In: IACR Cryptology
ePrint Archive, avaliable at http://eprint.iacr.org/2011/605, (2011)

24. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

25. Rothblum, G.N., Vadhan, S., Wigderson, A.: Interactive proofs of proximity: del-
egating computation in sublinear time. In: STOC 2013, pp. 793–802. ACM press,
New York (2013)

26. Zhang, L.F., Safavi-Naini, R.: Private outsourcing of polynomial evaluation and
matrix multiplication using multilinear maps. In: Abdalla, M., Nita-Rotaru, C.,
Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 329–348. Springer, Heidelberg
(2013)

http://eprint.iacr.org/2011/456
http://eprint.iacr.org/2011/605,

A Characterization of Cybersecurity Posture
from Network Telescope Data

Zhenxin Zhan1, Maochao Xu2, and Shouhuai Xu1(B)

1 Department of Computer Science,
University of Texas at San Antonio, San Antonio, USA

zhenxin.zhan.dr@gmail.com, shxu@cs.utsa.edu
2 Department of Mathematics, Illinois State University, Normal, USA

mxu2@ilstu.edu

Abstract. Data-driven understanding of cybersecurity posture is an
important problem that has not been adequately explored. In this paper,
we analyze some real data collected by CAIDA’s network telescope dur-
ing the month of March 2013. We propose to formalize the concept of
cybersecurity posture from the perspectives of three kinds of time series:
the number of victims (i.e., telescope IP addresses that are attacked),
the number of attackers that are observed by the telescope, and the
number of attacks that are observed by the telescope. Characterizing
cybersecurity posture therefore becomes investigating the phenomena
and statistical properties exhibited by these time series, and explaining
their cybersecurity meanings. For example, we propose the concept of
sweep-time, and show that sweep-time should be modeled by stochas-
tic process, rather than random variable. We report that the number of
attackers (and attacks) from a certain country dominates the total num-
ber of attackers (and attacks) that are observed by the telescope. We
also show that substantially smaller network telescopes might not be as
useful as a large telescope.

Keywords: Cybersecurity data analytics · Cybersecurity posture · Net-
work telescope · Network blackhole · Darknet · Cyber attack sweep-
time · Time series data

1 Introduction

Network telescope [26] (aka blackhole [5,10], darknet [3], or network sink [38],
possibly with some variations) is a useful instrument for monitoring unused,
routeable IP address space. Since there are no legitimate services associated to
these unused IP addresses, traffic targeting them is often caused by attacks. This
allows researchers to use telescope-collected data (together with other kinds of
data) to study, for example, worm propagation [4,23,25,30], denial-of-service
(DOS) attacks [17,24], and stealth botnet scan [12]. Despite that telescope data
can contain unsolicited — but not necessarily malicious — traffic that can be

c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 105–126, 2015.
DOI: 10.1007/978-3-319-27998-5 7

106 Z. Zhan et al.

caused by misconfigurations or by Internet background radiation [15,28,36], ana-
lyzing telescope data can lead to better understanding of cybersecurity posture,
an important problem that has yet to be investigated.

Our Contributions. In this paper, we empirically characterize cybersecurity
posture based on a dataset collected by CAIDA’s /8 network telescope (i.e., 224

IP addresses) during the month of March 2013. We make the following contri-
butions. First, we propose to characterize cybersecurity posture by considering
three time series: the number of victims, the number of attackers, and the num-
ber of attacks. To the best of our knowledge, this is the first formal definition
of cybersecurity posture. Second, we define the notion of sweep-time, namely
the time it takes for most telescope IP addresses to be attacked at least once.
We find that sweep-time cannot be described by a probabilistic distribution,
despite that a proper subset of the large sweep-times follows the power-law dis-
tribution. We show that an appropriate stochastic process can instead describe
the sweep-time. This means that when incorporating sweep-time in theoretical
cybersecurity models, it cannot always be treated as a random variable and may
need to be treated as a stochastic process. Third, we find that the total num-
ber of attackers that are observed by the network telescope is dominated by
the number of attackers from a certain country X.1 Moreover, we observe that
both the number of attackers from country X and the total number of attackers
exhibit a strong periodicity. Although we cannot precisely pin down the root
cause of this dominance and periodicity phenomenon, it does suggest that thor-
oughly examining the traffic between country X and the rest of the Internet
may significantly improve cybersecurity. Fourth, we investigate whether or not
substantially smaller network telescopes would give approximately the same sta-
tistics that would be offered by a single, large network telescope. This question
is interesting on its own and, if answered affirmatively, could lead to more cost-
effective operation of network telescopes. Unfortunately, our analysis shows that
substantially smaller telescopes might not be as useful a single, large telescope
(of 224 IP addresses).

Related Work. One approach to understanding cybersecurity posture is to
analyze network telescope data. Studies based on telescope data can be classi-
fied into two categories. The first category analyzes telescope data alone, and the
present study falls into this category. These studies include the characterization
of Internet background radiation [28,36], the characterization of scan activities
[1], and the characterization of backscatter for estimating global DOS activi-
ties [17,24]. However, we analyze cybersecurity posture, especially with regard
to attacks that are likely caused by malicious worm, virus and bot activities.
This explains why we exclude the backscatter data (which is filtered as noise
in the present paper). The second category of studies analyzes telescope data
together with other kinds of relevant data. These studies include the use of tele-

1 We were fortunate to see the real, rather than anonymized, attacker IP addresses,
which allowed us to aggregate the attackers based on their country code. Our study
was approved by IRB.

A Characterization of Cybersecurity Posture from Network Telescope Data 107

scope data and network-based intrusion detection and firewall logs to analyze
Internet intrusion activities [39], the use of out-of-band information to help ana-
lyze worm propagation [4,23,25], and the use of active interactions with remote
IP addresses to filter misconfiguration-caused traffic [28]. There are also studies
that are somewhat related to ours, including the identification of one-way traffic
from data where two-way traffic is well understood [1,7,15,20,33].

The other approach to understanding cybersecurity posture is to analyze
data collected by honeynet-like systems (e.g., [5,6,21,29,40]). Unlike network
telescopes, these systems can interact with remote computers and therefore allow
for richer analysis, including the automated generation of attack signatures [18,
37].

To the best of our knowledge, we are the first to formally define cybersecurity
posture via three time series: the number of victims, the number of attackers,
and the number of attacks.

The rest of the paper is organized as follows. Section 2 describes the data and
defines cybersecurity posture. Section 3 briefly reviews some statistical prelimi-
naries. Section 4 defines and analyzes the sweep-time. Section 5 investigates the
dominance and periodicity phenomenon exhibited by the number of attackers.
Section 6 investigates whether substantially smaller network telescopes would be
sufficient or not. Section 7 discusses the limitations of the present study. Section 8
concludes the paper.

2 Representation of Data and Definition of Cybersecurity
Posture

Data Description. The data we analyze was collected between 3/1/2013 and
3/31/2013 by CAIDA’s network telescope, which is a passive monitoring sys-
tem based on a globally routeable but unused /8 network (i.e., 1/256 of the
entire Internet IP v4 address space) [31]. Since a network telescope passively
collects unsolicited traffic, the collected traffic would contain malicious traffic
that reaches the telescope (e.g., automated malware spreading), but may also
contain non-malicious traffic — such as Internet background radiation (e.g.,
backscatter caused by the use of spoofed source IP addresses that happen to
belong to the telescope) and misconfiguration-caused traffic (e.g. mistyping an
IP address by a remote computer). This means that pre-processing the raw data
is necessary. At a high level, we will analyze data D1 and D2, which are sets of
flows [8] and are obtained by applying the pre-processing procedures described
below.

Data D1. Based on CAIDA’s standard pre-processing [32], the collected IP
packets are organized based on eight fields: source IP address, destination IP
address, source port number, destination port number, protocol, TTL (time-to-
live), TCP flags, and IP length. The flows are reassembled from the IP packets
and then classified into three classes: backscatter, ICMP request and other. At
a high level, backscatter traffic is identified via TCP SYN+ACK, TCP RST,
while ICMP request is identified via ICMP type 0/3/4/5/11/12/14/16/18. (A

108 Z. Zhan et al.

similar classification method is used in [36].) Since (i) backscatter-based analysis
of DOS attacks has been conducted elsewhere (e.g., [17,24]), and (ii) ICMP has
been mainly used to launch DOS attacks (e.g., ping flooding and smurf or fraggle
attacks [19,24,35]), we disregard the traffic corresponding to backscatter and
ICMP request. Since we are more interested in analyzing cybersecurity posture
corresponding to attacks that are launched through the TCP/UDP protocols,
we focus on the TCP/UDP traffic in the other category mentioned above. We
call the resulting data D1, in which each TCP/UDP flow is treated as a distinct
attack.

Data D2. Although (i) D1 already excludes the traffic corresponding to backscat-
ter and ICMP request, and (ii) D1 only consists of TCP/UDP flows in the
other category mentioned above, D1 may still contain flows that are caused by
misconfigurations. Eliminating misconfiguration-caused flows in network tele-
scope data is a hard problem because network telescope is passive (i.e., not
interacting with remote computers [16]). Indeed, existing studies on recognizing
misconfiguration-caused traffic had to use payload information (e.g., [22]), which
is however beyond the reach of network telescope data. Note that recognizing
misconfiguration-caused traffic is even harder than recognizing one-way traffic
already (because misconfiguration can cause both one-way and two-way traffic),
and that solving the latter problem already requires using extra information
(such as two-way traffic [1,7,15,20,33]). These observations suggest that we use
some heuristics to filter probable misconfiguration-caused flows from D1. Our
examination shows that, for example, 50 % (81 %) attackers launched 1 attack
(≤ 9 attacks, correspondingly) against the telescope during the month. We pro-
pose to extract D2 by filtering from D1 the flows that correspond to remote
IP addresses that initiate fewer than 10 flows/attacks during the month. This
heuristic method filters possibly many, if not most, misconfiguration-caused flows
in D1. Even though the ground truth (i.e., which TCP/UDP flows correspond
to malicious attacks) is not known, D2 might be closer to the ground truth
than D1.

Data Representation. In order to analyze the TCP/UDP flow data D1 and
D2, we represent the flows through time series at some time resolution r. We
consider two time resolutions (because a higher resolution leads to more accurate
statistics): hour, denoted by “H,” and minute, denoted by “m.” For a given time
resolution of interest, the total time interval [0, T] is divided into short periods
[i, i + 1) according to time resolution r ∈ {H,m}, where i = 0, 1, . . . , T − 1, and
T = 744 h (or T = 4, 464 min) in this case. We organize the flows into time
series from three perspectives:

– the number of victims (i.e., network telescope IP addresses that are “hit” by
remote attacking IP addresses contained in D1 or D2) per time unit at time
resolution r,

– the number of attackers (i.e., the remote attacking IP addresses contained in
D1 or D2) per time unit at time resolution r, and

A Characterization of Cybersecurity Posture from Network Telescope Data 109

– the number of attacks per time unit at time resolution r (i.e., TCP/UDP
flows initiated from remote attacking IP addresses in D1 or D2 are treated as
attacks).

Fig. 1. Illustration of the attacker-victim relation during time interval [i, i + 1) at
time resolution r ∈ {H, m} in D1: each dot represents an IP address, a red-colored
dot represents an attacking IP address (i.e., attacker), a pink-colored dot represents a
victim, each arrow represents an attack (i.e., TCP/UDP flow), the number of attackers
is |A(r; i, i + 1)| = 5, the number of victims is |V (r; i, i + 1)| = 7, and the number of
attacks is y(r; i, i + 1) = 9. The same holds for data D2 (Color figure online).

As illustrated in Fig. 1, let V be CAIDA’s fixed set of telescope IP addresses,
and A be the rest of IP addresses in cyberspace, where |A| = 232 − |V |. The
major notations are (highlighted and) defined as follows:

– V,A: the set of CAIDA’s network telescope IP addresses and the set of the
rest IP v4 addresses, respectively.

– r ∈ {H,m}: time resolution (H: per hour; m: per minute).
– V (r; i, i + 1) ⊆ V and V ′(r; i, i + 1) ⊆ V : the sets of victims attacked at

least once during time interval [i, i + 1) at time resolution r in D1 and D2,
respectively.

– V (r; i, j) =
⋃j−1

�=i V (r; �, �+1) and V ′(r; i, j) =
⋃j−1

�=i V ′(r; �, �+1): the cumu-
lative set of victims that are attacked at some point during time interval [i, j)
at time resolution r in data D1 and D2, respectively.

– V (r; 0, T) and V ′(r; 0, T): the sets of victims that are attacked at least once
during time interval [0, T) in D1 and D2, respectively. Note that these sets
are actually independent of time resolution r, but we keep r for notational
consistence.

– A(r; i, i + 1) ⊆ A and A′(r; i, i + 1) ⊆ A: the sets of attackers that launched
attacks against some v ∈ V during time interval [i, i + 1) at time resolution r
in D1 and D2, respectively.

– y(r; i, i+1) and y′(r; i, i+1): the numbers of attacks that are launched against
victims belonging to V (r; i, i+1) and V (r; i, i+1) during time interval [i, i+1),
respectively.

Cybersecurity Posture. We define cybersecurity posture as:

110 Z. Zhan et al.

Definition 1 (cybersecurity posture). For a given time resolution r and net-
work telescope of IP address space V , the cybersecurity posture as reflected
by telescope data D1 is described by the phenomena and (statistical) properties
exhibited by the following three time series:

– the number of victims |V (r; i, i + 1)|,
– the number of attackers |A(r; i, i + 1)|, and
– the number of attacks y(r; i, i + 1),

where i = 0, 1, Similarly, we can define cybersecurity posture corresponding
to D2.

Based on the above definition of cybersecurity posture, the main research task is
to characterize the phenomena and statistical properties of the three time series
(e.g., how can we predict them?) and the similarity between them. As a first
step, we characterize, by using data D1 as an example, the number of victims
|V (r; i, i + 1)| rather than the set of victims V (r; i, i + 1), and the number of
attackers |A(r; i, i+1)| rather than the set of attackers A(r; i, i+1). We leave the
characterization of the sets of victims and attackers to future study. Moreover,
we characterize the number of attacks y(r; i, i+1) rather than the specific classes
of attacks, because telescope data does not provide rich enough information to
recognize specific attacks. In Sect. 7, we will discuss limitations of the present
study, including the ones that are imposed by the heuristic data pre-processing
method for obtaining D1 and D2.

3 Statistical Preliminaries

We briefly review some statistical concepts and models dealing with time series
data, while referring their formal descriptions and technical details to [11,13,27,
34].

Brief Review of Some Statistical Concepts. Time series can be described
by statistical models, such as the AutoRegressive Integrated Moving Average
(ARIMA) model and the Generalized AutoRegressive Conditional Heteroskedas-
ticity (GARCH) model that will be used in the paper. The ARIMA model is
perhaps the most popular class of time series models in the literature. It includes
many specific models, such as random walk, seasonal trends, stationary, and non-
stationary models [11]. ARIMA models cannot accommodate high volatilities of
time series data, which however can be accommodated by GARCH models [13].
GARCH models also can capture many phenomena, such as dynamic dependence
in variance, skewness, and heavy-tails [34].

In order to find accurate models for describing time series data, we need
to do model selection. There are many model selection criteria, among which
the Akaike’s Information Criterion (AIC) is widely used. This criterion is based
on appropriately balancing between goodness of fit and model complexity. It is
defined in such a way that the smaller the AIC value, the better the model [27].

A Characterization of Cybersecurity Posture from Network Telescope Data 111

Measuring the Difference (or Distance) Between Two Time Series. We
need to measure the difference (or distance) between two time series: Z1, Z2, . . .
and Z ′

1, Z
′
2, . . ., where Zi ≥ 0 and Z ′

i ≥ 0 for i = 1, 2, This difference measure
characterizes:

1. the fitting error, where the Zi time series may represent the observed values
and the Z ′

i time series may represent the fitted values;
2. the prediction error, where the Zi time series may correspond to the observed

values and the Z ′
i time series may correspond to the predicted values;

3. the approximation error, where the Zi time series may describe the observed
values and the Z ′

i time series may describe the values that may be inferred
(i.e., estimated or approximated) from other data sources (e.g., we may want
to know whether or not the statistics derived from the data collected by a
large network telescope can be inferred from the data collected by a much
smaller network telescope).

For conciseness, we use the standard and popular measure known as Percent
Mean Absolute Deviation (PMAD) [2]. Specifically, suppose Zt, Zt+1, . . . , Zt+�

are given data, and Z ′
t, Z

′
t+1, . . . , Z

′
t+� are the fitted (or predicted, or approxi-

mated) data. The overall fitting (or prediction, or approximation) error (or the

PMAD value) is defined as
∑t+�

j=t |Zj−Z′
j |

∑t+�
j=t Zj

. The closer to 0 the PMAD value, the

better the fitting (or prediction, or approximation). We note that our analysis is
not bound to the PMAD measure, and it is straightforward to adapt our analysis
to incorporate other measures of interest.

Measuring the Shape Similarity Between Two Time Series. Two time
series may be very different from a measure such as the PMAD mentioned above,
but may be similar to each other in their shape (perhaps after some appropriate
re-alignments). Therefore, we may need to measure such shape similarity between
two time series. Dynamic Time Warping (DTW) is a method for this purpose.
Intuitively, DTW aims to align two time series that may have the same shape
and, as a result, the similarity between two time series can be captured by the
notion of warping path (aka warping function). The closer the warping path to
the diagonal, the more similar the two time series. We use the DTW algorithm
in the R software package, which implements the algorithm described in [14].

4 Characteristics of Sweep-Time

The Notion of Sweep-Time. Figure 2 describes the times series of |V (H; i, i+
1)| in D1 and |V ′(H; i, i + 1)| in D2. Using D1 as example, we make the follow-
ing observations (similar observations can be made for D2). First, there is a
significant volatility at the 632nd hour, during which the number of victims is
as low as 4, 377, 079 ≈ 222. Careful examination shows that the total number of
attackers during the 632nd hour is very small, which would be the cause. Sec-
ond, most telescope IP addresses are attacked within a single hour. For example,
15,998,907, or 96% of |V (H; 1, 733)|, telescope IP addresses are attacked at least

112 Z. Zhan et al.

(a) |V (H; i, i + 1)| in D1 (b) |V ′
1 (H; i, i + 1)| in D2

Fig. 2. Time series of number of victims: |V (H; i, i + 1)| in D1 and |V ′
1 (H; i, i + 1)| in

D2.

once during the first hour. Third, no victims other than V (H; 0, 703) are attacked
during the time interval [704, 744).

Since Fig. 2 shows that there are a large number of victims per hour, we ask
the following question: How long does it take for most telescope IP addresses to
be attacked at least once? That is: How long does it take for τ ×|V (H; 0, T)|
victims to be attacked at least once, where 0 < τ < 1? This suggests us
to define the following notion of sweep-time, which is relative to the observation
start time.

Definition 2 (sweep-time). With respect to D1, the sweep-time starting at the
ith time unit of time resolution r, denoted by Ii, is defined as:

∣

∣

∣

∣

∣

Ii−1
⋃

�=i

V (r; �, � + 1)

∣

∣

∣

∣

∣

< τ × |V (H; 0, T)| ≤
∣

∣

∣

∣

∣

Ii
⋃

�=i

V (r; �, � + 1)

∣

∣

∣

∣

∣

.

Corresponding to data D2, we can define sweep-time I ′
i as:

∣

∣

∣

∣

∣

∣

I′
i−1
⋃

�=i

V ′(r; �, � + 1)

∣

∣

∣

∣

∣

∣

< τ × |V ′(H; 0, T)| ≤
∣

∣

∣

∣

∣

∣

I′
i

⋃

�=i

V ′(r; �, � + 1)

∣

∣

∣

∣

∣

∣

.

By taking into consideration the observation starting time i, we naturally obtain
two time series of sweep-time: I0, I1, . . . for D1 and I ′

0, I
′
1, . . . for D2. We want

to characterize these two time series of sweep-time.

Characterizing Sweep-Time. Since per-hour time resolution gives a coarse
estimation of sweep-time, we use per-minute time resolution for better estimation
of it. Figure 3 plots the time series of sweep-time I0, I10, I20, . . ., namely a sample
of I0, I1, . . . , I10, . . . , I20, . . . because it is too time-consuming to consider the
latter entirely (time resolution: minute).

Figure 3 suggests that the sweep-time time series exhibit similar shape.
Accordingly, we use the DTW method to characterize their similarity. Recall
that DTW aims to align two time series via the notion of warping path, such
that the closer the warping path to the diagonal, the more similar the two time
series.

A Characterization of Cybersecurity Posture from Network Telescope Data 113

(a) Sweep-time in D1 (b) Sweep-time in D2

Fig. 3. Time series plots of sweep-time (y-axis) with respect to τ ∈
{80 %, 85 %, 90 %, 95 %, 99 %}, where the x-axis represents the observation starting time
that is sampled at every 10 minutes. In other words, the plotted points are the sample
(0, I0), (10, I10), (20, I20), . . . rather than (0, I0), (1, I1),

(a) D1 vs. D2 : τ = .80 (b) D1 vs. D2 : τ = .99 (c) τ = .99 vs. τ = .80: D1

(d) τ = .99 vs. τ = .95: D1 (e) τ = .99 vs. τ = .80: D2 (f) τ = .99 vs. τ = .95: D2

Fig. 4. DTW-based similarities of sweep-time time series with different threshold τ .

Figure 4 confirms the above observation, by presenting some examples of
the warping paths (the others are omitted due to space limitation). Specifically,
Figs. 4(a) and (b) show that the sweep-times with respect to τ = .80 and τ = .99
are almost the same in D1 and D2, respectively. Figures 4(c) and (d) show that
for two thresholds, say τ1 and τ2, the smaller the |τ1 − τ2|, the more similar the

114 Z. Zhan et al.

two respective time series of sweep-time in D1. Figures 4(e) and (f) demonstrate
the same phenomenon for D2.

The above discussion suggests that the notion of sweep-time is not sensi-
tive to spatial threshold τ . This leads us to ask: What is the distribution
of sweep-time? However, this question makes sense only when the time series
is stationary. By using an augmented Dickey-Fuller test [34], we conclude that
the sample of the sweep-time series, namely I0, I10, I20, . . ., is not stationary,
which means that time series I0, I1, I2 . . . is not stationary (otherwise, the sam-
ple should be stationary). Therefore, we cannot use a single distribution to char-
acterize the sweep-time; Instead, we have to characterize the sweep-time as a
stochastic process. In order to identify good time series models that can fit the
sweep-time, we need to identify some statistical properties that are exhibited
by sweep-time. In particular, we need to know if the sweep-time is heavy-tailed,
meaning that the sweep-times greater or equal to xmin exhibit the power-law
distribution, where xmin is called cut-off parameter.

Table 1. Power-law test statistics of the sweep-time with respect to spatial threshold
τ ∈ {80 %, 85 %, 90 %, 95 %, 99 %}, where α is the fitted power-law exponent, xmin is
the cut-off parameter, KS ∈ [0.04, 0.06] is the Kolmogorov-Smirnov statistic [9] for
comparing the fitted power-law distribution and the data (meaning that the fitting
is good) as indicated by that the p-values are >> 0.05, and “# ≥ xmin” represents
the number of sweep-times that are greater than or equal to xmin (i.e., the number of
sweep-times that are used for fitting).

τ α xmin KS p-value # ≥ xmin τ α xmin KS p-value # ≥ xmin

Dataset D1 with time resolution 1-min Dataset D2 with time-resolution 1-min

80% 7.89 78 .05 .14 475 80% 8.46 82 .05 .19 391

85% 8.46 94 .04 .52 385 85% 8.37 95 .04 .36 379

90% 8.89 118 .06 .42 244 90% 9.24 120 .05 .39 237

95% 9.52 148 .05 .68 193 95% 12.82 170 .04 .99 72

99% 13.67 215 .04 .98 131 99% 15.23 224 .04 .99 94

Table 1 summarizes the power-law test statistics of the sweep-time with cut-
off parameter xmin. We observe that for both D1 and D2, all the α values (i.e.,
the fitted power-law exponents) are very large. For spatial threshold τ = 80%
in D1, we have xmin = 78 minutes, meaning that the number of sweep-times
that are greater than or equal to xmin is 475 (or 10.6 % out of 4,462). As spatial
threshold τ increases, xmin increases and the number of sweep-times greater than
or equal to xmin decreases. We also observe that for the same τ , D1 and D2 have
similar xmin values, which means that the filtered attack traffic in D1 does not
affect the power-law property of the data.

The above analysis suggests that in order to fit the sweep-time, we should use
a model that can accommodate the power-law property. Therefore, we use the
ARMA+GARCH model, where ARMA accommodates the stable sweep-times
smaller than xmin, and GARCH, with skewed student t-distribution, accommo-
dates the power-law distributed sweep-times (which are greater than or equal

A Characterization of Cybersecurity Posture from Network Telescope Data 115

to xmin). Consider spatial threshold τ = .99 as an example. Figures 5(a) and
(b) plot the observed data and the fitting model for sweep-time It (observation
starting time t):

It − μt = φ1(It−1 − μt−1) + φ2(It−2 − μt−2) + εt,

where μt = μ + ξσt is the dynamic mean composed of a constant term μ and
standard deviation σt of the error term, σ2

t = ω + α1εt−1 + β1σ
2
t−1, μt = E[It],

εt is the error term at time t, and σ2
t = E(yt − μt)2 is the variance modeled via

the standard GARCH(1,1) process. The fitting errors (PMAD values) are .121
and .119 for D1 and D2, respectively.

(a) Fitting sweep-time in D1. (b) Fitting sweep-time in D2.

Fig. 5. Fitting sweep-time with spatial threshold τ = .99 (time resolution: minute),
where black-colored dots are observed sweep-time values, red-colored dots are fitted
values (Color figure online).

It was known that malware can infect almost all susceptible computers within
a very short period of time (e.g., the Slammer worm [23]), meaning that the
sweep-time with respect to a specific observation starting time is very small.
This is, in a sense, re-affirmed by our study. However, for continuous attacks
that are based on a bag of attacking tools, sweep-time should be better mod-
eled with respect to any (rather than a specific) observation starting time. We
are the first to show that the sweep-time cannot be modeled by a random vari-
able (which would make the model in question easier to analyze though). This
leads to the following insight, which could guide future development of advanced
cybersecurity models.

Insight 1. When one needs to model the sweep-time (i.e., the time it takes for
each IP address of a τ -portion of a large network space to be attacked at least
once), it should be modeled by a stochastic process rather than a random variable.

116 Z. Zhan et al.

5 A Phenomenon Exhibited by Attacking IP Addresses

For each attacker IP address, we can use the WHOIS service to retrieve its
country code. Figure 6 plots the origins of attackers that contribute to most of
the attackers (per country code). Note that the category “others” in D1 include
6,894,900 attacker IP addresses (or 1.7% of the total number of attackers) whose
country codes cannot be retrieved from the WHOIS service. The category “oth-
ers” in D2 include 10,740 attacker IP addresses (or 0.01% of the total number
of attackers) whose country codes cannot be retrieved from the WHOIS ser-
vice. This means that many attacker IP addresses whose country codes cannot
be retrieved from the WHOIS service are filtered. Moreover, the attacker IP
addresses with no country code do not have a significant impact on the result.
We observe that country X contributes 30% of the attackers in D1 and 76%
of the attackers in D2. Country Y contributes 28% of the attackers in D1 and
3% of the attackers in D2. This is caused by the fact that 50% attackers from
country X and 98% attackers from country Y launch fewer than 10 attacks
during the month, and therefore do not appear in D2. This prompts us to study
the relationship between two time series: the total number of attackers and the
number of attackers from country X.

(a) Origins of attackers in D1 (b) Origins or attackers in D2

Fig. 6. During the month, three countries, which are anonymized as X, Y and Z,
contribute to most of the attackers in D1; whereas countries X, Y and Z′ (Z′ �= Z)
contribute to most of the attackers in D2.

The Dominance and Periodicity Phenomenon. Figure 7 compares the
times series of the total number of attackers observed by the telescope and the
time series of the number of attackers from country X in D1 and D2, respec-
tively. For D1, Fig. 7(a) shows that the total number of attackers during time
interval [455, 630], namely the 176 hours between the 455th hour (on March 19,
2013) and the 630th hour (on March 27, 2013), is substantially greater than its
counterpart during the other hours. This is caused by the substantial increase
in the number of attackers from country Y , despite that we do not know the
root cause behind the substantial increase of attackers in country Y . For D2,
Fig. 7(b) does not exhibit the same kind of substantial increase during the inter-
val [455, 630], meaning that many of the “emerging” attackers from country Y
are filtered (because they launched fewer than 10 attacks during the month).

A Characterization of Cybersecurity Posture from Network Telescope Data 117

(a) Total # of attackers vs. # of attackers from X: D1 (b) Total # of attackers vs. # of attackers from X: D2

Fig. 7. The dominance and periodicity phenomenon exhibited by two time series: the
total number of attackers versus the number of attackers from country X (time reso-
lution: hour).

Figure 7 further suggests a surprising consistency between the two time series.
Specifically, when the number of attackers from country X is large (small), the
total number of attackers is large (small). For D1, this is confirmed by Figs. 8(a)
and (b), which clearly show that the same periodicity is exhibited by the total
number of attackers and by the number of attackers from country X. For D2, this
is confirmed by Figs. 8(c) and (d), which clearly show that the same periodicity
is exhibited by the total number of attackers and by the number of attackers
from country X. We observe that the wave bases are periodic with a period of
24 hours. After looking into the time zone of country X, we find that the wave
bases (i.e., that least number of attackers) correspond to the hour between 12:00
noon and 1 pm local time. One may speculate that this is caused by computers
possibly being put into the hibernate mode (during lunch time). This may not
be true because during the night hours, more computers would be put into the
hibernate mode (or even powered off) and therefore even fewer attackers would
be observed. However, this is not shown by the data. One perhaps more plausible
explanation is that the attacking computers may be coordinated or controlled
(for example) by botnets.

While we defer the detailed characterization of the phenomenon to
AppendixA, we summarize the phenomenon as:

Phenomenon 1 (The dominance and periodicity phenomenon exhibited by the
number of attackers). The time series of the total number of attackers and the
time series of the number of attackers from a particular country X exhibit the
same periodicity. Moreover, the total number of attackers is dominated by the
number of attackers from country X.

6 Inferring Global Cyber Security Posture from Smaller
Monitors

In this section, we explore whether it is possible to use small network telescopes
to approximate bigger telescopes, from the perspectives of estimating/inferring
the number of victims, attackers and attacks. Answering this question is inter-
esting on its own, and could lead to more cost-effective operations of network
telescopes.

118 Z. Zhan et al.

(a) Total number of attackers in D1 (b) Number of attackers from country X in D1

(c) Total number of attackers in D2 (d) Number of attackers from country X in D2

Fig. 8. Elaboration of the dominance and periodicity phenomenon (time resolution:
hour).

Methodology. We divide the /8 network telescope into B equal-size blocks of
IP addresses, where each block is called a small telescope. We want to know
whether we can infer the number of victims (or attackers, or attacks) that are
observed by the /8 telescope during time interval [t, t + 1) at time resolution
H (i.e., per hour), denoted by Y (H; t, t + 1), from the number of victims (or
attackers, or attacks) observed by b small telescopes, where b << B, during the
same time interval, denoted by Y1(H; t, t+1), . . . , Yb(H; t, t+1). In other words,
we want to know whether the following equation would hold:

Y (H; t, t + 1) = c +
b

∑

i=1

φiYi(H; t, t + 1),

where c is some constant and φi’s are coefficients. Naturally, we can use the same
PMAD measure to evaluate the estimation/inference error.

Whenever feasible, we want to consider all possible combinations of b small
telescopes. For B = 16, there are

(

16
b

)

combinations; for B = 256, there are
(

256
b

)

combinations. For B = 256 and b ≥ 4, the number of combinations becomes
prohibitive. This suggests that we first cluster the B = 256 blocks into b groups
based on the DTW measure, and then sample one block from each of the b groups.
In a sense, this corresponds to the best-case scenario sampling because we need
the prior information about the groups or clusters. If the sample statistics cannot
approximate the statistics derived from the data collected by the /8 telescope,
we can conclude that small telescopes are not as useful as the large telescope.

Characterizing Inference Errors of Small Telescopes. From the perspec-
tive of inferring the number of victims from small telescopes, Table 2 summarizes

A Characterization of Cybersecurity Posture from Network Telescope Data 119

Table 2. PMAD-based measurement of the inference error when using b (out of the
B) small telescopes to approximate the number of victims that are observed by the
larger /8 telescope, where “SD” stands for standard deviation.

Min Mean Median Max SD Min Mean Median Max SD

D1 with B = 16: PMAD values D1 with B = 256: PMAD values

b = 1 .0372 .0472 .0464 .0682 .0083 b = 1 .0563 .0689 .0678 .1131 .0074

b = 2 .0230 .0322 .0302 .0586 .0067 b = 2 .0414 .0535 .0521 .1129 .0057

b = 3 .0167 .0232 .0239 .0301 .0033 b = 3 .0330 .0447 .0436 .0982 .0049

D2 with B = 16: PMAD values D2 with B = 256: PMAD values

b = 1 .0384 .0484 .0478 .0702 .0085 b = 1 .0799 .1136 .1155 .1155 .0071

b = 2 .0235 .0340 .0311 .0702 .0079 b = 2 .0731 .1119 .1155 .1155 .0096

b = 3 .0167 .0267 .0251 .0702 .0066 b = 3 .0755 .0787 .0787 .0839 .0021

the inference errors, in terms of the min, mean, median and max PMAD val-
ues of all the considered combinations of sample blocks, as well as the standard
deviation of the PMAD values. For D1 and B = 16, we observe that a single
small telescope (out of the 16 telescopes of size 220 IP addresses) would give
good approximation of the number of victims that would be obtained based on
the larger /8 network telescope. This is because the maximum PMAD errors
is .0682, namely 6.82% approximation error. For D1 and B = 256, the mean
approximation error is 6.89% for b = 1 (i.e., using one small telescope), and
5.35% for b = 2 (i.e., using two small telescopes) and 4.47% for b = 3 (using
three small telescopes). For D2 and B = 16, we observe a similar phenomenon
as in the case of D1 and B = 16. However, for D2 and B = 256, the mean
approximation errors is significantly larger than in the case of D1 and B = 256,
namely 11.36%, 11.19% and 7.87% for b = 1, 2, 3, respectively. Therefore, we
can conclude that from the perspective of the number of victims, a single tele-
scope of size 220 IP addresses would give approximately the same result as the
telescope of size 224, and 3 randomly selected small telescope of size 216 would
give approximately the same result as the telescope of size 224. That is, the small
telescope could be used instead.

Due to space limitation, we defer to AppendixB the characterizations on
inferring the number of attackers from small telescopes and on inferring the
number of attacks from small telescopes. Based on these characterizations, we
draw the following insight:

Insight 2. For estimating the number of victims, substantially small telescopes
could be used instead. However, for estimating the number of attackers and the
number of attacks, substantially small telescopes might not be sufficient.

The above discrepancy between the number of victims and the numbers of
attackers/attacks is possibly caused by the following: The victims are somewhat
“uniformly” attacked, but the attackers and attacks are far from “uniformly” dis-

120 Z. Zhan et al.

tributed. Moreover, a single attacker that scans the large telescope’s IP address
space will make it easy to estimate the number of victims from small telescopes.

7 Limitations of the Study

The present study has several limitations, which are inherent to the data but not
to the methodology we use. First, our analysis treats each remote IP address as
a unique attacker. This is not accurate when the remote networks using Network
Address Translation (NAT), because remote attackers from the same network
can be “aggregated” into a single attacker. If many networks in country X indeed
use NAT, then the actual number of attackers from country X is indeed larger,
although the number of attacks from country X is not affected by NAT.

Second, the characteristics presented in the paper inherently depend on the
nature of network telescope. For example, D1 and D2 still may contain some
misconfiguration-caused, non-malicious traffic. Due to the lack of interactions
between network telescope and remote computers (an inherent limitation of net-
work telescopes), it is hard to know the ground truth [16]. Therefore, better
filtering methods are needed so as to make the data approximate the ground
truth as closely as possible.

Third, it is possible that some attackers are aware of the network telescope
and therefore can instruct their attacks to bypass it. As a consequence, the data
may not faithfully reflect the cybersecurity posture.

Fourth, the data collected by the network telescope does not contain rich
enough information that would allow us to conduct deeper analysis, such as
analyzing the global characteristics of specific attacks. Moreover, the data is a
“coarse” sample of the ground-truth cybersecurity posture because the first flow
from a remote attacker may be a scan/probe activity, or a first attack attempt
against a specific port.

8 Conclusion

We have studied the cybersecurity posture based on the data collected by
CAIDA’s network telescope. We have found that the sweep-time should be char-
acterized as a stochastic process rather than a random variable. We also have
found that the total number of attackers (and attacks) that are observed by the
network telescope is largely determined by the number of attackers from a sin-
gle country. There are many interesting problems for future research, such as:
How can we (more) accurately predict the time series? To what extent they are
predictable?

Acknowledgement. We thank CAIDA for sharing with us the data analyzed in the
paper. This work was supported in part by ARO Grant #W911NF-13-1-0141 and NSF
Grant #1111925.

A Characterization of Cybersecurity Posture from Network Telescope Data 121

A Characterization of the Dominance and Periodicity
Phenomenon Exhibited by Attackers

Now we quantify the similarity between the two time series via Dynamic Time
Warping (DTW), fitted model, and prediction accuracy.

Similarity Based on DTW. Figure 9(a) plots the warping path between the
total number attackers in D1 and the total number of attackers in D2. The two
time series are very similar to each other, except for the time interval [452, 668]
as suggested by Figs. 8(a) and (c). Figure 9(b) plots the warping path between
the two time series plotted in Fig. 7(a), namely the total number of attackers in
D1 and the total number of attackers from country X in D1. It shows that the
two time series are very similar to each other except during the time interval
[455, 630], as suggested by Figs. 8(a) and (b). Figure 9(c) plots the warping path
between the two time series plotted in Figs. 8(b) and (d). It shows that the two
time series are almost identical to each other, and that the filtering of rarely
seen attackers/attacks does not manipulate the periodic structure of the time
series of the number of attackers from country X. Figure 9(d) plots the warping
path between the two time series plotted in Figs. 8(c) and (d), which indeed are
almost identical to each other.

(a) Total in D1 vs. to-
tal in D2

(b) Total in D1 vs.
country X in D1

(c) Country X in D1

vs. country X in D2

(d) Total in D2 vs.
country X in D2

Fig. 9. DTW statistics between the times series of the total number of attackers and
the time series of the number of attackers for country X.

Similarity Based on Fitted Models. Since both the time series exhibit peri-
odicity, we use the multiplicative seasonal ARIMA model to fit the two time
series in D1 and D2, respectively. The model parameters are: nonseasonal orders
(p, d, q), and seasonal orders (P,D,Q), and seasonal period s = 24 based on the
above discussion of periodicity. For model selection, the parameter sets are:

– (p, d, q) ∈ [0, 5] × {0, 1} × [0, 5];
– (P,D,Q) ∈ [0, 5] × {0, 1} × [0, 5].

According to the AIC criterion (briefly reviewed in Sect. 3), the two time series
in both D1 and D2 prefer to the following model:

Wt = φ1Wt−1 + et + θ1et−1 + Φ1Wt−24 + Φ2Wt−48 +
Θ1et−24 + Θ2et−48 + Θ3et−96,

122 Z. Zhan et al.

where Wt = |A(r; t, t + 1)| − |A(r; t − 24, t − 23)|. Table 3 summarizes the fitting
results. We observe that the two fitted models in D1 are similar to each other in
terms of coefficients, and that the two fitted models in D2 are almost identical
to each other.

Table 3. Coefficients in the fitted models of the total number of attackers and the
number of attackers from country X.

φ1 θ1 Φ1 Φ2 Θ1 Θ2 Θ3

Fitted model of total number of attackers in D1: PMAD=.08

Coefficients .91 .38 1.22 -.98 -2.15 2.11 -.86

Fitted model of number of attackers from country X in D1: PMAD=.06

Coefficients 0.82 .39 1.22 -.99 -2.19 2.16 -.91

Fitted model of total number of attackers in D2: PMAD=.08

Coefficients .79 .4 1.21 -.99 -2.18 2.16 -.9

Fitted model of number of attackers from country X in D2: PMAD=.07

Coefficients .79 .4 1.21 -.99 -2.19 2.16 -.9

Similarity Based on Prediction Accuracy. Table 4 summarizes the PMAD
values for 1, 4, 7 and 10 hours ahead-of-time prediction of the number of attackers
during the last 96 hours in both D1 and D2. For D1, we observe that 1-h ahead-
of-time predictions for the number of attackers from country X and the total
number of attackers are reasonably accurate (with PMAD value .093 and .092, or
9.3% and 9.2% prediction error, respectively); whereas the predictions for 4, 7
and 10 hours ahead-of-time are not useful. For D2, we observe similar prediction
results, namely that 1-h ahead-of-time predictions lead to 7.5% prediction error
for the total number of attackers and 9.5% prediction error for the number of
attackers from country X.

Table 4. PMAD values for h = 1, 4, 7, 10 hours ahead-of-time predictions on the total
number of attackers and on the number of attackers from country X, as observed by
the telescope.

h = 1 h = 4 h = 7 h = 10 h = 1 h = 4 h = 7 h = 10

D1: PMAD values D2: PMAD values

Total .092 .244 .333 .404 Total .075 .156 .180 .177

Country X .093 .208 .240 .245 Country X .095 .203 .230 .224

B Further Characterizations on the Inference Errors
of Small Telescopes

Inferring the Number of Attackers From Small Telescopes. Similarly,
we would like to infer the number of attackers based on small telescopes. Table 5

A Characterization of Cybersecurity Posture from Network Telescope Data 123

summarizes the inference errors in terms of the min, mean, median and max
PMAD values of all the considered combinations of sample blocks, as well as the
standard deviation of the PMAD values. For D1 and B = 16, we observe that
3 small telescopes (out of the 16 telescopes of size 220 IP addresses) would give
good approximation of the number of attackers that would be obtained based on
the network telescope of size 224. This is because the maximum PMAD value is
7.34%. For D2 and B = 16, we observe that using 4 small telescopes of size 220

does not lead to good approximation. For B = 256, neither D1 nor D2 leads to
obtain good enough approximation. These suggest that using significantly small
telescopes may not lead to robust results.

Table 5. PMAD-based measurement of the inference error when using b (our of the
B) small telescopes to approximate the number of attackers that are observed by the
larger /8 telescope, where “SD” stands for standard deviation.

Min Mean Median Max SD Min Mean Median Max SD

D1 with B = 16: PMAD values D2 with B = 16: PMAD values

b = 1 .0663 .0921 .0916 .1329 .0205 b = 1 .1689 .1863 .1857 .2221 .0119

b = 2 .0626 .0797 .0752 .1194 .0138 b = 2 .1476 .1784 .1798 .2221 .0089

b = 3 .0624 .0700 .0713 .0734 .0033 b = 3 .1395 .1730 .1755 .2221 .0098

b = 4 .0593 .0685 .0693 .0734 .0036 b = 4 .1355 .1664 .1676 .1874 .0103

D1 with B = 256: PMAD values D2 with B = 256: PMAD values

b = 1 .1273 .2499 .3037 .4303 .0983 b = 1 .2967 .4346 .4387 .4396 .0172

b = 2 .1121 .1929 .1467 .4303 .0846 b = 2 .1712 .4307 .4387 .4396 .0240

b = 3 .1251 .1510 .1447 .3287 .0232 b = 3 .1713 .2369 .2352 .3730 .0422

b = 4 .1250 .1491 .1445 .2935 .0188 b = 4 .1664 .2261 .2329 .2542 .0231

b = 5 .1236 .1474 .1435 .2762 .0168 b = 5 .1618 .1658 .1664 .1674 .0015

Inferring the Number of Attacks From Small Telescopes. From the per-
spective of inferring the number of attacks, Table 6 summarizes the inference
errors as in the above. For D1 and B = 16, we observe that 3 small telescopes
(out of the 16 telescopes of size 220 IP addresses) would give good approximation
of the number of attacks that would be obtained based on the larger network
telescope of size 224. This is because the maximum PMAD errors is .0761, namely
7.61% approximation error. For D1 and B = 256, the mean approximation error
is 9.58% for b = 5 (i.e., using 5 small telescopes instead), which is marginally
acceptable. For D2 and B = 16, we observe that using 4 small telescopes of size
220 can lead to worst-case approximation error 8.27%. For D2 and B = 256, we
observe that using 5 small telescopes of size 216 does not lead to good approxi-
mation. That is, substantially small telescope may not be as useful as the large
telescope.

124 Z. Zhan et al.

Table 6. PMAD-based measurement of the inference error when using b (our of the B)
small telescopes to approximate the number of attacks observed by the /8 telescope,
where “SD” stands for standard deviation.

Min Mean Median Max SD Min Mean Median Max SD

D1 with B = 16: PMAD values D2 with B = 16: PMAD values

b = 1 .0755 .0890 .0883 .1106 .0095 b = 1 .0765 .0901 .0895 .1130 .0096

b = 2 .0436 .0629 .0589 .0953 .0138 b = 2 .0444 .0655 .0659 .1130 .0150

b = 3 .0363 .0488 .0435 .0761 .0125 b = 3 .0343 .0518 .0461 .1130 .0138

b = 4 .0272 .0392 .0369 .0739 .0100 b = 4 .0267 .0395 .0372 .0827 .0094

D1 with B = 256: PMAD values D2 with B = 256: PMAD values

b = 1 .1166 .1322 .1311 .1917 .0098 b = 1 .1344 .1909 .1938 .1938 .0117

b = 2 .0853 .1069 .1056 .1917 .0092 b = 2 .1197 .1881 .1938 .1938 .0160

b = 3 .0699 .0916 .0897 .1917 .0086 b = 3 .1323 .1409 .1387 .1602 .0079

b = 4 .0835 .0984 .0970 .1700 .0069 b = 4 .1310 .1383 .1366 .1520 .0069

b = 5 .0818 .0958 .0945 .1582 .0064 b = 5 .1256 .1312 .1310 .1419 .0048

References

1. Allman, M., Paxson, V., Terrell, J.: A brief history of scanning. In: Proceedings of
ACM IMC 2007, pp. 77–82 (2007)

2. Armstrong, J.S.: Principles of Forecasting: A Handbook for Researchers and Prac-
titioners, vol. 30. Springer, New York (2001)

3. Bailey, M., Cooke, E., Jahanian, F., Myrick, A., Sinha, S.: Practical darknet mea-
surement. In: Proceedings of 2006 Annual Conference on Information Sciences and
Systems, pp. 1496–1501 (2006)

4. Bailey, M., Cooke, E., Jahanian, F., Watson, D.: The blaster worm: then and now.
IEEE Secur. Priv. 3(4), 26–31 (2005)

5. Bailey, M., Cooke, E., Jahanian, F., Nazario, J., Watson, D., et al.: The internet
motion sensor-a distributed blackhole monitoring system. In: Proceedings of NDSS
2005 (2005)

6. Barford, P., Chen, Y., Goyal, A., Li, Z., Paxson, V., Yegneswaran, V.: Employing
honeynets for network situational awareness. In: Jajodia, S., Liu, P., Swarup, V.,
Wang, C. (eds.) Cyber Situational Awareness. Advances in Information Security,
vol. 46, pp. 71–102. Springer, New York (2010)

7. Brownlee, N.: One-way traffic monitoring with iatmon. In: Proceedings of PAM
2012, pp. 179–188 (2012)

8. Claffy, K., Braun, H., Polyzos, G.: A parameterizable methodology for internet
traffic flow profiling. IEEE J. Sel. Areas Commun. 13(8), 1481–1494 (1995)

9. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical
data. SIAM Rev. 51(4), 661–703 (2009)

10. Cooke, E., Bailey, M., Mao, Z.M., Watson, D., Jahanian, F., McPherson, D.: Toward
understanding distributed blackhole placement. In: Proceedings of ACM Worm
2004, pp. 54–64 (2004)

A Characterization of Cybersecurity Posture from Network Telescope Data 125

11. Cryer, J., Chan, K.: Time Series Analysis With Applications in R. Springer,
New York (2008)

12. Dainotti, A., King, A., Claffy, K., Papale, F., Pescapè, A.: Analysis of a “/0”
stealth scan from a botnet. In: Proceedings of ACM IMC 2012, pp. 1–14 (2012)

13. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the
variance of united kingdom inflation. Econometrica: J. Econometric Soc. 50(4),
987–1007 (1982)

14. Giorgino, T.: Computing and visualizing dynamic time warping alignments in R:
the dtw package. J. Stat. Softw. 31(7), 1–24 (2009)

15. Glatz, E., Dimitropoulos, X.: Classifying internet one-way traffic. In: Proceedings
of ACM IMC 2012, pp. 37–50 (2012)

16. Gringoli, F., Salgarelli, L., Dusi, M., Cascarano, N., Risso, F., Claffy, K.: Gt:
picking up the truth from the ground for internet traffic. SIGCOMM Comput.
Commun. Rev. 39(5), 12–18 (2009)

17. Hussain, A., Heidemann, J., Papadopoulos, C.: A framework for classifying denial
of service attacks. In: Proceedings of ACM SIGCOMM 2003, pp. 99–110 (2003)

18. Kreibich, C., Crowcroft, J.: Honeycomb: creating intrusion detection signatures
using honeypots. SIGCOMM Comput. Commun. Rev. 34(1), 51–56 (2004)

19. Lau, F., Rubin, S.H., Smith, M.H., Trajkovic, L.: Distributed denial of service
attacks. In: Proceedings of 2000 IEEE International Conference on Systems, Man,
and Cybernetics, vol. 3, pp. 2275–2280 (2000)

20. Lee, D.J., Brownlee, N.: Passive measurement of one-way and two-way flow life-
times. SIGCOMM Comput. Commun. Rev. 37(3), 17–28 (2007)

21. Li, Z., Goyal, A., Chen, Y., Paxson, V.: Towards situational awareness of large-scale
botnet probing events. IEEE Trans. Inf. Forensics Secur. 6(1), 175–188 (2011)

22. Li, Z., Goyal, A., Chen, Y., Kuzmanovic, A.: Measurement and diagnosis of address
misconfigured p2p traffic. IEEE Netw. 25(3), 22–28 (2011)

23. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: Inside
the slammer worm. IEEE Secur. Priv. 1(4), 33–39 (2003)

24. Moore, D., Shannon, C., Brown, D., Voelker, G., Savage, S.: Inferring internet
denial-of-service activity. ACM Trans. Comput. Syst. 24(2), 115–139 (2006)

25. Moore, D., Shannon, C., Brown, J.: Code-red: a case study on the spread and
victims of an Internet worm. In: Proceedings of ACM IMW 2002, pp. 273–284
(2002)

26. Moore, D., Shannon, C., Voelker, G.M., Savage, S.: Network telescopes, Technical
report. Department of Computer Science and Engineering, University of California,
San Diego (2004)

27. Neter, J., Kutner, M.H., Nachtsheim, C.J., Wasserman, W.: Applied linear statis-
tical models, vol. 4. Irwin, Chicago (1996)

28. Pang, R., Yegneswaran, V., Barford, P., Paxson, V., Peterson, L.: Characteristics
of internet background radiation. In: Proceedings of ACM IMC 2004, pp. 27–40
(2004)

29. Provos, N.: A virtual honeypot framework. In: Proceedings of USENIX Security
Symposium, pp. 1–14 (2004)

30. Shannon, C., Moore, D.: The spread of the witty worm. IEEE Secur. Priv. 2(4),
46–50 (2004)

31. CAIDA UCSD Network Telescope. http://www.caida.org/
32. CAIDA UCSD Network Telescope. http://www.caida.org/tools/measurement/

corsaro/docs/plugins.html
33. Treurniet, J.: A network activity classification schema and its application to scan

detection. IEEE/ACM Trans. Netw. 19(5), 1396–1404 (2011)

http://www.caida.org/
http://www.caida.org/tools/measurement/corsaro/docs/plugins.html
http://www.caida.org/tools/measurement/corsaro/docs/plugins.html

126 Z. Zhan et al.

34. Tsay, R.S.: Analysis of Financial Time Series. Wiley, New york (2010)
35. Weiler, N.: Honeypots for distributed denial-of-service attacks. In: Proceedings of

IEEE Workshop on Enabling Technologies: Infrastructure for Collaborative Enter-
prises (WET-ICE 2002), pp. 109–114 (2002)

36. Wustrow, E., Karir, M., Bailey, M., Jahanian, F., Huston, G.: Internet background
radiation revisited. In: Proceedings of ACM IMC 2010, pp. 62–74 (2010)

37. Yegneswaran, V., Giffin, J., Barford, P., Jha, S.: An architecture for generating
semantic aware signatures. In: Proceedings of Usenix Security Symposium (2005)

38. Yegneswaran, V., Barford, P., Plonka, D.: On the design and use of internet sinks
for network abuse monitoring. In: Jonsson, E., Valdes, A., Almgren, M. (eds.)
RAID 2004. LNCS, vol. 3224, pp. 146–165. Springer, Heidelberg (2004)

39. Yegneswaran, V., Barford, P., Ullrich, J.: Internet intrusions: global characteristics
and prevalence. In: Proceedings of ACM SIGMETRICS 2003, pp. 138–147 (2003)

40. Zhan, Z., Xu, M., Xu, S.: Characterizing honeypot-captured cyber attacks: statisti-
cal framework and case study. IEEE Trans. Inf. Forensics Secur. 8(11), 1775–1789
(2013)

Key-Exposure Protection in Public Auditing
with User Revocation in Cloud Storage

Hua Guo1(B), Fangchao Ma2, Zhoujun Li1, and Chunhe Xia2

1 State Key Laboratory of Software Development Environment,
Beihang University, Beijing 100191, China

hguo@buaa.edu.cn
2 Beijing Key Laboratory of Network Technology, School of Computer Science

and Engineering, Beihang University, Beijing, China

Abstract. With the development of cloud data storage, more and more
data owners are choosing to store their data in the Cloud and share them
as a group. To protect integrity of sharing data, data are signed before
they are stored on the cloud. When a user is revoked from the group, the
revoked user’s signature can be converted to the existing group member’s
signature by the cloud to preserve the revocation’s efficiency. Accord-
ingly, the public auditing should be done by the third party auditor
using the existing group member’s public key. As a basic secure require-
ment, the cloud sever should not know the existing group member’s pri-
vate key even if he obtains the revoked user’s private key. In this paper,
we propose a new public auditing protocol in which a public verifier is
always able to audit the integrity of shared data even if some part of
shared data has been re-signed by the cloud. By integrating the proxy
re-signature with random masking technique, the new public auditing
protocol satisfies the basic secure requirement. In addition, we prove the
security of the new protocol, and finally compare it with other existing
public auditing protocols and show that the new mechanism provides
a good key-exposure protection for the existed public auditing proto-
col for shared data without losing the communication and computation
efficiency.

Keywords: Public auditing · Shared data · Cloud storage · User revo-
cation · Key-exposure protection

1 Introduction

Cloud data storage allows data owners to move data from their local computing
systems to the cloud. A cloud data storage service consists of three different
participants, namely the cloud server, the third party auditor (TPA) and users.
The cloud server has ample storage space and provides data storage and sharing
services for users. The TPA is able to provide data auditing service based on
requests from users, without downloading the entire file. Cloud user stores large
amount of data or files on a cloud server. In a group, there are two types of
c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 127–136, 2015.
DOI: 10.1007/978-3-319-27998-5 8

128 H. Guo et al.

users: an original user who is the creator of the shared data, and a number of
group users who can access and modify the data. Shared data is further divided
into a number of blocks.

Instead of the initial investment of expensive infrastructure setup, large
equipments and daily maintenance cost, the data owners only need to pay the
space they actually use, e.g., cost-per-gigabyte-stored model. Additionally, data
owners can rely on the Cloud to access data at will. More and more data owners
are choosing to store their data in the Cloud. After an original group user cre-
ates shared data and stores them on the cloud server, every group user is able
to access and modify shared data so that he can share the latest version of the
shared data with the rest of the group. To protect sharing data integrity, all of
the data, including the data created by the original group user and the data
modified by the different group users, should be signed before they are stored on
the cloud server. Thus different data blocks are signed by different users due to
data modifications performed by different users. Since each data block is signed
by a group user, a public verifier, such as a third party auditor (TPA), can check
data integrity in the cloud without downloading the entire data, referred to as
public auditing.

Public auditing allows data integrity to be publicly checked without com-
pletely downloading the data. Ateniese et al. [1] are the first to propose the
model of Provable Data Possession (PDP), which allows a verifier to publicly
check the correctness of a clients data stored at an untrusted storage using
RSA-based homomorphic authenticators. Later, Ateniese et al. [2] presented a
dynamic version of the prior PDP scheme to support dynamic operations based
on hash function and symmetric key encryption. However, it looses two impor-
tant properties, i.e., the publicly verifiability and fully dynamic data operations.
Subsequently, Erway et al. [3] introduced Dynamic Provable Data Possession
by using authenticated dictionaries, which are based on rank information. Juels
et al. [4] proposed a POR model to ensure both data possession and retriev-
ability. Unfortunately, this mechanism prevents efficient extension for updating
data. Shacham and Waters [5] designed an improved PDP scheme based on BLS
signatures, which is not publicly verifiable and only provides a user with a lim-
ited number of verification requests. In 2012, Wang et al. [6] presented data
integrity checking approaches to achieve public auditability, storage correctness,
privacy-preserving, batch auditing, lightweight, dynamic data support and error
location and recovery. To preserve users confidential data from the TPA, Wang
et al. [7] propose a public mechanism using random maskings, which also sup-
ports batch auditing. In Zhu et al. [8] public auditing mechanism, the fragment
structure is exploited to reduce the storage of signatures, and index hash tables
are used to provide dynamic operations for users. Meanwhile, to preserve the
identity of the signer on each block from the users and the TPA, Wang et.al. [9]
proposed a mechanism for public auditing shared data in the cloud for a group of
users by using ring signature-based homomorphic authenticators. The auditing
mechanism in [10] is designed to preserve identity privacy for a large number of
users. However, it fails to support public auditing.

Key-Exposure Protection in Public Auditing with User Revocation 129

When a revoked user leaves the group, for security reason, the signatures
generated by this revoked user should be re-signed by an existing user in the
group since they are no longer valid to the group. The most efficient way is
allowing the cloud to convert the revoked user’s signatures to the existing group
member’s signatures. Accordingly, the public auditing process should be done
by the third party auditor using the existing group member’s public key. There
are two basic secure requirements: (1) the cloud, who is not in the same trusted
domain with each user, is only able to convert a signature of the revoked user
into a signature of an existing user(say Alice) on the same block, but it cannot
sign arbitrary blocks on behalf of either the revoked user or an existing user;
(2) the cloud sever should not know the existing group member’s private key
even if he obtains the revoked user’s private key.

Previous works pay a lot of attentions on auditing the integrity of per-
sonal data and preserve identity privacy from the TPA. Very recently, Wang
et al. [11] presented a public auditing mechanism with efficient user revoca-
tion in an untrusted cloud by utilizing proxy re-signatures [12]. In Wang et al.
scheme, the first secure requirement is satisfied, which the second one is lost.
More precisely, if a revoked user (Say B) leaks his private key to the cloud, the
private key of the valid group member (say A) would be computed by the cloud.
As a direct result, the untrusted cloud server would repudiate the deletion mes-
sages since he can sign a message using A’s private key which would bring in
a dispute. One straightforward method to deal with this threat is that user A
updates his private key after the re-sign private key is distributed to the cloud.
However, this would bring in a huge amount of communication and computation
resource since A has to download all of his signed message and re-sign them and
re-upload them to the cloud sever, which takes away the benefits which Wang
et al. scheme brings in. Therefore, how to preserve the private key’s security of
the group member even if the private key of the revoked user is compromised is
the problem we are going to tackle in this paper.

In this paper, we construct a new public auditing mechanism by integrating the
proxy re-signature with random masking technique, to guarantee that the com-
promising of the revoked user’s private key would not affect the security of the
private keys of the users in the group. Thus the new scheme is more secure than
the exist public auditing scheme, i.e., after the auditing protocol’s execution, the
cloud could not learn any knowledge about the private keys of the users in the group
even if the private key of the revoked user is compromised. We prove the security
and compare the efficiency of our proposed schemes with the state-of-the-art.

The rest of this paper is arranged as follows. In Sect. 2, we introduce sev-
eral cryptographic primitives. In Sect. 3, detailed design and security analysis of
the new mechanism are presented. Section 4 analyzes the efficiency of the new
mechanism. Finally Sect. 5 give the concluding remark of the whole paper.

2 Preliminaries

In this section, we introduce the background knowledge that will be used for the
new scheme. We give the basic definition and properties of bilinear pairings and
the computational problems.

130 H. Guo et al.

We first revisit the “admissible bilinear map” [13] and the Computational
Diffie-Hellman problem, which play central roles in our scheme.

The admissible bilinear map ê is defined over two groups of the same prime
order p denoted by G1 and G2 in which the Computational Diffie-Hellman prob-
lem is hard. More formally, we have the following definition:

Definition 1. (Bilinear Map) Let G1 and G2 are two multiplicative cyclic groups
of the same order p. Let g denote a generator of G1. An admissible pairing is a
bilinear map e : G1 × G1 → G2 which has the following properties:

– Bilinear: given u, v ∈ G1 and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
– Non-degenerate: e(g, g) �= 1.
– Computable: e is efficiently computable.

Throughout this paper, we will simply use the term “Bilinear map” to refer
to the admissible bilinear map defined above.

We now revisit the Computational Diffie-Hellman (CDH) problem and the
Discrete Logarithm (DL) Problem.

Definition 2. (Computational Diffie-Hellman Problem) For a, b ∈ Zp, given
g, ga, gb ∈ G1 as input, output gab ∈ G1.

The CDH assumption holds in G1 if it is computationally infeasible to solve
the CDH problem in G1.

Definition 3. (Discrete Logarithm (DL) Problem.) For a ∈ Zp, given g, ga ∈ G1

as input, output a.

The DL assumption holds in G1 if it is computationally infeasible to solve
the DL problem in G1.

3 Construction of the New Public Auditing Mechanism

In this section, we will show how to construct the public auditing mechanism for
shared data. As in Wang et al. [11] scheme, we also designate the cloud as the
proxy to translate signatures for users in the group, and mandate the revoked
user’s signatures to be translated to the original user.

3.1 Scheme Details

The new public auditing mechanism consists of six algorithms: KeyGen, ReKey,
Sign, ReSign, ProofGen, ProofVerify.

– KeyGen. This algorithm is run by every user in the group to generates his/her
public key and private key.

– ReKey. This algorithm is run among the revoked user, the existing group user
and the cloud server. After the execution, the algorithm helps the cloud to
output a re-signing key.

Key-Exposure Protection in Public Auditing with User Revocation 131

– Sign. This algorithm is run by all of the group user, i.e., the original user
computes signatures on the shared data blocks he creates; the group user
computes the signature on the modified share data block.

– ReSign. This algorithm is run by the cloud server. After a user revoked from
the group, the cloud uses the re-signing key to re-sign the blocks which were
previous signed by the revoked user.

– ProofGen. This algorithm is run by the cloud to generate a proof of possession
of shared data.

– ProofVerify. This algorithm is run by a public verifier to check the correctness
of a proof.

Let G1 and G2 be two groups of order p, g be a generator of G1, e : G1×G1 → G2

be a bilinear map, w be a random element of G1. The global parameters are
(e, p,G1,G2, g, w,H,H), where H is a hash function with H : {0, 1}∗ → G1 and
H is a hash function with H : {0, 1}∗ → Zq. The total number of blocks in
shared data is n, and shared data is described as M = (m1, . . . ,mn). The total
number of users in the group is d.

– KeyGen. For user ui, he randomly generates xi ∈ Zp, and outputs his public
key pki = gxi and private key ski = xi. Without loss of generality, user u1

is assumed to be the original user, who is the creator of shared data. The
original user also creates a public user list (UL), which contains ids of all the
users in the group and is signed by the original user.

– ReKey. Assume that private and authenticated channels exist between each
pair of entities, and there is no collusion. The cloud generates a re-signing key
kij as follows:

• The cloud generates a random r ∈ Zp and sends it to the revoked user ui;
• User ui sends r/xi to user uj , where ski = xi;
• User uj randomly selects rj ∈ Zp and sends (r(rj+λxj)

xi
, grj) to the cloud,

where skj = xj and λ = h(grj) ;
• The cloud recovers ki→j = rj+λxj

xi
∈ Zp.

– Sign. Given private key ski = xi, block mk ∈ Zp in shared data M and its
block identifier idk, where k ∈ [1, n], user ui outputs the signature on block
mk as σk = (H(idk)wmk)xi ∈ G1.

– ReSign. When user ui is revoked from the group, the cloud is able to convert
signatures of user ui into signatures of user uj on the same block. More specif-
ically, given re- signing key ki→j , public key pki, signature σk, block mk and
block identifier idk, the cloud first checks that e(σk, g) =?e(H(idk)wmk , pki).
If the verification result is 0, the cloud outputs ; otherwise, it outputs

σk = σki→j
= (H(idk)wmk)xi(

λxj+rj
xi

) = (H(idk)wmk)λxj+rj .

After the re-signing, the original user removes user uis id from UL and signs
the new UL.

– ProofGen. To audit the integrity of shared data, the TPA generates an
auditing message as follows:

132 H. Guo et al.

• Randomly picks a c-element subset L of set [1, n] to locate the c selected
random blocks that will be checked in this auditing task.

• Generates a random yl ∈ Zq, for l ∈ L and q is a much smaller prime than p.
• Outputs an auditing message (l, yl)l∈L, and sends it to the cloud.

After receiving an auditing message, the cloud generates a proof of possession
of shared data M . More concretely,

• The cloud divides set L into d subset L1, · · · , Ld, where Li is the subset of
selected blocks signed by user ui. And the number of elements in subset
Li is ci. Clearly, we have c =

∑d
i=1 ci, L = L1

⋃ · · · ⋃ Ld and Li

⋂

Lj = ∅,
for i �= j.

• For each set Li(i �= 1), the cloud computes αi =
∑

l∈Li
ylml ∈ Zp, βi =

Πl∈Li
σyl

l ∈ G1.
For L1, the cloud computes α11 =

∑

l∈L11
ylml, β11 =

∏

l∈L11
σyl

l , and
α12 =

∑

l∈L12
ylml, β12 =

∏

l∈L12
σyl

l , separately.
• Finally, the cloud outputs an auditing proof (α, β, γ, idll∈L), where α =

(α1, · · · , αd), β = (β1, · · · , βd), γ = gr1 , α1 = (α11, α12), β1 = (β11, β12);
– ProofVerify. With an auditing proof (α, β, γ, idll∈L), an auditing message

(l, yl)l∈L, and all the existing users public keys (pk1, · · · , pkd), the TPA checks
the correctness of this auditing proof as

• For l ∈ Li(i �= 1), the cloud checks if the equation

e(
d

∏

i=2

βi, g) =
d

∏

i=2

e(
∏

l∈Li

H(idl)ylẇαi , pki)

holds or not.
• For l ∈ L11, the cloud checks if the equation

e(β11, g) = e(
∏

l∈L11

H(idl)yl · wα11 , pk1)

holds or not.
• For l ∈ L12, the cloud checks if the equation

e(β12, g) = e(
∏

l∈L12

H(idl)yl · wα12 , pk1)λ · e(
∏

l∈L12

H(idl)yl · wα12 , γ)

holds or not.
If the result is 1, the verifier believes that the integrity of all the blocks in
shared data M is correct. Otherwise, the verifier outputs 0.

Remark. Similar to Wang et al. [11] scheme, since we utilize the bilinear pair-
ings, our public auditing protocol also supports batch auditing, i.e., the TPA
can perform multiple auditing tasks simultaneously.

Key-Exposure Protection in Public Auditing with User Revocation 133

3.2 Security Analysis of the Public Auditing Mechanism

In this subsection, we will give a security analysis of our public auditing protocol,
including the storage correctness and the key-privacy-preserving.

Storage Correctness Guarantee. We need to prove that the cloud sever
can not generate valid response toward TPA without faithfully storing the data.

Theorem 1. Given shared data M and its signatures, a verifier is able to cor-
rectly check the integrity of shared data M .

Proof: The correctness of our mechanism can be verified by proving the fol-
lowing equations. Based on the properties of bilinear maps, the correctness of
the equations are presented as the following:

– For l ∈ Li(i �= 1), the cloud checks the equation

e(
d

∏

i=2

βi, g) =
d

∏

i=2

e(
∏

l∈Li

σyl

l , g)

=
d

∏

i=2

e(
∏

l∈Li

(H(idl)wml)xiyl , g)

=
d

∏

i=2

e(
∏

l∈Li

H(idl)yl ·
∏

l∈Li

wmlyl , gxi)

=
d

∏

i=2

e(
∏

l∈Li

H(idl)yl · wαi , pki)

– For l ∈ L11, the cloud checks the equation

e(β11, g) = e(σyl

l , g)

= e(
∏

l∈L11

(H(idl)wml)xiyl , g)

= e(
∏

l∈L11

H(idl)yl ·
∏

l∈L11

wmlyl , g)

= e(
∏

l∈L11

H(idl)yl · wα11 , pk1).

– For l ∈ L12, the cloud checks the equation

e(β12, g) = e((σ′
l)

yl , g)

= e(
∏

l∈L12

(H(idl)wml)(r1+λxi)yl , g)

= e(
∏

l∈L12

H(idl)yl ·
∏

l∈L12

wmlyl , gr1+λxi)

= e(
∏

l∈L12

H(idl)yl · wα12 , pk1)λ · e(
∏

l∈L12

H(idl)yl · wα12 , γ)

134 H. Guo et al.

Theorem 2. For the cloud, it is computational infeasible to generate a forgery
of an auditing proof under our mechanism.

Proof: The difference between our scheme and Wang et al. scheme [11] is the
way of the re-sign key’s generation, i.e., random masking technology is used to
generate the re-key is our scheme. Accordingly, the verification of some signatures
from the original data creator U1 is a little different from Wang et al. scheme.
However, we find that these difference does not affect the proof process when
we adapt Wang et al. strategy to our scheme. Thus the proof of our scheme is
similar to that of Wang et al. scheme.

Key-Privacy Guarantee: We want to make sure that TPA can not derive
the existing group user’s private key, even when he colludes with the revoked
user. This is equivalent to prove the following Theorem.

Theorem 3. For the cloud sever, it is computational infeasible to compute the
target signer’s private key, even if with the help of the revoked user’s private key
under our mechanism.

Proof: According to the description of the public auditing protocol, we know
that if the cloud sever colludes with the revoked user, he has the knowledge of
this revoked user’s private key a. We need to prove that the cloud sever cannot
obtain the existing group user’s private key to whom the signatures from the
revoked user are translated. In our scheme, this existing group user is assumed
to be the shared data’s creator U1. The hardness of this problem lies in the
hardness of the DL problem (given g and gk, it is hard to compute k). More
specifically, when the cloud sever makes “re-key” query to U1, the challenger
returns “(k+h(gk)b)

a , gk)” to the cloud sever. Note that with the value of gk, due
to the hardness of discrete-log assumption, the value k is still hidden against the
cloud sever. Thus, privacy of U1’s private key b is guaranteed from k.

4 Efficiency Analysis and Comparison

In this section, we discuss the communication and computation cost of our mech-
anism by comparing the new scheme with Wang et al. [11] scheme. Suppose d is
the number of existing users in the group, c is the number of selected blocks, |n|
is the size of an element of set [1, n], |q| is the size of an element of Zq, |p| is the
size of an element of G1 or Zp, |id| is the size of a block identifier. Additional,
suppose ExpG1 denotes one exponentiation in G1, MulG1 denotes one multiplica-
tion in G1, Pair denotes one pairing operation on e : G1 × G1 → G2, and HashG1

denotes one hashing operation in G1.
From Table 1, we can find that the communication cost of our scheme is

a little high than that of Wang et al. scheme. More precisely, in our scheme,
the size of an auditing message (l, yl)l∈L is c · (|n| + |q|) bits and the size of
an auditing proof {α, β, γ, idll∈L} is 3d · |p| + c · (|id|) bits. Therefore, the total
communication cost of an auditing task is 3d · |p| + c · (|id| + |n| + |q|) bits. The
total communication cost of an auditing task is 2d · |p| + c · (|id| + |n| + |q|) bits,

Key-Exposure Protection in Public Auditing with User Revocation 135

Table 1. The comparison of the proposed scheme and Wang et al. scheme.

Schemes Scheme 1 [11] Ours

Computation (c + d)ExpG1 + (c + 2d)MulG1 (c + d)ExpG1 + (c + 2d)MulG1

(Exp+Mul+Pair) +dMulG2 + (d + 1)Pair + cHashG1 +dMulG2 + (d + 2)Pair + cHashG1

+(c12)ExpG2

Communication 2d · |p| + c · (|id| + |n| + |q|) 3d · |p| + c · (|id| + |n| + |q|)
Allow PKCa no yes

aPKC means private-key-compromising

therefore the number of the communication cost our scheme is more than that
of Wang et al. scheme is d · |p|. Therefore the communication cost of our scheme
is almost the same as that of Wang et al. scheme.

In terms of the communication cost, as shown in ReSign of our mecha-
nism, the cloud first verifies the correctness of the original signature on a block,
and then computes a new signature on the same block with a re-signing key.
The computation cost of re-signing a block in the cloud is 2ExpG1 + MulG1 +
2Pair + HashG1 . The cloud can further reduce the computation cost of the
re-signing on a block to ExpG1 by directly re-signing it without verification.
The public auditing performed by the TPA ensures that the re-signed blocks
are correct. Thus, the computation cost of an auditing task in our mechanism is
(c+d)ExpG1+(c+2d)MulG1+(d+2)Pair+dMulG2+cHashG1+(c12)ExpG2 . The
total communication cost of an auditing task is (c+ d)ExpG1 +(c+2d)MulG1 +
(d+1)Pair +dMulG2 + cHashG1 , therefore the number of the computation cost
our scheme is more than that of Wang et al. scheme is 1Pair+(c12)ExpG2 . Since
the computation capability of the TPA is strong enough so that we conclude that
the computation cost of our scheme is almost the same as that of Wang et al.
scheme.

We finally check the security when the revoked uses’s private key is compro-
mised to the cloud. From the scheme, we can find that when the revoked uses’s
private key is compromised to the cloud, the private key of the existed group
user in our scheme is secure, while the private key of the existed group user in
Wang et al. scheme is easy to be computed by the cloud.

5 Conclusion

We have presented a key-exposure protection public auditing mechanism for
shared data in the cloud with efficient user revocation. The main advantage
of this scheme, i.e., even if the revoked user’s private key is compromised, the
private keys of the users in the group are still kept secret from the cloud server, is
obtained by combining the random masking technology with an enhanced proxy
re-signature scheme which is proposed in this paper. In addition, a public verifier
is always able to audit the integrity of shared data even if some part of shared
data has been re-signed by the cloud. We analyzed the efficiency and the security
of the new public auditing scheme, and showed that our mechanism provides a

136 H. Guo et al.

good key-exposure protection for a public auditing protocol for shared data, at
the same time keeps the high communication and computation efficiency.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China (grant number 61300172), the Research Fund for the Doctoral
Program of Higher Education (grant number 20121102120017) and the Fund of the
State Key Laboratory of Software Development Environment (grant number SKLSDE-
2014ZX-14), and the Fundamental Research Funds for the Central Universities grant
number YWF-14-JSJXY-008).

References

1. Ateniese, G., Burns, R., Curtmola, R. et al.: Provable data possession at untrusted
stores. In: The Proceedings of ACM CCS 2007, pp. 598–610 (2007)

2. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: The Proceedings of ICST SecureComm 2008 (2008)

3. Erway, C., Kupcu, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: The Proceedings of ACM CCS 2009, pp. 213–222 (2009)

4. Juels, A., Burton, J., Kaliski, S.: Proofs of retrievability for large files. In: The
Proceedings of ACM CCS 2007, pp. 584–597 (2007)

5. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

6. Wang, C., Wang, Q., Ren, K., Cao, N., Lou, W.: Toward secure and dependable
storage services in cloud computing. IEEE Trans. Serv. Comput. 5(2), 220–232
(2012)

7. Wang, C., Chow, S.S., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public
auditing for secure cloud storage. IEEE Transa. Comput. 62(2), 275–362 (2013)

8. Zhu, Y., Wang, H., Hu, Z. et al.: Dynamic audit services for integrity verification
of outsourced storage in clouds. In: The Proceedings of ACM SAC 2011, pp. 1550–
1557 (2011)

9. Wang, B., Li, B., Li, H.: Oruta: privacy-preserving public auditing for shared data
in the cloud. In: The Proceedings of IEEE Cloud 2012, pp. 95–302 (2012)

10. Wang, B., Li, B., Li, H.: Knox: privacy-preserving auditing for shared data with
large groups in the cloud. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 507–525. Springer, Heidelberg (2012)

11. Wang, B., Li, B., Li, H.: Public auditing for shared data with efficient user revoca-
tion in the cloud. In: The Proceedings of INFOCOM 2013, pp. 2904–2912 (2013)

12. Ateniese, G., Hohenberger, S.: Proxy re-signatures: new definitions, algorithms and
applications. In: The Proceedings of ACM CCS 2005, pp. 310–319 (2005)

13. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

Software Behavior Model Measuring
Approach of Combining Structural Analysis

and Language Set

JingFeng Xue, Yan Zhang, ChangZhen Hu,
HongYu Ren, and ZhiQiang Li(&)

School of Software, Beijing Institute of Technology, Beijing 100081, China
lizq@bit.edu.cn

Abstract. Structural analysis represented by FSMDiff algorithm is the main
measuring approach for existing software behavior model which is based on
finite state automata. This method just focus on the data structure of finite state
automata as figure characteristics, however, as software behavior model, it is
more important for finite state automaton to reflect the characteristics of software
behavior. So we need to find out a method to distinguish the importance in the
finite state automata between different state nodes. This paper shows how the
output of the FSMDiff algorithm can provide a quantified expression of struc-
tural difference between two models. According to this, we also introduce the
language-set analysis, which uses the depth-first traversal algorithm to solve the
language set of finite state automata. Above all, we propose a new strategy of
assigning weights for the local elements of software behavior model, which can
fusion assigning weight results and structural analysis for evaluation of software
behavioral models. Experiment results demonstrate the effectiveness and feasi-
bility of software behavioral model measuring approach of combining structural
analysis and language set, and laid the foundation for constructing evaluation
system of software behavior model inference technology.

Keywords: Software behavior model � Finite state automata � Structural
analysis � Language-set � FSMDiff algorithm

1 Introduction

The detection approach based on software behavior is a dynamic approach towards
software running process. It forms the node sequence by tracking the state nodes which
are produced during the software execution to describe the software behavior and
detect behavior through establishing the knowledge base or building models [1].
Generally, software behavior inference technology for a specific type of software has
generality, so software behavior model inference technology has local generality. How
to evaluate the performance and accuracy of software behavior model inference
technology is a topic which is worth studying. To measure the performance and
accuracy of software behavior model inference technology, we usually compare it with
the target software or the standard behavior model of program [2]. However, there is
very little software or program will be able to make the standard behavior models

© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 137–150, 2015.
DOI: 10.1007/978-3-319-27998-5_9

during the development stage, the software behavior model in the process of devel-
opment and testing is not required for developer and tester. So, to evaluate the software
behavior model inference technology, we need to establish the test set first, the test set
should contain the typical software and program set, and provide the standard behavior
models of these software and program [3]. On the basic of this we establish a series of
evaluation standard which is used to test the performance of software behavior model
inference technology. The main purpose of this paper is to provide an automatic
approach to compare target behavior model and standard behavior model, and make it
the basic evaluation approach of evaluating the software behavior model inference
technology.

2 The Research Object and Predefine

The basic method of evaluating the software behavior model inference technology is to
compare the software behavior model which is built by this inference technology with
standard software behavior model. In order to make the content of research more
pertinence, this paper will revolve around software behavior model which is based on
finite state automata to research and test. The detail of the finite state automata is shown
in [4].

The language set of finite state automata can be seen as the union of path set from
the start node to each final node. From the view of software behavior model, the
content of this set is all behavior of the software that is represented by the software
behavior model can execute. Each language of finite state automata is corresponds to a
series of identifiable operation of software from start to finish [5]. The definition of the
language of finite state automata is as in [6].

We use Precision and Recall as evaluation parameters in this paper. The mea-
surement method of Precision and Recall was originally proposed by Van Rijsbergen
in order to verify the accuracy of the information retrieval technology [7]. The detail of
Precision and Recall is as follows:

Precision and Recall: given the set REL of related elements in standard object by
comparing and the set RET of related elements in the target object by comparing, then,
Precision and Recall are calculated as follows:

Precision ¼ jREL\RET j
jRET j ; Recall ¼ jREL\RET j

jRELj

Precision and Recall are generally used for comparing two similar objects, and let
the two objects that to be compared become standard and target object separately, this
pair of parameters will show the difference between target object and standard object.
Generally speaking, if we see the target objects as a result, Precision shows that the
accuracy of the result, Recall shows that the coverage of the correct parts of the result
relative to the theoretically all correct result, that is the integrity.

138 J. Xue et al.

3 Structure Comparison Algorithm of Software Behavior
Model

3.1 The FSMDiff Algorithm

The FSMDiff algorithm identifies a selection of initial “landmark”, and uses these to
infer the difference between two finite state automatons. The “landmarks” are referred
to as “key pair”. The details of the algorithm are as follows [7]:

(1) Input of the algorithm are two finite state automatons named FSAA and FSAB, the
first threshold t that is used to identify landmark pairs, the second one m, and the
attenuation value k.

(2) The intermediate data includes the set of key-pairs KPairs, the structure to record
the similarity score PairsToScores and to store the union of the surrounding state
pair of the key pair set NPairs.

(3) The function computeScores() is used to compute the similarity score of all the
state pair combination of two FSAs, and save the result in the structure to record
the similarity score PairsToScores.

(4) The function identifyLandmarks() selects key pair by two thresholds in
PairsToScores and add to the set.

(5) After step (2) to step (4), if the key pair set is empty, initial state of the two FSAs
will be paired the key pair and added to the key pair set.

(6) Compute the union of the surrounding state pair set of all the key pair in the key
pair set, and use the union and the key pair set to make a subtraction, if the result
is not empty, then add a pair of key pair to the key pair set once a time in
descending order based on the structure to record the similarity score PairsToS-
cores, repeat this process until the result is an empty set, that is the union we get is
the subset of the key pair set, now the content of the key pair set is the similar part
of the two FSAs.

(7) Finally, add the states which in the target FSA but not in the key pair set to the
Added set, and add the states which in the standard FSA but not in the key pair set
to the Removed set. The Added set and Removed set are the concrete manifestation
of the structural difference of the two FSAs, and the algorithm return Added set
and Removed set as the output.

3.2 Computing Precision and Recall

FSMDiff returns the structural difference between two FSAs. For certain tasks, it is
necessary to quantify the result which is in the form of set. We use Precision and Recall
parameters for quantified expression. Combining the output of FSMDiff algorithm,
assume that in the input of the algorithm, FSAA is the standard FSA and FSAB is the
target FSA.

Let REL = ΔA and RET = ΔB, where REL is the transition set of FSAA and RET is
the transition set of FSAB; Or REL = QA and RET = QB, where REL is the state set of
FSAA and RET is the state set of FSAB. Then, the intersection of REL and RET is
computed with the help of FSMDiff, and can be defined as follows [7]:

Software Behavior Model Measuring Approach 139

REL\RET ¼ fd 2 ðDA[DBÞjd 3ðAdded[RemovedÞg

REL\RET ¼ fq 2 ðQA[QBÞjq3ðAdded[RemovedÞg

The value of |RET| and |REL| are the basic attributes of FSA, that is the number of
states or transitions, and it is easy to solve.

3.3 Thinking of Structured Analysis Results

The structural analysis just focus on the data structure of finite state automata as figure
characteristics, however the finite state automata as a software behavior model is not
just a figure. As software behavior model, it is more important for finite state automata
to reflect the characteristics of software behavior. Each node of software behavior
model represents the different stages and states of a software execution whose sig-
nificance and importance are different.

It is necessary to distinguish the two FSAs in the view of figure, but this is not
perfect. Therefore, it is needed to find a method or strategy to distinguish the different
meaning and importance of different states or transitions in their own finite state
automata. For this purpose, this paper introduces the language set of finite state
automata to distinguish the different meaning and importance of different states or
transitions in their own finite state automata by solving the language set of finite state
automata.

4 To Solve the Language Set of Software Behavior Model

4.1 The Introduction of Language Set

Due to Precision shows the accuracy of the compared result and Recall shows the
integrity of the result, this pair of parameters got above is accurate for structural
analysis result, but it is hard to really show the differences of function between software
behavior models.

Therefore, it is necessary to assign weights for the local elements of FSA, we can
certainly know the frequency of a state or transition appears in the language set by the
language set of FSA, and then make sure the importance of the state node or transition.
In this paper, the strategy we choose is based on solving the language set of the finite
state automata, and count the frequency of various local elements appear in the lan-
guage set, then calculate the score of the local elements of the finite state automata.

4.2 Assign Weights for the Local Elements of FSA

In this paper, we use depth-first traversal to solve the language set of FSA, and then
solve the weights of each state and transition of FSA using the set. As shown in Fig. 1,
we will introduce how to use the language set of FSA to assign weights for the state
nodes and transitions respectively and analyze the results.

140 J. Xue et al.

4.2.1 Assign Weights for State Nodes
Assume that Fig. 1 corresponds to a FSA, and its initial node is V0, termination nodes are
V1 and V3, the steps of calculating the weight of each nodes of the FSA are as follows:

(1) Using the depth-first traversal to search the path set from V0 to V1 and from V0 to
V3 respectively:

PATH V0; V1ð Þ ¼ V0; V1ð Þ; V0; V7; V1ð Þf g;
PATH V0; V3ð Þ ¼ V0; V7; V4; V3ð Þ; V0; V7; V4; V5; V3ð Þ;f

V0; V2; V6; V4; V3ð Þ; V0; V2; V6; V4; V5; V3ð Þg:

(2) Count the times of each state node appears in the language set:

T V0ð Þ ¼ 6;T V1ð Þ ¼ 2;T V2ð Þ ¼ 2;T V3ð Þ ¼ 4;

T V4ð Þ ¼ 4;T V5ð Þ ¼ 2;T V6ð Þ ¼ 2;T V7ð Þ ¼ 3:

(3) The sum of all the states appear in the language set is 25 times, thus, the weight of
each state is as follows:

W V0ð Þ ¼ 6=25;W V1ð Þ ¼ 2=25;W V2ð Þ ¼ 2=25;

W V3ð Þ ¼ 4=25;W V4ð Þ ¼ 4=25;W V5ð Þ ¼ 2=25;

W V6ð Þ ¼ 2=25;W V7ð Þ ¼ 3=25:

4.2.2 Assign Weights for Transition
In a similar way, assume that Fig. 1 corresponds to a FSA, and its initial node is V0,
termination nodes are V1 and V3, the steps of calculating the weight of each transition
of the FSA are as follows:

(1) First of all, define the structure of transition of the FSA as follows: (VS, x, VE),
where VS is the source state of the transition, VE is the target state of the tran-
sition, x is the transition condition. Change the form of language set into transition
sequence, the result is as follows:

h

g

f

d
d

c

bba

V0 V2

V7 V6V1

V3

V5 V4

a

Fig. 1. The example of FSA.

Software Behavior Model Measuring Approach 141

PATH V0;V1ð Þ ¼ V0; a;V1ð Þf g; V0; b;V7ð Þ; V7; c;V1ð Þf gf g;
PATH V0;V3ð Þ ¼ V0; b;V7ð Þ; V7; d;V4ð Þ; V4; f;V3ð Þf g;f

V0; b;V7ð Þ; V7; d;V4ð Þ; V4; g;V5ð Þ; V5; h;V3ð Þf g;
V0; a;V2ð Þ; V2; b;V6ð Þ; V6; d;V4ð Þ; V4; f;V3ð Þf g;
V0; a;V2ð Þ; V2; b;V6ð Þ; V6; d;V4ð Þ; V4; g;V5ð Þ; V5; h; V3ð Þf gg:

(2) Count the times of each transition appears:

T V0; a;V1ð Þ ¼ 1;T V0; a;V2ð Þ ¼ 2;T V0; b;V7ð Þ ¼ 3;

T V2; b;V6ð Þ ¼ 2;T V4; g;V5ð Þ ¼ 2;T V4; f;V3ð Þ ¼ 2;

T V5; h;V3ð Þ ¼ 2;T V6; d;V4ð Þ ¼ 2;

T V7; c;V1ð Þ ¼ 1;T V7; d;V4ð Þ ¼ 2:

(3) The sum of all the transitions appear in the language set is 19 times, the weight of
each transition is as follows:

T V0; a;V1ð Þ ¼ 1=19;T V0; a;V2ð Þ ¼ 2=19;T V0; b;V7ð Þ ¼ 3=19;

T V2; b;V6ð Þ ¼ 2=19;T V4; g;V5ð Þ ¼ 2=19;T V4; f;V3ð Þ ¼ 2=19;

T V5; h;V3ð Þ ¼ 2=19;T V6; d;V4ð Þ ¼ 2=19;

T V7; c;V1ð Þ ¼ 1=19;T V7; d;V4ð Þ ¼ 2=19:

4.2.3 Discussion of the Ways to Assign Weights
Above, we use the language set of FSA to assign weights for the state nodes and
transitions respectively, the two ways are both assign weights for the local minimum
elements of the FSA, it can be combined with the compared result of the topological
structure of the FSA that is the output result (Added, Removed) of FSMDiff algorithm.

5 Measuring Approach of Combining Structural Analysis
and Language Set

In this section, we put forward a weighted topological analysis approach which
combining the structural analysis result of FSA and the analysis result of language set
and apply it to the comparison of software behavior models.

5.1 Predefine to the Analysis Result of Language Set

Now give the formulation of weighting state nodes and transitions. Assume that:

X
S ¼ fQs1;Qs2;Qs3; . . .g;

X
T ¼ fQt1;Qt2;Qt3; . . .g

DT ¼ Pt1; Pt2; Pt3; . . .f g;DS ¼ Ps1; Ps2; Ps3; . . .f g

142 J. Xue et al.

Besides, the results based on the language set analysis are as follows:

RELLang ¼ l1; l2; l3; . . .f g;RETLang ¼ t1; t2; t3; . . .f g

Among them, ∑T is the state set of the target FSA, and ∑S is the state set of the
standard FSA, ΔT is the transition set of the target FSA, and ΔS is the transition set of
the standard FSA, l1, l2, l3, … and t1, t2, t3, … are the language of the standard finite
state automata RET and the target finite state automata REL which get from the
depth-first traversal algorithm, and it is consist of the state sequence or the transition
sequence of the FSA.

Let the weights of the state nodes WQt1, WQt2, WQt3, … and WQs1, WQs2, WQs3, …
express the weights of state nodes Qt1, Qt2, Qt3, … and Qs1, Qs2, Qs3, … in ∑T and ∑S
respectively, its calculation method is to count the times of each state appears in the
language set, for example, marking the state nodes of the FSA,

WQtx ¼
jflijQtx 2 ligjP jlij ; i ¼ 1; 2; . . .; jRELLangj

Where |li| expresses the number of state nodes included in the state li, then the
expression means the radio of the number of states which contains Qtx in the set
RELLang and the sum of all the states appear in the language set.

Similarly, the calculation formula of the transition weights of the standard FSA is as
follow:

WPtx ¼
jflijPtx 2 ligjP jlij ; i ¼ 1; 2; . . .; jRELLangj

5.2 Predefine to the Result of Structural Analysis

Obtaining the weighting formula of the state nodes and transitions of the FSA, in order
to calculate the distinction parameters Precision and Recall of the software behavior
model, for example, the method of assignment based on states, let,

RETTop ¼
X

T ¼ Qt1;Qt2;Qt3; . . .f g
RELTop ¼

X
S ¼ Qs1;Qs2;Qs3; . . .f g

RELTop\RETTop ¼ fQ1;Q2;Q3; . . .g

Where RELTop \ RETTop is the key pair set, and each element shows a pair of key
pair which equivalent to each other. Then, the analysis results of FSMDiff algorithm
are as follows:

Added ¼ RETTop � RELTop\RETTop

Removed ¼ RELTop � RELTop\RETTop

Software Behavior Model Measuring Approach 143

Besides, the Qi of RELTop \ RETTop, its weight is WLQi in RELLang while its
weight is WTQi in RETLang.

5.3 The Extended Precision and Recall

To build the evaluation method of extended Precision and Recall is mainly combining
the weights of different states and transitions based on the structural analysis of Pre-
cision and Recall.

Based on the method of state weight, the definition of evaluation parameters
extended Precision and Recall are as follows:

PrecisionðQÞ ¼
P

WTQiP
WQtj

; ði ¼ 1; 2; . . .; jRELTop\RETTopj; j ¼ 1; 2; . . .; jRETTopjÞ

Where,

Qi 2 RELTop\RETTop; Qtj 2 RETTop

RecallðQÞ ¼
P

WLQiP
WQlj

; ði ¼ 1; 2; . . .; jRELTop\RETTopj; j ¼ 1; 2; . . .; jRELTopjÞ

Where,

Qi 2 RELTop\RETTop; Qlj 2 RELTop

Based on the method of transition weight, the definition of evaluation parameters
extended Precision and Recall are as follows:

PrecisionðPÞ ¼
P

WTPiP
WPtj

; ði ¼ 1; 2; . . .; jRELTop\RETTopj; j ¼ 1; 2; . . .; jRETTopjÞ

Where,

Pi 2 RELTop\RETTop; Ptj 2 RETTop

RecallðPÞ ¼
P

WLPiP
WPlj

; ði ¼ 1; 2; . . .; jRELTop\RETTopj; j ¼ 1; 2; . . .; jRELTopjÞ

Where,

Pi 2 RELTop\RETTop; Plj 2 RELTop

144 J. Xue et al.

6 Experiments and Data Analysis

To verify the effectiveness of the software behavior model measuring approach of
combining structural analysis and language set, this paper has carried on the experimental
analysis. The experimental scheme is applying different software behavior model
inference technology to the same software or program, which has a standard FSA and
process tracking log file provided by the developers. The experiment will get two types of
score, which are obtained by topology analysis method and analysis method of com-
bining topology analysis and language set respectively. The performance of different
evaluation methods are analyzed according to the difference of the two scores.

6.1 Experiment Object

As shown in Fig. 2, in the experiment, the software program of building software
behavior model is a CVS client model. The model was built by Lo et al. [9] through a
tracking results sample of the program. The model describes clearly the software
behavior implementation of the CVS client, including software initialization, connect to
the server, log on, search、delete、update of the version file and other basic opera-
tions, logout, disconnecting and other acts. In this paper, the software behavior model
is named as FSAS.

The evaluation objects of the experiment are Markov inference technique and
EDSM inference technique. Markov inference technique was proposed by Cook and
Wolf [10] to conclude the event-based software process model. And EDSM
was originated from an inference algorithm in the field of grammar inference [11].

Fig. 2. Standard software behavior model.

Software Behavior Model Measuring Approach 145

Fig. 3. Markov software behavior model.

Fig. 4. EDSM software behavior model.

146 J. Xue et al.

Neil et al. [7] use the Markov and EDSM inference techniques respectively to build the
software behavior model of CVS procedure tracking samples published by Lo et al. [9].

The behavior model built by Markov inference technique is shown in Fig. 3, and it
is named as FSAMarkov. The software behavior model built by EDSM inference tech-
nique is shown in Fig. 4, and it is named as FSAEDSM.

6.2 Experiment Content

In order to compare the Markov and EDSM inference techniques, we need to compare
and analysis the software behavior models built by the two inference techniques with
the standard software behavior model respectively. The experiment objects are divided
into two groups, the first group are FSAMarkov and FSAS, the second one are FSAEDSM

and FSAS. Carry out the following content respectively aim at the two groups of
experiment objects:

(1) Solve the structural difference set of the target automata compared with the
standard automata using FSMDiff algorithm and calculate the values of Precision
and Recall.

(2) Calculate the language set of target automata and standard automata respectively
using depth-first traversal, and calculate the weight of each state and transition in
its own language set.

(3) Combining the structural difference set of target automata and standard automata
and calculating result of local elements weight, calculate the value of before and
after extended Precision and Recall based on state and transition respectively.

6.3 Experiment Data and Analysis

The experiment result is shown in Table 1, Top_Precision and Top_Recall express
Precision and Recall of before extended, Ex_Precision and Ex_Recall express Preci-
sion and Recall of after extended. Q shows the result based on state, P shows the result
based on transition.

From the experiment result and data integration, we can get three types of
comparison:

Table 1. Comparison results of the two group software behavior models

Top_Precision Top_Recall Ex_Precision Ex_Recall

Markov: Q 0.65 0.69 0.72 0.55
Markov: P 0.76 0.59 0.78 0.54
EDSM: Q 0.65 0.69 0.52 0.49
EDSM: P 0.50 0.41 0.47 0.38

Software Behavior Model Measuring Approach 147

(1) Compare the data obtained by parameters calculation method before and after
using extended Precision and Recall. Such as the two groups of data: Ex_Pre-
cisionMarkov(Q), Ex_RecallMarkov(Q) and Top_PrecisionMarkov(Q), Top_Re-
callMarkov(Q), they are both the quantified expression of structural differences in
the form of state node between Markov model and standard model, the difference
is the first one refers to the language set of the software behavior model and the
second one is only based on the results of the structural analysis, from Fig. 3 we
can find that as target automata, Markov model misses the connectivity features
relative to the standard automata. Break software into three FSAs to describe
which could be described as one model, makes the function on the right side of
Fig. 2 break away from the overall function and exist alone. The function of state
nodes of Markov model relative to the standard model will be completed by the
increased state nodes. Only in the views of structure based on state, the number of
missing nodes and increased nodes is small, therefore, using the calculation for-
mula of before extended Precision and Recall, we get the score of (0.65, 0.69).
However, in the view of function, the increased state nodes of Markov model the
same as matching nodes complete some functions of the standard model, we can
consider that the function set of the model is close to the proper subset of the
standard model, that is without considering the integrity of result, the accuracy of
inference technique to build the model is very high. But the missing part of
Markov model relative to the standard model is able to form a functional area, in
this area the logic is complex and can complete many complex functions. Missing
this area reduces seriously the integrity of Markov inference technique result.
Combing the score of language set analysis after extended change from (0.65,
0.69) to (0.72, 0.55) is correspond to above.

(2) Compare the data obtained by the compared method based on different local
elements. Such as the two groups of data: Ex_PrecisionMarkov(P), Ex_Re-
callMarkov(P) and Ex_PrecisionMarkov(Q), Ex_RecallMarkov(Q), they are both the
quantified result of the structural differences of Markov model and the standard
model using the extended Precision and Recall. The difference is, the structural
analysis of first one is based on the transition and the second one is based on state
node. For a finite state automata, with the growth of its size and complexity, the
number of transition increases much faster than the number of state. As the
Markov model is decomposed into three small FSAs, the ratio of the number of
transition and the number of state is 1.24(21:17), if only compute the biggest one,
the ratio is 1.38(18:13); EDSM model is mainly linear structure, the logic is
simple, the ratio is 1.29(22:17). The larger scale of the compared elements, it will
easier to reduce the contingency and error, we can find in Table 1 that pure
structural analysis results based on state node is much lower than other similar
results, 0.65 in Markov model compared to (0.72, 0.76, 0.78), 0.69 compared to
(0.55, 0.59, 0.54); 0.65 in EDSM model compared to (0.52, 0.50, 0.47), 0.69
compared to (0.49, 0.41, 0.38). Based on this, when choosing the local elements
for structure comparison, we should choose the larger scale one first.

(3) Compare the data of differences of software behavior model built by different
inference techniques. Through the analysis of the above two kinds of comparison,
we can see that the Precision and Recall calculation method of after extended is

148 J. Xue et al.

better than the one of before extended, and based on the larger scale of local
elements is a better comparison method. Therefore, in order to compare the
Markov inference technique and EDSM inference technique, we choose
Ex_PrecisionMarkov(P), Ex_RecallMarkov(P) and Ex_PrecisionEDSM(P), Ex_Re-
callEDSM(P) as the main basis of evaluation, the data is obtained by analyzing the
transitions of the larger model, and using the calculation method of the extended
Precision and Recall at the same time. The score of Markov model is (0.78, 0.54),
compared with the score of EDSM model (0.47, 0.38), the two values are both
higher, so, from the experiment result, we can think that Markov model is more
“like” the standard model than the EDSM model, Markov inference technique is
better for the software behavior model built by the CVS client.

How to understand the result? Is the performance of EDSM inference technique is
lower than the performance of Markov inference technique? The experiment object is
essentially the tracking samples of CVS client software. Firstly, the single sample has
contingency, we cannot get the conclusion from the experiment result by one time.
Secondly, the form of software is various, and the feature points of software behavior are
also quite different. Intention of this paper and the final goal of the experiment are not to
compare Markov inference technique and EDSM inference technique, but to verify the
feasibility of software behavior model measuring approach based on finite state automata
proposed in this paper. Based on the measuring approach, typical software behavior
model library can be established, by providing a large number of standard software
behavior model samples and tracking file samples to verify and compare the performance
of various kinds of software behavior model inference technique.

7 Conclusion

Software behavior model which is based on finite state automata is an important model of
software security detection. In this paper, we propose a software behavior model mea-
suring approach of combining structural analysis and language set. By comparing the
target software behaviormodel with the standard software behaviormodel, we can get the
quantified criteria of the similarity of this model and the standard model. Meanwhile,
based on the quantified result, apply this comparedmethod to compare themodel which is
built by other inference techniques with the same standard model, we can evaluate the
performance of other inference techniques further. To highlight different local elements
of software behavior model based on finite state automata have different importance,
based on the structural analysis of the finite state automata, we also analyzed the value of
traversal algorithm in the software behavior model, and applied this algorithm to the
strategy of obtaining the state weights and transition weights of software behavior model.
In this paper, we broke through the pattern of analyzing and comparing software behavior
model from a single view, on the basis of the structural analysis, merged into the analysis
of language set, combined the advantage of the two methods to analyze and compare the
software behavior model comprehensively, and experimented with the comparison of the
software behavior model based on finite state automata. The results show that software

Software Behavior Model Measuring Approach 149

behavior model measuring approach of combining structural analysis and language set is
effective and feasible.

Acknowledgment. This work was supported by the Key Project of National Defense Basic
Research Program of China (Grant No. B1120132031) and the Ph.D. Programs Foundation of
Ministry of Education of China (Grant No. 20131101120043).

References

1. Wang, X.Z., Sun, L.C., Lu, Y.L.: Intrusion detection approach towards software behavior
trustworthiness. J. Univ. Sci. Technol. China 41(7), 626–635 (2011)

2. Peng, G.J., Tao, F., Zhang, H.G.: Research on theory model of software dynamic trustiness
based on behavior integrity. In: Proceedings of the 2009 International Conference on
Multimedia Information Networking and Security, pp. 130–134. Washington, DC, USA
(2009)

3. Godefroid, E., Levin, M.Y., Molnar, D.: Automated whitebox fuzz testing. In: Proceedings
of the 16th Annual Network & Distributed System Security Symposium, pp. 1–10.
San Diego, USA (2008)

4. Borger, E.: Abstract state machines and high-level system design and analysis. Theor.
Comput. Sci. 336(2), 205–207 (2005)

5. Quante, J., Koschke, R.: Dynamic protocol recovery. In: Proceedings of the 14th
International Working Conference on Reverse Engineering, pp. 219–228. Vancouver,
Canada (2007)

6. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to automata theory, languages and
computation, 3rd edn. Addison-Wesley, New Jersey (2007)

7. Walkinshaw, N., Bogdanov, K.: Comparing software behavior models. Technical report:
CS-08-16, The University of Sheffield, Sheffield, UK (2008)

8. Walkinshaw, N., Bogdanov, K., Johnson, K.: Evaluation and comparison of inferred regular
grammars. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS (LNAI), vol. 5278,
pp. 252–265. Springer, Heidelberg (2008)

9. Lo, D., Khoo, S.: QUARK: empirical assessment of automaton-based specification miners.
In: Proceedings of the 13th Working Conference on Reverse Engineering, pp. 51–60.
Benevento, Italy (2006)

10. Frossi, A., Maggi, F., Rizzo, G.L., Zanero, S.: Selecting and improving system call models
for anomaly detection. In: Flegel, U., Bruschi, D. (eds.) DIMVA 2009. LNCS, vol. 5587,
pp. 206–223. Springer, Heidelberg (2009)

11. Lang, K.J., Pearlmutter, B.A., Price, R.A.: In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998.
LNCS (LNAI), vol. 1433, p. 1. Springer, Heidelberg (1998)

150 J. Xue et al.

On Cache Timing Attacks Considering
Multi-core Aspects in Virtualized Embedded

Systems

Michael Weiß1(B), Benjamin Weggenmann1, Moritz August2, and Georg Sigl2

1 Fraunhofer Institut AISEC, Garching, Germany
{michael.weiss,benjamin.weggenmann}@aisec.fraunhofer.de

2 Technische Universität München, Munich, Germany
{moritz.august,sigl}@tum.de

Abstract. Virtualization has become one of the most important secu-
rity enhancing techniques for embedded systems during the last years,
both for mobile devices and cyber-physical system (CPS). One of the
major security threats in this context is posed by side channel attacks.
In this work, Bernstein’s time-driven cache-based attack against AES is
revisited in a virtualization scenario based on an actual CPS using the
PikeOS microkernel virtualization framework. The attack is conducted
in the context of the implemented virtualization scenario using different
scheduler configurations. We provide experimental results which show
that using dedicated cores for crypto routines will have a high impact on
the vulnerability of such systems. We also compare the results to previ-
ous work in that field and our visualization directly shows the differences
between cache architectures of the ARM Cortex-A8 and Cortex-A9. Fur-
ther, a non-invasive countermeasure against timing attacks based on the
scheduler of PikeOS is devised, which in fact increases the system’s secu-
rity against cache timing attacks.

Keywords: Cyber-physical system (CPS) · Virtualization · Trusted
execution environment · Microkernel · AES · Cache timing · Embed-
ded systems

1 Introduction

Former single-core real-time embedded systems used in the avionics and auto-
motive industry are evolving to integrated ARM-based multi-core virtualized
platforms, nowadays denoted as cyber-physical systems (CPSs). To save weight
and costs of airplanes and vehicles, such systems run several user controlled
applications beside security and safety critical applications side by side on the
same physical system. Consider in-flight entertainment systems which provide
users with the ability to connect their own untrusted devices, e.g., smart phones

Parts of this contribution were supported by the German Federal Ministry of Edu-
cation and Research in the project SIBASE through grant number 01IS13020.

c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 151–167, 2015.
DOI: 10.1007/978-3-319-27998-5 10

152 M. Weiß et al.

and tablets. However, those systems also provide flight information which needs
a connection to safety critical systems. That is why for instance the ARNIC-653
standard [3] demands for strict isolation and real-time constraints by statically
configured partitions. A widely used real-time operating system framework in
the avionics industry which provides partition separation according to ARNIC-
653 is PikeOS [10]. It elaborates a microkernel and a user-space abstraction layer
for this purpose.

However, none of those real-time operating systems have been examined for
vulnerabilities to cache timing side channels circumventing the partition isola-
tion considering influences of multi-core. Previous work mainly focuses on x86
systems in shared cloud scenarios.

Cache-based side channel attacks make use of a simple model to correlate
the execution time of an algorithm with the state of the cache used by the CPU
in charge. It is assumed that the execution time is lower if the data needed by
the algorithm is already stored in a cache line (cache-hit). On the other hand,
if the required data is not present in the cache and hence has to be loaded from
the main memory (cache-miss), this will result in a longer execution time. This
model is simple, but reasonable and only relies on the cache architecture of the
CPU. In [24], we provide a suitable attack scenario, however only on a single-
core system using an academic real-time framework, focusing on mobile phone
devices. We use this as base for our research on how actual CPSs running in
the cockpits and cabins of airplanes are vulnerable to cache-based timing side
channel attacks.

Our main contributions are:

1. We adapted the virtualization-based attack scenario from [24] to a multi-core
embedded system using the microkernel-based operating system framework
PikeOS which has high relevance in avionic and also automotive industry.

2. We propose the discrete-time countermeasure which is based only on real-
time configuration of the PikeOS scheduler as a drop-in update to existing
systems and compare it to related approaches.

3. We elaborate different multi-core scheduler configurations and evaluate their
vulnerability against time-driven cache attacks.

4. By comparing the attack results between single- and multi-core configura-
tions, we are able to show that dedicated cores for crypto services leak the
most information about the key.

5. Further, we compare our Cortex-A9-based setup against the Cortex-A8-based
setup of [24], which leads to interesting patterns of key space reduction
directly showing differences of the underlying cache architecture.

The rest of the paper is structured as follows: We provide background on
cache based side-channels and related work in Sect. 2. In Sect. 3, the system
architecture and attack scenario including the attacker model is described. We
provide some more detailed background knowledge about the PikeOS scheduler
in Sect. 4, before we describe the discrete-time countermeasure in Sect. 5. Experi-
mental results of the attack performance under different scheduler configurations
are evaluated in Sect. 6. Finally, the work is concluded in Sect. 7.

On Cache Timing Attacks Considering Multi-core Aspects 153

2 Background and Related Work

Cache-based attacks can be divided into three different categories, each having
a different attacker model. Time-driven attacks [2,5,6,15,16] make use of the
cache model in a very general way as they only require timing data of entire
runs of a cryptographic algorithm, e.g., an encryption using AES. This corre-
sponds to an attacker who has only very limited or coarse information about
the cache. Trace-driven attacks [1,7] additionally require detailed information
about the cache activity during single runs of the encryption, in particular the
sequence of cache hits and misses caused by the memory accesses performed by
the encryption algorithm. A trace can for instance be captured by profiling the
power consumption while the encryption routine is running. This translates to
an attacker, who has gained a substantial level of knowledge about the runtime
cache behavior which in case of a power profile also requires physical access to
the device. Finally, access-driven attacks [9,16] assume to have knowledge about
the cache-sets accessed by the algorithm. The underlying assumption is therefore
that the attacker can control the cache runtime behavior. In the Prime+Probe
attack [16], for example, those areas of the cache that also hold the lookup tables
of the attacked algorithm are filled by a spy process with own data before the
encryption is triggered (Prime). After the encryption, the spy process measures
the access time to its own data to see which parts have been evicted from the
cache by the encryption algorithm (Probe). Now the attacker can deduce which
parts of the lookup tables were accessed by the encryption and from this infer
some or all bits of the secret key. As can be seen from the above explanations,
time-driven attacks are the most widely applicable class of attacks since they do
not require a strong attacker with fine grained access to the cache.

In [5], Bernstein proposes a cache-based timing attack to recover the secret
key of an AES encryption on a remote server. Bernstein’s paper contained no
thorough analysis of the attack and no explanation why the attack is successful.
Neve et al. fill this gap in [15] by presenting a full analysis of Bernstein’s attack
methodology and explaining the correlation model. They argue that Bernstein’s
original technique cannot be used easily as a real remote-only attack where tim-
ings need to be measured by the attacker. Moreover, they improve Bernstein’s
attack by also considering second round information and thus lowering the num-
ber of required samples. To get accurate timings, Bernstein avoided the noisy
network channel between the attacked server and the attacker by measuring the
encryption time directly on the server, which is a rather unrealistic scenario
since the server needs to be modified. In virtualization environments, however,
the noise is negligible since local communication channels with only a small and
almost constant timing overhead are used, as shown in [24].

Ristenpart et al. [17] consider side-channel leakage in virtualization envi-
ronments on the example of the Amazon EC2 cloud service. They show that
there is cross virtual machine (VM) side-channel leakage. They used the access-
driven Prime+Probe technique from [16] for analyzing the timing side-channel.
However, Ristenpart et al. are not able to extract a secret encryption key from
one VM. In [24], we considered a virtualization-based system where the trusted

154 M. Weiß et al.

environment runs an AES server. Under the assumption that the untrusted envi-
ronment could be hijacked by an attacker, we showed that a man-in-the-middle
attack via an adapted version of the cache-timing attack by Bernstein [5] is gen-
erally able to significantly reduce the key space, thus making brute-force attacks
feasible. The impact of noise under realistic workloads is examined by Spreitzer
and Plos [19], who evaluate time-driven attacks on conventional mobile devices
(ARM Cortex-A8 and A9). Unlike our approach, they consider noise induced by
the Android operating system and applications running simultaneously on the
device. However, they do so using a slightly unrealistic attacker model where the
attacker captures timings in the very same process where the AES encryption
routine is implemented and called, which likely reduces the effects of the OS and
concurrent processes.

There are several ways to defend against time-driven cache timing attacks:
One option is to switch to hardware-based implementations as provided by some
processor manufacturers, e.g. Intel with its AES-NI instruction set [8], thus
entirely avoiding cache-based attacks against the algorithm. If no hardware sup-
port is available, it is possible to change the implementation of the algorithm
itself and get rid of the table lookups. While earlier software-based suggestions
[13,14] were generally slow compared to table-based implementations, Kasper
et al. [11] present an efficient constant-time implementation based on bit-slicing
that is suitable for stream and packet encryption.

Kim et al. [12] present a novel countermeasure against cache-based side chan-
nel attacks in a virtualization environment called STEALTHMEM. This coun-
termeasure works at hypervisor level by assigning dedicated cache lines to each
CPU in a group of CPUs with shared L3 cache. These so-called stealth cache
lines are never evicted; therefore, sensitive data, such as S-boxes in AES, can
be stored in these cache lines without introducing cache or timing side channels
for an attack. Stefan et al. [20] propose instruction-based scheduling to prevent
cache-based timing attacks on a single CPU. Instead of having a fixed amount of
time, a process has a fixed amount of instructions it can execute before the next
process is scheduled. The authors examine a simple timing attack and show that
this attack is prevented by the proposed scheduler with negligible increase in
the size of binaries and execution time. These countermeasures require consider-
able changes to the hardware, the hypervisor, or the cryptographic algorithms,
whereas neither of which is necessary for our approach. Lately, Varadarajan
et al. [21] have proposed a similar approach to our discrete-time scheduler scheme
for cloud systems which they call soft-isolation. In contrast to our approach for
real-time based schedulers, their approach relies on a feature of the Xen hyper-
visor scheduler called minimum run time (MRT) guarantee.

3 Attack Scenario and System Architecture

We assume a Trusted Execution Environment (TEE) which separates two
compartments, a trusted environment which provides crypto services and an
untrusted environment which runs user applications. The secret keys used for

On Cache Timing Attacks Considering Multi-core Aspects 155

encryption have a high security value and thus are only accessible in the trusted
environment. A viable usage scenario is, e.g., to establish a VPN tunnel. The net-
work protocol stacks of a rich operating system kernel are used in the untrusted
environment while the payload is encrypted by a driver using an encryption ser-
vice inside the trusted environment. Hence, the secret session keys cannot be
compromised by an attacker in the rich OS.

For this work we adapted the virtualization based security architecture
of [24], which is a realization of a TEE to a microkernel system, to PikeOS.
PikeOS distinguishes between resource and time partitions. A resource partition
in PikeOS denotes a separate address space protected by the microkernel, while
time partitions are used to assign computation time to threads. The microkernel
itself only implements the basic mechanism for IPC, scheduling, and separa-
tion of address spaces in privileged processor mode. Device drivers, higher level
abstraction for inter-partition communication as well as virtual memory manage-
ment are implemented in the user-space abstraction layer, called PikeOS System
Software (PSSW). Native device drivers for secure devices can be implemented
in their own partition also in user-space. Figure 1 illustrates this architecture
including the attack scenario. In our scenario, the architecture comprises a rich
environment which runs the untrusted user applications in one partition as well
as a trusted environment that hosts the security and safety relevant trusted
applications each in their own partition. Both environments are allowed to com-
municate with each other using protocol messages transmitted via the virtual-
ization layer, which in our case is the PikeOS microkernel and its user-space
abstraction layer PSSW. To exchange data between the trusted and untrusted
applications, shared memory is used. The user applications may use the trusted
applications via special device drivers integrated into the rich OS kernel.

The concrete attack scenario now assumes that an AES encryption server
runs in the trusted environment. To launch an encryption, a user application

Fig. 1. Adapted virtualization based system security architecture

156 M. Weiß et al.

simply stores the plaintext in shared memory and calls the AES server through
IPC. The ciphertext is then written back to the shared memory. In this scenario,
an attacker has compromised the rich OS and wants to determine the key used by
the AES server. As he has full access to the rich OS in the untrusted environment,
he is able to launch as many encryptions as he likes with chosen plaintexts. This
he could do either by hijacking running processes or deploying own code that
directly uses the kernel of the rich OS. The attacker is therefore able to launch
a time-driven attack as it was discussed above.

4 Scheduling in PikeOS

PikeOS features a special scheduler that uses a combination of time-driven and
priority-based scheduling to account for the different needs of the applications.
To allow for deterministic real-time responsiveness, the scheduler uses a time-
driven approach. Every real-time application is statically assigned to a time slot
of a defined length. The length of these time slots can vary between applications
but has to stay within a certain relation to the length of the other time slots.
Every application is periodically scheduled for the length of the slot it is assigned
to. As every partition gets assigned a defined amount of CPU time at defined
points in time, they are able to schedule real-time processes themselves. This,
so far, is a standard approach for scheduling real-time applications. To also
support non real-time applications, a straightforward extension of this approach
is to just create a new time slot and assign all applications without timing
constraints to it. Within this slot, a standard round robin scheduling scheme
can be applied. However, this approach is inefficient since it wastes a lot of CPU
time. The PikeOS scheduler refines this approach to a more efficient strategy.
It might occur that the processes of a real-time application finish before its
time slot end or that it does not have any processes to run at all. As it would
harm the temporal determinism, the scheduler cannot simply switch to the next
application in this situation. Rather than wasting this time, the PikeOS scheduler
uses this excess CPU time to schedule applications with no real-time constraints.
For this purpose, it leverages priority-based scheduling. All real-time applications
are assigned the same mid-level priority number while low priority numbers are
assigned to the other applications. Now, the scheduler continues to schedule
the real-time applications periodically but uses the excess time to schedule the
low-priority non real-time applications in a round robin fashion. In this way, no
computing time is wasted and the overall amount of time needed to execute all
applications decreases drastically when compared to a standard RTOS scheduler.

5 Discrete-Time Countermeasure

One main pitfall of novel countermeasures is that some of them require changes to
already established systems that are too substantial to be easily implemented,
hence making these countermeasures practically irrelevant. The discrete-time
countermeasure that is presented in the following therefore aims at making

On Cache Timing Attacks Considering Multi-core Aspects 157

cache based time-driven attacks infeasible for attackers while demanding as few
changes and inducing as little overhead as possible. Assume the rich OS and
the trusted environment are implemented as partitions in PikeOS and are hence
handled by the scheduler. Now assume the attacker has compromised the rich
OS and is able to launch the timing attack against the AES server that runs in a
trusted partition. In order for the attacker to successfully carry out the attack,
two conditions must be fulfilled:

1. He must be able to retrieve enough samples from the AES server, in the order
of several hundred millions.

2. The samples must leak enough information for the correct hypothesis on the
key to yield a higher correlation on average than all wrong hypotheses.

The discrete-time countermeasure aims at these two points. It works straight-
forward in that both applications, the rich OS and the AES server in the trusted
domain, are treated as real-time applications such that each is assigned an own
time slot. Note, that it is not necessary for either of the two applications to
have any real-time time constraints in order for the scheduler to be configured
as described above. Using this configuration of the scheduler the time measured
by the attack for one encryption tenc is now given by Eq. 1.

tenc = n · tOS + m · tserv (1)

with tOS being the length of the time slot of the rich OS and tserv being the
length of the time slot of the AES server. The two variables n and m represent
the number of executions of the two time slots. Note that we ignore negligible
timing quantities that are independent of the AES server, such as the remaining
time in the slot of the rich OS after the encryption was requested and the time
passing in the first slot of the rich OS after the encryption is done before the
attacker’s process is scheduled. As it can be easily verified the time is always a
multiple of the two time slot lengths which gives rise to the countermeasure’s
name. This has two major effects on the attack. Firstly, as the scheduling for
these two applications is strictly time-driven, the rich OS will be scheduled a
number of times while still waiting for the encryption to finish and hence being
idle. This will increase the time needed by an encryption in a way that, given
carefully chosen values for tOS and tserv, a single encryption as it is needed for
benign purposes can still be done without noticeable delay. However, a number
of encryptions as needed for an attack will take a significantly larger amount
of time. This already will make an attack time-wise more difficult. Secondly, as
the information that can be gained by one sample is now very coarse-grained,
there is only a very small correlation left between the timing information and
occurring cache-misses or hits. This will make it very hard for the attacker
to distinguish the correct key hypothesis from false ones and will increase the
number of necessary samples. Therefore, the discrete-time countermeasure is
a strong shield against the kind of attacks considered here. Furthermore, the
countermeasure requires no change of any kind in the code and also causes
arguably only little timing overhead. It is also straightforward to implement,

158 M. Weiß et al.

can be extended to multiple applications and is most likely also applicable to
other RTOS schedulers working in a similar manner as the PikeOS scheduler.
Although not in the focus of this paper, access-driven attacks can be prevented
similarly by a simple configuration in the scheduler to flush the cache when
switching partitions.

6 Evaluation

To practically analyze the scenario presented in Sect. 3, we elaborated the follow-
ing testbed. The untrusted runtime is implemented using the para-virtualized
Linux distribution ELinOS (version 5.2) including the necessary code for the
attacker to conduct the timing attack. The AES server in the trusted runtime
is implemented as an application based on the native PikeOS API (version 3.3).
Obviously, both applications have their own partition. To enable the communica-
tion between the two partitions, two unidirectional queuing ports and a shared
memory page were set up. The rich OS and the AES server use these ports
to communicate via a simple handshake protocol and use the shared page as
buffer for plain- and ciphertexts. Queuing ports are unidirectional communica-
tion channels defined in the ARNIC-653 [3] standard that can be set up between
two partitions statically at compile-time and then initialized at run-time by the
applications.

As hardware platform, we chose the Freescale i.MX6 SabreLite board which
comprises a Quad-Core ARM Cortex-A9 CPU with 1.2 GHz. The cache archi-
tecture consist of a 32 KB I- and D-Cache (L1) per Core and a 1 MB shared L2
cache. The L1 cache is 4-way associative and has a cache line size of 32 byte. For
precise timing measurements, the ARM CCNT register was utilized as stated
in [19,24].

To analyze the success rate of Bernstein’s timing attack, the effect of a broad
range of parameters was examined. For the comparison between different values
for these parameters, two criteria were used.

1. The number of different candidates for each key byte
2. The average position of the correct candidates in the ordered output lists

The first one directly gives information about how much the key space could be
reduced by the attack. To quantitatively measure the effectiveness of the attack,
this is therefore the best parameter. In the best case only one candidate, namely
the correct one, remains for each byte and the key is hence revealed completely.
But even only a significant reduction of the number of candidate bytes is already
valuable to the attacker as he then can launch a brute-force attack in the reduced
key space with the remaining possible values. However, this score does not use
all information of the output of the attack. As the list of possible candidates for
each key byte is ordered, it is interesting to know at which positions in these lists
the correct values can be found. This is a measure for the ability of the attack
to separate the correct hypotheses from the other remaining ones. In the best
case, the correct value for each key byte always has the highest correlation and

On Cache Timing Attacks Considering Multi-core Aspects 159

Table 1. Summary of results for different scheduler configurations

No. Utilized cores Scheduler configuration Average Remaining
position key-space

1 1 1 Core shared (Single) 3.625 ≈ 280.2

2 4 4 Cores shared (Quad) 4.25 ≈ 281.7

3 4 4 Cores Server, 1 core shared rich OS (Server) 4.0 ≈ 282.8

4 2 1 Core dedicated each 4.0 272

5 4 2 Cores dedicated each 4.375 ≈ 272.7

is therefore at first position in the list. That information is also of high interest
to an attacker as he can use this information to significantly speed up his brute-
force attack. Since he knows the correlation of all remaining possible byte values,
he can order the possible keys by the correlation and then test for candidates
with higher correlation first. This will usually require much less than the average
n
2 guesses, n being the number of key candidates. Another approach to reduce
brute-force complexity could be to use recently proposed key-rank estimation
procedures [22,23] as shown by Spreitzer et al. [18].

For all the experiments summarized in Table 1, normal priority-based
scheduling was used and the profiling and attack phase were done on the same
device. This might not always be possible in a real-world setting, but was done to
have an optimal setting for the evaluation. If not stated otherwise the attacked
key was

0x21 53 fc 73 d4 f3 4a 98 17 33 bb 3f 18 92 00 8b

and both profiling and attack phase were conducted with 512 million samples to
have approximately 2 million samples for each possible key candidate.

6.1 Identifying and Tuning of Attack Parameters

To reduce the noise in the measurements, Bernstein disregards all measure-
ments above a certain threshold. In the original code, this threshold was set
to a value fitting the timing behavior of his implementation. This value was
therefore changed in this implementation. To evaluate the effect of this clip-
ping, two different thresholds were investigated both with 512 million samples
for attack and profiling phase. The threshold that was initially set to about
30,000 clock cycles higher than the average of the timing samples was compared
to the threshold 20,000 above average. The results are displayed in Fig. 2a and
Table 2a. The results clearly show that the lower threshold leads to a signifi-
cant lower reduction of the key space. This implies that the timings lying in the
interval between the two thresholds indeed contained information about the key.
This also complies to the findings in [18], which show that the minimal timing
attack of [4] does not leak any information on ARM.

One parameter that comes to mind very quickly when thinking about ana-
lyzing a side channel attack is the number of samples. One would assume that
an increasing number of samples automatically results in a higher success rate

160 M. Weiß et al.

(a) Clipping Thresholds (b) Increasing Samples

Fig. 2. Histograms describing the numbers of possible candidates for all bytes of the
key and for varying clipping thresholds and samples

as the noise gets averaged out more and more, leaving only the relevant informa-
tion behind. To verify this assumption, we conducted the attack with 256, 512
and 1024 million samples. The results are displayed in Fig. 2b. Table 2b shows
the average position of the correct key byte candidates. As expected, increasing
the number of samples does in fact also increase the success rate of the attack.
However, the increase of the success rate shows a logarithmic behavior. This
behavior is derived directly from the cache architecture. As only the upper k
bits of a data word are used to index the cache lines, the timing behavior is
independent of the lower bits. In the best case, the attack could therefore only
reveal the upper k bits of each key byte. This explains the observed boundary
of the reduction of the key space. It furthermore explains why the remaining
number of possible values per byte is in almost all cases a power of 2. A simi-
lar behavior was described by Neve et al. [15]. This limitation only applies for
aligned T-tables. In the case of disaligned T-tables, which is not the case in our
setup, even more information might leak.

6.2 Single Core vs. Quad Core

The PikeOS scheduler allows the use of a CPU mask to specifically select the
cores that shall run a partition. As each core has its own L1 cache but all cores
share the L2 cache, it is interesting to examine how the success rate of the
attack changes when only one or all cores are used. To do this, three different
configurations were regarded. For the first one both partitions were run by a
single shared core (configuration 1) while for the second one both partitions were
run on all four cores (configuration 2). The third configuration involved the AES
server running on all four cores (configuration 3) while ELinOS was assigned only
one core. Note that the AES server application itself does not implement any
concurrent block computation. The results are depicted in Fig. 3a and Table 1.

It can be seen that configuration 1 gave the best results for both criteria, and
scenario 2 yielded the worst. This is understandable since in the first scenario,

On Cache Timing Attacks Considering Multi-core Aspects 161

Table 2. The average position of the correct key byte candidates for the different
clipping thresholds and numbers of samples

(a)

Clipping Threshold Average Position

+30k 3.625

+20k 4.3125

Measurements conducted with 512M
samples in configuration 1, see Table 1

(b)

Number of Samples Average Position

256M 5.5625

512M 4.0

1024M 3.875

Measurements conducted in configura-
tion 4, see Table 1

the T-tables are stored in a single L1 cache and the L2 cache, whereas in scenario
2 the T-tables are most likely scattered over the four L1 caches and the L2 cache.
This decreases the signal to noise ratio with high certainty and thus lowers the
success rate. Additionally, when both the rich OS and the AES server use the
same core, their cache usage will interfere which also reduces the quality of the
timing samples. This effect is visible in the difference between scenarios 2 and 3.
Although the AES server uses four cores in scenario 3 as well, it only interferes
with the other application in one of them which leads to an overall better success
rate of the attack.

Using a dedicated core for the AES server is expected to be not advisable
because it reduces the noise. Therefore, it was investigated how the success
rate of the attack is affected when the two partitions have one or two cores for
their own in comparison to configuration 1 where both partitions share only one
core. The results are shown in Fig. 3b. The use of dedicated cores leads to a
significantly better success rate in terms of the total number of remaining key
candidates. The setup with one dedicated core also shows a slight decrease in
the average position of the correct key byte values. As it can be seen, assigning
one core to each partition (configuration 4) thereby results in a slightly bet-
ter attack result than using two dedicated cores (configuration 5). This can be
explained by the already discussed effect of using multiple L1 caches. However,
the slight increase of the average position compared to the scenarios where 4
cores are utilized seems to be caused by measurement inaccuracies. In summary,
when using an ordinary priority based scheduling scheme on a multi-core system
without any countermeasures, it is not recommended to use a dedicated core for
the cryptographic algorithm as this would reduce the noise significantly.

6.3 Comparison to Fiasco Setup

In [24], we presented results for Bernstein’s attack carried out in a very simi-
lar virtualization setting. In contrast to the hardware presented above, in [24] a
platform based on a Cortex-A8 with 720 MHz was used. To implement the virtu-
alization scenario, the Fiasco.OC microkernel together with L4Re was utilized.
Note that we use the same key as in [24] to provide comparable results. In [24],
we were able to reduce the byte value space of almost all bytes to 16 possibilities

162 M. Weiß et al.

(a) Shared Scheduler Configurations (b) Dedicated Scheduler Configurations

Fig. 3. Histograms describing the numbers of possible candidates for all bytes of the
key and for varying scheduler configurations.

for the OpenSSL implementation of AES. For byte 3, no reduction was possible
which seems to be an error of measurement, while bytes 7, 11 and 15 could only
be reduced to 32 respectively 24 possible values. This result was achieved with
2 million samples for each byte value, translating to the overall number of 512
million samples that was also used in this work. Data about the position of the
correct key byte values in the output lists was not provided.

The best result achieved in terms of the reduction of the key space in this
work draws a very different picture. For one dedicated core for the ELinOS and
the AES partition respectively, the highest reduction found was a reduction down
to 8 possible values for the bytes 2,3,6,7,10,11,14,15. For the remaining bytes a
reduction was possible only down to 64 different values. This pattern is interest-
ing in itself as every consecutive 2-byte tuple seems to be highly correlated in
the reduction capability. However, it is also very different from the result stated
above. For this implementation, the maximally achieved reduction is twice as
high as for the implementation in [24]. Nevertheless, only half of the bytes could
be reduced that far while for the implementation in [24], nearly all byte spaces
could be reduced to the respective minimum. Then again, in the implementation
of this work all bytes could be reduced to at least 64 different values. This was
not the case for the implementation using the Fiasco.OC kernel. Both imple-
mentations have in common that there seems to be a limit for the reduction of
the key space that depends on the implementation. This was already mentioned
above and is also stated in [24]. The two results are compared in Fig. 4. The
difference of the reduction pattern reflects the different cache architectures in
terms of the cache line size. On the Cortex-A8 with a 64 Byte cache line size
every fourth key byte is harder to reduce, while on the Cortex-A9 with 32 Byte
cache line size every first 2 bytes are harder to reduce. Both pattern repeat every
4 bytes, this is due to both caches are 4-way associative.

The total number of possible keys was reduced to 272 for the worst PikeOS
setup and to roughly 270 for the Fiasco setup showing a slight advantage for

On Cache Timing Attacks Considering Multi-core Aspects 163

Fig. 4. Results on Cortex-A9 in this work compared to Cortex-A8 in [24]

the PikeOS setup. However, compared to the setup utilizing only one core with
a reduction of key space to ≈ 280.2, the PikeOS setup is about three orders of
magnitude harder to attack.

6.4 Evaluation of the Countermeasure

To evaluate the effectiveness of the discrete-time countermeasure, a range of
different scheduler configurations was tested. The ELinOS and the AES server
partition were assigned one time slot each and the length of these slots was then
varied. It was quickly found that the length of both slots would have to be in
a certain relation in order to ensure that the rich OS and the AES server work
correctly. One configuration that led to a behavior of the system indistinguish-
able from the behavior with simple priority-based scheduling was found to be to
set the slot length to 5 ticks for both partitions. The default duration of one tick
was set to 1 ms. Using this configuration, the delay of single AES encryptions
increases significantly by roughly about 70 % while in contrast the encryption of
a whole buffer with the size of a memory page may be conducted with only a
small overhead of less than 30%, see Table 3. This configuration was therefore
chosen for the attack. Both partitions were assigned one dedicated core and the
rest of the setup remained unchanged from previous experiments.

After running the profiling phase for one day we were able to retrieve ≈ 34
million samples. To capture the whole amount of 512 million samples for both

Table 3. Performance comparison of the countermeasure

Scheduling scheme Average clock cycles per AES-block

one block (16 Byte) one page (4 KByte)

Priority-based ≈ 125, 000 ≈ 1770

Discrete-time ≈ 210, 000 ≈ 2286

164 M. Weiß et al.

phases, this means a total run-time of about one month for the above config-
uration of the scheduler. Remember that due to the different timing behavior
induced by the countermeasure an even higher number of samples is needed
in order to recover the key as good as possible. Therefore, it is reasonable to
assume that for the attack to produce a useful output at least twice the num-
ber of samples and hence, with the overhead caused by our countermeasure,
even more than twice the time is needed. Even if the attacker would do the
profiling phase off-line, he would still need to be able to access the system for
about one month. It is very unlikely that such a computational intensive attack
would remain unnoticed for the entire time frame. Furthermore, depending on
the actual use of the AES server, a rescheduling of the key might occur during
that time, too. It can be seen from this that the proposed countermeasure indeed
protects a device very well while simultaneously requiring almost no effort to be
set in place. Also, the user experience does not change with the countermeasure
which might be an important factor for the mobile device market. The different
run-times of one encryption for priority-based scheduling and the countermea-
sure are shown in Table 3. For a more thorough evaluation of the discrete-time
countermeasure, additional experiments need to be conducted.

Comparison to Other Countermeasures. In [12,20], two novel countermea-
sures against cache-based attacks are introduced. Since these countermeasures
target the same class of attacks as the discrete-time countermeasure, it is inter-
esting to compare their approaches with ours. As the focus of this work was put
on time-driven attacks, the comparison will focus on this aspect as well.

The STEALTHMEM countermeasure [12] tries to prevent both active and
passive time- and access-driven attacks in virtualization environments. To that
end, it uses dedicated cache lines in the shared cache for each CPU. Depending
on the variant of STEALTHMEM used, this either reduces the total available
amount of memory and shared cache, or it takes extra time to ensure that
the stealth cache lines are not evicted from the cache. Both variants imply a
small penalty in performance of about 5.9 % and 7.2 % respectively, and AES
encryptions of 50,000 bytes are about 5 % slower with the first variant. Unlike
the STEALTHMEM approach, the discrete-time countermeasure has no impact
on the available cache and system memory. However, due to the larger time slots
in our countermeasure, the overall performance degrades by about 30 % for AES
encryptions on 4 KB of data, as explained above. To use STEALTHMEM, the
hypervisor is extended with a special driver offering an API to the VMs that
manages access to the dedicated cache lines. For Windows Server 2008 R2 with
Hyper-V, this amounts to 5,000 lines of C code to be added to the hypervisor and
500 lines of C code added to the Windows boot loader modules. Furthermore,
the implementations of cryptographic algorithms have to be modified to make
use of the stealth cache lines via the provided API. For using our discrete-time
countermeasure on the contrary, only a reconfiguration of the scheduler is needed.
Neither the system nor the implementation of the cryptographic algorithm has to
be changed. Also note that the required modification of the algorithm presents a
potential pitfall. If not done correctly, some leakage remains and therefore breaks

On Cache Timing Attacks Considering Multi-core Aspects 165

the countermeasure. Moreover, the amount of available cache lines that can be
reserved for a core is limited so it has to be made sure that all relevant lookup
tables fit inside to prevent information leakage.

The instruction-based scheduling scheme suggested in [20] aims at prevent-
ing cache-based attacks that exploit certain scheduling-induced race conditions
between processes that arise due to the dependency of the execution time on the
cache content. Both methods are similar in that they use a fixed value as their
criterion for the scheduling. As the name implies, instruction-based scheduling
uses a specified number of executed instructions as scheduling criterion. This
prevents only those attacks that try to exploit the mentioned race conditions
– but only when the processes are run on a single core. Furthermore, it is not
sufficient to prevent time-driven attacks such as Bernstein’s, since an attacker
can still measure the total execution time which still depends on the cache.
The discrete-time countermeasure on the other hand prevents this kind of race
conditions even with multiple cores, and masks the overall execution time of
an AES encryption. Also, instruction-based scheduling is a novel approach and
hence not widely supported by current micro kernels. Therefore, extra effort has
to be done to integrate it into existing systems or implement a new one which
supports instruction-based scheduling. This is not the case for the discrete-time
method, where our countermeasure can be readily configured. With respect to
the overhead, both methods are fairly similar as they do not need any adaption
of the applications and only induce a small time overhead.

7 Conclusion

In this work, we stated an attack scenario using a time-driven cache attack
against embedded devices used in cyber-physical systems (CPSs) on the exam-
ple of PikeOS, a microkernel-based operating system framework compliant to
the ARNIC standard. We evaluated the attack with different scheduler config-
urations showing that dedicated cores for the crypto routine provide the most
timing leakage. Further, we compared the results to a similar setup [24] for virtu-
alization based Trusted Execution Environments (TEEs). We showed that using
a shared core similar to the microkernel configuration in [24], the PikeOS setup
of this work is about three orders of magnitude less vulnerable in reduction of
key space, but at least almost one order of magnitude in the worst configuration
using dedicated cores. Furthermore, we provided the scheduler based discrete-
time countermeasure against time-driven cache attacks. Compared to other novel
countermeasures, it does not depend on any hardware, software architecture or
algorithm changes. Thus, our approach can be used as a drop-in configuration
update for running CPSs, or other embedded platforms using a configurable
scheduler.

166 M. Weiß et al.

References

1. Acıiçmez, O., Koç, Ç.K.: Trace-driven cache attacks on AES (short paper). In:
Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 112–121. Springer,
Heidelberg (2006)

2. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Cache based remote timing attack on the
AES. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 271–286. Springer,
Heidelberg (2006)

3. Aeronautical Radio, Inc.: Avionics application software standard interface, ARNIC
Specification p. 653 (1997)

4. Aly, H., ElGayyar, M.: Attacking AES using bernstein’s attack on modern proces-
sors. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013.
LNCS, vol. 7918, pp. 127–139. Springer, Heidelberg (2013)

5. Bernstein, D.J.: Cache-timing attacks on AES. Technical report (2005)
6. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin,

L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer,
Heidelberg (2006)

7. Gallais, J.-F., Kizhvatov, I., Tunstall, M.: Improved trace-driven cache-collision
attacks against embedded AES implementations. In: Chung, Y., Yung, M. (eds.)
WISA 2010. LNCS, vol. 6513, pp. 243–257. Springer, Heidelberg (2011)

8. Gueron, S.: Intel R© advanced encryption standard (aes) instructions set. Technical
report (2008)

9. Gullasch, D., Bangerter, E., Krenn, S.: Cache games - bringing access-based cache
attacks on AES to practice. In: IEEE Symposium on Security and Privacy - S&P
2011. IEEE Computer Society (2011)

10. Kaiser, R., Wagner, S.: Evolution of the pikeos microkernel. In: First International
Workshop on Microkernels for Embedded Systems, p. 50 (2007)

11. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg
(2009)

12. Kim, T., Peinado, M., Mainar-Ruiz, G.: Stealthmem: system-level protection
against cache-based side channel attacks in the cloud. In: Presented as Part of
the 21st USENIX Security Symposium (USENIX Security 2012), pp. 189–204,
Bellevue, WA, USENIX (2012)

13. Könighofer, R.: A fast and cache-timing resistant implementation of the AES. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 187–202. Springer, Heidelberg
(2008)

14. Matsui, M., Nakajima, J.: On the power of bitslice implementation on intel core2
processor. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
121–134. Springer, Heidelberg (2007)

15. Neve, M., Seifert, J.-P., Wang, Z.: A refined look at bernstein’s aes side-channel
analysis. In: ASIACCS, p. 369 (2006)

16. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

17. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of
the 16th ACM Conference on Computer and Communications Security, CCS 2009,
New York, NY, USA, pp. 199–212. ACM (2009)

On Cache Timing Attacks Considering Multi-core Aspects 167

18. Spreitzer, R., Gérard, B.: Towards more practical time-driven cache attacks. In:
Naccache, D., Sauveron, D. (eds.) WISTP 2014. LNCS, vol. 8501, pp. 24–39.
Springer, Heidelberg (2014)

19. Spreitzer, R., Plos, T.: On the applicability of time-driven cache attacks on mobile
devices. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873,
pp. 656–662. Springer, Heidelberg (2013)

20. Stefan, D., Buiras, P., Yang, E.Z., Levy, A., Terei, D., Russo, A., Mazières,
D.: Eliminating cache-based timing attacks with instruction-based scheduling. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
718–735. Springer, Heidelberg (2013)

21. Varadarajan, V., Ristenpart, T., Swift, M.: Scheduler-based defenses against cross-
vm side-channels. In: 23rd USENIX Security Symposium (USENIX Security 2014),
San Diego, CA, pp. 687–702. USENIX Association, August 2014

22. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013)

23. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013)

24. Weiß, M., Heinz, B., Stumpf, F.: A cache timing attack on AES in virtualization
environments. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 314–328.
Springer, Heidelberg (2012)

How to Choose Interesting Points for Template
Attacks More Effectively?

Guangjun Fan1(B), Yongbin Zhou2, Hailong Zhang2, and Dengguo Feng1

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

guangjunfan@163.com, feng@tca.iscas.ac.cn
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China
{zhouyongbin,zhanghailong}@iie.ac.cn

Abstract. Template attacks are widely accepted to be the most power-
ful side-channel attacks from an information theoretic point of view. For
template attacks to be practical, one needs to choose some special sam-
ples as the interesting points in actual power traces. Up to now, many
different approaches were introduced for choosing interesting points for
template attacks. However, it is unknown that whether or not the previ-
ous approaches of choosing interesting points will lead to the best classi-
fication performance of template attacks. In this work, we give a negative
answer to this important question by introducing a practical new app-
roach which has completely different basic principle compared with all
the previous approaches. Our new approach chooses the point whose dis-
tribution of samples approximates to a normal distribution as the inter-
esting point. Evaluation results exhibit that template attacks based on
the interesting points chosen by our new approach can achieve obvious
better classification performance compared with template attacks based
on the interesting points chosen by the previous approaches. Therefore,
our new approach of choosing interesting points should be used in prac-
tice to better understand the practical threats of template attacks.

Keywords: Side-channel attacks · Power analysis attacks · Template
attacks · Interesting points

1 Introduction

Side-channel attacks are one of the most important threats against modern cryp-
tographic implementations. The basic idea of these attacks is to determine the
key of a cryptographic device by exploiting its power consumption [11], its elec-
tromagnetic radiation [19], its execution time [18], and many more [20]. Tradi-
tional security notions (such as chosen-ciphertext security for public-key encryp-
tion schemes) do not provide any security guarantee against such attacks, and
many implementations of provably secure cryptosystems were broken by side-
channel attacks.
c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 168–183, 2015.
DOI: 10.1007/978-3-319-27998-5 11

How to Choose Interesting Points for Template Attacks More Effectively? 169

Power analysis attacks have received such a large amount of attention because
they are very powerful and can be conducted relatively easily. Therefore, let us
focus exclusively on power analysis attacks. As an important method of power
analysis attacks, template attacks were firstly proposed by Chari et al. in 2002 [1]
and belong to the category of profiled side-channel attacks. Under the assump-
tion that one (an actual attacker or an evaluator) has a reference device identical
or similar to the target device, and thus be well capable of characterizing power
leakages of the target device, template attacks are widely accepted to be the
strongest side-channel attacks from an information theoretic point of view [1].
We note that, template attacks are also important tools to evaluate the physical
security of a cryptographic device.

Template attacks consist of two stages. The first stage is the profiling stage
and the second stage is the extraction stage. In the profiling stage, one captures
some actual power traces from a reference device identical or similar to the target
device and builds templates for each key-dependent operation with the actual
power traces. In the extraction stage, one can exploit a small number of actual
power traces measured from the target device and the templates obtained from
the profiling stage to classify the correct (sub)key.

1.1 Motivations

Note that for real-world implementation of cryptography devices, a side-channel
leakage trace (i.e. an actual power trace for the case of power analysis attacks)
usually contains multiple samples corresponding to the target intermediate val-
ues. The reason is that the key-dependent operations usually take more than one
instruction cycles. In addition, according to Nyquist-Shannon sampling theorem,
the acquisition rate of the signal acquisition device is always set to be several
times faster than the working frequency of the target cryptographic device.

For template attacks to be practical, it is paramount that not all the samples
of an actual power trace are part of the templates. To reduce the number of
samples and the size of the templates, one needs to choose some special points
as the interesting points in actual power traces. Main previous approaches of
choosing interesting points for template attacks can be divided into two kinds.

Approaches belong to the first kind try to choose the points which contain
the most information about the characterized key-dependent operations as the
interesting points with different principles. Classical template attacks [1] gen-
erally use the approaches belong to the first kind to choose interesting points.
Moreover, many papers [2,3,5,10,12] suggested an accepted guideline for choos-
ing interesting points for the approaches in the first kind. The accepted guideline
is that one should only choose one point as the interesting point per clock cycle
since more points in the same clock cycle do not provide more information.
Disobeying this accepted guideline leads to poorer classification performance of
template attacks even if a higher number of interesting points is chosen due
to some numerical obstacles when one computes the inverse of the covariance
matrices Ci (Please see Sect. 2.2 for more details.). Up to now, many different
approaches of choosing interesting points which belong to the first kind were

170 G. Fan et al.

introduced. These approaches are Correlation Power Analysis based approach
(Chap. 6 in [11]) (CPA), Sum Of Squared pairwise T-differences based approach
[10] (SOST), Difference Of Means based approach [1] (DOM), Sum Of Squared
Differences based approach [10] (SOSD), Variance based approach [15] (VAR),
Signal-to-Noise Ratios based approach (pp. 73 in [11]) (SNR), Mutual Infor-
mation Analysis based approach [16] (MIA), and Kolmogorov-Smirnov Analysis
based approach [17] (KSA). One uses these approaches to choose the points which
contain the most information about the characterized key-dependent operations
as the interesting points by computing the signal-strength estimate SSE(t) for
each point Pt. For example, when one uses Correlation Power Analysis based
approach to choose interesting points for template attacks, the signal-strength
estimate SSE(t) is measured by the coefficient of correlation between the actual
power consumptions and the hypothetical power consumptions of a point Pt. For
these approaches, in each clock cycle, the point with the strongest signal-strength
estimate SSE(t) is chosen as the interesting point.

Approaches belong to the second kind based on the principal components
or Fisher’s linear discriminant. Principal Component Analysis based approach
[3] (PCA) and Fisher’s Linear Discriminant Analysis based approach [9] (LDA)
belong to the second kind. We note that, PCA-based template attacks is ineffi-
cient due to its high computational requirements [2] and may not improve the
classification performance [7]. Therefore, PCA-based template attacks are not
considered to be an approach which can be widely used to choose interesting
points for template attacks. Moreover, LDA-based template attacks depends on
the rare condition of equal covariances [4] (Please see Sect. 2.2 for more details.),
which does not hold for most cryptographic devices. Therefore, it is not a better
choice compared with PCA-based template attacks in most settings [4]. Due to
these reasons, we ignore PCA-based template attacks as well as LDA-based tem-
plate attacks and only consider the approaches of choosing interesting points for
classical template attacks which are the most widely used profiled side-channel
attacks in this paper.

However, up to now, it is still unknown that whether or not using the above
approaches of choosing interesting points will lead to the best classification per-
formance of template attacks. In other words, whether or not there exists other
approaches which based on different basic principles will lead to better classi-
fication performance of template attacks is still unclear. If the answer to this
question is negative, we can demonstrate that one can further improve the clas-
sification performance of template attacks by using the more advanced approach
to choose interesting points rather than by designing some kind of improvements
about the mathematical structures of the attacks. In this paper, we try to answer
this important question.

1.2 Contributions

In this paper, we firstly present a new approach of choosing interesting points for
template attacks which has completely different basic principle compared with
all the previous approaches. The theoretical correctness of our new approach is

How to Choose Interesting Points for Template Attacks More Effectively? 171

supported by an important mathematical property of the multivariate Gaussian
distribution and the Pearson’s chi-squared test for goodness of fit [23].

Furthermore, we experimentally verified that template attacks based on the
interesting points chosen by our new approach can achieve obvious better clas-
sification performance compared with template attacks based on the interesting
points chosen by the previous approaches. This gives a negative answer to the
question that whether or not using the previous approaches of choosing interest-
ing points will lead to the best classification performance of template attacks.

Moreover, the computational price of our new approach is low and practical.
Therefore, our new approach of choosing interesting points for template attacks
can be used in practice to better understand the practical threats of template
attacks.

1.3 Related Work

Template attacks were firstly introduced in [1]. Answers to some basic and prac-
tical issues of template attacks were provided in [2], such as how to choose
interesting points in an efficient way and how to preprocess noisy data. Efficient
methods were proposed in [4] to avoid several possible numerical obstacles when
implementing template attacks.

Hanley et al. [12] presented a variant of template attacks that can be applied
to block ciphers when the plaintext and ciphertext used are unknown. In [8],
template attacks were used to attack a masking protected implementation of a
block cipher. Recently, a simple pre-processing technique of template attacks,
normalizing the sample values using the means and variances was evaluated for
various sizes of test data [7].

Gierlichs et al. [10] made a systematic comparison of template attacks and
stochastic model based attacks [22]. How to best evaluate the profiling stage and
the extraction stage of profiled side-channel attacks by using the information-
theoretic and the security metric was shown in [21].

1.4 Organization of This Paper

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce basic
mathematical concepts and review template attacks. In Sect. 3, we introduce our
new approach of choosing interesting points for template attacks. In Sect. 4, we
experimentally verify the effectiveness of the new approach in improving the
classification performance of template attacks. In Sect. 5, we conclude the whole
paper.

2 Preliminaries

In this section, we first introduce some basic mathematical concepts which are
used in this paper, then briefly review template attacks.

172 G. Fan et al.

2.1 Basic Mathematical Concepts

We first introduce the Gamma function and the chi-squared distribution. Then,
we briefly introduce the concept of the goodness of fit of a statistical model and
the Pearson’s chi-squared test for goodness of fit.

Definition 1. The Gamma function is defined as follows:

Γ (x) =
∫ ∞

0

e−ttx−1dt,

where x > 0.

Definition 2. The probability density function of the chi-squared distribution
with k degrees of freedom (denoted by χ2

k) is

f(x; k) =

{

1
Γ (k

2)2
k/2 e−x/2x(k−2)/2, x > 0;

0, x ≤ 0,

where Γ (·) denotes the Gamma function.

The goodness of fit of a statistical model describes how well it fits a set
of observations (samples). Measures of goodness of fit typically summarize the
discrepancy between the observed values and the values expected under the
statistical model in question. Such measures of goodness of fit can be used in
statistical hypothesis testing. The Pearson’s chi-squared test for goodness of fit
[23] is used to assess the goodness of fit establishes whether or not an observed
frequency distribution differs from a theoretical distribution. In the following,
we will briefly introduce the Pearson’s chi-squared test for goodness of fit.

Assume that, there is a population X with the following theoretical distrib-
ution:

H0 : Pr[X = ai] = fi (i = 1, . . . , k),

where ai, fi (i = 1, . . . , k) are known and a1, . . . , ak are pairwise different, fi >
0 (i = 1, . . . , k).

One obtains n samples (denoted by X1,X2, . . . , Xn) from the population X
and uses the Pearson’s chi-squared test for goodness of fit to test whether or
not the hypothesis H0 holds. We use the symbol ωi to denote the number of
samples in {X1,X2, . . . , Xn} which equal to ai. If the number n is large enough,
it will has that ωi/n ≈ fi, namely ωi ≈ nfi. The value nfi can be viewed as
the theoretical value (TV for short) of the category “ai”. The value ωi can be
viewed as the empirical value (EV for short) of the category “ai”. Table 1 shows
the theoretical value and the empirical value of the category “ai”.

Clearly, when the discrepancy of the last two lines of Table 1 is smaller, the
hypothesis H0 increasingly seems to be true. It is well known that the Pear-
son’s goodness of fit χ2 statistic (denoted by Z) is used to measure this kind of
discrepancy and is shown as follows:

Z =
k

∑

i=1

(nfi − ωi)2/(nfi). (1)

How to Choose Interesting Points for Template Attacks More Effectively? 173

Table 1. The theoretical value and the empirical value of each category

Category a1 a2 · · · ai · · · ak

TV nf1 nf2 · · · nfi · · · nfk

EV ω1 ω2 · · · ωi · · · ωk

The statistic Z can be exploited to test whether or not the hypothesis H0

holds. For example, after choosing a constant Con under a given level, when
Z ≤ Con, one should accept the hypothesis H0. When Z > Con, one should
reject the hypothesis H0. Now, let’s consider a more general case. The following
lemma about Z was given out by Pearson at 1900 [23] and the proof of Lemma1
is beyond the scope of this paper.

Lemma 1. If the hypothesis H0 holds, when n → ∞, the distribution of Z will
approach to the chi-squared distribution with k − 1 degrees of freedom, namely
χ2

k−1.

Assume that one computes a specific value of Z (denoted by Z0) by a group
of specific data. Let

L(Z0) = Pr[Z ≥ Z0|H0] ≈ 1 − Kk−1(Z0), (2)

where the symbol Kk−1(·) denotes the distribution function of χ2
k−1. Clearly,

when the probability L(Z0) is higher, the hypothesis H0 increasingly
seems to be true. Therefore, the probability L(Z0) can be used as a tool to
test the hypothesis H0.

If the theoretical distribution of the population X is continuous, the Pearson’s
chi-squared test for goodness of fit is also valid. In this case, assume that, one
want to test the following hypothesis:

H1 : The distribution function of the population X is F (x).

The distribution function F (x) is continuous. To test the hypothesis H1, one
should set

−∞ = a0 < a1 < a2 < · · · < ak−1 < ak = ∞,

and let I1 = (a0, a1], · · · , Ii = (ai−1, ai], · · · , Ik = (ak−1, ak). Moreover, one
obtains n samples (denoted by X1,X2, . . . , Xn) from the population X. Let ωi

denotes the cardinality of the set {Xj |Xj ∈ Ii, j ∈ {1, 2, . . . , n}} and

fi = Pr[x ∈ Ii, x ← X] = F (ai) − F (ai−1) (i = 1, . . . , k).

Then, one can also similarly compute L(Z0) (by equation (2)) to test the hypoth-
esis H1.

2.2 Template Attacks

Template attacks consist of two stages. The first stage is the profiling stage and
the second stage is the extraction stage. We will introduce the two stages in the
following.

174 G. Fan et al.

The Profiling Stage. Assume that there exist K different (sub)keys keyi, i =
0, 1, . . . ,K − 1 which need to be classified. Also, there exist K different key-
dependent operations Oi, i = 0, 1, . . . ,K−1. Usually, one will built K templates,
one for each key-dependent operation Oi. One can exploit some methods to
choose N interesting points (P0, P1, . . . , PN−1). Each template is composed of
a mean vector and a covariance matrix. Specifically, the mean vector is used to
estimate the data-dependent portion of side-channel leakages. It is the average
signal vector Mi = (Mi[P0], . . . ,Mi[PN−1]) for each one of the key-dependent
operations. The covariance matrix is used to estimate the probability density of
the noises at different interesting points. It is assumed that noises at different
interesting points approximately follow the multivariate normal distribution. A
N dimensional noise vector ni(S) is extracted from each actual power trace
S = (S[P0], . . . , S[PN−1]) representing the template’s key dependency Oi as
ni(S) = (S[P0] − Mi[P0], . . . , S[PN−1] − Mi[PN−1]). One computes the (N × N)
covariance matrix Ci from these noise vectors. The probability density of the
noises occurring under key-dependent operation Oi is given by the N dimensional
multivariate Gaussian distribution pi(·), where the probability of observing a
noise vector ni(S) is:

pi(ni(S)) =
1

√

(2π)N |Ci|
exp

(

− 1
2
ni(S)C−1

i ni(S)T
)

ni(S) ∈ R
N . (3)

In equation (3), the symbol |Ci| denotes the determinant of Ci and the symbol
C−1

i denotes its inverse. We know that the matrix Ci is the estimation of the true
covariance Σi. The condition of equal covariances [4] means that the leakages
from different key-dependent operations have the same true covariance Σ =
Σ0 = Σ1 = · · · = ΣK−1. In most settings, the condition of equal covariances
does not hold. Therefore, in this paper, we only consider the device in which the
condition of equal covariances does not hold.

The Extraction Stage. Assume that one obtains t actual power traces (denoted
by S1,S2, . . . ,St) from the target device in the extraction stage. When the actual
power traces are statistically independent, one will apply maximum likelihood
approach on the product of conditional probabilities (pp. 156 in [11]), i.e.

keyck := argmaxkeyi

{ t
∏

j=1

Pr[Sj |keyi], i = 0, 1, . . . ,K − 1
}

,

where Pr[Sj |keyi] = pf(Sj ,keyi)(nf(Sj ,keyi)(Sj)). The keyck is considered to be the
correct (sub)key. The output of the function f(Sj , keyi) is the index of a key-
dependent operation. For example, when the output of the first S-box in the first
round of AES-128 is chosen as the target intermediate value, one builds templates
for each output of the S-box. In this case, f(Sj , keyi) = Sbox(mj ⊕ keyi), where
mj is the input plaintext corresponding to the actual power trace Sj .

How to Choose Interesting Points for Template Attacks More Effectively? 175

3 Our New Approach to Choose Interesting Points
for Template Attacks

Now, we begin to introduce our new approach of choosing interesting points
for template attacks. Firstly, we show the following Lemma whose proof is in
Appendix A.

Lemma 2. The marginal distribution of multivariate Gaussian distribution is
a normal distribution.

The main idea of our new approach is as follows. In template attacks, it is
assumed that the distribution of the noises of multiple interesting points follows
the multivariate Gaussian distribution. Moreover, by Lemma2, we know that
the marginal distribution of the multivariate Gaussian distribution is a normal
distribution. Therefore, in classical template attacks, if the distribution of sam-
ples of each interesting point increasingly to approximate a normal distribution,
the multivariate Gaussian distribution statistical model will increasingly to be
suitable to be exploited to build the templates for template attacks. Otherwise,
if the points whose distributions of samples are not similar to normal distribu-
tions are chosen as the interesting points, the multivariate Gaussian distribution
will not be suitable to be exploited to build the templates and the classification
performance of template attacks will be poor. Therefore, for each clock cycle, our
new approach chooses the point whose distribution of samples is more approxi-
mate to a normal distribution than other points in the same clock cycle as the
interesting point.

The Pearson’s chi-squared test for goodness of fit can be used as a tool to
assess whether or not the distribution of samples of each point approximates to
a normal distribution. Specifically speaking, assume that, for a fixed point Pt,
one obtains n samples (X1,X2, . . . , Xn) for a fixed operation on fixed data and
computes:

μ̂ =
1
n

·
n

∑

i=1

Xi, s2 =
1

n − 1
·

n
∑

i=1

(Xi − μ̂)2. (4)

Note that, in template attacks, one can operate the reference device as many
times as possible and samples a large number of actual power traces in the
profiling stage. Therefore, the value of n can be large enough. When the value
of n is large enough, one can assume that the theoretical distribution of samples
of the point Pt is the normal distribution N (μ̂, s2) and to test whether this
hypothesis holds by exploiting the Pearson’s chi-squared test for goodness of
fit as follows. The distribution function of the normal distribution N (μ̂, s2) is
denoted by F (x; μ̂, s2). Let a0 = −∞, a1 = μ̂ − 2s, a2 = μ̂ − 1.5s, . . . , a9 =
μ̂ + 2s, a10 = +∞ and I1 = (−∞, μ̂ − 2s], I2 = (μ̂ − 2s, μ̂ − 1.5s], . . . , I10 =
(μ̂ + 2s,+∞). Then, one computes Z0 =

∑10
i=1(nfi − ωi)2/(nfi), where fi =

F (ai; μ̂, s2) − F (ai−1; μ̂, s2) and ωi = |{Xj |Xj ∈ Ii, j ∈ {1, 2, . . . , n}}|. After
obtaining the statistic Z0, one computes the value L(Z0) by using equation (2).

176 G. Fan et al.

When the value of n is large enough, if the n samples (X1,X2, . . . , Xn) fit the
normal distribution N (μ̂, s2) well, the value L(Z0) will be high. Otherwise, the
value L(Z0) will be low. Therefore, one can choose the interesting points based
on the value L(Z0). For points in the same clock cycle, one computes the value
L(Z0) of each point with the same actual power traces and chooses a point whose
value L(Z0) is the highest one as the interesting point.

4 Experimental Evaluations

In this section, we will verify and compare the classification performance of
template attacks based on the interesting points chosen by our new approach
and the classification performance of template attacks based on the interesting
points chosen by the previous approaches. Specifically speaking, our experiments
are divided into two groups. In the first group, we tried to choose the interesting
points by using different approaches. In the second group, we computed the
classification performances of template attacks based on the interesting points
chosen by different approaches.

For the implementation of a cryptographic algorithm with countermeasures,
one usually first tries his best to use some methods to delete the countermeasures
from actual power traces. If the countermeasures can be deleted, then one tries to
recover the correct (sub)key using classical attack methods against unprotected
implementation. For example, if one has actual power traces with random delays
[14], he may first use the method proposed in [13] to remove the random delays
from actual power traces and then uses classical attack methods to recover the
correct (sub)key. The methods of deleting countermeasures from actual power
traces are beyond the scope of this paper. Moreover, considering actual power
traces without any countermeasures shows the upper bound of the physical secu-
rity of the target cryptographic device. Therefore, we take unprotected AES-128
implementation as example.

The 1st S-box outputs of the 1st round of an unprotected AES-128 soft-
ware implementation are chosen as the target intermediate values. The unpro-
tected AES-128 software implementation is on an typical 8-bit microcontroller
STC89C58RD+ whose operating frequency is 11 MHz. The actual power traces
are sampled with an Agilent DSA90404A digital oscilloscope and a differential
probe by measurement over a 20 Ω resistor in the ground line of the 8-bit micro-
controller. The sampling rate was set to be 50 MS/s. The average number of
actual power traces during the sampling process was 10 times. For our device,
the condition of equal covariances does not hold. This means that the differ-
ences between different covariance matrixes Ci are very evident (can easily be
observed from visual inspection).

In order to choose interesting points and to test the classification performance
of template attacks, we generated three sets of actual power traces which are
respectively denoted by Set A, Set B, and Set C. The actual power traces in
Set A were used in the profiling stage. The actual power traces in Set B were
used in the extraction stage. The actual power traces in Set C were used to

How to Choose Interesting Points for Template Attacks More Effectively? 177

choose interesting points. The Set A captured 20,000 actual power traces which
were generated with a fixed main key and random plaintext inputs. The Set B
captured 100,000 actual power traces which were generated with another fixed
main key and random plaintext inputs. The Set C captured 110,000 actual power
traces which were generated with a fixed main key and random plaintext inputs.
Note that, we used the same device to generate the three sets of actual power
traces, which provides a good setting for the focuses of our research.

4.1 Group 1

In all experiments, we chose 4 continual clock cycles about the target intermedi-
ate value (Note that, in our unprotected AES-128 software implementation, the
target intermediate value only continued for 4 clock cycles.). In each clock cycle,
there are 4 points. Therefore, there are 16 points (denoted by P0, P1, . . . , P15)
totally1. Beside our new approach (denoted by CST), we also implemented all
the other approaches of choosing interesting points for template attacks includ-
ing CPA, SOST, DOM, SOSD, VAR, SNR, MIA, and KSA. All the approaches
(CSF, CPA, SOST, DOM, SOSD, VAR, SNR, MIA, and KSA) used 110,000
actual power traces in Set C to choose interesting points. The leakage function
of our device approximates the typical Hamming-Weight Model (pp. 40–41 in
[11]). Therefore, we adopted this model for CPA, MIA, and KSA.

In order to get more accurate results, we conducted our new approach
of choosing interesting points as follows. Due to the leakage function of our
device approximates the typical Hamming-Weight Model, we chose 9 differ-
ent values (denoted by V0, V1, . . . , V8) about the target intermediate value.
The hamming weight of the 9 different values respectively are 0, 1, . . . , 8 (i.e.
HW (Vi) = i, i = 0, 1, . . . , 8). For each Vi (i = 0, 1, . . . , 8), we selected 400
actual power traces in which the target intermediate value equals to Vi from
Set C. Therefore, for each value Vi (i = 0, 1, . . . , 8), there are 400 samples for
each one of the 16 points (P0, P1, . . . , P15) and we computed the empirical mean
value μ̂ and the empirical variance s2 of the 400 samples for each one of the
16 points by equation (4). Then, for each Vi (i = 0, 1, . . . , 8), we tried to assess
the goodness of fit establishes whether or not the actual distribution of samples
of the point Pi (i ∈ {0, 1, . . . , 15}) differs from its assumed theoretical distribu-
tion N (μ̂, s2) by computing the value L(Z0) with the 400 samples like that in
Sect. 3. For the value Vi (i = 0, 1, . . . , 8) and the point Pj (j = 0, 1, . . . , 15), we
computed the value L(Z0) and rewrote it by L(i,j)(Z0). Then, we computed the
value Lj(Z0) (j = 0, 1, . . . , 15) for each one of the 16 points as follows:

Lj(Z0) =
1
9

·
8

∑

i=0

L(i,j)(Z0), (j = 0, 1, . . . , 15)

1 The points P0, . . . , P3 are in the first clock cycle. The points P4, . . . , P7 are in the
second clock cycle. The points P8, . . . , P11 are in the third clock cycle. The points
P12, . . . , P15 are in the fourth clock cycle.

178 G. Fan et al.

Table 2. The interesting points chosen by different approaches

Clock Cycle 1 2 3 4

CST P2 P4 P11 P12

CPA P1 P5 P8 P12

SOST P1 P5 P8 P12

DOM P3 P7 P10 P12

SOSD P3 P7 P10 P12

VAR P3 P7 P10 P12

SNR P3 P7 P10 P12

MIA P1 P5 P8 P15

KSA P1 P5 P8 P15

and chose the interesting points based on the values L0(Z0), . . . , L15(Z0). In one
clock cycle, the point with the highest Lj(Z0) is chosen as the interesting point.

In Table 2, we show the interesting points chosen by different approaches
using the 110,000 actual power traces in Set C. From Table 2, we find that
our approach chooses different interesting points in the first three clock cycles
compared with other approaches.

4.2 Group 2

For simplicity, let np and ne respectively denote the number of actual power
traces used in the profiling stage and in the extraction stage. In this paper,
we use the typical metric success rate [6] as the metric about the classification
performance of template attacks.

In order to show the success rates of template attacks based on the inter-
esting points chosen by different approaches under different attack scenarios, we
conducted 4 groups of experiments. In these groups of experiments, the numbers
of actual power traces used in the profiling stage are different. This implies that
the level of accuracy of the templates in these groups of experiments are differ-
ent. The higher number of actual power traces used in the profiling stage, the
more accurate templates will be built. Moreover, in each groups of experiments,
we still considered the cases that one can possess different numbers of actual
power traces which can be used in the extraction stage.

Specifically speaking, in the 4 groups of experiments, we respectively chose
5,000, 10,000, 15,000, and 20,000 different actual power traces from Set A to build
the 256 templates based on the interesting points chosen by different approaches
in the profiling stage. Template attacks based on the interesting points chosen
by approach A is denoted by the symbol “A-TA”. We tested the success rates of
template attacks based on the interesting points chosen by different approaches
when one uses ne actual power traces in the extraction stage as follows. We
repeated the 9 attacks (CSF-TA, CPA-TA, SOST-TA, DOM-TA, SOSD-TA,

How to Choose Interesting Points for Template Attacks More Effectively? 179

SNR-TA, VAR-TA, MIA-TA, and KSA-TA) 1,000 times. For each time, we chose
ne actual power traces from Set B uniformly at random and the 9 attacks were
conducted with the same ne actual power traces. We respectively recorded how
many times the 9 attacks can successfully recover the correct subkey of the 1st
S-box.

From Table 2, we find that the CPA approach and the SOST approach provide
the same result of choosing interesting points. The DOM approach, the SOSD
approach, the VAR approach, and the SNR approach provide the same result of
choosing interesting points. Moreover, the MIA approach and the KSA approach
provide the same result of choosing interesting points. The approaches which
provide the same result of choosing interesting points will lead to the same
classification performance of template attacks. Therefore, in order to show the
success rates more clearly, we only show the success rates of CSF-TA, CPA-TA,
DOM-TA, and MIA-TA in Fig. 1. The success rates of template attacks based
on the interesting points chosen by different approaches when np equals to 5, 000
and ne equals to 4, 8, 12, 16, and 20 are shown in Table 3.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Power Traces

Su
cc

es
s

R
at

e

CST−TA
CPA−TA
DOM−TA
MIA−TA

(a) np =5,000

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Power Traces

Su
cc

es
s

R
at

e

CST−TA
CPA−TA
DOM−TA
MIA−TA

(b) np =10,000

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Power Traces

Su
cc

es
s

R
at

e

CST−TA
CPA−TA
DOM−TA
MIA−TA

(c) np =15,000

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Power Traces

Su
cc

es
s

R
at

e

CST−TA
CPA−TA
DOM−TA
MIA−TA

(d) np =20,000

Fig. 1. The experiment results

180 G. Fan et al.

Table 3. The success rates of template attacks when np = 5, 000

ne 4 8 12 16 20

CST-TA 0.70 0.94 0.99 1.00 1.00

CPA-TA 0.34 0.58 0.69 0.77 0.79

SOST-TA 0.34 0.58 0.69 0.77 0.79

DOM-TA 0.32 0.63 0.76 0.85 0.90

SOSD-TA 0.32 0.63 0.76 0.85 0.90

VAR-TA 0.32 0.63 0.76 0.85 0.90

SNR-TA 0.32 0.63 0.76 0.85 0.90

MIA-TA 0.19 0.36 0.46 0.53 0.57

KSA-TA 0.19 0.36 0.46 0.53 0.57

From Fig. 1 and Table 3, in all the attack scenarios, we find that template
attacks based on the interesting points chosen by our new approach will achieve
obvious higher success rates compared with template attacks based on the inter-
esting points chosen by the previous approaches. For example, when np = 5, 000
and ne = 4, the success rate of CST-TA equals to 0.70, while the success rate of
DOM-TA equals to 0.32. What’s more, when np = 5, 000, CST-TA only needs 7
actual power traces in the extraction stage to achieve success rate higher than
0.9, while DOM-TA needs 20 actual power traces in the extraction stage to
achieve success rate higher than 0.9 under the same attack scenario. Therefore,
we believe that using our new approach to choose the interesting points can
effectively improve the classification performance of template attacks.

5 Conclusion

In this paper, we give a negative answer to the question that whether or not
using the previous approaches of choosing interesting points will lead to the best
classification performance of template attacks by introduction a new approach
with completely different basic principle. Our new approach is based on the
important mathematical property of the multivariate Gaussian distribution and
exploits the Pearson’s chi-squared test for goodness of fit.

Experiments verified that template attacks based on the interesting points
chosen by our new approach will achieve obvious better classification perfor-
mance compared with template attacks based on the interesting points chosen
by the previous approaches. Moreover, the computational price of our new app-
roach is low and practical. Therefore, our new approach of choosing interesting
points can be used in practice to better understand the practical threats of tem-
plate attacks. In the future, it is necessary to further verify our new approach
in other devices such as ASIC and FPGA.

Acknowledgments. This work was supported by the National Basic Research Pro-
gram of China (No. 2013CB338003), the National Natural Science Foundation of China

How to Choose Interesting Points for Template Attacks More Effectively? 181

(Nos. 61472416, 61272478), and the National Key Scientific and Technological Project
(No. 2014ZX01032401-001).

Appendix A: The Proof of Lemma2

Proof: For simplicity, we only consider the case when N = 2. For the case
N > 2, this Lemma holds similarly.

Let (ξ, η) denote a 2 dimensional random vector. The continuous distribution
function and the probability density function of the 2 dimensional random vector
respectively are F (x, y) and p(x, y). Then, the marginal distribution functions
are as follows:

F1(x) =
∫ x

−∞

∫ ∞

−∞
p(u, y)dudy, F2(y) =

∫ ∞

−∞

∫ y

−∞
p(x, u)dxdu.

The marginal density functions are as follows:

p1(x) =
∫ ∞

−∞
p(x, y)dy, p2(y) =

∫ ∞

−∞
p(x, y)dx.

For 2 dimensional multivariate Gaussian distribution, it has that

p(x, y) =
1

2π|C|exp
{

− 1
2
(x − a, y − b) · C−1 · (x − a, y − b)T

}

,

where

C =
(

σ2
1 rσ1σ2

rσ1σ2 σ2
2

)

and the values a, b, σ1, σ2, r are constant, σ1 > 0, σ2 > 0, |r| < 1. The probability
density function p(x, y) can be rewritten as follows

p(x, y) =
1

2πσ1σ2

√
1 − r2

exp
{

− 1
2(1 − r2)

·
[(x − a)2

σ2
1

−2r(x − a)(y − b)
σ1σ2

+
(y − b)2

σ2
2

]}

.

Let
x − a

σ1
= u,

y − b

σ2
= v

and it has that
p1(x) =

∫ ∞

−∞
p(x, y)dy

=
1

2πσ1

√
1 − r2

∫ ∞

−∞
exp

{

− 1
2(1 − r2)

· [u2 − 2ruv + v2]
}

dv

=
1√

2πσ1

e−u2/2

∫ ∞

−∞

1
√

2π(1 − r2)
· exp

{

− r2u2 − 2ruv + v2

2(1 − r2)

}

dv

182 G. Fan et al.

=
1√

2πσ1

e−u2/2

∫ ∞

−∞

1
√

2π(1 − r2)
e−(v−ru)2/2(1−r2)dv

=
1√

2πσ1

e−u2/2 =
1√

2πσ1

e−(x−a)2/2σ2
1 .

Therefore, p1(x) is the probability density function of the normal distribution
N (a, σ2

1). Similarly, we can prove that

p2(y) =
1√

2πσ2

e−(x−b)2/2σ2
2 .

In this way, Lemma 2 is proven. �

References

1. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

2. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)

3. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006)

4. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Heidelberg (2014)

5. Bär, M., Drexler, H., Pulkus, J.: Improved template attacks. In: COSADE2010
(2010)

6. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

7. Montminy, D.P., Baldwin, R.O., Temple, M.A., Laspe, E.D.: Improving cross-
device attacks using zero-mean unit-variance mormalization. J. Cryptographic Eng.
3(2), 99–110 (2013)

8. Oswald, E., Mangard, S.: Template attacks on masking—resistance is futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006)

9. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008)

10. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006)

11. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Berlin (2007)

12. Hanley, N., Tunstall, M., Marnane, W.P.: Unknown plaintext template attacks. In:
Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 148–162. Springer,
Heidelberg (2009)

How to Choose Interesting Points for Template Attacks More Effectively? 183

13. Durvaux, F., Renauld, M., Standaert, F.-X., van Oldeneel tot Oldenzeel, L.,
Veyrat-Charvillon, N.: Efficient removal of random delays from embedded soft-
ware implementations using hidden markov models. In: Mangard, S. (ed.) CARDIS
2012. LNCS, vol. 7771, pp. 123–140. Springer, Heidelberg (2013)

14. Coron, J.-S., Kizhvatov, I.: Analysis and improvement of the random delay coun-
termeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010)

15. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak infor-
mation? An a priori statistical power analysis of leakage detection tests. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 486–505.
Springer, Heidelberg (2013)

16. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

17. Whitnall, C., Oswald, E., Mather, L.: An exploration of the Kolmogorov-Smirnov
test as a competitor to mutual information analysis. In: Prouff, E. (ed.) CARDIS
2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011)

18. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

19. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

20. European Network of Excellence (ECRYPT). The side channel cryptanalysis
lounge. http://www.crypto.ruhr-uni-bochum.de/ensclounge.html

21. Standaert, F.-X., Koeune, F., Schindler, W.: How to compare profiled side-channel
attacks? In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 485–498. Springer, Heidelberg (2009)

22. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005)

23. Pearson, K.: On the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. Philos. Mag. Ser. 5 50(302), 157–
175 (1900)

http://www.crypto.ruhr-uni-bochum.de/ensclounge.html

NeuronVisor: Defining a Fine-Grained Cloud
Root-of-Trust

Anbang Ruan(B) and Andrew Martin

Department of Computer Science, University of Oxford, Oxford, UK
{anbang.ruan,andrew.martin}@cs.ox.ac.uk

Abstract. Security issues have become a significant barrier to the adop-
tion of cloud computing services. Most existing security enhancements
lack a well defined Root-of-Trust (RoT). Models for Trusted Clouds have
been proposed, which establish RoT inside the cloud and vouch for the
trustworthiness of the cloud services. However, these are often impracti-
cal due to cloud’s dynamics and complexity. In this paper, we present the
NeuronVisor, an abstract Cloud Root-of-Trust (cRoT) framework. Neu-
ronVisor enforces decentralized attestations to capture trust dependency
among interacting software components inside the cloud, and determines
a single cRoT for each cloud application. This cRoT hides the cloud’s
internal by presenting a uniform interface for attesting to the trustwor-
thiness of the entire cloud application and all its dependent services
inside the cloud (the Cloud TCB). Our simulations show that, for more
than 98 % times, one interrogation to the dynamically formed cRoT is
able to identify the properties of more than 90 % of the nodes hosting a
cloud application and its cloud TCB. Meanwhile, NeuronVisor achieves
higher fault detection rate than the prevalent centralized cloud attesta-
tion scheme (CEN). It still achieves the same fault detection rate with
CEN even when 90 % of the NeuronVisors are constantly tampered with
and maliciously collaborating with each other.

1 Introduction

The Trusted Cloud concept has been proposed to integrate cloud systems
with the Trusted Computing infrastructure [15,17]. Cloud nodes are equipped
with built-in TPMs. Attestation services are implemented to gather the TPM-
generated trust evidence from each node to report their genuine behaviors. With
Trusted Clouds, customers are expecting to verify the fulfillment of their SLAs
(Service Level Agreements) by attesting to the nodes hosting the declared ser-
vices. However, the complexity and dynamics in cloud inhibit the effective imple-
mentation of these systems [13].

Currently, these schemes assume homogeneous property distributions among
the cloud nodes [5]. For example, whether the entire cloud management nodes
enforce ubiquitous non-discriminative VM scheduling policies, or whether all the
compute nodes have the capabilities to enforce strong VM-isolation. Besides,
they require customers to rely on a central delegate service to perform the attes-
tations to the target services [15,17]. Customers then attest to this delegate to
c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 184–200, 2015.
DOI: 10.1007/978-3-319-27998-5 12

NeuronVisor: Defining a Fine-Grained Cloud Root-of-Trust 185

make sure that the attestation services are genuine and hence assume that their
assets are secure, and the services they have purchased are trustworthy.

However, the cloud infrastructures have evolved to implement diverse sup-
porting services for satisfying different applications’ needs [8,21]. It has become
common that cloud nodes implement different services. When customers are
allowed to choose among these various supporting services from the cloud
providers, the attestation delegate has to distinguish different attestation cri-
teria for each of them. The effective and efficient implementation of this dele-
gate will be a challenging task. On the other hand, customers’ attestations to
the delegate only prove its existence rather than effectiveness. In other words,
without additional evaluations to the detailed configurations of this delegate,
customers cannot be assured that their attestation requirements have been gen-
uinely fulfilled. But this evaluation is especially complex, given the gigantic-scale
and multi-tenancy of a cloud service provider.

From customers’ perspective, a desirable cloud attestation scheme is to
directly attest to the properties of their cloud applications and the cloud support-
ing services that their applications depend on. This requires the cloud providers
to genuinely provide the customers with the information of all these related ser-
vices. In short, this requires effective cloud Trusted Computing Base (cTCB)
identification and attestation for applications. In our previous work, we pro-
posed the RepCloud framework [13] to define the cTCB for a cloud application.
RepCloud implements a decentralized attestation (DA) scheme, which enforces
attestations among cloud nodes based on their the internal interaction patterns.
With DA, the trust dependency is among the nodes are clearly determined, which
facilitates the identification of a cloud application’s cTCB. However, RepCloud
lacks of a clearly defined RoT inside to cloud to effectively implement the cTCB
attestations.

We observe that the difficulties in achieving effective and practical cloud
attestations are generally caused by the problem of insufficient abstraction of
the Root-of-Trust model in cloud. As a cloud hides its underlying hardware
infrastructure and exposes only a uniform view of virtual resource to a cloud
application, the RoT for the application should also have a uniform abstraction.
A logical cloud Root-of-Trust (cRoT) for an application is thus desirable, which
manages all the hardware RoT (TPMs) for the application and its cTCB (e.g.
the supporting cloud services). The cRoT should scale with the application, and
collect the trust information maintained by each TPM. It exports the aggregated
trust information in a uniform interface to achieve cloud application attestations.
With this abstraction, attestations to a cloud application are performed in the
similar way as attestations to an application hosted on a single server: with one
interaction with a cRoT, the properties of the entire cloud application and its
cTCB are fetched and examined.

In this paper, we propose the NeuronVisor framework to approach the first
step for implementing this cloud Root-of-Trust abstraction. NeuronVisor imple-
ments two functions: (1) it dynamically identifies the set of hardware Roots-
of-Trust (i.e. TPMs) which maintain the trust evidence for each component of

186 A. Ruan and A. Martin

a cloud application and its cloud TCB; (2) it shares the trust evidence among
these RoTs, so that querying any of the RoTs will aggregate all these relevant
evidence. NeuronVisor therefore builds a foundation for constructing a Cloud
Chain-of-Trust, which will organize and export the trust evidence of an entire
cloud application and its cloud TCB in a uniform way to facilitate effective cloud
attestations.

This paper is organized as follows: Sect. 2 presents the conceptual Neuron-
Visor model. Section 3 illustrates the Neuron Web model for implementing this
model for achieving the cloud Root-of-Trust semantics. In Sect. 4, the trust impli-
cations of the cRoT are evaluated with simulations, along with the design and
implementation of the NeuronVisor prototype. However, due to the length limit
of this paper, we leave the details to a longer version paper. Section 5 discusses
the related work, and Sect. 6 concludes the paper and presents the future work.

2 NeuronVisor Framework

A NeuronVisor (or Neuron for short) is a software Root-of-Trust (i.e. TPM)
management layer, deployed on each cloud node. A Neuron possesses only two
properties: (1) whether it can genuinely attest to the properties of the upper-
layer service components; (2) whether it can attest to other Neuron’s properties.
Each Neuron enforces autonomous Decentralized Attestations [13] to examine
and disseminating these two properties of its interacting peers.

Neuron Structure. Figure 1 depicts the logical structure of the NeuronVisor
layer (or Neuron for short). The Neuron Kernel (or kernel for short) is the
core component of a Neuron. It stores the trust evaluations of its interacting
Neurons. The kernel is maintained by the Attestation Module and the Trust
Propagation Module. Attestation Module attests to target Neurons when new
communications are initiated among their upper-layer service components, e.g.
customers’ Virtual Machines, or management service modules. It updates the
kernel with the attestation information. Trust Propagation Module exchanges
the updated kernel matrix with peer Neurons by adapting the Decentralized
Attestation [13] protocols. A Neuron interacts with upper layer services through
its Network Monitor and vTPM Manager. The Network Monitor intercepts the
network traffics, and queries the integrity of the target Neuron from its kernel.
Attestations to the Neuron will be initiated when necessary. The vTPM Manager
exports necessary kernel matrix to the vTPMs to implement cloud attestations.

Two forms of attestations are implemented by each Neuron. Firstly, it imple-
ments the attestations to the properties of the upper layer services, e.g. Virtual
Machines or cloud management service components. This is implemented by the
vTPM Management Module. Secondly, it adapts the Decentralized Attestation
[13] (DA) to attest to only the integrity of the peer NeuronVisor layer on all
the interacting nodes, based their hosted services’ communication patterns. It is
achieved by the cooperation of the Attestation Module and the Network Mon-
itor Module. By aggregating and disseminating this integrity information with
the Trust Propagation Module, Neurons on the frequently communicating nodes

NeuronVisor: Defining a Fine-Grained Cloud Root-of-Trust 187

Fig. 1. Neuron structure.

form the Neuron Web, where the integrity of each Neuron is regularly examined.
By sharing the properties of the upper layer services among the attested Neurons,
this web forms a dynamic and scalable software layer to attest to all the hosted
interacting services with a uniformed interface. By attesting to and querying any
Neuron on this web, the properties of all dependent services are gathered. This
dynamically formed Neuron Web thus achieves the cloud Root-of-Trust abstrac-
tion for attesting to a cloud application. In this paper, we mainly focus on this
second form of attestation: how the decentralized attestations are implemented in
the NeuronVisor framework to dynamically identify relevant Neurons, and effec-
tive share information among them.

Neuron Connections. Figure 2 depicts a simplified Neuron connection topol-
ogy. With NeuronVisor, a node can communicate with the others only when its
Neuron is connected to theirs. An established connection means the Neuron has
successfully attested to the integrity of the target Neuron. The connected Neu-
ron is referred to as the attesting Neuron’s neighbor. These Neuron connections
link semantic depending Neurons and form the Neuron Web.

An important property of a connection is its strength. It represents the attes-
tation relationship from the Neuron to its neighbor. It is an integer indicating,
in the view of the attesting Neuron, how the neighbor is attested to. The higher
the strength, the harder it is for the connected Neuron to change its proper-
ties without being detected. Therefore, strength acts as an integrated evaluation
based on past attestations to represent a Neuron’s trustworthiness. Moreover,
as suggested in [13], in an environment where nodes frequently attest to each
other, an attestation ticket can be effectively reused for better reflecting the trust
dependency and reducing redundant attestations. A Neuron thus also determines
the strength value for its connection to a neighbor by analyzing the attestation
relationship from other Neurons with the target neighbor. This relationship is
gathered by the Trust Propagation module, and is maintained in the Kernel.

188 A. Ruan and A. Martin

Fig. 2. Simplified neuron connection topology.

Neuron Kernel. As a Neuron only concerns the trustworthiness of its neigh-
bors, the kernel of each Neuron maintains a partial attestation graph to record
only the information of attestations performed to and from its neighbors. This
is achieved by adapting the Decentralized Attestation (DA).

When a node initiates a new communication to another, its Neuron first
attests to the target node’s Neuron. This attestation establishes a new Neu-
ron connection by adding an entry inside the kernel recording the attestation
information. The Neuron then fetches all the attestation information from the
neighbor’s kernel, and aggregates it into its own kernel. Afterwards, the Neu-
ron propagates back the updated data to all corresponding neighbors, who also
depend on this data. These Neurons perform the aggregate-propagate procedure,
until their kernels are stable, i.e. a new aggregation session only makes negligi-
ble changes to the kernel. This iterative information exchange thus allows the
partial graph to contain all the attestation relationship of the neighbors [10,13].
It approaches a more accurate strength value assignment and achieves fast and
accurate trust information dissemination.

For example, in Fig. 2, after Neuron N 1 attested to N 3, it fetches N 3’s ker-
nel. It updates related entries into its own kernel, and propagate these updates to
N 2 and N 4, since they have also attested to N 4, which implies trust depen-
dency. These two Neurons aggregate the updated information with their own
kernel, and propagate the changed entries back. This may also contain the infor-
mation that N 1 depends on, e.g. attestations towards N 3.

Connection Strength. The attestation relationship between two Neurons is
modeled as an integer from their past attestation patterns maintained in the
Neuron Kernel. This value represents a Direct Trust (D) towards the attested
Neuron. For example, in Fig. 2, the solid arrows represent the direst trust rela-
tionship from attesting Neurons to the targets. Transitive Trust is deduced by
connecting the direct trust from the attesting Neuron to a middle Neuron and
from the middle one to the target. The strength value for the connection to
the neighbor is in turn modeled from both the direct and the transitive trust
through all possible middle Neurons. For example, in Fig. 2, the strength value

NeuronVisor: Defining a Fine-Grained Cloud Root-of-Trust 189

for the connection from N 1 to N 3 is calculated from the direct trust D 13 and
the transitive trust, which is calculated from D 14 and D 43. It represents how
the neighbor is attested to both directly and indirectly by the attesting Neuron.
This strength calculation helps NeuronVisor to reduce redundant attestations,
while preventing malicious collaborative attacks [9] (Sect. 4).

The strength value decreases constantly, since it is calculated from the attes-
tations, whose credibility degrades over time. When it reaches a threshold, the
Neuron determines whether its upper layer services still have communications
to their counterparts hosted on its neighbors. If not, it tears down the connec-
tion by removing the related entries from the Kernel. Otherwise, it attests to
the neighbor and updates the strength. The new attestation information is also
propagated to other neighbors, which will result in a new series of information
exchanges. This strength degradation and repeated attestations thus allow the
connection strength to better reflect the trust dependency and communication
dynamics among interacting nodes. When a neighbor failed the attestation, it is
identified as “unhealthy” and the connection is torn down. This failed node is
reported, and will be examined or re-initiated. This information is also propa-
gated among other neighbors, who will also reexamine the unhealthy target, and
teal down the connection when necessary.

Neuron Web. Connected Neurons form a Neuron web. By choosing a Center
Neuron and specifying the strength criteria, a partial Neuron web is identified,
where all the connections have the strength satisfying the criteria. In NeuronVi-
sor, the connection strength reflects the attestation relationship, which in turn
indicates the communication patterns of the upper layer services. Therefore, by
setting the criteria according to the services’ communication patterns, the gen-
erated partial web will cover all the Neurons hosting these services. As only
trusted Neurons are bound on a web, trust information can be shared freely
among the Neurons without requiring interrogating the TPMs every time. As
each Neuron possess the capabilities of attesting to the properties of the upper
layer services, this web thus acts as the Cloud Root-of-Trust (cRoT) for all these
services, which includes the connected application components and all partici-
pating cloud service components.

3 Neuron Web Model

In this section we define the mathematical model of the Neuron Web. We first
present the basic notations, and then illustrate the procedures for the maintain-
ing the Neuron Kernel. From the kernel, Transitive Trust is deduced to determine
the connection strength.

3.1 Direct Trust

Neuron Kernel collects the results of the attestations performed by the Neuron
and its neighbors. These attestations represent Direct Trust relationship among
Neurons. Direct trust is modeled from the past attestation tickets. Two parts of

190 A. Ruan and A. Martin

information from tickets are usually used for modeling trust [13]: the measure-
ment values, which are calculated and recorded by the Trusted Computing facil-
ities [2,3] to represent the genuine properties of the Neuron, and a timestamp, t,
which records the time the measurements are collected. However, since only the
integrity of a Neuron is concerned, the measurements are replaced by a binary
value: “healthy” or “unhealthy”. It is implemented by examining whether these
measurement values are located in a known-good values list [2]. Moreover, as
an “unhealthy” Neuron will be isolated as soon as it is discovered, only the
timestamp is necessary to represent this evaluation. Therefore, in NeuronVisor,
a Neuron keeps an Attestation History (AH) for each healthy neighbor to record
all timestamps for the recent attestations it performed to the neighbor.

In practice, repeatedly attestations have a minimum interval, which is deter-
mined by the time needed to fulfill a complete attestation [18]. We denote this
interval as a step (τ). Thus the distance between two timestamps t2 and t1, can
be expressed as the number of steps in between. It is denoted as Δ(t2, t1):

Δ(t2, t1) = � (t2 − t1)
τ

� (1)

With this definition, a recent ticket is defined as the one generated κ steps
away from the current time, where κ is an integer constant chosen for a cloud
implementation to suit its needs for balancing performance and security require-
ments.

We now model the direct trust from Neuron Na to Nb at time t: Da,b(t).
Da,b(t) is calculated by combining the timestamps maintained in the attestation
history, which records the attestation tickets towards the neighbor (Nb). It is an
integer interpreted as a bitmap vector with the length of κ. Each bit represents
a timestamp one step away from its higher adjacent bit, and the highest bit
indicates the time t. A bit is set to 1 when an attestation is performed at the
step it stands for. Thus the direct trust, calculated as below, reflects all the recent
successful attestations up to time t. AHj(t) denotes the attestation history for
Neuron Nj at time t. As a step is defined as minimum attestation interval,
different timestamps t in AH cannot indicate a same bit index. We can thus
safely use summation instead of bitwise OR (“|”) for setting the corresponding
bits.

Di,j(t) =
∑

tn∈AHj(t)

2κ−Δ(t,tn) (2)

This definition allows two evaluation values be compared. The larger one indi-
cates the more recent an attestation is performed, and hence indicates a higher
trust credibility. This property is used for modeling Transitive Trust described
later. On the other hand, the bit pattern represents the past attestation pattern.
It is further used to model a Combined Trust semantics, which will be briefly
discussed in Sect. 3.4. In this paper, we focus on modeling the Transitive Trust.

NeuronVisor: Defining a Fine-Grained Cloud Root-of-Trust 191

Whenever an attestation is performed, the new evaluation value is calculated
by shifting the original one rightwards Δ(tnew, toriginal) bits, and setting the
highest bit to “1”:

Di,j(tnew) = 2κ|Di,j(toriginal)
2Δtnew,torigial

(3)

As each Neuron maintains a partial attestation graph, the attestation infor-
mation regarding a pair of neighbors may be incomplete. Thus Neurons exchange
their gathered information to approach a more accurate attestation relationship
among Neurons. When two different version for a same attestation relationship
are maintained by two Neurons at different time, e.g. Da

i.j(t1) Db
i.j(t2), they are

first adjusted to a common time, and then merged together with the bitwise
OR operation. In the rest of the paper, we use the superscript to denote that
the data structure is maintained by a certain Neuron. Each data structure also
contains a parameter t to indicate that its value is calculated for time t. We omit
these two notations when the context is clear.

Di,j(tnew) =
Da

i,j(t1)
2Δtnew,t1

| Db
i,j(t2)

2Δtnew,t2
(4)

3.2 Neuron Kernel

The kernel of a Neuron Ni is defined as a matrix Ki(t) maintaining the direct
trust it gathers at time t.

Ki(t) = {Da,b(t)} (5)

We define Da,b = 0, when no attestation is performed from Na to Nb. We
also define Da,a equals the maximum direct trust value 2κ+1 − 1, as a Neuron
always trust itself. The set of Ni’s neighbors (Nbri) is hence defined as:

Nbri = {Nk | 0 < Di,k < 2κ+1 − 1} (6)

Neuron Kernel is maintained as a Global Trusted Matrix in the Decentral-
ized Attestation scheme [13]. Specifically, three steps are used to maintain the
kernel: (1) the Neuron first gathers the direct trust for its neighbors by per-
forming remote attestations to them; (2) it then aggregates entries in the kernel
of the neighbors; and finally (3) it disseminates the updated kernel back to
corresponding neighbors.

However, in NeuronVisor, only the Direct Trust values are disseminated,
instead of the entire measurement values used in RepCloud [13]. This greatly
increases the trust dissemination efficiency. For trust gathering, whenever a Neu-
ron (Ni) attests to another (Nj), it updates the entry Di,j(t) in its kernel using
Eq. (3). Other entries are also refreshed to adapt to the new time t. The trust
aggregation is then performed by fetching the kernel of Nj : Kj . Entries in the
retrieved Kj are merged with the corresponding ones in Ki by using Eq. 4.
Finally, the updated entries are sent to the set of Neurons who also have depen-
dency on this information. This set is determined by the Ia

b in [13].

192 A. Ruan and A. Martin

3.3 Neuron Connections

The Connection Strength is calculated by aggregating the Transitive Trust.
Transitive trust has been discussed in P2P systems [10,19,20]. Trust towards
a “stranger” can be determined by consulting a “friend”, whose trustworthi-
ness is known and who knows the trustworthiness of the stranger. Similarly,
the integrity of a Neuron can be assumed when it is attested to by a neighbor.
Transitive Trust reuses trust information and reduces redundant attestations.

We first define a transitive attestation path, which contains a sequence of
Neurons, with the former one attested to the following one. In NeuronVisor,
only one-hop transitive trust is considered [12]. Thus each path contains three
Neurons. The transitive trust, Ti,k,j , thus denotes the trust implication towards
Neuron Nj , regarding a path containing {Ni, Nk, Nj}. As an attestation reflects
the trustworthiness up to the time it is performed, the transitive trust should
only represent the trustworthiness up to the time when all the Neuron on the
attestation path are regarded as equally trustworthy. This means the value of
this evaluation equals the smallest direct trust value along the path.

Ti,k,j = min(Di,k,Dk,j) (7)

As Di,i is defined to equal the maximum value, transitive trust calculation
also incorporates the direct trust: Ti,i,j = Di,j .

We now define the Connection Strength Si,j from Neuron Ni to Nj . It is the
maximum transitive trust value for all possible transitive paths from Ni to Nj .
It represents the most recent time when Nj was iteratively attested to by Ni.

Ci,j = max({Ti,k,j | Di,k �= 0 ∧ Dk,j �= 0}) (8)

When the related entries in the kernel change, this trust value is updated.
Every time when a node interacts with another one, this value is first adjusted
to reflect the current time (by shifting rightwards Δ bits). It is then compared
to the threshold value Φ. Only when it is larger, will the communication been
enforced. Otherwise, the Neuron triggers a new attestation to the target, which
will result in a new round of trust dissemination.

3.4 Discussions and Extensions

Connections Strength Interpretation. Neuron Connections help forming
a cRoT (the Neuron Web). As discussed in Sect. 2, a partial Neuron Web is
actually a dynamically formed centralized attestation domain, with the Center
Neuron of the web as the attestation delegate. The strength values of the con-
nections indicate how often these Neurons are attested to, directly or indirectly,
by the center. Therefore, after choosing a VM as the cloud attestation target,
customers have actually chosen an attestation domain, with the VM’s under-
lying NeuronVisor as the center. After examining the integrity of this center
Neuron, customers are able to infer the integrity of the other Neurons from the
returned strength value matrix. As Neuron Connections are formed according to

NeuronVisor: Defining a Fine-Grained Cloud Root-of-Trust 193

upper layer’s communication relationship, this attestation domain preserves the
application’s dependency, which helps determining the cloud TCB.

Centralized Communications. Attestations among Neurons are based on
decentralized communication patterns. However, in a cloud implementation,
centralized communications still exist. For example, in OpenStack, the central
Scheduler node talks to every Compute node regularly. However, the decentral-
ized attestations are still enforced, because of the trust dissemination and tran-
sitive trust aggregation. When the Scheduler attests to a Compute, it fetches
the Neuron Kernels of the Compute, which contains attestation information for
other Computes. Therefore, the Scheduler only attests to the Compute nodes
that have not been attested to recently. Decentralized attestations thus distrib-
ute the attestation responsibilities from a central delegate to all the cloud nodes.
This prevents the single-point-of-failure. Meanwhile it reduces the complexity for
managing the centralized attestation delegate.

Combined Trust. Transitive Trust represents the trust evaluation from a local
view of a given Neuron. Aggregating all the local views, a Combined Trust can
be deduced to represent the trust evaluation of each node in a global perspec-
tive [13]. Reputation systems have been proposed to deduce a global reputation
value for each node from analyzing the mutual trust evaluations among inter-
connecting nodes [10,19,20]. Most systems model the global combined reputa-
tion of a node by using three criteria: (a) the past interaction patterns the target
one has with its neighbors; (b) the number of nodes that have interacted with
the target; (c) the relationship of these nodes. With NeuronVisor, the Direct
Trust models the past interaction patterns, while in the Neuron Kernel, criteria
b and c can also be deduced. Therefore, NeuronVisor builds a foundation for
implementing the Combined Trust, which will help better representing the trust
dynamics inside the cloud. We leave further investigation in this direction to our
future work.

Cloud Attestations. As discussed in Sect. 2, a partial Neuron web is identified
by choosing a Neuron as a center and setting a reference connection strength
value. This web thus binds the recently communicated cloud nodes together.
Moreover, as only genuine Neurons are bound with the Web, trust information
can be safely shared among the Web. Therefore, when a center Neuron receives a
cloud attestation request, it searches its Neuron kernel and locates the neighbors
with satisfying connection strength. The trust information maintained by its
neighbors is then queried. The center Neuron hence aggregates all these trust
information, and return it as an integrated attestation ticket to the attester. We
leave the design and implementation of a cloud attestation system based on the
Neuron Web to our future work.

4 Evaluations

In this section, we first discuss the threats to our NeuronVisor framework, and
how it defenses against them. We then evaluate NeuronVisor with simulations.

194 A. Ruan and A. Martin

Due to the length limit of this paper, we will present the detailed evaluations
and prototype implementation in a longer-version paper.

4.1 Security Analysis

Neuron Kernels are maintained in a peer-to-peer manner. Therefore, well-known
attacks [9] against this decentralized trust management scheme need to be con-
cerned. In NeuronVisor, a Neuron Kernel is updated with trust aggregation and
dissemination. The kernel of a target Neuron is only merged after the target is
attested to. Hence only kernel from a genuine Neuron is aggregated. On the other
hand, a Neuron can only disseminate attestation results generated by itself. This
prevents the Self-Promotion attack, which is performed by a tampered Neuron
in order to improve its own connection strength value in the view of others,
hence preventing it from being attested to. Moreover, reporting a target Neuron
as “unhealthy” (the negative evaluation) will result in it being attested to by a
management authority. When false report is discovered, the reporter is attested
to. This helps to identify the Slandering attacks, with which the malicious
Neuron’s goal is to ruin the reputation of a target Neuron. Finally in
NeuronVisor, Neuron identity is represented by the TPM identify, which can
only be created by a Trust Third Party. Thus Sybil attacks are prevented.

Collusive attacks need further examinations. As we assume that the Neurons
have identical implementations, as long as attackers have successful exploited
one Neuron, it is not hard for them to take control of more Neurons with the
same techniques. When a large number of tampered Neurons exist, they dis-
seminate false trust information to promote the connection strength of each
other. This may result in other Neuron to regard them as also “healthy”. To
guard against this attack, NeuronVisor uses the Transitive Trust to calculate
the strength value. Thus only when the dissemination source Neuron has higher
credibility, will its reported trust information be trusted. Moreover, during cloud
attestation, as the center Neuron is attested to by customers, the collusive Neu-
rons will ultimately identified. In this case, the larger the collusive group is, the
higher chance it will be discovered. As a result, the damage of this attack is well
controlled. The effects of the attacks to NeuronVisor are also examined with
simulations next.

4.2 Simulations

We evaluated NeuronVisor with simulations. We modified the RepCloud simu-
lator to implement the NeuronVisor protocols. We simulated a cloud deployed
with 50 computing nodes, with each capable of hosting 16 VMs simultaneously.
Cloud applications with size ranging from 4 to 10 VMs are deployed randomly to
the computing nodes. Communications are enforced randomly among the VMs
from the same application.

We use the Tampered Interaction (TI) counts as our evaluation criteria.
TI occurs when a node interacts with a tampered target before the attack has
been identified. For example, when a node is attacked at time ta, which is in

NeuronVisor: Defining a Fine-Grained Cloud Root-of-Trust 195

between two consecutive attestations at t1 and t2 respectively (t1 < ta < t2),
all the interactions with the node during the time period between ta to t2 are
regarded as tampered. We evaluate NeuronVisor (NT) by comparing its TI
counts with a centralized attestation scheme’s (CEN) with the same simula-
tion configuration. In CEN, a central node attests to every node inside a cluster
repeatedly with a predefined interval.

Figure 3 illustrates the Tampered Interaction counts of NeuronVisor (NT)
simulations with different Φ values. The TI counts for centralized attestation
scheme (CEN) with equivalent interval value is also presented. When Φ is low,
NT achieves less TI counts with equivalent settings. This is because NT performs
attestations according to communication needs. Thus attestations are distrib-
uted to better match communication patterns, while CEN uniformly attests to
each node regardless their interaction semantics.

To evaluate cloud attestation, we simulate an attestation agent, which attests
to every simulated cloud application in each simulation cycle. The agent chooses
a random VM from the application, and calculates the reference strength value
from the application’s interaction factor. It then determines the set of Neurons
from the selected VM’s Neuron Kernel using the reference strength value. This
set thus compose the cRoT for the application. The agent then examine whether
the Neurons in the cRoT cover the actual Neurons hosting the entire application.
We evaluate this scenario by increasing the average application size (AAS). As
shown in Fig. 4, for more than 98% of times, more than 90% Neurons are identi-
fied by a single cloud attestation. When AAS increases, the coverage percentage
decreases. This is because, regarding our simulation, the larger the application,
the less likely a VM will communicate to every other VMs in a simulation cycle.
In this case, customers initiate more attestation requests according to its appli-
cation’s internal communication patterns.

NeuronVisor effectively defends against both targeted and collaborative
attacks. Targeted attacks simply disable the attacked Neuron. Disabled Neu-
rons do not perform attestations to the others, and do not disseminate trust.
All the upper layer communications are enforced without evaluating the trust-

Fig. 3. Tampered interaction counts
with different connection threshold.

Fig. 4. cRoT coverage with cloud
attestation.

196 A. Ruan and A. Martin

Fig. 5. Independent attacks. Fig. 6. Malicious collusive attacks.

worthiness of the target node. In the simulation, we assume a tampered Neuron
is fixed as soon as it is attested to. As shown in Fig. 5, the differences on the
TI counts between NT and CEN increase as the attack ratio increases. This is
because the more Neurons are tampered, the fewer nodes are attested to. When
90% of Neurons are tampered, around 40% more interactions are tampered than
the CEN scheme. But NeuronVisor is still able to identify all tampered nodes, as
the simulation run through the whole simulation. On the other hand, any single
attack to the central delegate will disable the entire CEN.

We further proposed NT-chained. When discovering a tampered node (Na),
a Neuron performs additional attestations to all the node’s neighbor, as these
neighbors’ were less likely to be attested to, since Na were tampered and were
unable to perform attestations. Hence they are more likely to be tampered as
well, especially under high attack ratios. As depicted in the figure, NT-chained
achieves even better TI detection performance than the CEN scheme.

Figure 6 presents how NeuronVisor defenses Collaborative Attacks. NT gen-
erally incurred a higher TI counts difference to the CEN scheme. When 90%
Neurons were tampered and maliciously collaborated with each other, more
than one time of tampered interaction counts incurred. However, NeuronVi-
sor still discovered all tampered nodes. For the NT-noTrans scheme, with which
the transitive trust calculation were disabled, the TI counts raised fast. All the
Neurons were tampered before the end of a simulation when the attack ratio
is above 0.4. On the other hand, the NT-Chained enhancement still exhibited
good TI detection rate, though its TI counts are slightly higher than the CEN
counterparts when the attack ratios are high. As it is not common for a real
cloud system to regularly has very high attack ratio (e.g. > 50%), we believe
that the NT-Chained enhancement is suitable for most scenarios.

4.3 Implementation

We implemented a proof-of-concept NeuronVisor in the XenServer-OpenStack
architecture [?] (Fig. 7). Each node is deployed with a Xen hypervisor [6]. Open-
Stack facilities, e.g. Compute, Scheduler, etc. [1], are deployed in separated
DomUs. Customer Virtual Machines are also deployed as DomUs.

NeuronVisor: Defining a Fine-Grained Cloud Root-of-Trust 197

Fig. 7. NeuronVisor implementation with XenServer and OpenStack.

Referring to Fig. 1, NeuronVisor is running in a layer lower than Dom0, so
that its TCB is reduced. This can be implemented by adopting the nested virtu-
alization structure [21], or enforcing the DRTM [11] to protect the NeuronVisor
application running inside Dom0. For simplicity, we currently implement Neu-
ronVisor as a user-space application in Dom0. Therefore, the entire Dom0 serves
as the NeuronVisor’s TCB. Decentralized Attestations enforced by each Neuron
thus verify the integrity of this entire chain-of-trust [2,14], including the boot-
loader, Xen hypervisor, and the entire software stack loaded inside Dom0. Each
Neuron is deployed with an expected measurement list, which records all the
software components that are allowed to be loaded inside every Neuron’s Dom0.
The decentralized attestations thus examine whether each target Neuron’s mea-
surement list is included in this white-list, and deduce a binary attestation result:
whether the Neuron is healthy or unhealthy.

The Network Monitor in our current prototype is implemented as the xtables
extensions [4] to the Linux kernel in Dom0. It intercepts the network traffic
sending from all the DomUs, and maintains a Neuron Connection Strength Vector
data structure in the kernel space. It writes the IP address of the communication
target through a kernel device. The Attestation Module running in the user
space monitors this device and performs attestations described above to the
NeuronVisor on the communication target node. This attestation then triggers
the trust disseminations, and updates the Neuron Kernel. The resulting updated
connection strength vector is written to the kernel device and stored in the
Network Monitor module.

5 Related Work

Trusted Virtual Datacenter (TVDc) [7] provides strong isolation between work-
loads by enforcing a Mandatory Access Control (MAC) policy throughout a
datacenter. It also provides integrity guarantees to each workload by leverag-
ing a hardware root of trust in each platform to determine the identity and
integrity of every piece of software running on a platform. Trusted Cloud Com-
puting Platform (TCCP) [15] enables users to attest to the IaaS provider and
determine whether or not the service is secure before they launch their virtual
machines. Cloud verifier (CV) [17] generates integrity proofs for customers to
verify the integrity and access control enforcement abilities of the cloud platform

198 A. Ruan and A. Martin

that protect the integrity of customer’s application VMs in IaaS cloud. These
trusted cloud systems share the similar centralized structure. Customers attest
to the properties of the entire cloud altogether. As discussed in Sect. 1 and [13],
implementation and management complexity limit their scalability.

Santos et al. proposes that the barriers for widely cloud adaptation are
resulted from the insufficient capabilities of the current TCG model to repre-
sent trust semantics inside the cloud [16]. They proposed a new abstraction to
let data be sealed and unsealed only by nodes whose configurations match a
predefined policy. However, the genuinely enforcements of this architecture still
needs to be attested to, which is still implemented by the centralized delegated
scheme.

Abbadi [5] also identifies that cloud dynamics prohibit the practical trusted
cloud implementation. He suggests that the cloud infrastructure is actually
homogeneous. With this assumption, he proposes the combined chain-of-trust,
which attests to a cluster of nodes who have the exactly same configuration
together. These nodes exhibit a single nodes’ properties, and hence the upper
layer services are bound to one single combined COT. However, in this paper
we proposed that when considering the supporting services as the TCB of the
cloud application [8,21], the homogeneous assumptions are broken. In this case
the detailed TCB properties are required for cloud application attestations.

6 Conclusion

In this paper we proposed the NeuronVisor framework, which defines a logical
cloud Root-of-Trust (cRoT) abstraction for a cloud application. Our simulations
showed that, with moderate overheads, NeuronVisor manages the trust depen-
dency inside the cloud, while achieving higher fault detection rate than the
centralized attestation schemes. Besides, NeuronVisor is robust against classic
attacks on reputation systems, as it combines the trusted computing technology
for evaluating trust. NeuronVisor builds an important foundation for implement-
ing effective cloud attestations. Based on the cRoT abstraction, the properties
of the entire cloud application and its cloud TCB can be obtained, with a very
few interactions with the hardware RoT. This significantly reduces the design
and implementation complexity of the attestation delegate. In our future work,
we will design a property-based cloud attestation system and implement the
NeuronVisor with a minimized TCB.

References

1. Openstack. http://www.openstack.org
2. Trusted computing group. http://www.trustedcomputinggroup.org
3. Trusted computing group. http://www.trustedcomputinggroup.org/resources/

tpm main specification
4. Xtables-addons. http://xtables-addons.sourceforge.net

http://www.openstack.org
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://xtables-addons.sourceforge.net

NeuronVisor: Defining a Fine-Grained Cloud Root-of-Trust 199

5. Abbadi, I.M.: Clouds trust anchors. In: Proceedings of the 2012 IEEE 11th Inter-
national Conference on Trust, Security and Privacy in Computing and Commu-
nications (Washington, DC, USA, 2012), TRUSTCOM 2012, pp. 127–136. IEEE
Computer Society (2012)

6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of
the nineteenth ACM symposium on Operating systems principles (New York, NY,
USA, 2003), SOSP 2003. ACM (2003)

7. Berger, S., Cáceres, R., Pendarakis, D., Sailer, R., Valdez, E., Perez, R.,
Schildhauer, W., Srinivasan, D.: Tvdc: managing security in the trusted virtual
datacenter. SIGOPS Oper. Syst. Rev. 42, 40–47 (2008)

8. Butt, S., Lagar-Cavilla, H.A., Srivastava, A., Ganapathy, V.: Self-service cloud
computing. In: Proceedings of the 2012 ACM conference on Computer and com-
munications security (New York, NY, USA, 2012), CCS 2012. ACM (2012)

9. Hoffman, K., Zage, D., Nita-Rotaru, C.: A survey of attack and defense techniques
for reputation systems. ACM Comput. Surv. 42(1), 1 (2009)

10. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for
reputation management in p2p networks. In: Proceedings of the 12th international
conference on World Wide Web (New York, NY, USA, 2003), WWW 2003. ACM
(2003)

11. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: Trustvi-
sor: Efficient tcb reduction and attestation. In: Proceedings of the 2010 IEEE Sym-
posium on Security and Privacy (Washington, DC, USA, 2010), SP 2010. IEEE
Computer Society (2010)

12. Piatek, M., Isdal, T., Krishnamurthy, A., Anderson, T.: One hop reputations for
peer to peer file sharing workloads. In: Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation (Berkeley, CA, USA, 2008),
NSDI 2008. USENIX Association (2008)

13. Ruan, A., Martin, A.: Repcloud: achieving fine-grained cloud tcb attestation with
reputation systems. In: Proceedings of the sixth ACM workshop on Scalable trusted
computing (New York, NY, USA, 2011), STC 2011. ACM (2011)

14. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a
tcg-based integrity measurement architecture. In: Proceedings of the 13th confer-
ence on USENIX Security Symposium - Volume 13 (Berkeley, CA, USA, 2004),
SSYM 2004. USENIX Association (2004)

15. Santos, N., Gummadi, K.P., Rodrigues, R. Towards trusted cloud computing. In
Proceedings of the 2009 conference on Hot topics in cloud computing (Berkeley,
CA, USA, 2009), HotCloud. USENIX Association (2009)

16. Santos, N., Rodrigues, R., Gummadi, K.P., Saroiu, S.: Policy-sealed data: a new
abstraction for building trusted cloud services. In: Proceedings of the 21st USENIX
conference on Security symposium (Berkeley, CA, USA, 2012), Security 2012.
USENIX Association (2012)

17. Schiffman, J., Moyer, T., Vijayakumar, H., Jaeger, T., McDaniel, P.: Seeding clouds
with trust anchors. In: Proceedings of the 2010 ACM workshop on Cloud computing
security workshop (New York, NY, USA, 2010), CCSW 2010. ACM (2010)

18. Stumpf, F., Fuchs, A., Katzenbeisser, S., Eckert, C.: Improving the scalability of
platform attestation. In: Proceedings of the 3rd ACM workshop on Scalable trusted
computing (New York, NY, USA, 2008), STC 2008, ACM (2008)

200 A. Ruan and A. Martin

19. Walsh, K., Sirer, E.G.: Experience with an object reputation system for peer-
to-peer filesharing. In: Proceedings of the 3rd conference on Networked Systems
Design & Implementation - Volume 3 (Berkeley, CA, USA, 2006), NSDI 2006.
USENIX Association (2006)

20. Xiong, L., Liu, L.: Peertrust: Supporting reputation-based trust for peer-to-peer
electronic communities, vol. 16, IEEE Educational Activities Department

21. Zhang, F., Chen, J., Chen, H., Zang, B.: Cloudvisor: retrofitting protection of
virtual machines in multi-tenant cloud with nested virtualization. In: Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2011), SOSP 2011. ACM (2011)

A Privacy-Aware Access Model
on Anonymized Data

Xuezhen Huang(B), Jiqiang Liu, and Zhen Han

School of Computer and Information Technology,
Beijing Jiaotong University, Beijing 100044, China

pltree@163.com

Abstract. With development of information technology and communi-
cation, corporations and individuals will collect some digital information
to support information-based decisions. However, under some conditions,
if all original data are released, some privacy will be disclosed, which will
threaten data security and data privacy. Therefore, data owners will take
some security measures. Role-based access control may authorize related
original data accessed by users according to their roles. Privacy-preserving
technology release processed data to avoid privacy disclosure. Neverthe-
less, existing privacy-preserving technologies lack continuity and are quite
inefficient. This paper establishes an access model about on anonymized
data and combines with the foregoing two security measures. On the
premise that data security and data privacy are ensured, there is more
flexibility and diversity and work efficiency is improved as well.

Keywords: Privacy · Data security · Access control · Anonymity

1 Introduction

Nowadays, information technology and communication technology develop
rapidly. Electronic information is widely applied. To carry out data analysis so
as to support information-based decisions, the government, social institutions,
companies and individuals will collect a mass of electronic information. Much
information, such as health information and census information, involves indi-
viduals’ privacy or sensitive information. It will threaten individuals’ security
and privacy. Illegal disclosure of lots of data will even threaten social security
and stability. Therefore, data access must be controlled strictly.

At the beginning of the 1990s, Ferraiolo et al. from National Institute of Stan-
dards and Technology (NIST) put forward role-based access control (RBAC) [3].
In 2007, Ni et al. proposed privacy-aware role-based access control (P-RBAC) [10]
to support implementation of privacy policies. However, in model of data release, it

Project was partially supported by Research Fund for the Doctoral Program of
Higher Education of China (No. 20120009110007), Program for Innovative Research
Team in University of Ministry of Education of China (No. IRT201206) and Program
for New Century Excellent Talents in University (NCET-11-0565).

c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 201–212, 2015.
DOI: 10.1007/978-3-319-27998-5 13

202 X. Huang et al.

will not be enough ifwe only haveP-RBAC.The accuracy of the data thatP-RBAC
policy allows to visit is 1 or 0, i.e., all or none. Since its policy lacks flexibility, it will
result in excessive data protection, which makes data fail to be used sufficiently, or
lead to disclosure of data privacy and security.

On the premise that individual privacy is not disclosed, people pay attention
to privacy-preserving data publishing (PPDP) to keep usability of data as much
as possible. The original data which will be released, such as health data and sta-
tistical data, are tabular data generally. They contain three kinds of attributes:
identifier which is the attribute that identifies single individuals only, such as
ID card No., name and cell phone number; quasi-identifier attribute (QA) which
can be used together to potentially identify one person, such as gender, birth-
day and age; and sensitive attribute (SA) which describes an individual privacy,
such as disease and salary. When data are published, data owners may carry
out anonymization processing for original data selectively and then published
anonymous data to prevent sensitive data from being disclosed. For anonymous
data, identifiers contained in original ones has been removed and then the risk
that sensitive data may be disclosed is reduced via privacy-preserving technolo-
gies like generalization or perturbation. The anonymity is the trade-off between
privacy security and usability [1,2,5,7–9,13–15].

Existing anonymity models usually design a reasonable anonymity model
based on privacy requirement of receivers. Then they release data satisfying
anonymity models. However, there may be several receivers applying for data for
different requirements in practical environment. Thus, attribute sets and privacy
policies are different. Some receivers only need to know statistical information
with high generalization. For instance, hospitals need send data with different
attribute sets to administrators of medicine companies and insurance companies.
In addition, a certain department of a medicine company can only access data
with high generalization, i.e., accuracy is lower than that of data which corporate
administrators can access. This aims at preventing harm or loss for individuals
and the company involved in such data, if individuals of a department leave the
company with valuable data. Hence, they are authorized to access information
they need to know only. For this, information need be processed many times for
several receivers. The existing methods have low efficiency.

Considering advantages and disadvantages of RBAC, P-RBAC and PPDP,
this paper establishes a model for Anonymized data Privacy-aware Role-based
Access Control (AP-RBAC), which combines advantages of the foregoing two
approaches. It uses anonymization modes to store data satisfying different pri-
vacy policies. Based on this, it enforces P-RBAC, which makes legal users access
anonymized data that can satisfy privacy policies of their own roles. AP-RBAC
model keeps advantages of access control and implements fine-grained access con-
trol to satisfy data security and privacy policy. At the same time, it introduces
technical advantages of privacy protection and builds privacy-preserving model
to generate anonymized data. This enables accuracy of accessed data to be more
flexible and more controllable. For different privacy policies, several anonymized
data need be generated. Therefore, this paper proposes three anonymity modes,

A Privacy-Aware Access Model on Anonymized Data 203

including Hierarchy Anonymity Mode (HAM), Node Storage Mode (NSM) and
Hybrid Mode (HM), to implement role access for different privacy policies rapidly
and effectively.

2 Related Work

In order to protect data security and data privacy, current research mainly imple-
ments control in two aspects. On the one hand, it simply controls whether users
have ability to access some original data. RBAC [3] involves the given ability
to access information according to users’ posts or roles, which is an effective
access control method satisfying data confidentiality and integrity. P-RBAC
[10] extends RBAC and adds privacy policy based on RBAC to satisfy privacy
requirements of different roles. However, the difference in different roles’ access
to data also lies in the situation that they access data with different accuracies.
For example, posts with higher titles can access data with high accuracy and a
post of data center can even have authority to access original data.

On the other hand, it adopts anonymization. It establishes a privacy model
for one privacy requirement, implements privacy algorithm for original data and
issues data with lower accuracy. In the anonymization method, anonymity algo-
rithm inputs original data that have not been processed and outputs anonymized
data which satisfy privacy models.

Three representative privacy-preserving models will be introduced in the fol-
lowing. k-anonymity [13] requires that each record in the released data cannot
be distinguished from other k−1 records on QA at least. For k pieces of records
that cannot distinguish from one another on QA, we call them an equivalence
class. k-anonymity requires each equivalence class should contain k pieces of
records. l-diversity [9] requires each equivalence class in the released data should
have l different SA values. Thus, we have 2 ≤ l ≤ k generally. Compared with
k-anonymity, this model can resist attack of background knowledge and con-
sistency more strongly. Reference [9] puts forward two other anonymity models
entropy l-diversity and recursive (c, l)-diversity to restrain SA for choice in prac-
tical application. Based on constraint of k-anonymity principle, t-closeness [7]
restrains distribution of SA within an equivalence class and requires the distrib-
ution distance between an equivalence class and the whole table cannot exceed t.
Many other models are extended ones based on the three models [1,2,8,14,15].

Nevertheless, there are a number of users with different requirements in real-
ity. The foregoing models based on one privacy requirement need establish mod-
els for each users, respectively, so their efficiency is quite low.

The foregoing two solutions cannot solve the problem that different roles
access data with different attributes and accuracies. Hence, this paper puts for-
ward AP-RBAC model.

3 Access Model for Anonymized Data

AP-RBAC model is shown in Fig. 1. The model is composed of users, roles, data,
tuple and verification. Users in the model are human beings. A user is granted

204 X. Huang et al.

with a role according to her or his job nature and responsibility. Data of the
model are tabular data. Each piece of record is corresponding to one individual
and contains three kinds of attributes, i.e., identifiers, QA and SA. A tuple of the
model is the binding information between a role and its privacy policy. It decides
access ability of a role. There are three processing modes for anonymized data in
the model, i.e., Hierarchy Anonymity Mode (HAM), Node Storage Mode (NSM)
and Hybrid Mode (HM). The former two modes are applied for the following
two Situations, respectively.

1. There are at least two roles access data with different hierarchies and privacy
policies that need be satisfied;

2. There are two roles access data at least and privacy policies that need be
satisfied are the same, but selection rules for needed data are different.

The third mode is a synthesized model of the forward twos.

Fig. 1. The access model

3.1 Attribute Selection

All attributes of original data constitute a universal set of attributes. In any
anonymity mode, the attribute that each role is authorized to access is a subset of
the universal set. Based on the inclusion relation of attribute sets, the hierarchies
of superior and subordinate of roles can be reflected. If the attribute that a
role is authorized to access contains identifier, the role will be granted to know
individuals’ sensitive information that are corresponding to records. It will be
no need to adopt anonymization privacy-preserving models. SA is the protected
object of privacy-preserving models. For a role that has no right to access SA, it
is no need to establish privacy-preserving models. For roles whose attribute sets
contains SA but excludes identifier. They should comply with privacy policy and
are just objects of privacy protection. Generally, data that need to be anonymized

A Privacy-Aware Access Model on Anonymized Data 205

in privacy-preserving models just have QA and SA. Thus, authorized access
attributes of all roles in the anonymity modes about privacy protection, which
will be established in the following, do not contain identifier but contain SA,
and the difference in access attribute sets is reflected by QA sets.

The universal QA set in the data sheets is Q, and |Q| attributes are contained
in the set. Thus, it has 2|Q| attribute subsets for different roles’ access. For
instance, QA set Q = {a, b, c, d}. Hierarchy of all subsets are shown in Fig. 2. All
nodes in the figure constitute power set of Q, i.e., P (Q). Each set of a node in
the digraph contains the set of each successive nodes on the directed path where
it locates. Thus, each node contains information of all successive nodes.

Fig. 2. Hierarchy of power set P (Q) with Q = {a, b, c, d}

3.2 Three Anonymity Modes

Hierarchy Anonymity Mode. First of all, data are processed. As shown in
Fig. 3, the data subset of original data, which is generated by attribute selection,
is called the 0th data. It is supposed that C ∈ P (Q) and the 0th anonymous
data vC0 with the attribute subset C serves as input. The anonymity model M1

is adopted for anonymization and output the 1st anonymous data vC1. With
vC1 as input, the anonymity model M2 is carried out. The 2nd anonymous data
vC2 is returned. Similarly, we can obtain themth anonymous data vCm that we
need.

Data nodes generated in this way constitute a directed path that is called a
subset path PC . This directed tree is established according to the attribute sets
that roles allow to access and their corresponding hierarchies. In accordance with
generation of PC , it satisfies monotonicity. In detail, for any two nodes vCi and
vCj in the path, information of vCi contains information of vCj if 0 ≤ i ≤ j ≤ m.

206 X. Huang et al.

Fig. 3. Hierarchy Anonymity Mode

Hence, role hierarchies satisfy reflexivity, anti-symmetry and transmissibility. It
is a partial order.

Next, each role in HAM is distributed with a 2-dimensional tuple (Attribute
set, Hierarchy). The only data node that is corresponding to the tuple is the
access node of the role.

Example 1. An original data owned by a hospital is shown in Table 1. Accord-
ing to HAM and Incognito algorithm [6], access control and privacy-preserving
models are excuted. Generalization hierarchies of all QAs is shown in Fig. 4(a,
b, c). We adopt models M1: 2-anonymity [13] and M2: 2-diversity [9] to gen-
erate the 1st anonymity nodes and the 2nd anonymity modes in accordance
with the minimum of information loss (ILoss) [12,14], as shown in Fig. 5, i.e.,
< A1, G1, Z0 > and < A1, G1, Z1 >. The anonymous data of the two nodes are
shown in Table 2. For roles R1 : (Q, 1) and R2 : (Q, 2), R1 and R2 can access
Table 2(a, b), respectively. Hierarchy of R2 is lower than that of R1, so Table 2(a)
contains information of Table 2(b).

Table 1. Microdata

Name Age Gender Zipcode Disease

Alice 40 Female 100302 Flu

Bob 30 Male 100302 Gastritis

Carry 50 Female 100311 Flu

Daisy 40 Female 100311 Gastritis

Eric 30 Male 100313 Flu

Finn 50 Male 100313 Flu

QAs generalization hierarchy in Example 1 and the 1st anonymous data is
shown in Figs. 5(a) and 6, respectively. For Incognito is a bottom-up algorithm,
it can reduce pruning steps of the 2nd anonymity largely and improve efficiency,
that the 1st anonymous data serve as input of M2 rather than original data.
Hence, HAM improve efficiency than previous models.

Node Storage Mode. The Node Storage Mode is established to satisfy Sit-
uation (2) in the beginning of Sect. 3. In traditional privacy-preserving models,
one original data sheet only returns one anonymity node that satisfies a model.
The NSM divides the process into two steps.

A Privacy-Aware Access Model on Anonymized Data 207

Table 2. Anonymous data for (a) R1 and (b) R2

Age Gender Zipcode Disease

- Person 100302 Flu

- Person 100302 Gastritis

- Person 100311 Flu

- Person 100311 Gastritis

- Person 100313 Flu

- Person 100313 Flu

(a)

Age Gender Zipcode Disease

- Person 1003** Flu

- Person 1003** Gastritis

- Person 1003** Flu

- Person 1003** Gastritis

- Person 1003** Flu

- Person 1003** Flu

(b)

Fig. 4. Hierarchies of QAs: (a) Age, (b) Gender and (c) Zipcode

208 X. Huang et al.

Fig. 5. Anonymization nodes of Table 1 in HAM: (a) 1st anonymous nodes and (b)
2nd anonymous nodes

Fig. 6. The lattice of 3-QAs with Q = {A, G, Z}

Step 1. The attribute subset C generates data VC0. In accordance with require-
ments of anonymity models, anonymization algorithm is conducted. Results
of algorithm store all data nodes that satisfy privacy requirements as candi-
dates.

Step 2. According to rules of roles, select one node from candidates, send it to
the role as the access data. The selection rules involved here may be special
application, for instance minimum classification loss or minimum information
loss of a QA.

NSM separates the two requirements, i.e., privacy policies and a rule of node
selection. Therefore, we call the first step rough model M and the second step
selection rule F , respectively. Their combination are traditional model

−→
M =

(M,F). In NSM, each role is endowed with a 3-dimensional tuple (Attribute set,
Rough model, Rule).

Example 2. The original data is shown in Table 1. Roles R3:(Q, 2-anonymity,
minimum of ILoss) and R4:(Q, 2-anonymity, minimum of Age ILoss) access
data complying with NSM. The access subset Q = {A,G,Z} of R3 and R4.

A Privacy-Aware Access Model on Anonymized Data 209

Fig. 7. Anonymization nodes: (a) 2-anonymity candidates and (b) HM: 2nd 2-diversity
anonymity set

The 2-anonymous candidates are shown in Fig. 7(a). According to [12,14], the
information loss of < A1, G1, Z0 > is the minimum. Then, send Table 2 which is
generalized according to < A1, G1, Z0 > to R3. Since R4 is based on a different
rule, which requires information loss of Age is the minimum. Via calculation, we
obtain < A0, G1, Z2 > is the access node of R4.

To sum up, for roles whose attribute sets and privacy-preserving models are
the same but rules of node selection are different, we share the same candidate
set that satisfies the privacy policy and then choose nodes in accordance with
their different rules. A model which outputs one anonymous table once only, the
algorithm need be implemented for different roles. Thus, our mode NSM saves
operation time.

Hybrid Mode. The mode directs at supplement of NSM to HAM. It defines
the kth anonymous data node in the form of candidate in NSM. In HM, the 0th
anonymity set is defined as the original data composed of a QA subset and SA.
The definition of the kth anonymity set is shown as follows.

Definition 1. The kth anonymity set, denoted by Dk, is a set of nodes satisfy-
ing privacy-preserving model Mk with the (k-1)th anonymity set as input.

Dk is just like the candidates in NSM. A naive method of the (k+1)th
anonymity execution is to adopt the model Mk+1 for each node in Dk and store
the results separately. Consequently, for each node in Dk, a new anonymity set
is formed. Thus, several anonymity sets are generated. However, the (k+1)th
anonymity result of all nodes of Dk has intersection. At least, the root node
satisfies all models and each (k+1)th anonymity result contains it.

An improved method is to use Dk as input of Mk+1 and combine all results
satisfying Mk+1 to Dk+1. In another word, Dk+1 is obtained by pruning Dk

according to whether Mk+1 is satisfied or not. Therefore, in HM, each role
is endowed with a 3-dimensional tuple: (Attribute set, Hierarchy, Rule). The
anonymity set in HM satisfies monotonicity, i.e., for two anonymity sets Di and
Dj , information of vCi will contain information of vCj in case 0 ≤ i ≤ j ≤ m.

210 X. Huang et al.

Example 3. We anonymize Table 1 in HM with M1: 2-anonymity and M2: 2-
diversity. We have R5:(Q, 1, minimum of ILoss) and R6:(Q, 2, minimum of Sex
ILoss). In accordance with the model M1, we obtain 1st anonymity set D1 = {<
A1, G1, Z2 >,< A1, G1, Z1 >,< A1, G0, Z2 >,< A0, G1, Z2 >,< A1, G1, Z0 >}.
Then, 2nd anonymity set D2 = {< A1, G1, Z2 >,< A1, G1, Z1 >,< A1, G0, Z2 >
} is pruned by following M2, as shown in Fig. 7. Thus, the node < A1, G1, Z0 >
is an access node of R5 and the node < A1, G0, Z2 > is an access node of R6 by
the selection rules of R5 and R6.

3.3 Access of Users

A user registers with his ID in administration center and the administrator sends
a role to the user. The administrator writes down the binding information on
a policy sheet which also has a tuple for each role of an anonymity mode. In
accordance with the mode adopted by a role, each role is corresponding to a
tuple. The tuple determines the access node for each role. A user logs in system
via his or her role. After identity authentication and authorization, he or she
can only read data nodes that his or her role is allowed.

3.4 Data Maintenance

With respect to role update, the administrator looks up whether there is the
same attribute set in the policy sheet. In case there is the same attribute set,
change attribute sets in the tuple of the role. Otherwise, add a new attribute set
and generate data nodes that match with policy of the role.

If changes in hierarchy, models or rules of a role make its access node change
but access node is not added newly, we update the tuple in the policy sheet.

If the privacy policy changes of a role cause privacy-preserving model changes,
and all existing data nodes do not match the policy, then a new data node should
be generated. It should comply with the attribute set, the privacy-preserving
model and the rule under an anonymity mode. In HAM and HM, if the access
node of a role R changes, then it may lead to access nodes whose roles with
lower hierarchies than R are changed. Hence, roles with lower hierarchies need
to be checked and updated.

3.5 Joint Attack

The information obtained by the role R is denoted by E(R). Given two
anonymous tables which is results of the privacy-preserving models

−→
M1 and

the privacy-preserving models
−→
M2, additional information will disclose jointly

[4,11,16]. Some articles call this sequential release and publishing do some pro-
found research on this field [4,11,16]. Consequently, the privacy-preserving model
that satisfied by combination of the two anonymous tables is weaker than

−→
M1 or−→

M2. We denote it as
−→
M1∩−→

M2. To recognize the privacy-preserving models satis-
fies different hierarchies conveniently, the “model” is added behind “Hierarchy”
in HAM and HM.

A Privacy-Aware Access Model on Anonymized Data 211

In HAM, the roles R1 : (C1, i,
−→
M1) and R2 : (C2, j,

−→
M2) attack jointly. The

attribute set that can be accessed is C1∪C2. According to monotonicity, we know
that node on a path contain all information of successive nodes. Let k = min(i, j).
Then, the information that can be obtained by jointing R1 and R2 does not
exceed E(C1 ∪ C2, k,

−→
M1 ∩ −→

M2).
In NSM, the roles R1 : (C1,M1, F1) and R2 : (C2,M2, F2) attack jointly.

The attribute set that can be accessed is C1 ∪ C2. Let
−→
M i = (Mi, Fi). Then,

the information that can be obtained by jointing R1 and R2 does not exceed
E(C1 ∪ C2,

−→
M1 ∩ −→

M2).
In HM, the roles R1 : (C1, i,M1, F1) and R2 : (C2, j,M2, F2) attack jointly.

The attribute set that can be accessed is C1 ∪ C2. Let k = min(i, j). Then,
the information that can be obtained by jointing R1 and R2 does not exceed
E(C1 ∪ C2, k,

−→
M1 ∩ −→

M2).

4 Conclusion

This paper proposes a model for an Anonymized data Privacy-aware Role-Based
Access Control (AP-RBAC). Three anonymity modes are put forward HAM,
NSM and HM. The model inherits advantages of access control, for it adopts
attribute selection and carries out fine-grained access control for data security,
on the one hand. On the other hand, it keeps advantages of privacy-preserving
technology so that usability of data is improved while privacy is protected. The
model makes anonymity operation among different privacy policies be coherent.
Thus, flexibility, diversity and efficiency is improved on the premise that data
security and data privacy are protected.

References

1. Abdalaal, A., Nergiz, M.E., Saygin, Y.: Privacy-preserving publishing of opinion
polls. Comput. Security 37, 143–154 (2013)

2. Bu, Y., Fu, A.W.C., Wong, R.C.W., Chen, L., Li, J.: Privacy preserving serial data
publishing by role composition. Proc. VLDB Endowment 1(1), 845–856 (2008)

3. David, F., Richard, K.: Role-based access controls. In: Proceedings of 15th NIST-
NCSC National Computer Security Conference, vol. 563. NIST-NCSC, Baltimore,
Maryland (1992)

4. Fung, B., Wang, K., Fu, A.W.C., Pei, J.: Anonymity for continuous data publish-
ing. In: Proceedings of the 11th International Conference on Extending Database
Technology: Advances in Database Technology, pp. 264–275. ACM (2008)

5. Huang, X., Liu, J., Han, Z., Yang, J.: A new anonymity model for privacy-
preserving data publishing. China Commun. 11(9), 47–59 (2014)

6. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: efficient full-domain k-
anonymity. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data. SIGMOD 2005, pp. 49–60. ACM, New York, NY, USA
(2005)

212 X. Huang et al.

7. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity
and l-diversity. In: IEEE 23rd International Conference on Data Engineering, 2007.
ICDE 2007, pp. 106–115 (2007)

8. Li, N., Li, T., Venkatasubramanian, S.: Closeness: a new privacy measure for data
publishing. IEEE Trans. Knowl. Data Eng. 22(7), 943–956 (2010)

9. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity:
privacy beyond k-anonymity. In: 2013 IEEE 29th International Conference on Data
Engineering (ICDE) 0, 24 (2006)

10. Ni, Q., Bertino, E., Lobo, J., Brodie, C., Karat, C.M., Karat, J., Trombeta, A.:
Privacy-aware role-based access control. ACM Trans. Inf. Syst. Security (TISSEC)
13(3), 24 (2010)

11. Shmueli, E., Tassa, T., Wasserstein, R., Shapira, B., Rokach, L.: Limiting disclosure
of sensitive data in sequential releases of databases. Inf. Sci. 191, 98–127 (2012)

12. Sun, X., Sun, L., Wang, H.: Extended k-anonymity models against sensitive
attribute disclosure. Comput. Commun. 34(4), 526–535 (2011). Special issue:
Building Secure Parallel and Distributed Networks and Systems

13. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 10(05), 557–570 (2002)

14. Wong, R.C.W., Li, J., Fu, A.W.C., Wang, K.: (α, k)-anonymity: an enhanced k-
anonymity model for privacy preserving data publishing. In: Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD 2006, pp. 754–759. ACM, New York, NY, USA (2006)

15. Xiao, X., Tao, Y.: Personalized privacy preservation. In: Proceedings of the 2006
ACM SIGMOD International Conference on Management of Data. SIGMOD 2006,
pp. 229–240 (2006)

16. Xiao, X., Tao, Y.: M-invariance: towards privacy preserving re-publication of
dynamic datasets. In: Proceedings of the 2007 ACM SIGMOD International Con-
ference on Management of Data. SIGMOD 2007, pp. 689–700. ACM, New York,
NY, USA (2007)

Functional Signatures
from Indistinguishability Obfuscation

Li Wang 1,2,3(B), Hongda Li1,2, and Fei Tang1,2,3

1 Data Assurance and Communication Security Research Center
of Chinese Academy of Sciences, Beijing, China
2 State Key Laboratory of Information Security,

Institute of Information Engineering of Chinese Academy of Sciences, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

{wangli,lihongda,tangfei}@iie.ac.cn

Abstract. In PKC 2014, Boyle, Goldwasser, and Ivan introduced a
cryptographic primitive called functional signatures. In a functional sig-
nature scheme, in addition to a master key that can be used to sign any
message, there are signing keys for a function f , which allow one to sign
any message in the range of f . In the same paper, Boyle et al. pointed
out that in order to obtain a functional signature scheme with short sig-
natures, we must either rely on non-falsifiable assumptions (as in their
succinct non-interactive arguments of knowledge construction) or make
use of non black-box techniques.

In this paper, we diverge from succinct non-interactive arguments
of knowledge (SNARKs). We provide a construction of functional signa-
ture scheme satisfying both function privacy and succinctness under the
existence of indistinguishability obfuscation for all polynomial-size cir-
cuits and one-way functions for the first time. Additionally, our scheme is
under weaker assumption than SNARK -type assumptions for a class of
functions and the size of signatures are independent of f, f(m), and m.

Keywords: Functional signatures · Indistinguishability obfuscation ·
Non-falsifiable assumptions

1 Introduction

Indistinguishability Obfuscation. In 2001, Barak et al. [3,4] initiated the
formal study of program obfuscation, which aims to make computer programs
“unintelligible” while preserving their functionality. The obfuscator is a machine
that takes as input a program, and produces a second program with same func-
tionality while hides how the original program works. Ideally, an obfuscated pro-
gram is a virtual black-box obfuscation which asks that an obfuscated program

This research is supported by the National Natural Science Foundation of China
(Grant No. 60970139) and the Strategic Priority Program of Chinese Academy of
Sciences (Grant No. XDA06010702).

c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 213–227, 2015.
DOI: 10.1007/978-3-319-27998-5 14

214 L. Wang et al.

be no more useful than a black box implementing the program. Unfortunately,
however, Barak et al. showed that this notion of general-purpose virtual black-
box obfuscation is impossible to achieve. Motivated by this impossibility, they
proposed the less intuitive, but potentially realizable, notion of indistinguisha-
bility obfuscation (iO) which asks only that obfuscations of any two equal-size
programs that compute the same function are computationally indistinguish-
able from each other. The iO became so important because there is a recent
breakthrough result of Garg et al. [15] that put forward the first candidate con-
struction for an efficient iO for general boolean circuits. The construction builds
upon the multilinear map candidates of Garg et al. [14] and Coron et al. [11].

In parallel with the development of candidate obfuscation constructions, sev-
eral surprising applications of indistinguishability have emerged: for instance, in
the works of Garg et al. [15], Sahai and Waters [26], Hohenberger et al. [21],
Boyle et al. [1], Boneh and Zhandry [10], Garg et al. [16], Bitansky et al. [2],
Boyle and Pass [7]. Most notable among these is the work of Sahai and Waters
[26] (and the punctured program paradigm it introduces) which shows that indis-
tinguishability obfuscation is a powerful cryptographic primitive: it can be used
to build public-key encryption from pseudorandom functions, selectively-secure
short signatures, deniable encryption, and much more.

While the construction of indistinguishability obfuscation of Garg et al. [15]
is based on some intractability assumptions. Actually, in the original construc-
tive work of Garg et al. [15], the underlying explicit computational assumption
encapsulated an exponential family of assumptions for each pair of circuits to be
obfuscated. In the work of Pass et al. [23], the underlying assumption is a meta-
assumption that also encapsulates an exponential family of assumptions, and
this meta-assumption is invoked in a manner that captures the specific pair of
circuits to be obfuscated. Recently, Gentry et al. [18] provide the construction of
general-purpose indistinguishability obfuscation proven secure via a reduction
to an instance-independent computational assumption over multilinear maps,
namely, the multilinear subgroup elimination assumption.

Functional Signatures. In digital signature schemes, as defined by Diffie and
Hellman [13], a signature on a message provides information which enables the
receiver to verify that the message has been created by a proclaimed sender. The
sender has a secret signing key, used in the signing process, and there is a cor-
responding verification key, which is public and can be used by anyone to verify
that a signature is valid. Following Goldwasser et al. [19], the standard secu-
rity requirement for signature schemes is unforgeability against chosen-message
attack: an adversary that runs in probabilistic polynomial time and is allowed
to request signatures for a polynomial number of messages of his choice, cannot
produce a signature of any new message with non-negligible probability. While
in a functional signature scheme, in addition to a master signing key that can
be used to sign any message, there are secondary signing keys for functions f
(called skf), which allow one to sign any message in the range of f . These addi-
tional keys are derived from the master signing key. To the security of functional
signature, Boyle et al. [5] define the unforgeability. In addition to security, the

Functional Signatures from Indistinguishability Obfuscation 215

functional signature scheme can hold two conditions which are function privacy
and succinctness. In [5], Boyle et al. given three kinds of construction of a func-
tional signature scheme. The first construction scheme, which has no function
privacy and succinctness, is from any standard signature scheme. The second
construction of functional signature scheme used non-interactive zero-knowledge
arguments of knowledge and standard signature scheme. But it only has func-
tion privacy. In order to achieve function privacy and succinctness, Boyle et al.
[5] presented the third construction scheme based on succinct non-interactive
arguments of knowledge (SNARKs). However, constructing SNARKs is known
to require the random oracle model [25] or non-falsifiable assumptions [20]. Boyle
et al. [5] pointed out that in order to obtain a functional signature scheme with
short signatures, we must either rely on non-falsifiable assumptions (as in their
succinct non-interactive arguments of knowledge construction) or make use of
non black-box techniques.

Our Motivations. In this paper, we try to diverge from SNARKs. So we should
use other techniques to construct functional signature scheme which holds suc-
cinctness. There are several constructions of SNARKs known all based on non-
falsifiable assumptions. A falsifiable assumption is an assumption that can be mod-
eled as an interactive game between an efficient challenger and an adversary, at
the conclusion of which the challenger can efficiently decide whether the adversary
“won” the game. Most standard cryptographic assumptions are falsifiable. In our
work, inspired by the short signature scheme proposed by Sahai and Waters [26],
we use indistinguishability obfuscation to construct a new functional signature
scheme. A shortcoming of our functional signature scheme can only achieve selec-
tive unforgeability, which is weaker than the adaptive unforgeability. Finally, we
build a functional signature scheme which holds selective unforgeability, function
privacy and succinctness using indistinguishability obfuscation and puncturable
PRFs. Although the construction of indistinguishability obfuscation from falsi-
fiable assumption is unknown, Gentry et al. [18] have constructed the indistin-
guishability obfuscation on a natural instance-independent sub-exponential hard-
ness assumption over multilinear encodings which is weaker than the knowledge of
exponent assumption that is used on the construction of SNARKs. Unfortunately,
the primitive security definition of functional signature falls in “non-falsifiable
assumptions”. So if we don’t set any constraints on functions, our scheme veri-
fication time is also under non-falsifiable assumptions. We constrain the functions
with a property that there exists a PPT algorithm D, given message m∗, the func-
tion f and its domain, can decide whether m∗ is in the range of f . This constraint
makes sense. There are three reasons for that. First, this class of functions is big,
all elementary functions belong to the class. Second, considering the goal of func-
tional signatures, generally, if a party can not decide whether m∗ is in the range of
f , he wouldn’t give the signing key skf to others. Because this case will cause the
party which holds master key can not control the action of the party which holds
signing key skf . Lastly, even though the same constraint is putted on the schemes
which are proposed in [5], we yet can’t get a functional signature scheme with short

216 L. Wang et al.

signatures under falsifiable assumptions. Because the scheme in [5] which holds
succinctness uses SNARK system.

Puncturable PRFs. Recall that punctured PRFs, which is firstly introduced
by Sahai and Waters [26]. Sahai and Waters [26] showed that how to use this
technique to apply indistinguishability obfuscation towards cryptographic prim-
itive. The puncturable PRFs are PRFs that can be defined on all bit strings of
a certain length, except for any polynomial-size set of inputs. The next section
gives a precise definition which is formulated as in [26].

1.1 Our Contributions

In our work, we provide a construction of functional signature scheme satisfying
both function privacy and succinctness under the existence of indistinguishabil-
ity obfuscation for all polynomial-size circuits and one-way functions for the first
time. Although our scheme are only selective unforgeability, but it base on weaker
assumptions. Boyle et al. [5] give three constructions of functional signature
scheme. But only one construction which use SNARKs holds both succinctness
and function privacy. All constructions of SNARKs known are based on non-
falsifiable assumptions. Although the construction of indistinguishability obfus-
cation from falsifiable assumption are unknown now, Gentry et al. [18] have con-
structed the indistinguishability obfuscation on a natural instance-independent
sub-exponential hardness assumption over multilinear encodings which is weaker
than the knowledge of exponent assumption that is used on the construction of
SNARKs.

Additionally, due to the primitive security definition of functional signature
falling in “non-falsifiable assumptions”. So if we don’t set any constraints on
functions, our scheme verification time is also under non-falsifiable assumptions.
We set meaningful restriction on functions to make our scheme verification time
under falsifiable assumption. Therefore, we think our scheme is close to the
solution for the open problem that how to construct functional signatures with
short (sublinear in the size of the functions supported) signatures and verification
time under falsifiable assumption. And in our scheme, the size of signatures are
independent of f, f(m), and m.

1.2 Overview of the Paper

In Sect. 2, we describe several primitives which will be used in our constructions.
In Sect. 3, we introduce the functional signature. In Sect. 4, we present how to
use indistinguishability obfuscation to build a functional signature scheme.

2 Preliminaries

In this section, we define indistinguishability obfuscation, puncturable PRFs that
are used in our constructions.

Functional Signatures from Indistinguishability Obfuscation 217

2.1 Indistinguishability Obufscation

Indistinguishability obfuscation was introduced in [3] and given a candidate con-
struction in [15], and subsequently in [6,8,12].

Definition 1 (Indistinguishability obfuscation) [3]. A PPT algorithm iO is said
to be an indistinguishability obfuscator for a class circuit Cλ, if it meets the
following conditions:

– Functionality preservation: For all security parameters λ ∈ N, all C ∈ Cλ, and
all inputs x, we have:

Pr[C
′
(x) = C(x) : C

′ ← iO(λ,C)] = 1.

– Indistinguishability: For any (not necessarily uniform) PPT adversaries
(Samp,D), there exists a negligible function α such that the following holds:
if Pr[∀x,C0(x) = C1(x) : (C0, C1, δ) ← Samp(1λ)] > 1 − α(λ), then we have:

|Pr[D(δ, iO(λ,C0)) = 1 : (C0, C1, δ) ← Samp(1λ)]

−Pr[D(δ, iO(λ,C1)) = 1 : (C0, C1, δ) ← Samp(1λ)]| ≤ α(λ).

2.2 Puncturable PRFs

Definition 2. A puncturable family of PRFs mapping is consists of a triple of
algorithms Key, Pun, and F, and a pair of computable functions n(·) and m(·),
satisfying the following conditions:

– Functionality preserved under puncturing: For every PPT adversary A such
that A(1λ) outputs a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ) where
x �∈ S, we have:

Pr[F(K,x) = F(K(S), x) : K ← Key(1λ),K(S) ← Pun(K,S)] = 1.

– Pseudorandom at punctured points: For every PPT adversary (A1,A2) such
that A1(1λ) outputs a set S ⊆ {0, 1}n(λ) and state τ , consider an experiment
where K ← Key(1λ) and K(S) ← Pun(K,S). Then we have:

Pr[A2(τ,K(S), S,F (K,S))=1]−Pr[A2(τ,K(S), S, Um(λ)·|S|) = 1] =negl(λ),

where S = {x1, . . . , xk} and F(K,S) denotes F(K,x1)|| · · · ||F(K,xk) is the
concatenation of the elements of S in lexicographic order, and U� denotes the
uniform distribution over � bits.

The GGM tree-based construction of PRFs [17] from OWF are easily seen to
yield puncturable PRFs, as realized by [5,9,22].

218 L. Wang et al.

3 Functional Signatures

3.1 Definition

The definition of standard signature schemes is presented in AppendixA. The
notion of functional signatures was introduced by Boyle et al. [5] and they have
given three constructions of functional signature scheme.

Definition 3. [5] A functional signature scheme for a message space M, and
function family F = {f : Df → M} consists of algorithms (FS.Setup, FS.KeyGen,
FS.Sign, FS.Verify):

– FS.Setup(1k) → (msk,mvk): the setup algorithm takes as input the security
parameter and outputs the master signing key and master verification key.

– FS.KeyGen(msk, f) → skf : the key generation algorithm takes as input the
master signing key and a function f ∈ F , and outputs a signing key for f .

– FS.Sign(f, skf ,m) → (f(m), σ): the signing algorithm takes as input the sign-
ing key for a function f ∈ F and an input m ∈ Df , and outputs f(m) and a
signature of f(m).

– FS.Verify(mvk,m∗, σ) → {0, 1}: the verification algorithm takes as input the
master verification key mvk, a message m∗ and a signature σ, and outputs 1
if the signature is valid.

The functional signatures should hold two conditions: correctness and unforge-
ability. Two other conditions: function privacy, succinctness are hold optionally.

Correctness: We call a functional signature scheme correct if

∀f ∈ F ,∀m ∈ Df , (msk,mvk) ← FS.Setup(1k), skf ← FS.KeyGen(msk,f),
(m∗, σ) ← FS.Sign(f, skf ,m), FS.Verify(mvk,m∗, σ) = 1.

Unforgeability: The functional signature scheme is unforgeability if the advan-
tage of any polynomial-time adversary A in the following game is negligible:

– The challenger generates (msk,mvk) ← FS.Setup(1k), and gives mvk to the
adversary A.

– The adversary can query a key generation oracle Okey, and a signing oracle
Osign, that share a dictionary indexed by tuples (f, i) ∈ F × N, whose entries
are signing keys: ski

f ← FS.KeyGen(msk, f). This dictionary keeps track of the
keys that have been previously generated during the unforgeability game. The
oracles are defined as follows:

• Okey(f, i):
� If there exists an entry for the key (f, i) in the dictionary, then output

the corresponding value ski
f .

� Otherwise, sample a fresh key ski
f ← FS.KeyGen(msk, f) add an entry

(f, i) → ski
f to the dictionary, and output ski

f .
• Osign(f, i,m):

� If there exists an entry for the key (f, i) in the dictionary, then gen-
erate a signature on f(m) using this key: σ ← FS.Sign(f, ski

f ,m).

Functional Signatures from Indistinguishability Obfuscation 219

�Otherwise,sample a fresh key ski
f ← FS.KeyGen(msk, f), add an entry

(f, i) → ski
f to the dictionary,and generate a signature on f(m) using

this key: σ ← FS.Sign(f, ski
f ,m).

– The adversary wins if it can produce (m∗, σ) such that
• FS.Verify(mvk, m∗, σ) = 1.
• There does not exist m such that m∗ = f(m) for any f which was sent

as a query to the Okey oracle.
• There does not exist a (f,m) pair such that (f,m) was a query to the

Osign oracle and m∗ = f(m).

Remark 1. One can consider assumptions where the challenger can’t check in
poly time whether the adversary has won or not, they are called “non-falsifiable
assumptions”. The security definition of functional signature falls in this cate-
gory, and there are other examples in cryptography.

We define the selective unforgeability for functional signature schemes. The
notion of selectively unforgeable security is as follow: a probabilistic polynomial
time (PPT) adversary firstly selectively gives the challenger the message m∗,
then the adversary is allowed to request signing keys for functions f1, . . . , fm of
his choice, and signatures for messages m1, . . . ,mq of his choice, can not produce
a signature of the message m∗, which is not equal to any of the queried messages
m1, . . . ,mq, and is not in the range of any queried functions f1, . . . , fm.

Function Privacy: The functional signature scheme has the property of func-
tion privacy if the advantage of any polynomial-time adversary A in the following
game is negligible:

– The challenger honestly generates a key pair (mvk,msk) ← FS.Setup(1k) and
gives both values to the adversary.

– The adversary chooses a function f0 and receives an (honestly generated)
secret key skf0 ← FS.KeyGen(msk, f0).

– The adversary chooses a second function f1 for which |f0| = |f1|(where
padding can be used if there is a known upper bound) and receives an (hon-
estly generated) secret key skf1 ← FS.KeyGen(msk, f1).

– The adversary chooses a pair of values m0,m1 for which |m0| = |m1| and
f0(m0) = f1(m1).

– The challenger selects a random bit b ∈ {0, 1} and generates a signature on
the image message m

′
= f0(m0) = f1(m1) using secret key skfb

, and gives
the resulting signature σ ← FS.Sign(skfb

,mb) to the adversary.
– The adversary outputs a bit b

′
, and wins the game if b

′
= b.

Succinctness: We call a functional signature scheme has the property of suc-
cinctness if there exists a polynomial s(·) such that for every k ∈ N, f ∈
F ,m ∈ Df ,it holds with probability 1 over (msk,mvk) ← FS.Setup(1k); skf ←
FS.KeyGen(msk, f); (f(m), σ) ← FS.Sign(f, skf ,m) that the resulting signature
on f(m) has size |σ| ≤ s(k, |f(m)|). In particular, the signature size is inde-
pendent of the size |m| of the input to the function, and of the size |f | of a
description of the function f .

220 L. Wang et al.

4 Construction

In this section, we present how to use indistinguishability obfuscation to build a
functional signature scheme which holds function privacy and succinctnesss.

Our construction scheme is inspired by the short signature scheme proposed
by Sahai and Waters [26]. In that construction, the signatures are essentially
the classical PRF MACs. In order to make it publicly verifiable, they created an
obfuscated verification program that checks the MACs. Sahai and Waters [26]
showed that this construction is selectively unforgeable under the existence of
indistinguishability obfuscation and one-way functions.

Our scheme consists of two obfuscated programs. The first is a sign algorithm
that takes as input a message m, a signing key skf for a function f and the
function f . It outputs f(m) and a signature of f(m) if Sig.Verify(vksig, skf , f) = 1.
The signature is of the form of SW [26] short signature. Verification is done by
an obfuscation of the algorithm Verify and is virtually identical to SW [26] short
signature verification algorithm.

We construct a functional signature scheme FS = (FS.Setup, FS.KeyGen,
FS.Sign, FS.Verify) as follows: Let F be a puncturable PRF that takes inputs
of �(k) bits and outputs n(k) bits. Let g(·) be a one-way function. Let
Sig = (Sig.Setup, Sig.Sign, Sig.Verify) be a signature scheme that is existentially
unforgeable under chosen message attack.

• FS.Setup(1k): The FS.Setup algorithm first chooses a puncturable pseudoran-
dom function (PRF) key K for F . Then sample a signing and verification key
pair (sksig, vksig) ← Sig.Setup(1k). Next, it creates an obfuscation of the Sign
of Fig. 1. The size of the program is padded to the maximum of itself and
Program Sign∗ of Fig. 2. It also creates an obfuscation of the Verify of Fig. 3.
The size of the program is padded to the maximum of itself and Program
Verify∗ of Fig. 4. The mvk consists of the obfuscation program of Verify, the
obfuscation program of Sign and vksig. The msk = (K, sksig).

• FS.KeyGen(msk, f):TheFS.KeyGenalgorithmgenerates skf = Sig.Sign(sksig, f).
The input f of algorithm FS.KeyGen is binary encoding of f .

• FS.Sign(f, skf ,m): Run the obfuscation of Sign which takes as inputs f, skf ,
and m. The algorithm FS.Sign takes the output of the obfuscation of Sign as
its output.

• FS.Verify(mvk,m
′
, σ): Run the obfuscation of Verify, which takes as inputs m

′

and σ. FS.Verify takes the output of the obfuscation of Verify as its output.

Theorem 1. If our obfuscation scheme is indistingishuably secure, the signature
scheme Sig is existentially unforgeable under chosen message attack, F is a secure
punctured PRF, and g(·) be a one-way function, then our functional signature
scheme is selectively unforgeable under chosen message attack.

Functional Signatures from Indistinguishability Obfuscation 221

Sign

Constants: Public key vksig and punctured PRF key K.
Inputs: Message m, signing key skf , and function f .

1. If Sig.Verify(vksig, skf , f) = 1, then compute m
′

= f(m), σ =
F (K, m

′
). Output (m

′
, σ).

2. Else output ⊥.

Fig. 1. Program Sign

Sign∗

Constants: Public key vksig and punctured PRF key K({m∗}).
Inputs: Message m, signing key skf , and function f .

1. If Sig.Verify(vksig, skf , f) = 1, then compute m
′

= f(m), σ =
F (K, m

′
). Output (m

′
, σ).

2. Else output ⊥.

Fig. 2. Program Sign∗

Verify

Constants: Punctured PRF key K.
Inputs: Message m

′
, signature σ.

1. Test if g(σ) = g(F (K, m
′
)). Output 1 if true, 0 if false.

Fig. 3. Program Verify

Verify∗

Constants: Punctured PRF key K({m∗}) and values m∗ ∈
{0, 1}�(k), z∗.
Inputs: Message m

′
, signature σ.

1. If m
′
= m∗, test if g(σ) = z∗. Output 1 if true, 0 otherwise.

2. Else, test if g(σ) = g(F (K, m
′
)). Output 1 if true, 0 if false.

Fig. 4. Program Verify∗

222 L. Wang et al.

Proof. We describe a proof as a sequence of hybrid experiments where the first
hybrid corresponds to the original functional signature security game. We prove
that a PPT adversary’s advantage must be negligibly close between each suc-
cessive one. Then, we show that any PPT adversary in the final experiment
that succeeds in forging with non-negligible probability can be used to break the
security of the one-way functions.

– Hyb0: In the first hybrid the following game is played.
1. The adversary selectively gives the challenger the message m∗.
2. The challenger chooses K for PRF F , then samples a signing and veri-

fication key pair (sksig, vksig) ← Sig.Setup(1k). Next, it creates an obfus-
cation of the Sign of Fig. 1. The size of the program is padded to the
maximum of itself and Program Sign∗ of Fig. 2. It also creates an obfus-
cation of the Verify of Fig. 3. The size of the program is padded to the
maximum of itself and Program Verify∗ of Fig. 4. The mvk consists of
the obfuscation program of Verify, the obfuscation program of Sign and
vksig. The challenger give mvk to the adversary.

3. The adversary queries the key generation oracle Okey, and been given
skf . The adversary also queries the signing oracle Osign, and been given
F (K, f(m)).

4. The adversary sends a forgery σ and wins if
• FS.Verify(mvk, m∗, σ) = 1.
• there does not exist m such that m∗ = f(m) for any f which was

sent as a query to the Okey oracle.
• there does not exist a (f,m) pair such that (f,m) was a query to

the Osign oracle and m∗ = f(m).
– Hyb1: This hybrid is the same as Hyb0 except we replace the obfuscation of

the program Sign with Sign∗ of Fig. 2.
– Hyb2: This hybrid is the same as Hyb1 except we let z∗ = g(F (K,m∗)) and

let the obfuscation of Verify be replaced by the obfuscation of the program
Verify∗ of Fig. 4.

– Hyb3: This hybrid is the same as Hyb2 except z∗ = g(t) for t chosen uniformly
at random in {0, 1}n(k).

First, we argue that the advantage for any PPT adversary in forging a sig-
nature must be negligibly close in hybrids Hyb0 and Hyb1.

We define the following two events:

– A: The adversary can distinguish hybrid Hyb0 from hybrid Hyb1.
– B: The adversary can compute a valid secret key skf for f with non-negligible

advantage.

Then we have Pr[A]= Pr[B]·Pr[A|B]+Pr[B̄]·Pr[A|B̄] ≤Pr[B]+Pr[A|B̄] . We now
bound the probabilities of the two parts which is in the right hand of inequation.

First of all, Pr[B] ≤ negl(λ) since we have assumed that Sig is existentially
unforgeable under chosen message attack.

Functional Signatures from Indistinguishability Obfuscation 223

Then we prove that Pr[A|B̄]≤ negl(λ) by giving a reduction to the security of
indistinguishability obfuscation.1 We first observe that the input/output behav-
ior of programs Sign and Sign∗ are identical. The only difference is that in Sign∗

the PRF at point m∗ is punctured out of the constrained PRF key. However, we
now consider the Pr[A|B̄] that the event B will never happen. So the adversary
cannot forge any valid secret key skf for f . Besides, there does not exist m such
that m∗ = f(m) for any f which was sent as a query to the Okey oracle.2 That
is to say, F (K,m∗) will never get called. Therefore, if there is a difference in
advantage we can create an algorithm B that breaks indistinguishability secu-
rity for obfuscation. B runs as the challenger. When it is to create the obfuscated
program it submits both programs Sign and Sign∗ to the iO challenger. It sets
the algorithm of Sign to the program returned by the challenger. If the iO chal-
lenger chooses the first, then we are in Hyb0. If it chooses the second, then we
are in Hyb1. B will output 1 if the attacker successfully forges. Any PPT adver-
sary with different advantages in the hybrids leads to B as an adversary on iO
security.

In summary, the advantage for any PPT adversary in forging a signature
must be negligibly close in hybrids Hyb0 and Hyb1.

Second, we argue that the advantage for any PPT adversary in forging a
signature must be negligibly close in hybrids Hyb1 and Hyb2. We first observe
that the input/output behavior of programs Verify and Verify∗ are identical. The
only difference is that the first program computes g(F (K,m∗)) before applying
the OWF g to it for message input m∗, whereas the second is given g(F (K,m∗))
as the constant z∗. Therefore, if there is a difference in advantage we can create
an algorithm B that breaks indistinguishability security for obfuscation. B runs
as the challenger. When it is to create the obfuscated program it submits both
programs Verify and Verify∗ to the iO challenger. It sets the algorithm of FS.Verify
to the program returned by the challenger. If the iO challenger chooses the first,
then we are in Hyb1. If it chooses the second, then we are in Hyb2. B will output 1
if the adversary successfully forges. Any PPT adversary with different advantages
in the hybrids leads to B as an adversary on iO security.

We now argue that the advantage for any PPT adversary in forging a signa-
ture must be negligibly close in hybrids Hyb2 and Hyb3. Otherwise, we can cre-
ate a reduction algorithm B that breaks the selective security of the constrained
pseudorandom function at the punctured points. B first gets m∗ selectively from
the adversary. It submits this to the constrained PRF challenger and receives
the punctured PRF key K({m∗}) and challenge a. It continues to run the exper-
iment of Hyb2 except it sets z∗ = g(a). If a is the output of the PRF at point m∗,
then we are in Hyb2. If it was chosen uniformly at random, then we are in Hyb3.
B will output 1 if the adversary successfully forges. Any adversary with different
advantages in the hybrids leads to B as an adversary on the constrained PRF
security. Here we were able to reduce to selective security since the attacker was
defined to be selective.

1 This part of proof is inspired by the soundness proof of NIZK in [26].
2 Actually, this is a non-falsifiable assumption. Please see Remark 1 in detail.

224 L. Wang et al.

Finally, if there is a PPT adversary in Hyb3, we can use it to break the security
of the OWF. We build a reduction B that first takes in m∗ selectively and receives
y as the challenge for a OWF and sets z∗ = y. If an adversary successfully forges
on m∗, then by definition he has computed a σ such that g(σ) = z∗. Therefore, if
the OWF is secure, no PPT adversary can forge with non-negligible advantage.
Since the advantage of all PPT adversary’s are negligibly close in each successive
hybrid, this proves selective security for the functional signature scheme. �

Theorem 2. Our construction of functional signature scheme holds function
privacy and succinctness.

Function privacy From the signature of f(m), σ = F (K, f(m)), we can
see that the signature have no information about the function f . That
is if ∀f0, f1,m0,m1. s.t. f0(m0) = f1(m1) then σ0 = F (K, f0(m0)) =
F (K, f1(m1)) = σ1. So our construction of functional signature holds function
privacy.

Succinctness The succinctness of our functional signature scheme follows from
the structure of σ = F (K, f(m)). Namely, the signatures are essentially the
classical PRF MAC. Actually, the size of a functional signatures only depend on
the size of range of punctured PRF, it is independent of the size of f, f(m), and
m.

Theorem 3. Our functional signature scheme is under the assumptions of
indistinguishability obfuscation and one-way functions. And if there exists a
PPT algorithm D, given the message m∗ ∈ M, f ∈ F and the domain of f , D
can decide whether m∗ is in the range of f , then the verification time of scheme
is under falsifiable assumptions.

The proof of Theorem3 see Appendix B.

5 Conclusion

In this paper, we provide a construction of functional signature scheme satisfying
both function privacy and succinctness under the existence of indistinguishability
obfuscation for all polynomial-size circuits and one-way functions for the first
time. Additionally, our scheme is under weaker assumption than SNARK -type
assumptions for a class of functions and the size of signatures are independent
of f, f(m), and m.

Acknowledgements. The authors would like to thank anonymous reviewers for their
helpful comments and suggestions.

Functional Signatures from Indistinguishability Obfuscation 225

A Signature Schemes

Definition 4. A signature scheme for a message space M is a tuple (Gen, Sign,
Verify) :

– Gen(1k) → (sk, vk): the key generation algorithm is a probabilistic,
polynomial-time algorithm which takes as input a security parameter 1k, and
outputs a signing and verification key pair (sk, vk).

– Sign(sk,m) → σ: the signing algorithm is a probabilistic polynomial time
algorithm which is given the signing key sk and a message m ∈ M and outputs
a string σ which we call the signature of m.

– Verify(vk,m, σ) → {0, 1}: the verification algorithm is a polynomial time algo-
rithm which, given the verification key vk, a message m, and signature σ,
return 1 or 0 indicating whether the signature is valid.

Correctness: We call a signature scheme correct if

∀(sk, vk) ← Gen(1k),∀m ∈ M,∀σ ← Sign(sk,m),Verify(vk,m, σ) → 1

Unforgeability Under Chosen Message Attack: A signature scheme is
unforgeable under chosen message attack if the winning probability of any prob-
abilistic polynomial time adversary in the following game is negligible in the
security parameter:

– The challenger samples a signing, verification key pair (sk, vk) ← Gen(1k) and
gives vk to the adversary.

– The adversary requests signatures from the challenger for a polynomial
number of messages. In round i, the adversary chooses mi based on
m1, σ1, . . . ,mi−1, σi−1, and receives σi ← Sig(sk,mi).

– The adversary outputs a signature σ∗ and a message m∗ and wins if
Verify(vk,m∗, σ∗) → 1 and the adversary has not previously received a sig-
nature of m∗ from the challenger.

B The Proof of Theorem3

Proof. In our functional signature scheme, we use indistinguishability obfusca-
tion, signature scheme, one-way functions, puncturable PRFs. In the follow, we
prove signature scheme and puncturable PRFs can be constructed if one-way
function exists.

Lemma 1. [24] Under the assumption that one-way functions exist, there exists
a signature scheme which is secure against existential forgery under adaptive
chosen message attacks by polynomial-time algorithms.

Lemma 2. [5,9,17,22] If one-way functions exist, then for all efficiently com-
putable functions �(λ) and n(λ), there exists a puncturable PRF family that
maps �(λ) bits to n(λ) bits.

226 L. Wang et al.

Based on lemmas 1, 2, we can conclude that our functional signature scheme is
under the assumptions of indistinguishability obfuscation and one-way functions.
And if exists a PPT algorithm D , ∀f ∈ F ,m∗ ∈ M, D can decide whether m∗

is in the range of f , then in the proof of selective unforgeability, the verification
time is polynomial time. Therefore, if there exists a PPT algorithm D, given the
message m∗ ∈ M, f ∈ F and the domain of f , D can decide whether m∗ is in
the range of f , then our functional signature scheme verification time is under
falsifiable assumptions.

References

1. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

2. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: Indistinguishability obfuscation
vs. auxiliary-input extractable functions: one must fall. Technical report, Cryptol-
ogy ePrint Archive, Report 2013/641 (2013)

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, p. 1. Springer, Heidelberg (2001)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

5. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

6. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

7. Boyle, E., Pass, R.: Limits of extractability assumptions with distributional auxil-
iary input. IACR Cryptology ePrint Archive, p. 703 (2013)

8. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014)

9. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

10. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. Technical report, Cryptology ePrint
Archive, Report 2013/642, 2013 (2013). http://eprint.iacr.org

11. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

12. Canetti, R., Vaikuntanathan, V.: Obfuscating branching programs using black-box
pseudo-free groups. IACR Cryptology ePrint Archive, p. 500 (2013)

13. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49 (2013)

http://eprint.iacr.org

Functional Signatures from Indistinguishability Obfuscation 227

15. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. Cryptology ePrint Archive, Report 2013/128
(2013). http://eprint.iacr.org/

16. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014)

17. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: FOCS, pp. 464–479 (1984)

18. Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. Cryptology ePrint Archive,
Report 2014/309 (2014)

19. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

20. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: STOC, pp. 99–108. ACM (2011)

21. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. Technical report, Cryptology ePrint
Archive, Report 2013/509, 2013 (2013). http://eprint.iacr.org

22. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. IACRCryptology ePrint Archive, p. 379
(2013)

23. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. Cryptology ePrint Archive, Report 2013/781 (2013).
http://eprint.iacr.org/

24. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: STOC, pp 387–394 (1990)

25. Silvio, M.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

26. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. IACR Cryptology ePrint Archive, p. 454 (2013)

http://eprint.iacr.org/
http://eprint.iacr.org
http://eprint.iacr.org/

Lightweight Protocol
for Trusted Spontaneous Communication

Przemysław Błaśkiewicz, Marek Klonowski, Mirosław Kutyłowski(B), and Piotr Syga

Faculty of Fundamental Problems of Technology Department of Computer Science,
Wrocław University of Technology, Wrocław, Poland

{przemyslaw.blaskiewicz,marek.klonowski,
miroslaw.kutylowski,piotr.syga}@pwr.edu.pl

Abstract. We present a communication protocol with encryption, suitable for
extremely weak devices, which communicate only by sending un-modulated,
on/off signals (beeping). We assume severely constrained model with no coor-
dination or synchronization between devices, and no mechanism for message
reception acknowledgement. Under these assumptions, we present a way to han-
dle the problem of transmissions interference (collisions) and providing message
secrecy at the same time.

In order to achieve our goals in such a limited communication channel, we
use special encoding and combine encryption procedure with the communication
layer of the protocol. This is different from the state-of-the-art-today, where an
encrypted channel is built in the highest level of the communication protocol after
assigning the radio channel to one of the sender devices. We present a real-life
motivations for the proposed approach as well as rigid correctness and security
analysis.

Keywords: ad hoc network · Constrained device · Beeping model · Mobile
device · Visible light communication

1 Introduction

In our paper we consider an ad hoc network of severely constrained mobile devices or
sensors that have to transmit some information towards a selected, relatively stronger
device called a sink. We assume that the devices are not coordinated and the communi-
cation pattern is unpredictable and possibly chaotic.

The execution time of the network is divided into units called slots. In a single slot,
a device may only send a signal or abstain from transmitting, hence it takes several
slots to transmit a complex message. Apart from limited computation capabilities of
the devices, the main obstacle for successful communication are physical properties
of the communication channel. We assume that each node may spontaneously start
transmitting, however if more than one transmits in a given time, the messages may

The first three authors have been supported by NCN, decision number DEC-2013/
08/M/ST6/00928 (Harmonia). The last author has been supported by NCN, decision number
DEC-2012/07/N/ST6/02203.

c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 228–242, 2015.
DOI: 10.1007/978-3-319-27998-5_15

Lightweight Protocol for Trusted Spontaneous Communication 229

interfere, hence become unreadable. We assume that there is no prior assignment of
slots to the network nodes, and nothing external to the protocol indicates the moment
when they can start their transmissions. We also assume that the nodes do not listen
to the channel, in order to learn if no other node is transmitting, before starting their
transmission. Furthermore, the sink does not send any confirmation messages, so the
nodes do not know if their messages were properly received. Lastly, we assume that all
communication in the network may be eavesdropped by an external adversary.

Under these constraints we want to assure that messages sent to the sink remain
private, i.e. the adversary cannot gain access to the information being sent. A natural
approach to this problem is to encrypt each message, possibly after enforcing some
way of authentication between sender and the receiver. Depending on the protocol in
use, this may introduce a relatively heavy computation overhead and large volume of
auxiliary data to be stored and/or transmitted. A lot of effort must be devoted to self-
organization of the communication, as the protocol data must be delivered in a reliable
way, typically in packets.

In order to avoid efficiency problems, we move away from the traditional separation
of different protocol layers and by means of special encoding, we merge security and
transmission layers together. Doing so, we construct a protocol suitable for constrained
devices, that can be efficiently performed in the assumed channel model. Our goal is
not only to allow proper transmission from the devices to the sink, but also to provide
secrecy of both the content of the message as well as the identity of the sender.

Motivation. Traditionally, communication protocols are built in a layered architecture,
which separates different design stages. This has many advantages, mainly concerning
ease of design, flexibility and error avoidance. As data packets are transmitted, informa-
tion they carry is wrapped (processed) in envelopes of each layer protocols and passed
down to the device responsible for physically modifying the transmission medium and
hence – transmission. Usually, cryptographic protection is implemented on specific lay-
ers (e.g. IEEE 802.1X on Data Link; IEEE 802.15.4 on MAC layer, sublayer of Data
Link; IPSec on Link Layer, etc.) and pertains to this layer protection only. However,
in scenarios where multi-layered architecture poses too much overhead (in hardware,
memory and/or computation), this traditional and generally successful approach might
be problematic.

Applicability of such constrained systems ranges from control networks in high
risk industrial areas to typical military applications. As an example, consider security
systems where the alert data originates from sensor devices and has to be delivered
to the core system via sink nodes. In all these cases manipulations in the system may
occur – (frequent) tampering with readings of the methane detectors in underground
coal mines may be a good example. In case of the coal mining monitoring systems the
obligatory system of methane detectors may have a shadow system that is used only
for detecting manipulations on the official measurements. In this case it is crucial that
the sink does not transmit anything - otherwise it can be easily detected, found and
destroyed in order to remove the evidence of manipulations. One can also think of a
setting similar to that of a TV set and a remote controller – it is not required for the TV
set to send any information back to the remote.

230 P. Błaśkiewicz et al.

Similarly, our target is also communication between vehicles in extreme conditions.
This may concern road communication systems for vehicles, as well as air traffic control
systems or even air defense systems. In all cases communication should be protected
against sabotage (e.g. attacks by creating crashes by injecting false information) and
should work in extreme conditions with unpredictable communication collisions.

Also, we may consider a sensor network based on Li-Fi infrastructures (i.e., access
point and corresponding transmitting stations). While hiding the access point in this
case is unfeasible, if not senseless, other means of securing the transmission could be
of importance. It may be that the signals (in this case, flashes of light) intended for the
access point are falsely generated by an adversarial node in order to inject false data
into the system. Alternatively, such light-based communication can be prone to acci-
dental (or purposeful) interference. We need mechanisms to overcome these problems
(message trust, interference) while at the same time maintaining low requirements for
hardware complexity.

The Core Problem. In order to build systems sketched above we need to design a
communication protocol for the following fundamental scenario:

Information flow: The system consists of a relatively powerful node called a sink, and
a number of nodes that have the sink in their transmission range.

Asynchronicity: Neither the sink nor the other nodes have any prior knowledge about
which node will attempt to upload data to the sink at a given moment.

Shared secrets: The sink has access to a database that stores secret keys for each of
the nodes deployed.

Essentially, we do not need the nodes to be synchronized with a common clock. We
only assume that the clocks run at approximately the same speed for all devices. The
transmission time is divided into slots of the same length, but we accommodate possible
time drift allowing that the slot boundaries may differ. Nevertheless, for clarity of pre-
sentation from now on we assume that all devices are synchronized regarding division
into the time slots.

Paper Contribution. In this paper we propose a low layer communication protocol
for encrypted transmissions assuming communication channel with properties based
on the beeping model. It ensures that the communication is relatively immune to the
transmission collisions despite the limitations of the channel and despite overlapping
of messages coming from different nodes. We achieve this by using special encoding
method that we call r-sparse code. Moreover, we assume that there is no backward
information channel from the sink to the nodes, and there is no synchronization nor
communication between the nodes.

In Sect. 2 we present the assumed communication model. Section 3 contains
description of the proposed scheme. Section 4 provides a protocol analysis with the
main focus on the soundness and security. We briefly indicate related work in Sect. 5.
In Sect. 6 we propose some possible improvements and provide discussion for applica-
bility of our work.

Lightweight Protocol for Trusted Spontaneous Communication 231

2 Communication Model

We limit ourselves to a very simple way to send information. Namely, the sender can
act on transmission medium over a specified period of time or not. The former situation
corresponds to sending a logical “one”, the latter – means that the station either is
sending a logical “zero” or is inactive. This behavior is encompassed by the beeping
model [1]. In this framework, a node station can perform only two actions:

1. send a “beep” – an impulse of a carrier wave,
2. sense the channel and determine if a carrier wave is present. Accordingly, the state

of the radio channel is regarded as no signal (when all nodes abstain from trans-
mitting a beep and the energy level for the beep frequency is at the noise level) and
signal (if at least one node is transmitting and increases the energy level for the
beep frequency).

It must be stressed that our proposal is not limited to a radio communication net-
works. In fact, the reader will find it plausible to apply it in Visible Light Communi-
cation (VLC) [3], where information is carried by visible light impulses. Notably, this
particular communication method has been getting more attention in connection with
5G standardization (Li-Fi – see [21]).

In the following, we denote by “beep” any acting on the medium (such as sending
an un-modulated carrier or flashing an LED diode). Similarly, the “carrier sensing” can
refer to either typical radio wave sensing or detecting a flash of light on a CCD matrix.

Within beeping model given above we set additional limitations to construct our
model as follows:

Beep length: we divide time into slots of constant length μ that is the shortest time
required for the carrier sensing mechanism to determine a signal at frequency fc.
A single beep lasts for time μ.

Carrier sensing: we assume that only the sink can perform carrier sensing, while other
nodes can only transmit"beeps". This way we extend our considerations to a purely
randomized ad-hoc radio networks, where a station can commence sending its mes-
sage regardless of other stations’ transmissions.

Upper bound on number of senders: we assume that at most k nodes may attempt
to transmit at the same time. The parameter k corresponds to a bound occurring in
practice.

2.1 Discussion of Model Properties

The model we propose suits well to our supposed applications in constrained devices
communicating in an ad-hoc manner to a single sink.

Un-Modulated Signals. Firstly, carrier sensing (at the sink) can be performed at a
much smaller energy cost than standard listening on the radio: carrier sensing is typi-
cally done by separate circuitry: no PLL synthesizing or demodulation is required. By
the same token, since the transmitter sends only an un-modulated wave, the energy costs
and complexity of the transmitter are low and the protocol may be employed in simpler
hardware (no need for complex modulators).

232 P. Błaśkiewicz et al.

Reportedly, carrier sensing can have poor performance in a noisy environment [12].
For example, a false-positive detection can occur if a number of weak transmissions
correlate and their overall power picked by the antenna exceeds a certain threshold. This
problem also occurs for ASK (amplitude shift keying) modulation. As we show later,
the problem of susceptibility of ASK to noise and interference can be overcome with
high probability using additional computation, making it a practical, simple modulation
for constrained, low-cost devices.

Efficiency. We leverage modulation similar to ASK, which has better spectral effi-
ciency than FSK, and still improve over it by setting smallest μ possible.

In a way, the beeping model is similar to ASK, especially its variant OOK (on-off
keying). In this case, the carrier wave is a sine wave of frequency fc, and the modulating
signal is a zero-one sequence of frequency fm. Typically, fc = C · fm for some inte-
ger C. The modulated signal is obtained by multiplying carrier by modulating binary
sequence, so that it is 0 when transmitting a 0, and the clear carrier when transmitting a
1. The throughput of such modulation (as well as FSK and PSK modulation schemes)
for a given fc depends on parameter C – it determines how many cycles of the carrier
are necessary to encode a single bit of information. Typically, C = 16, 32, 64, 128. In
our approach, we do not use C · fm as the time base for a single character but the time
constant μ, that is of length of a few periods of the carrier. This way, we approach the
theoretical bandwidth efficiency of 1 bit/Hz/second, so we maximize the band utiliza-
tion under ASK (or beeping model) assumptions.

Collisions and Channel Utilization. Since nodes do not perform carrier sensing, they
transmit independently of each other, and, consequently, their signals may overlap. Fur-
ther, we assume that a situation when two or more nodes beep in the same slot is indis-
tinguishable by the sink from that when a single node beeps. An exemplary illustration
of communication and channel state in our model is shown in Fig. 1.

node A:

node B:

node C:

node D:

Channel state:

. . .

.

Fig. 1. Several exemplary slots out of network’s lifespan for parameters r = 2, m = 3, l =
2, n = 2. Black boxes symbolize sending a beep, white boxes refer to silence. Note that each
node may start transmitting anytime – some transmissions may overlap completely, some nodes
may start transsmitting later on, and some may even transmit parts of two different messages,
while other node transmits one.

It can be seen that differentiating between transmissions of nodes A, B, C and D
is impossible if the only information available is the channel state. In the next section

Lightweight Protocol for Trusted Spontaneous Communication 233

we describe the protocol, by which the sink can do it with the aid of additional off-line
information.

2.2 Adversary Model

In our paper we consider a passive adversary, i.e., an outer entity that can eavesdrop
radio communication, however does not send transmissions of its own. The adversary
listens to all communications: we do not rely the security of our protocol on the fact
that he fails to capture some fraction of it. Computational capabilities of the adversary
are similar to those of a sink. Furthermore, the adversary knows the hash function H
and initial identifiers of nodes, however they do not know the secrets shared between
nodes and the sink. In our paper, we assume that the adversary has two main goals:

plaintext recovery: the adversary aims at learning the content of the messages trans-
mitted to a sink,

communication linking: the adversary aims at determining if two different transmis-
sions have been sent by the same node.

In our paper we do not assume that the adversary is able to capture nodes, however if
such an ability is introduced, security guaranties of our protocol remain in effect for all
the nodes that have not been compromised.

3 Protocol Description

r-sparse Coding. In our protocol we present a simple bit encoding method called r-
sparse coding, (or r-SC, for short) suitable for channels with possible conflicts caused
by transmissions of uncoordinated nodes. Its idea is loosely related to Bloom Filters [4].
This protocol turned out also to be very useful as a building block in encrypting mes-
sages for constrained devices.

In order to mitigate the interference effect between different transmissions, we
encode each bit using r-SC, for a network parameter r. Each bit in r-SC is represented
by r transmission slots. Two different slots, say p0 and p1, are distinguished: for encod-
ing 0 there is a single beep sent in the time slot p0, for encoding a 1 the only beep is
sent in the slot p1.

There are r(r − 1) ways to choose p0 and p1, and therefore r(r − 1) possible
encodings. The protocol described below uses a pseudo-random function based on a
shared secret to choose the encoding used. An example of r-codings is shown in Fig. 2.

encoding bit 0:

encoding bit 1:

0 1 1 0

1 0 0 1 0 0 0 0 1

0 1 0 0 0

Fig. 2. All 2-sparse codes and an example of a 5-sparse code.

234 P. Błaśkiewicz et al.

Setup. Before network deployment, we define a common parameter r, which deter-
mines the r-sparse coding. We choose r > 2k, where k is the bound on the number of
nodes that may attempt to transmit at the same time.

For each node A the system generates at random a pseudonymous identifier IDA

(which can be changed during the protocol execution) and a secret KA (which is con-
stant throughout the node’s lifespan). The secret KA and pseudonym IDA are stored by
node A as well as in the database of the system. The length x of KA should be sufficient
to guarantee that a keyed hash function H can be modeled as a Random Oracle. The
pseudonym IDA should be long enough to avoid name collisions as well as getting a
valid pseudonym used in the system when a random string is generated.

Coding. In order to encode a single bit we use r-sparse coding. The selection of the
r-sparse coding out of r(r − 1) possibilities is done according to the value of function
H(IDA, KA, i) mod r(r − 1), where i is the number of current bit in a given trans-
mission. Therefore, according to the Random Oracle Models we may assume that every
single bit is encoded randomly and independently. Note however that knowing IDA,
the secret key and the number of the bit in the transmission, one can easily decode it.
Figure 3 depicts an exemplary coding for r = 4.

4-SC encodings: ‘1’ ‘0’

0 → beep at 4
1 → beep at 2

‘1’ ‘0’

0 → beep at 3
1 → beep at 1

‘1’ ‘0’

0 → beep at 4
1 → beep at 1

‘0’ ‘1’

0 → beep at 3
1 → beep at 4

message M 1 0 0 1

encoded message

Fig. 3. Exemplary encoding of message 1001 using 4-SC. → represents choosing encoding via
the function Hr(IDA, KA, i). Four consecutive encodings are shown (top row), which are
applied to bits of the message one at a time. Dark squares represent timeslot with a beep, they are
labelled with bit they represent in this encoding. The resulting sequence of beeps and silence is
shown in the last row.

Transmission. Let A be the set of all nodes. Each node may decide to start its trans-
mission at any time. The only restriction we make is the upper bound on the number
of nodes transmitting in the same time (parameter k). In order to transmit a message
M with bit representation b1 . . . bn, node A ∈ A transmits a message consisting of the
following three parts.

Preamble – part responsible for signaling the start of a transmission. It consists of
beeps in r consecutive slots.

Identification part – presenting the current pseudonym of the sender, enabling the sink
to establish decoding method. In order to do this, the sender transmits its current
ID sender. Each of the m bits of ID sender is sent separately encoded by r-SC. This part

Lightweight Protocol for Trusted Spontaneous Communication 235

lasts m · r slots. In our protocol we take m = 2k + log(|A|) + �log 1
δ �, where k is

an upper bound on the number of nodes transmitting in the same time, A is the set
of nodes in the system and δ is a parameter responsible for bounding probability of
false positives in the identification.

Payload part – responsible for transmitting M (l), where M (l) is created from M by
repeating each bit l times. Each bit of M l is encoded separately using independently
chosen encoding. For transmitting the ith bit of M (l) it uses the r-sparse code
determined by the function Hr(IDA, KA, i). We use l = k + �log n

ε �, where the
security parameter ε > 0 is an upper bound on probability that at least one bit of the
original message M can be unreadable (due to collisions with other transmissions)
to the sink. Note that together we need r · n · l slots for this part.

After transmission the node updates its identifier as follows: IDA := H(KA, IDA).

preamble identification workload

Fig. 4. Example of transmitting a message 101 by the node for system parameters: r = 2, m =
3, l = 2. The black boxes depict beeps, the white boxes indicate silence. Note that during mes-
sage repetition the encodings are different.

Decoding and Decryption. Note that in our protocol it is possible that many (however
up to k) nodes start transmissions in the same slot. It is also possible that one node starts
transmission while some other transmissions are in progress. In both cases we show that
all messages can be decoded and decrypted.

The decoding procedure consists of three parts:

Transmission detection: the sink continuously listens to the channel. Once it detects
a sequence of r slots of beeps starting in slot t, it starts the identification phase of
possible transmitting node. Note that this may indicate that some node transmitted
a preamble.

Identification phase: the sink finds in its database all A with IDA coherent with slots
from t+ r to t+ r +m · r − 1. Namely, the sink has to check if there are beeps on
all respective positions with 1 in IDA . For each such A a separated virtual channel
is opened.

Decoding for virtual channel for a node A: after creating a virtual channel, the sink
tries to retrieve the message bit by bit. The i-th bit (for 1 ≤ i ≤ n) is encoded
independently l times in slots from (t + r + m · r) + (i − 1) · l · r to (t + r + m ·
r) + i · l · r − 1. Clearly, the sink knowing KA may attempt to decode all bits.
The following cases are possible:
single bit: for only one bit value b the beeps occur at all l positions where the node

IDA is supposed to beep for value b. On the other hand, on at least one position
for the bit 1− b there is a silence. In this case the sink appends b to the decoded
contents of the virtual channel for node IDA.

236 P. Błaśkiewicz et al.

unknown: for both b = 0 and b = 1 the beeps occur at all positions where node
IDA is supposed to beep for b. In this case the sink appends the mark “?” to
the decoded contents of the virtual channel for IDA. This corresponds to the
case that the sink detects that a bit has been transmitted by IDA, but it cannot
resolve its correct value.

failure: In all other cases the sink can be sure that the node IDA has not transmit-
ted and can close the virtual channel corresponding to node IDA.

After decoding n bits the sink updates the identifier according to the formula
IDA := H(KA, IDA).

Let us stress that the decoding procedure can open several virtual channels starting
in the same slot t. Moreover, the procedure of transmission detection is started for all
consecutive r slots with beeps. In particular, if we have w > r beeps in a row, then the
sink takes into account w − r + 1 possible start positions for the preamble.

4 Protocol Analysis

Probability of Correct Message Decoding. We say that the message is decodable if
the sink is able to retrieve the original message M from the content transmitted by a
given node A. We say that a bit is ambiguous if it is decoded as “?” given the transmitted
message and the key KA.

Theorem 1. Every transmitted message is decodable by the sink with probability at
least 1 − ε regardless other nodes’ transmission starting times.

Proof. Recall the assumption that during the transmission of any message at most k−1
other nodes can transmit. Moreover, we set r > 2k.

First we observe that if a new station starts to transmit, this event is always detected.
Indeed, a block of at least r adjacent slots of 1’s appears on the channel if and only if
a station transmits the initial part of its message. More precisely, the following lemma
holds:

Lemma 1. Let us assume that at most k stations are transmitting using r-SC coding. If
r > 2k, then in each block of r consecutive slots there is at least one slot with no beep.

Proof. Each bit of information in r-SC contains exactly one slot with a beep. Since
r consecutive slots can overlap with at most two blocks representing adjacent bits (in
r-SC) transmitted by a single station, the total number of 1’s transmitted by all nodes is
at most 2k < r in a block of r consecutive slots.

That is, there is at least r consecutive beeps in a row if and only if at least one
node transmits its preamble. Therefore, the transmission detection sub-procedure can-
not “miss” any transmission.

Next we need to prove that the identification procedure correctly determines the
identity of the sending station A. It is clear that if A transmitted its IDA, it will always
be detected. Indeed, if there are beeps in all expected slots as given by r-SC encoding of
IDA, the transmissions of other nodes cannot change it (a ’beep’ in the channel cannot

Lightweight Protocol for Trusted Spontaneous Communication 237

be attenuated). In other words, there is no false negative (just as for the Bloom filters
(cf. [4,15])). The other error - i.e. starting decoding for a station that is not the real
source of transmission is discussed latter.

Since the fact of transmission is always correctly detected and the sender is always
correctly identified, the only reason why the encrypted message may be not decodable
is that at least one bit of the message M is ambiguous.

Lemma 2. Let us consider a transmission of a single bit using r-SC. If during r slots
of the transmission of this bit no other node transmits its preamble, then the probability
that the bit is not ambiguous is at least (1 − 1/r)k−1 > (1 − 1/r)r/2 ≥ 1/2.

Proof. According to the r-encoding the sink expects a beep in one of two slots deter-
mined by the key KA (that is known to the sink after properly recognizing of A as the
sender) and some other public parameters. If the sink observes no beep on one of these
two positions, then it can be sure that beep was transmitted on the other position and
the bit can be unambiguously decoded. The slot with no beep on the observed position
may be covered independently by each of at most k−1 other transmissions with proba-
bility at most 1/r each. Since choices of each transmitting stations are independent the
probability of no beep is at most (1 − 1/r)k−1. ��
Lemma 3. Let us consider an n-bit message. The probability that at least one bit of the
message is ambiguous does not exceed ε.

Proof. If there is no preamble transmitted, then a single r-SC code is successfully
decoded with probability exceeding 1/2. After l transmissions the probability that the
bit is ambiguous is at most (1/2)l−k = (1/2)�log(

ε
n �) ≤ ε

n (since the preambles may
affect at most k transmissions). Thus using union bound argument for all n bits we have
that the probability that there is at least one bit that failed to be successfully transmitted
does not exceed n · ε

n = ε. ��
Lemma 3 completes the proof of Theorem 1.

“False Positive” Sender Identification. Let us discuss the probability of the case that
the protocol erroneously identifies the sender of the message. According to the model,
decoding of the identification part always indicates the real sender. However, “false pos-
itives” are also possible: identification procedure may also point to some other A′ 	= A
as a potential sender. Indeed, several beeps from different transmissions can cover the
whole pattern that is a result of r-SC encoding of IDA′ . The theorem below states that
such false positive error happens with a small probability for properly chosen parameters.

Theorem 2. Probability that the decoding procedure returns a pseudonym of a node
A′ that has not transmitted the preamble at the considered time t is smaller than δ,
provided that A′ either has not transmitted its preamble at time t′ where |t′ − t| ≤ r.

Proof (Sketch). Let us recall that the identifiers of nodes of A are pseudorandom bits
encoded by a pseudo-random r-SC. According to the properties of the hash function H
the bits of the identifier can be regarded as stochastically independent. First note that

238 P. Błaśkiewicz et al.

transmitting m bits encoded with r-SC requires r · m slots, in which a beeps occur.
A node’s identifier is accepted during decoding process if and only if there is a beep on
all these m positions.

We need to consider two cases. In the first case we assume that node A′ has not
transmitted at all. In that case messages transmitted by nodes are independent on posi-
tion of m beeps in the identifier of A′. Let us fix a slot and assume that no node is
transmitting a preamble. Then the probability that in this slot there is no beep from any
node is (1 − 1/r)k > (1 − 1/r)r/2 ≥ 1/2 for r ≥ 2. Now, considering possible influ-
ence of preamble transmissions, which can affect at most 2k (out of m) slots, one gets
the upper bound on probability of a false positive accepting A′ to be (1/2)m−2k.

In the second case we assume that A′ has transmitted, but started in the slot t′ 	= t,
where t is the time when A start its preamble. One easily proves that probability in
this case cannot be greater than in the previous case. Intuitively, since |t′ − t| > r the
problem boils down to the first case due to independence of encoding of different bits.

The number of potential identifiers that are tested is |A|. Using union bound argu-
ment we have that the probability considered in Theorem 2 does not exceed

|A| · (1/2)m−2k = (1/2)m−2k−log(|A|) = (1/2)�log
1
δ � ≤ δ.

��
In case when A and A′ transmit their preambles at times t 	= t′ and |t − t′| ≤ r, the

situation depends on particular choice of the identifiers and encodings used. One can
see that in this case probability of getting a beep in a given slot has to decrease.

Data Confidentiality. We claim that an adversary cannot retrieve message content
without knowledge of the sender’s secret Ksender. Clearly, the information about the
transmitted message can come only from the content part of the transmission. Never-
theless the message is encrypted bit-by-bit using a randomly chosen encoding, thus for
a given resulting r-coding a representation of each encrypted bit is equally probable
and, according to the properties of cryptographic hash functions in the Random Oracle
Model can be regarded as independent of other bits. Therefore security of the protocol
can be reduced to security of one-time-pad ([14]).

One can observe that if the node’s pseudonym gets updated, then one cannot link the
transmissions initiated by the same node before and after the update. This property may
be useful for many application scenarios. Note however that an adversary can estimate
quite well the number of transmissions by detecting the candidates for the preambles
and observing the number of beeps in the blocks of r slots.

Transmissions Unlinkabilty. One can see that due to “refreshing of IDA” after each
transmission of A the identifier of a node is replaced and cannot be linked to the old
one without the secret key KA. Similarly the preamble as well as independently encoded
message cannot lead to logical connection of several transmissions of the same node.

Efficiency. Note that we do not restrict the duration of the protocol execution. Certainly
for that reason we cannot simply use the total number of steps as a metrics for the
protocol evaluation.

Lightweight Protocol for Trusted Spontaneous Communication 239

First note that on the side of senders the computational effort is evaluating a hash
function twice per bit sent. From the point of view of encryption this is quite realistic
even on weak devices, as we may expect that the hash functions are implemented on
the node devices for enabling the protocols such as μTESLA (cf. [23]).

There is more computational effort on the side of the sink. However, one can prove
the following:
Fact 3. The expected number of checks for a beep presence per transmitted preamble
during detection of the node pseudonym is not higher than

2r|A|(k + 1) + m ≤ 2r|A|(k + 1) + log
(2|A|

δ

)

+ 2k,

for any assignment of moments of starting transmissions of other nodes.
Indeed, for the correct identifier A the number of checks is m, as each of m bits

of IDA has to be verified. However, each of |A| − 1 other nodes has to be checked as
well. One can show that for each node and each starting position we need at average
less than 2 checks, provided that no preamble is sent. As at most k − 1 nodes may send
the preamble within this time, the average number of checks does not exceed k+1. The
next problem is that the beginning of the preamble cannot be determined exactly. The
factor 2r is due to this issue.

5 Related Work

Carrier sensing (CS) has been used in many scenarios regarding wireless communica-
tion, but in few cases it was used, as in our case, as a way of sending complex messages.
Mainly, it is applied to avoid interference from other stations and enhance channel
throughput. For example, MAC (Multiple Access Channel) protocols have been con-
structed [8,9,25]. In [24] the information obtained from CS mechanism (i.e., channel
gain) is used to schedule a back-off time for a station, assuring that the station with the
best channel conditions gets its transmission time fastest. In [5] an initialization proto-
col was proposed, later improved by [7], that uses CS to maintain low time complexity
of the procedure. In a model similar to ours, a distributed and randomized protocol for
determining dominating set with interference is proposed in [19], where dynamically
adjusting CS thresholds allows reduction of message overhead. An influence of CS on
performance of some basic algorithms for wireless networks has been studied in [20].

OOK modulation of visible light has been used in [22] to reach gross through-
put of 230Mbps, making our solution feasible despite obvious overhead in transmitted
data size.

In a standard wireless network model of distributed computing usually an message
passing model is concerned [11]. However, as noted in [10], this assumption is often too
strong for networks of constrained devices. The beeping transmission model was pre-
sented in [1]. The authors present interval coloring scheme, allowing stations to estab-
lish a time pattern for transmission in a decentralized way, so that neighboring stations
do not interfere. Following their work, the beeping model was applied to calculating a
Maximal Independent Set [2]. We combine their model with the idea of using CS as a
message-carrying mechanism.

240 P. Błaśkiewicz et al.

In order to provide anonymity to nodes in our scheme we leverage work on sym-
metric keys and their application to constrained devices. [18] gives a top-view of the
problem of symmetric key management (update) for such setting. The idea of contin-
uous modification of the key made by communicating parties is proposed in [16] and
later extended in [13] to a key evolution protocol.

Our idea of OR-channel that is composed of slots where many entities can inject
their bits is similar to Bloom filters [6] and our analysis follows closely that presented
in [17].

6 Final Remarks

Similarity to Bloom Filters. Sending messages in the form of r-SC codes in the beep-
ing model could be replaced by Bloom Filters (cf. [4,15]). The main difference is that
we encode each bit separately, and we use l repetitions of r-SC codes instead of putting
l marks (beeps) into a single array of l · r positions. The reasons are the following:

– the Bloom Filters are very efficient for inserting elements and testing whether a given
element has been inserted. However, finding what has been inserted into filter is hard
and can be done only by brute force search. This cannot be improved as long a keyed
cryptographic hash function H is used. Therefore, the blocks inserted to the filter
must be short in order to avoid computationally intensive decoding. We have chosen
separate encodings of single bits. Depending on the sink’s capacity, encoding a few
bits at once would be an option.

– Bit-wise encoding has the advantage that possible appearance of uncertain decoding
is limited to single bits. In some cases, like transmitting digital images, it might be
relatively easy to represent the data with the marks “?” (as missing pixels and regen-
erating them via interpolation). An alternative is to encode larger blocks. In this case
uncertain decoding leads to difficulties in image presentation to a human user.

– One can prove that a single Bloom filter of size l · r is slightly more efficient in
avoiding false positives (the third case where the sink decodes a bit to “?”). However,
it turns out that the differences are insignificant, especially if r is relatively large
and the number of senders is big. For example, if there are just two senders and
l = 2, then the difference of false positives (the probability that the bit of the first
sender will be decoded as “?”) is r−1

r2(2r−1) . This difference in probabilities decreases
exponentially with the maximal number k of transmitting nodes.

– The encryption method is in fact a variant of a stream cipher. Note that the number of
beeps depends only on the message length. Moreover, a potential cryptanalysis (even
brute force) is made harder by the fact that many nodes may transmit at the same
time. Therefore the beeps belonging to different “ciphertexts” are mixed together.
Therefore it is hard to present data for cryptanalysis against a single secret KA.

Smart Decoding. So far not all decoding possibilities have been used, as each virtual
channel was considered separately. However, sometimes it is possible to learn more
from the configuration of beeps. For instance, let us assume that there are two virtual
channels and the beeps occur in the following time slots: t0, t1, . . . , t2u, where ti ∈

Lightweight Protocol for Trusted Spontaneous Communication 241

[T + r
2 · i, T + r

2 · (i + 1)] for some start moment T . We assume further that the r-
SC codings for the first channel the following time slots are used by r-SC encodings:
t0 and t1 for the first r-SC code, t2 and t3 for the second r-SC code, . . . , t2u−2 and
t2u−1 for the u − 1-st r-SC code. Similarly, we assume that the second channel uses
t1 and t2 for the first r-SC code, t3 and t4 for the second r-SC code, . . . , t2u−1 and
t2u for the u − 1-st r-SC code. (Note that such a situation may occur when the first
and the second channel are not synchronized and the blocks of slots for r-SC codes of
the second channel are shifted by r/2 related to the blocks used by the first channel.)
According to the decoding procedure both the first and the second channel would obtain
u signs “?”. On the other hand, we can see the beep at t0 must belong to the first channel,
hence the beep at t1 cannot be generated by the sender of the first channel. So this beep
belongs to the second channel. But in turn this means that the beep at t2 must belong to
the sender of the first channel. We proceed in this way and assign each beep to a single
channel. Thereby, one can fully decode the information corresponding to each channel.
Certainly, this is not an exception situation and in many cases by a smart decoding one
can eliminate many of the uncertain cases denoted by “?” signs in the decoded streams.

Multiple Systems. The proposed scheme allows more than one system to operate on
the same carrier frequency. The only condition is that the sets of identifiers attributed
to different systems should be disjoint. The sinks detect the initial message from all
stations, and then proceed to identify the transmitting station. For a node coming from
a different system the r-SC codes in the identification part and the workload part can be
regarded as random and yield random noise beeps. Notably, there is no need to change
the protocol neither for the nodes nor for the sinks to leverage this functionality.

References

1. Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a maximal
independent set. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol. 6950, pp. 32–50.
Springer, Heidelberg (2011)

2. Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a maximal
independent set. Distrib. Comput. 26(4), 195–208 (2013)

3. Afgani, M., Haas, H., Elgala, H., Knipp, D.: Visible light communication using OFDM.
In: Proceedings of 2nd International Conference on Testbeds & Research Infrastructures for
the DEvelopment of NeTworks & COMmunities, TRIDENTCOM 2006, pp. 129–134. IEEE
(2006)

4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM
13(7), 422–426 (1970)

5. Cai, Z., Lu, M., Wang, X.: Distributed initialization algorithms for single-hop ad hoc net-
works with minislotted carrier sensing. IEEE Trans. Parallel Distrib. Syst. 14(5), 516–528
(2003)

6. Rivest, R.L.: Chaffing and winnowing: confidentiality without encryption, May 1998. http://
people.csail.mit.edu/rivest/Chaffing.txt

7. Cichoń, J., Kutyłowski, M., Zawada, M.: Adaptive initialization algorithm for ad hoc radio
networks with carrier sensing. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS
2006. LNCS, vol. 4240, pp. 35–46. Springer, Heidelberg (2006)

http://people.csail.mit.edu/rivest/Chaffing.txt
http://people.csail.mit.edu/rivest/Chaffing.txt

242 P. Błaśkiewicz et al.

8. Czyzowicz, J., Gąsieniec, L., Kowalski, D.R., Pelc, A.: Consensus and mutual exclusion in
a multiple access channel. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 512–526.
Springer, Heidelberg (2009)

9. Eisenman, S., Campbell, A.: E-CSMA: supporting enhanced CSMA performance in experi-
mental sensor networks using per-neighbor transmission probability thresholds. In: Proceed-
ings of INFOCOM 2007, pp. 1208–1216. IEEE (2007)

10. Emek, Y., Wattenhofer, R.: Stone age distributed computing. In: Proceedings of ACM PODC
2013, pp. 137–146. ACM, New York (2013)

11. Giaccone, P., Shah, D.: Message-passing for wireless scheduling: an experimental study.
In: Proceedings of Computer Communications and Networks, IEEE ICCCN, pp. 1–6. IEEE
(2010)

12. Jamieson, K., Hull, B., Miu, A., Balakrishnan, H.: Understanding the real-world performance
of carrier sense. In: Proceedings of the 2005 ACM SIGCOMM Workshop on Experimental
Approaches to Wireless Network Design and Analysis. E-WIND 2005, pp. 52–57. ACM,
New York (2005)

13. Klonowski, M., Kutyłowski, M., Ren, M., Rybarczyk, K.: Forward-secure key evolution in
wireless sensor networks. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS
2007. LNCS, vol. 4856, pp. 102–120. Springer, Heidelberg (2007)

14. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptography, 1st
edn. CRC Press Inc., Boca Raton (1996)

15. Mitzenmacher, M.: Bloom filters. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database
Systems, pp. 252–255. Springer, New York (2009)

16. Ren, M., Das, T.K., Zhou, J.: Diverging keys in wireless sensor networks. In: Katsikas, S.K.,
López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 257–
269. Springer, Heidelberg (2006)

17. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997)

18. Blackburn, S.R., Martin, K.M., Paterson, M.B., Stinson, D.R.: Key refreshing in wireless
sensor networks. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 156–170.
Springer, Heidelberg (2008)

19. Scheideler, C., Richa, A.W., Santi, P.: An o(logn) dominating set protocol for wireless ad-
hoc networks under the physical interference model. In: Jia, X., Shroff, N.B., Wan, P. (eds.)
Proceedings of MobiHoc 2008, pp. 91–100. ACM Press (2008)

20. Schneider, J., Wattenhofer, R.: What is the use of collision detection (in Wireless Net-
works)? In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 133–
147. Springer, Heidelberg (2010)

21. Tsonev, D., Videv, S., Haas, H.: Light fidelity (Li-Fi): towards all-optical networking. In:
SPIE Proceedings, vol. 9007, art. ID: 900702. SPIE Digital Library, pp. 900702-900702-10
(2013)

22. Vučić, J., Kottke, C., Nerreter, S., Habel, K., Buttner, A., Langer, K.D., Walewski, J.W.:
230 mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent
white LEDs. In: Proceedings of Optical Fiber Communication Conference, pp. 1–3. Optical
Society of America, IEEE (2010)

23. Wang, M., Zhu, H., Zhao, Y., Liu, S.: Modeling and analyzing the (mu)TESLA protocol
using CSP. In: Proceedings of 5th International Symposium on Theoretical Aspects of Soft-
ware Engineering, TASE 2011, pp. 247–250. IEEE Computer Society (2011)

24. Zhao, Q., Tong, L.: Opportunistic carrier sensing for energy-efficient information retrieval in
sensor networks. EURASIP J. Wirel. Commun. Netw. 2005(2), 231–241 (2005)

25. Zhu, J., Guo, X., Yang, L.L., Conner, W.S., Roy, S., Hazra, M.M.: Adapting physical carrier
sensing to maximize spatial reuse in 802.11 mesh networks. Wirel. Commun. Mob. Comput.
J. 4, 933–946 (2004)

Using TPM Secure Storage
in Trusted High Availability Systems

Martin Hell1(B), Linus Karlsson1, Ben Smeets2, and Jelena Mirosavljevic1

1 Department of Electrical and Information Technology,
Lund University, P.O. Box 118, 221 00 Lund, Sweden

{martin.hell,linus.karlsson}@eit.lth.se, mat08jmi@student.lu.se
2 Ericsson Research, Security, Mobilvägen 1, 223 62 Lund, Sweden

ben.smeets@ericsson.com

Abstract. We consider the problem of providing trusted computing
functionality in high availability systems. We consider the case where
data is required to be encrypted with a TPM protected key. For redun-
dancy, and to facilitate high availability, the same TPM key is stored in
multiple computational units, each one ready to take over if the main
unit breaks down. This requires the TPM key to be migratable. We
show how such systems can be realized using the secure storage of the
TPM. Hundreds of millions TPM 1.2 chips have been shipped but with
the recent introduction of TPM 2.0, more manufacturers are expected
to start shipping this newer TPM. Thus, a migration from TPM 1.2 to
TPM 2.0 will likely be seen in the next few years. To address this issue,
we also provide an API that allows a smooth upgrade from TPM 1.2 to
TPM 2.0 without having to redesign the communication protocol involv-
ing the different entities. The API has been implemented for both TPM
1.2 and TPM 2.0.

Keywords: Trusted computing · TPM · Migration · Certifiable
migration key · Secure storage

1 Introduction

A High Availability System, hereafter referred to as HAS, can be used for mis-
sion critical systems like medical, trading, banking, mobile network infrastruc-
ture, and blue-light systems. Such systems often run for many years and some-
times longer than a decade. As part of high availability requirements, often such
systems need trusted platform functions that guarantee that only authentic and
approved system software and applications can run on them. Also, one frequently
sees demands to safely store sensitive data and keys used by applications and
management functions. In the types of HAS that we consider there are multiple
Computational Units (CUs) that are organized so they can take over each oth-
ers’ tasks in the event a CU fails. To provide for trusted platform functions like
authenticated boot and storage of sensitive data and keys, each CU is equipped
with a TCG Trusted Platform Module (TPM). Typically, a CU is a PCB or rack
c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 243–258, 2015.
DOI: 10.1007/978-3-319-27998-5 16

244 M. Hell et al.

mountable unit that can be inserted in a cabinet that hosts the HAS, and can
accommodate a multitude of CUs. The use of multiple TPMs for protection in
a HAS has many technical problems due to the migration problems that the use
of TPM introduces.

At the same time, there are different versions of the TPM, which in some
aspects are very different from each other. TPM 1.2 was introduced in 2003 and
since 2006 a TPM chip has been included in many laptops. In 2012, TPM 2.0
was introduced, adding new functionality and with no backwards compatibility
with TPM 1.2. Even though PCBs still come equipped with a TPM 1.2 chip,
within a few years TPM 2.0 is likely to be the dominant chip on newer boards.
This provides a challenge as systems utilizing trusted computing functionality
may have to undergo significant, and costly, changes.

In this paper, we focus on Trusted Computing Technology, and how a CU
manufacturer can offer a solution where customers have unique keys, only usable
in a specific HAS, but which still utilizes generic CUs to be used as replacement
boards. Moreover, we provide a general API that is independent of the TPM
version used. This allows for a cost-efficient deployment of the system as it can
be easily updated when TPM 2.0 gains widespread adoption.

The paper is organized as follows. Section 2 gives a brief overview of TPMs,
describing some functionality relevant to the paper. In Sect. 3, we specify the use
cases together with the threat model. In Sect. 4 we describe the requirements that
must be met by the proposed solution, which is then described in Sect. 5. A secu-
rity analysis of the proposed solution is described in Sect. 6. Section 7 describes
the general API. Finally we discuss some related work in Sect. 8. Section 9 con-
cludes the paper.

2 Overview of TPM 1.2 and TPM 2.0

TPMs have been around for more than a decade and most laptops ship with
a TPM. Still, we have seen very few applications taking advantage of the func-
tionality provided by TPMs. Microsoft’s Bitlocker encryption system is the most
known and widely used. A TPM enables trusted computing functionality such
as authenticated boot, remote attestation and sealed storage. This section will
give a short introduction to TPM 1.2 and 2.0, highlighting the differences when
duplicating keys to new destinations. For a more detailed treatment we refer to
the specifications [16,17].

2.1 Overview of TPM 1.2 and Certifiable Migration Keys

A TPM 1.2 provides a key hierarchy of asymmetric keys, where the private
part of a child key is protected (encrypted) using the public key of the parent.
Parents are of type storage key and are used to encrypt other keys, while leafs
in the tree can be of any type, e.g., a signing key, encryption key or attestation
identity key (AIK). Asymmetric keys in TPM 1.2 consist of two parts: one public
part, and one private part. The public part contains data such as the public

Using TPM Secure Storage in Trusted High Availability Systems 245

key and different flags. The private part is encrypted, and contains the private
key, but also usage and migration secrets. The root of the key hierarchy is the
Storage Root Key (SRK), which is created when someone takes ownership of
the TPM. The TPM owner authenticates using an owner secret and several
commands require owner authorization, e.g., commands used in migration which
is the main topic of this paper. Commands that use the private part of a key
are authenticated using a usage secret which can be unique to each key. Such
commands are e.g., creation of new keys, data signing and data decryption.

The only way to have the same key protected by two TPMs is to use migrat-
able keys. Migratable keys were introduced in TPM 1.1, offering the ability to
migrate (or actually duplicate) a TPM protected key to another TPM. There
are two variants of migration schemes specified, called rewrap and migrate. In
the rewrap case, the private part of the migratable key is simply decrypted and
re-encrypted using the destination key. In the migrate scheme, the key is instead
re-encrypted using the public key of a migration authority (MA). The MA can
then re-encrypt the private part with the destination public key. We will not
consider the scheme using a migration authority any further in this paper.

Each key also has a migration secret in addition to the usage secret. Migration
is only allowed if the migration secret is known. For non-migratable keys, the
migration secret is tpmproof, a value internal to the TPM and never exposed.
Also, the source TPM-owner must approve the destination, however, for any
migratable key, the owner can choose any destination. Thus, if the TPM owner
is not trusted, the key can end up in any TPM, or even outside a TPM if the
owner migrates the key to his own keypair generated by e.g., OpenSSL.

A Certifiable Migration Key (CMK), introduced in TPM 1.2, allows for a
trusted entity, called Migration Selection Authority (MSA), to be in control of
destinations for each individual CMK. The MSA control is tied to each CMK by
binding the CMK key to a list of MSAs at key creation time (called MSAList).
Similar to migratable keys, there are two possible migration schemes for CMKs,
restrict migrate and restrict approve. In restrict approve, tickets which include
both the CMK and the destination public key, are used to control the destination.
Tickets are signed by the MSA and only the destination in the ticket can be
used as target for migration. Then the ticket is first used to create a CMK blob
encrypted with the destination SRK. Then the ticket is used again in the target
TPM to convert the blob into a key in the key hierarchy. The tickets signed by
the MSA are called restrictTickets. From these tickets, sigTickets are produced
by letting the TPM owner approve the information in the restrictTicket. Thus,
both the MSA and the TPM owner control the migration of a CMK. In the
following, restrictTickets will sometimes simply be denoted “ticket” since this is
the ticket that will be communicated between entities.

In the restrict migrate scheme, the CMK is migrated directly to an MSA.
No ticket is needed in this case since the key already is bound to the MSA at
creation time so the MSA is trusted as destination.

Different from a migratable key, a CMK can be certified by an AIK. The
certification states that the CMK key belongs to a TPM and that the private

246 M. Hell et al.

part of the key will never leave the TPM in unencrypted form (assuming the
MSA enforces this). Certification of CMKs is not used in this paper and will not
be considered further.

2.2 Limitations of CMKs

The TPM owner controls migratable keys in the sense that he/she can create
them outside of the TPM or migrate them out from the TPM. Thus, there
is no guarantee that the private key is TPM protected. While this problem is
addressed by CMKs, putting an MSA in control, the CMKs have some important
limitations.

– A software MSA can create CMK keys outside the TPM and migrate them
into a TPM.

– When the restrict migrate scheme is used, a software MSA can read the private
CMK key.

– Each time a CMK is migrated, both out of a TPM and into a new TPM, a
signed ticket from an MSA is required. Thus, from the perspective of the two
TPMs, there must be communication with a third party. If tickets are created
in advance this is not required, but then the destinations must be known in
advance.

The last limitation above significantly restricts the use of CMKs in HAS’s,
because the destination CU (e.g. a replacement unit) is not known in advance.
It is therefore important to find secure ways to combat this problem. This is one
of the main goals in our proposed design.

2.3 Overview of TPM 2.0 and Duplication

The key hierarchy in TPM 1.2 has been replaced by an object hierarchy in TPM
2.0. Objects in the hierarchy can be both symmetric and asymmetric keys, but
also data blobs. The type is determined by a combination of the binary properties
sign, decrypt and restricted, where the last property means that the object (key)
can only perform actions on data prepared by the TPM itself. This is controlled
by including a specific byte sequence in these objects. Some commands can only
be performed in objects with this byte sequence. Storage keys are asymmetric
keys with the properties restricted and decrypt. Similar to TPM 1.2, these keys
protect child keys in the hierarchy. However, the protection in TPM 2.0 is by
symmetric encryption. A storage key has a unique seed in its private part, which
is used to derive a symmetric encryption/decryption key. This key is derived
from the seed each time a new object is created or loaded into the TPM.

In TPM 2.0 the term migration has been replaced by duplication, as it more
accurately reflects the reality. Two important object attributes are used to con-
trol duplication of a key. The first, fixedTPM, controls if an object can be
duplicated at all. If an object has this attribute set, the object can not be dupli-
cated. Naturally, an object with fixedTPM set can not be below an object with

Using TPM Secure Storage in Trusted High Availability Systems 247

fixedTPM clear in the hierarchy. The second, fixedParent, controls if an object
can be explicitly duplicated (when fixedParent is clear) or if it must be implic-
itly duplicated (when fixedParent is set) by duplicating a parent key, which has
fixedParent clear.

The notion of CMKs and migration schemes has been completely removed in
TPM 2.0, and has been replaced by policies. A policy is a general concept that con-
trols the actions that can be performed on an object in the hierarchy. Policies are
set upon object creation time by storing a value, called authPolicy, in the public
part of an object. The authPolicy is a hash value created by running several policy
commands, where each command extends the authPolicy digest. This is similar to
how PCR values are built by using TPM Extend. The authPolicy can be based on
e.g., time limitations on usage of the object, specific commands that are possible
to execute with an object and specific parameters that can be used in a command.
Before executing a command a policyDigest must be built in a policy session. This
session also stores specific context values that are checked upon execution, e.g., the
command code if a certain command must be executed or the fact that a certain
authorization method should be used. The final policyDigest is compared to the
object’s authPolicy and if they match, the command is executed using the infor-
mation in the context values. Policies can be combined using logical AND and OR.

The use of policies is in general optional as it is possible to authorize using
HMAC, similar to authorization in TPM 1.2, or by directly providing a password.
However, for duplication the use of policies is mandatory. Policy commands that
are particularly interesting for key duplication are TPM2 PolicyAuthorize and
TPM2 PolicyDuplicationSelect.

The TPM2 PolicyAuthorize command allows a policy to change by letting an
authority sign the new policy. This is done as follows. The TPM user generates a
new policy to use for an object. This policy, and the properties it represents, are
evaluated by an authority. If they are acceptable, the authority signs this policy
and returns the signature. The signature is verified using TPM2 VerifySignature
which returns a ticket showing that the signature is valid. This ticket, together
with the approved policy, is then used in the TPM2 PolicyAuthorize command.
Upon executing this command with a valid ticket, the policyDigest is updated by
replacing it by the hash of the name of the signature key. This hash is then the
new PolicyDigest. Thus, any policy that needs to change during the lifetime of
an object needs to include the TPM2 PolicyAuthorize command after all policies
that are subject to change. Policies added after this command has been executed
can not be changed.

The TPM2 PolicyDuplicationSelect command is used to control the destina-
tion for a duplication. The command includes both the name of the object to be
duplicated and the name of the destination. The policyDigest is updated using
both these names. Thus, the policy ties the object to a specific destination (or
several if logic OR is used). Since the destination is typically not known when
an object is created, this is typically used together with TPM2 PolicyAuthorize.
This will allow an authority to verify that the destination is valid and then sign
the resulting policyDigest.

248 M. Hell et al.

2.4 Platform Configuration Registers

All TPMs, both of version 1.2 and 2.0, have a number of Platform Configu-
ration Registers (PCRs). These registers store a hash value, which is built-up
by repeatedly calling TPM Extend or TPM2 Extend. This creates a cumulative
hash, since an extend operation depends on both a new value and the previous
PCR value. The PCRs are used to store measurements of the hardware configu-
ration and software. The measured values are stored in the Stored Measurement
Log (SML), outside the TPM, while the digest are secured by the TPM.

The SML can be read to ensure that the measurement values of the system
are as expected, and the integrity of the SML can be verified by comparing them
to the PCRs. In addition, keys in the TPM can be bound to certain PCR values,
such that keys can only be used when the PCRs have the correct value, thus
ensuring that keys are only used in a trusted hardware and software setting.

3 Scenario and Threat Model

The considered use case aims at building a robust infrastructure, taking the HAS
life cycle into consideration. The scenarios includes four entities.

The hardware, i.e., the computational units (CUs), are produced by a CU
manufacturer. The CU boards will include a TPM but it will not be associated
with any particular, or identified, customer or end user.

A HAS is assembled by a HAS manufacturer. The HAS manufacturer
takes two or more CUs, due to the redundancy requirements, from the CU man-
ufacturer and assembles the HAS, also using equipment from other sources. This
additional equipment is outside the scope of this work.

Customers are purchasing a HAS on which they want to store sensitive
data. This data can e.g., be keys or sensitive application data of applications
running on the HAS. The sensitive data is stored in secure storage, meaning
that it resides on a hard disk in encrypted form, protected by a TPM.

A Trusted Third Party (TTP) is used to enable the secure migration of
keys between TPMs. This is the MSA in TPM 1.2 and authority in TPM 2.0.
We assume that this party keeps all keys secure, possibly, but not necessarily,
with a TPM.

3.1 Threat Model

Any attacker that controls the hardware, will also be able to circumvent the
protection offered by trusted computing, as the root of trust is potentially com-
promised. Thus, to this end it is natural to consider the CU manufacturer trusted
and it can theoretically be merged with the TTP. It is also from the CU man-
ufacturer’s perspective we mainly treat the problem. Still, mounting an attack
against the hardware is different from attacking the software controlling the
migration on the TTP. We will therefore consider them as separate entities.

In practice, many service and operating personnel, hereafter collectively
named company employees, will have access to the HAS during its lifetime. Not

Using TPM Secure Storage in Trusted High Availability Systems 249

all company employees can be considered trusted, and this is the main reason
to protect data using a TPM, as the decryption key will never leave the TPM
unencrypted. Not trusting company employees will also help the customer to
protect against other, potentially malicious, customers’ personnel.

T1. Anyone, including customer employees, can copy data and software from
drives in the HAS cabinet. They may also interact with the TPM.

T2. CU boards can be stolen, both spare boards and those already mounted in
a cabinet. Boards from customer A can be used in the HAS of customer B.

T3. HAS manufacturer employees can access data in the HAS when it is being
assembled, in particular data that is associated with the TPM.

The main goal is to protect stolen (encrypted) HAS data from being accessed
in cleartext, while at the same time provide a system with very low downtime.

4 Requirements

Based on the scenario and threat model, we define the following requirements.

R1. Data confidentiality. Data stored on secondary memory, e.g., hard drives
or memory cards, must always be encrypted. The key may never be stored
(unencrypted) on secondary memory.

R2. Redundancy. The data on a HAS must at all times be accessible, even in
the case of hardware failure.

R3. Scalability. After completed assembly by the HAS manufacturer, spare
CUs can be ordered by the customer directly from the CU manufacturer.
These are generic and not personalised for the specific customer. Thus, we
assume that anyone will be able to buy a generic CU.

R4. Customer lockdown. Only TPMs initiated by the CU factory can be used
as replacement boards. This will allow the CU factory to create boards that
are specific for a group of customers, still allowing customers to have unique
keys.

R5. TPM Compatibility. The API used by the different entities must be
compatible with both TPM 1.2 and TPM 2.0.

R6. Customer control. The customer should be the owner of the TPM, allow-
ing him to use it for other purposes such as remote attestation and key cer-
tification. This also allows the customer to reuse the hardware and TPMs
in the event of a CU manufacturer going out of business.

R7. User friendliness. Replacing CUs in the HAS should be as easy as pos-
sible for the customer. This includes minimizing the online communication
with other entities, possibly providing a completely offline solution. It also
includes minimizing the HAS interaction needed by customer employees.

We return to these requirements in Sect. 6 when evaluating the security of
the proposed solution.

For the sake of simplifying our expositions we assume further that the HAS
uses only two CUs. Thus, the key protecting the sensitive data must be identical

250 M. Hell et al.

in both TPMs so that the backup CU can immediately become active in case
the first CU fails. Further, when a CU breaks it should be replaced by a spare
CU from the CU manufacturer.

5 Proposed System Design

Due to the redundancy requirement (R2), one key must be associated with sev-
eral TPMs. This can only be done using duplicable (migratable in TPM 1.2)
keys. We first analyze how this can be achieved in TPM 1.2. Consider the most
straightforward solution of having a plain migratable key immediately below the
SRK in the hierarchy. To migrate this key to a new SRK, the TPM owner can
simply rewrap this key with the new SRK and import it to the new TPM.

TPM_AuthorizeMigrationKey //Owner authorized
TPM_CreateMigrationBlob //On source TPM
TPM_ConvertMigrationBlob //On destination TPM

The main problem with this is that the owner can rewrap the key with any key,
even one created outside the TPM. Thus, if the customer is the owner (R6) the
private part of the key is not guaranteed to be protected by the TPM at all
times (T1).

With CMK keys in TPM 1.2 and policies in TPM 2.0, the migration/dupli-
cation can be controlled by a trusted authority, even when the customer is the
TPM owner. The migration of a key then proceeds as follows.

TPM_CMK_ApproveMA //On source TPM, owner authorized
TPM_CMK_CreateKey //On source TPM
TPM_AuthorizeMigrationKey //On source TPM, owner authorized
TPM_CMK_CreateTicket //On source TPM, owner authorized
TPM_CMK_CreateBlob //On source TPM
TPM_CMK_CreateTicket //On destination TPM, owner authorized
TPM_CMK_ConvertMigration //On destination TPM

The TPM CMK ApproveMA command lets the owner bind an MSA to the CMK. The
ticket is signed by the MSA and the key can only be migrated to a destination
given in the ticket. From this it is clear that the customer can not be owner at
the time the key is first created since he could assign any key to be an MSA
public key.

An important observation is that a TPM key, we call it Ke (e for encryption),
can be used on several TPMs provided that the parent key Kp is the same on
all TPMs. The key blob is stored on (secondary) memory and loaded into the
TPM when needed. Upon loading a key, it is decrypted by the parent key. Thus,
if the parent key is Kp it can be loaded into any TPM that has Kp in the
key hierarchy. In order to have Kp in several TPM key hierarchies, it must be
migratable and any key having a migratable key as parent key must also be
migratable. Moreover, a CMK (which is migratable) may not have a migratable
key as parent. Figure 1 summarizes these restrictions.

Thus, if we wish to be able to use Ke in several TPMs without having to
migrate it, this key must be migratable, but not a CMK. The parent key Kp

can be either a plain migratable key or a CMK. Since Kp must be explicitly

Using TPM Secure Storage in Trusted High Availability Systems 251

SRK

Mig

Mig

Allowed

SRK

Mig

CMK

Not allowed

SRK

CMK

Mig

Allowed

SRK

CMK

CMK

Not allowed

Fig. 1. Key hierarchy restrictions for migratable keys. Both the TPM CMK CreateKey and
the TPM CMK ConvertMigration commands verify that the parent key is not migratable.

migrated between TPM to facilitate the use of Ke, we make use of a trusted
third party that can control this migration. On a very high level, the proposed
solution is given in Fig. 2 and can be summarized as follows.

CU factory TTP HAS factory Customer

1: generate Kp

2: SRK, cert(SRK)

3: place Kp under SRK

4: Kp

5: load Kp

CU

generate Ke

Send replacement CU

Fig. 2. Overview of the proposed system.

1. The TTP generates the CMK key Kp to be included in all new TPMs.
2. The CU manufacturer takes ownership of a new TPM and asks the TTP for

Kp to be migrated under the new SRK.
3. The TTP migrates the key to the given SRK.
4. The TTP sends migrated key, encrypted with the SRK public key, to the CU

factory.
5. The CU factory loads the key into the CU.

At this point, a generic board has been prepared with a unique SRK, and
the Kp which is common for all boards created by the same CU. The boards
are now prepared to be shipped either to a HAS factory for HAS assembly, or

252 M. Hell et al.

to a customer as replacement for a broken board. Assume it has been sent to a
HAS factory. The next step is then to generate the customer specific key Ke. We
consider three different alternatives for generating Ke, namely a TTP generated
Ke, a HAS generated Ke, and a customer generated Ke.

Since the boards are generic, we must take two important aspects into
account. First, since Ke is a migratable key in TPM 1.2, we must ensure that
it can not be migrated further by a malicious customer employee (knowing the
owner secret). This can be controlled by not disclosing the migration secret to
untrusted users, i.e., simply to destroy it after key generation. In TPM 2.0 this
can be controlled more easily by using the fixedParent attribute. Second, we
must also ensure that Ke is bound to the HAS, so it can not be used by other
customers. This can be done by restricting the use of the key to a given PCR set-
ting. In TPM 1.2, the PCR settings can be directly specified in the key structure,
while in TPM 2.0 this is achieved using policies.

5.1 TTP Generated Ke

If the Ke is generated by the TTP, the customer needs to send the PCR values
which the new key should be bound to. Note that this requires online communi-
cation between the two entities. The new key will only be loadable under Kp, and
only usable on a HAS with the correct PCR values. The steps can be described
as in Fig. 3.

TTP HAS factory Customer

read PCRs
PCRs

create key Ke

load Ke

Fig. 3. TTP generated Ke.

5.2 HAS Manufacturer Generated Ke

If the HAS manufacturer generates Ke, it can be generated upon HAS assembly.
The customer specific key is created on one CU, and then the blob is copied and
loaded on the other CU as well. See Fig. 4 for the executed steps.

5.3 Customer Generated Ke

The customer can execute the same steps as the HAS manufacturer in the section
above to generate Ke. There is no difference in commands as the hardware is
assembled in the same way as when it left the HAS manufacturer. Figure 5
describes the commands.

Using TPM Secure Storage in Trusted High Availability Systems 253

TTP HAS factory Customer

read PCRs
create key

load key

Fig. 4. HAS factory generated Ke.

TTP HAS factory Customer

read PCRs
create key

load key

Fig. 5. Customer generated Ke.

5.4 HAS Initialization

Before leaving the HAS factory, and before creating the customer-specific keys,
the HAS must personalize the HAS in such a way that the PCR values are unique
to every customer. This ensures that customer-specific keys can be created.

When the HAS arrives to the customer, the customer must verify that the
PCR values after system startup are indeed unique to the customer. This can
be done by verifying that the Stored Measurements Log (SML) includes a hash
that is customer dependent. If the HAS passes this test, it is ready to be used,
knowing that Ke can only be decrypted by this HAS.

6 Security Analysis and Comparison of Properties for Ke

Generation

We assume that any data that resides on secondary storage on the HAS can be
stolen by a malicious employee (T1). This includes the encrypted sensitive data,
the encrypted sensitive part of a TPM protected key, and key usage secrets that
are needed to use a key. While it could be possible to restrict the usage secret
to only a small number of trusted employees, thus keeping it confidential, or to
distribute it using secret sharing, we do not make such assumptions in this work.
Since Ke can only be used on a customer specific HAS, the encrypted sensitive
part of Ke can only be decrypted on this HAS. Thus, it is not possible to steal
the encrypted data and the encrypted Ke and decrypt the data using a generic
board. The sensitive data is in clear only in primary memory, when used by the
HAS software.

Since the boards are generic, a stolen board will not give an attacker any addi-
tional information compared to using their own boards. This mitigates threat T2.

Threat T3 can be mitigated to different extent depending on which Ke gen-
eration alternative is used and which TPM version is used. When using a TTP
for Ke generation or when Ke is generated by the customer, the HAS manu-
facturer employees will have no access to Ke or any information about it. If

254 M. Hell et al.

Ke is generated by the HAS manufacturer, for TPM 1.2, the security depends
on the migration secret being destroyed after the key is generated. Otherwise,
this key could be leaked to a malicious customer which is able to migrate Ke

outside the TPM. In TPM 2.0, Ke is created with fixedParent set, which can
be verified by the customer when the HAS is being initialized. Thus, it is only
for HAS manufacturer created keys in TPM 1.2 that we are not able to fully
mitigate T3, but it can be noted that an attack require cooperation between
HAS manufacturer and customer employees. Returning to T1, we can also note
that for customer created Ke in TPM 1.2, we must ensure that the migration
secret is destroyed. Thus, for TPM 1.2, higher security is achieved when Ke is
generated by a trusted third party. A summary of the different properties for
different cases are given in Table 1.

We note that there are three parts required to gain access to the secure
information stored in the HAS: the encrypted data, the customer-specific key Ke,
and the HAS itself. Thus, we cannot protect against cases where an attacker gets
hold of all three of these parts. This includes a potential case where a malicious
HAS employee cooperates with an malicious company employee at company A. If
they have access to both stolen encrypted data, and the stolen Ke from another
company B, the HAS manufacturer and employee at A may cooperate to build a
HAS with the same customer-specific PCR values as customer B, thus enabling
them to decrypt the stolen data.

Finally, we also note that our analysis relies on the assumption that the TTP
is trusted and available.

Table 1. A summary of the properties when different entities generate the key Ke.

TTP HAS man. Customer

1.2 2.0 1.2 2.0 1.2 2.0

No online communication
with other entity needed

� � � � � �

Possible to verify that Ke is
bound to Kp

� � � � � �

7 Unified API

We have developed a unified API for the proposed functionality, such that a
move from TPM 1.2 to TPM 2.0 will be as simple as possible. By looking at
the different phases of our solution, we can construct sequences of TPM com-
mands for each of the two TPM versions, such that we get the same behaviour,
abstracting away the differences between the TPM versions.

The API has been implemented and tested to ensure the correctness of the
given commands, both for TPM 1.2 and TPM 2.0. To do this, two different TPM
simulators and support libraries have been used, one for each TPM version.

Using TPM Secure Storage in Trusted High Availability Systems 255

For TPM 1.2, IBM’s Software TPM version 4720 [7] has been used, which
also includes libtpm, which can be used to interface with the simulator. For
TPM 2.0, Microsoft’s TPM2 Simulator version 1.1 [10] has been used, together
with Microsoft’s TPM Software Stack version 1.1 [9].

7.1 Generation and Migration of Kp

The first step in Fig. 2 is to generate Kp. The following steps are executed on
the TTP:

TPM 1.2

TPM_CMK_ApproveMA
TPM_CMK_CreateKey

TPM 2.0

TPM2_PolicyAuthorize
TPM2_Create

In step 2, the CU factory sends the SRK to the TTP, which then in step 3
executes the following commands to create a blob which is decryptable under
the given CU’s SRK.

TPM 1.2

TPM_AuthorizeMigrationKey
TPM_CMK_CreateTicket
TPM_CMK_CreateBlob

TPM 2.0

TPM2_LoadExternal
TPM2_PolicyDuplicationSelect
TPM2_PolicyAuthorize
TPM2_Duplicate

In step 4, the blob is sent to the CU factory, which then loads the blob into
the TPM under the SRK (step 5):

TPM 1.2

TPM_CMK_CreateTicket
TPM_CMK_ConvertMigration
TPM_LoadKey2

TPM 2.0

TPM2_Import
TPM2_Load

The CU now has Kp loaded directly beneath the SRK, and the customer-
specific key Ke can be generated.

7.2 Generation of Ke

The customer-specific key Ke can be generated using any of the alternatives given
in Sects. 5.1–5.3. The commands for each of the three cases are given below:

TTP Generated Ke

TPM 1.2

TPM_PcrRead // customer
// send PCRs TTP
TPM_CreateWrapKey // TTP
// send blob to customer
TPM_LoadKey2 // customer CU1
TPM_LoadKey2 // customer CU2

TPM 2.0

TPM2_PCR_Read // customer
// send PCRs to TTP
TPM2_PolicyPCR // ttp
TPM2_Create // ttp
// send blob to customer
TPM2_Load // customer CU1
TPM2_Load // customer CU2

256 M. Hell et al.

HAS Manufacturer Generated Ke

TPM 1.2

TPM_PcrRead // CU1
TPM_CreateWrapKey // CU1
TPM_LoadKey2 // CU1
// copy blob to other CU
TPM_LoadKey2 // CU2

TPM 2.0

TPM2_PCR_Read // CU1
TPM2_PolicyPCR // CU1
TPM2_Create // CU1
TPM2_Load // CU1
// copy blob to other CU
TPM2_Load // CU2

Customer Generated Ke. These are the same commands as used when the
HAS manufacturer generates Ke, the only difference is that they are now exe-
cuted by the customer.

TPM 1.2

TPM_PcrRead // CU1
TPM_CreateWrapKey // CU1
TPM_LoadKey2 // CU1
// copy blob to other CU
TPM_LoadKey2 // CU2

TPM 2.0

TPM2_PCR_Read // CU1
TPM2_PolicyPCR // CU1
TPM2_Create // CU1
TPM2_Load // CU1
// copy blob to other CU
TPM2_Load // CU2

7.3 CU Failure

In the event of a CU failure, the customer will receive a new CU directly from
the CU factory. This will have the key Kp loaded, as per the steps described in
Sect. 7.1. The customer will however be required to load the customer-specific key
Ke. Since the key is located beneath the common key Kp in the key hierarchy,
the same key blob that is used on the other CU can be used directly on the
new CU. Thus, the key blob of Ke is copied to the new CU, and the following
commands are executed:

TPM 1.2

TPM_LoadKey2

TPM 2.0

TPM2_Load

8 Related Work

Though there are few examples of widely adopted applications taking advantage
of TPM functionality, several use cases have been considered before. In [5,18],
the use of TPMs to secure VANETs was proposed and studied. Using TPMs
to increase the security in RFID tags and NFC communication has also been
proposed in [11] and [6] respectively.

The use of Certifiable Migration Keys in the Mobile Trusted Module (MTM)
for protecting secret data was proposed in [8].

Today, virtualization is a growing area, and there have been several different
proposals on how to use the TPM in virtual machines. In [2] a complete virtu-
alized TPM module is developed, which is then linked to the hardware TPM.
In [3] a para-virtualized solution is discussed. [13] discusses yet another design,
and also discusses migration of virtual TPMs to a large extent.

Using TPM Secure Storage in Trusted High Availability Systems 257

The use of TPMs in cloud computing has also been considered in recent
years. In [15] secure launch and migration of VMs in the cloud is discussed in
the context of trusted computing, and in [1] secure migration of virtual machines
through the use of the Trusted Platform Module is further discussed.

Remote attestation has been considered in many works before [2,4,12,14].
In remote attestation, the goal is to provide the contents of PCRs to a remote
party. The PCR values are signed with an AIK and the remote party can verify
through the signature that the system is in a known configuration. Using an
SML, the content of this, which is a set of run programs and their hashes, can
be compared to the signed PCR values. In our work, it is the customer that
verifies the PCRs and the SML.

9 Conclusions

We have proposed a solution for using TPMs to secure sensitive data in a high
availability system. The main challenge is to create customers specific keys which
can only be used in the customer’s own HAS, while at the same time allowing
generic computational units to be produced and shipped as replacement boards.
Since employees come and go, we also do not want to trust employees. Our
proposed solution relies on binding the customer specific key to a parent key
which is the same on all boards, and to also bind the key to PCR values that
are specific to a customer. We show that the increased functionality in TPM
2.0 allows a more secure solution in certain cases. In addition to the proposed
solution we define an API such that it is possible to upgrade from TPM 1.2 to
TPM 2.0 without changing the communication flow.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their valuable comments.

References

1. Aslam, M., Gehrmann, C., Bjorkman, M.: Security and trust preserving VM migra-
tions in public clouds. In: Trust, Security and Privacy in Computing and Commu-
nications (TrustCom), pp. 869–876, June 2012

2. Berger, S., Cáceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM:
Virtualizing the trusted platform module. In: Proceedings of the 15th Conference
on USENIX Security Symposium, USENIX-SS 2006, vol. 15. USENIX Association,
Berkeley (2006). http://dl.acm.org/citation.cfm?id=1267336.1267357

3. England, P., Loeser, J.: Para-virtualized TPM sharing. In: Lipp, P., Sadeghi, A.-R.,
Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 119–132. Springer, Heidelberg
(2008). http://dx.doi.org/10.1007/978-3-540-68979-9 9

4. Gu, L., Ding, X., Deng, R.H., Xie, B., Mei, H.: Remote attestation on program
execution. In: Proceedings of the 3rd ACM Workshop on Scalable Trusted Comput-
ing, STC 2008, pp. 11–20. ACM, New York (2008). http://doi.acm.org/10.1145/
1456455.1456458

http://dl.acm.org/citation.cfm?id=1267336.1267357
http://dx.doi.org/10.1007/978-3-540-68979-9_9
http://doi.acm.org/10.1145/1456455.1456458
http://doi.acm.org/10.1145/1456455.1456458

258 M. Hell et al.

5. Guette, G., Bryce, C.: Using TPMs to secure vehicular ad-hoc networks (VANETs).
In: Onieva, J.A., Sauveron, D., Chaumette, S., Gollmann, D., Markantonakis, K.
(eds.) WISTP 2008. LNCS, vol. 5019, pp. 106–116. Springer, Heidelberg (2008)

6. Hutter, M., Toegl, R.: A trusted platform module for near field communication.
In: 2010 Fifth International Conference on Systems and Networks Communications
(ICSNC), pp. 136–141 (2010)

7. IBM: IBM’s software trusted platform module. http://ibmswtpm.sourceforge.net/
8. Kang, D.W., Jun, S.I., Lee, I.Y.: A study on migration scheme for a mobile trusted

module. In: 11th International Conference on Advanced Communication Technol-
ogy, 2009, ICACT 2009, vol. 3, pp. 1672–1677 (2009)

9. Microsoft: The TPM software stack from Microsoft research. https://tpm2lib.
codeplex.com/

10. Microsoft: TSS.MSR v1.1 TPM2 simulator. http://research.microsoft.com/en-US/
downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx

11. Mubarak, M., Manan, J., Yahya, S.: Mutual attestation using TPM for trusted
RFID protocol. In: Network Applications Protocols and Services (NETAPPS), pp.
153–158 (2010)

12. Nauman, M., Khan, S., Zhang, X., Seifert, J.-P.: Beyond kernel-level integrity
measurement: enabling remote attestation for the android platform. In: Acquisti,
A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 1–15.
Springer, Heidelberg (2010). http://dx.doi.org/10.1007/978-3-642-13869-0 1

13. Sadeghi, A.-R., Stüble, C., Winandy, M.: Property-based TPM virtualization. In:
Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp.
1–16. Springer, Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-85886-7 1

14. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a
TCG-based integrity measurement architecture. In: Proceedings of the 13th Con-
ference on USENIX Security Symposium, SSYM 2004, vol. 13, p. 16. USENIX
Association, Berkeley (2004). http://dl.acm.org/citation.cfm?id=1251375.1251391

15. Santos, N., Gummadi, K.P., Rodrigues, R.: Towards trusted cloud computing. In:
Proceedings of the 2009 conference on Hot topics in cloud computing. USENIX
Association (2009)

16. Trusted Computing Group: TPM main specification, Version 1.2, Revision 116,
March 2011

17. Trusted Computing Group: Trusted Platform Module Library Specification, Family
“2.0”, Level 00, Revision 01.07, March 2014

18. Wagan, A., Mughal, B., Hasbullah, H.: VANET security framework for trusted
grouping using TPM hardware. In: Communication Software and Networks, 2010,
ICCSN 2010, pp. 309–312 (2010)

http://ibmswtpm.sourceforge.net/
https://tpm2lib.codeplex.com/
https://tpm2lib.codeplex.com/
http://research.microsoft.com/en-US/downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx
http://research.microsoft.com/en-US/downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx
http://dx.doi.org/10.1007/978-3-642-13869-0_1
http://dx.doi.org/10.1007/978-3-540-85886-7_1
http://dl.acm.org/citation.cfm?id=1251375.1251391

APP Vetting Based on the Consistency
of Description and APK

Weili Han1,2,3(B), Wei Wang1, Xinyi Zhang 1, Weiwei Peng1, and Zheran Fang1

1 Software School, Fudan University, Shanghai, China
2 Key Lab of Information Network Security,
Ministry of Public Security, Shanghai, China

3 Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China
wlhan@fudan.edu.cn

Abstract. Android has witnessed a substantial growth over the years, in
the market share as well as in the number of malwares. In this paper, we
proposed a novel approach to detect potentially malicious applications,
based on the semantic relatedness between the applications’ descriptions
and the apk files. We gathered an application database of 7,570 valid
applications for training and testing, finding that about 16.6 % of the
tested applications exhibit a lack of relatedness between the apk files and
descriptions, due to either inadequate embedded text in apk file, too short
a description, unsuited description, or being a malicious application. In
additions, there are 4 % of applications unjustly deemed as unrelated.
Our study showed that the semantic based approach is applicable in
terms of malware detection and in judging the soundness of descriptions.

Keywords: Android security · Malware · NLP · APK · Description

1 Introduction

Recent years, smart phones and mobile devices have become more and more
popular. A recent report from International Data Corporation [5] showed that
the number of Android smart phones reached 81.1 % in the first quarter of 2013.
And the number of Android applications is rapidly growing. According to a
report from AppBrain [1], the official Android Market held a total of 1,316,773
applications by July 30, 2014.

Security on Android has become a hot topic over the years, with a growing
number of malicious applications threatening the privacy and financial security
of users. The automated detection of malicious applications was put forward
by Google in the form of Google Bouncer, which, according to RiskIQ [2], was
able to detect 60 % of the malicious applications in the official android market,
Google Play. However, the detection rate has drastically decreased with time,
by the year 2013, it was able to detect only 23 % of the malicious applications.
This shows a serious need for new methods of malware detection.

Such security problem is due to Android’s open platform and unrestricted
application market, using which any developer, professional, amateur or even
c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 259–277, 2015.
DOI: 10.1007/978-3-319-27998-5 17

260 W. Han et al.

malicious, are able to develop and sell their work to the world [7]. Such a low
barrier attracts many developers unskilled in the English language, flooding
the market with poorly described application, making it possible for malicious
applications to hide among them.

In light of the lacking in malware detection methods and descriptions writing
aids with the android market, we intend to develop a tool, being the first to
utilize the relatedness between the application descriptions and the embedded
text in apk files to achieve malicious application detection and to discover poorly
written descriptions.

Following this innovative approach we designed a framework to analyze the
relatedness between an application’s description and the embedded text in the
apk file. We are able to achieve a recall of 91.2 % in the most tolerant case.
We further analyzed the applications with its descriptions and apk file deemed
unrelated, find that 77 % of them falls into one of the following categories, (1)
Inadequate Embedded Text, (2) Short Description, (3) Unsuited Description,
(4) Malicious Application.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
background of the Android System and some tools used in our work, NLTK and
ESA. Section 3 defines the problem and the objective of our system, while Sect. 4
outlines the framework of our system, the acquisition of data and rationalize
some of the design choices. Section 5 evaluates the system and analyzed the
evaluation results. We then discuss the strength and weakness of the system in
Sect. 6, the related works in Sect. 7. At the end, we conclude the paper in Sect. 8.

2 Background Knowledge

2.1 Android System

Android applications are mainly written in Java, with some configurations and
resources defined in XML format. Developers need to register all the Activities
the application use in the Manifest file. Activity in Android is an application
component that provides a screen with which users can interact in order to per-
form specific operations, generally, the appearance of an Activity is determined
by a layout XML file (e.g. main.xml), where a hierarchy of viewable widgets
is defined. Some of the texts in an Activity are statically determined, like the
text on a button or some description words, these texts can be defined in three
ways: (1) developer declares a string resource in string.xml, and includes the
string resource in the view’s text field within layout XML file, (2) developer
directly assigns a string value to the text field of a view within layout XML file,
(3) developer assigns a constant string to the text fields of a view’s object in
Java code.

By coding convention, text to be displayed to users are written mostly
through the first and the second way. Thus, we can extract the displayed string
from the string.xml file and layout XML file.

APP Vetting Based on the Consistency of Description and APK 261

2.2 Text Sanitization

Natural Language Toolkit (NLTK) is a leading platform providing advanced
language processing tools which are used in our system.

RegexpTokenizer Used to break sentences into words.
tag.pos tag Used to tag words by part of speech.
RegexpParser Based on a grammar, given by regular expression, used to parse

a sequence of words into a tree structure.
PorterStemmer Proposed by Porter in 1980, Porter Stemming algorithm [14]

is used to stem words, by removing word suffix, uniforming tense, converting
plurals and singular noun.

WordNetLemmatizer This stemmer utilize the morphy function of Word-
Net [8], and preform no action if the word is not recognized by WordNet.

2.3 Explicit Relatedness Analysis (ESA)

ESA [9] is used to calculate the relatedness between text. The main idea behind
ESA is to construct a multidimensional semantic space based on a given set
of literature, and then put the vector to be analyzed into the semantic space,
turning the semantic relatedness between two pieces on text into the cosine value
of the angle between two vectors projected into the semantic space.

It is called explicit semantic analysis because each dimension in the seman-
tic space is an explicit article in the literature. While the projection into the
semantic space is based on the overlapping of words between the text.

The reason we choose ESA as the tool of semantic relatedness analysis is
because that ESA has its own literature as the building blocks, greatly decreasing
the size of the data needed for training. In comparison to synonym based tools
like WordNet, ESA is more focused on the relatedness on a broader scale and
provides a quantitative representation of the semantic relatedness.

We use esalib [13], the best maintained open-source ESA library available,
which uses 2005 wikipedia as the literature set.

3 Problem Definition

We define the semantic vector for the embedded text of application app as below:

Tapp = [v1, v2, v3, ..., vn]T

where vi =

{

1 if wi ∈ MT [app]
0 otherwise

Where MT [app] is the list of semantically significant phrases in the embedded
text of app.

262 W. Han et al.

Similarly, semantic vector of app’s description is defined as:

Dapp = [v1, v2, v3, ..., vn]T

where vi =

{

1 if wi ∈ MD[app]
0 otherwise

Where MD[app] is the list of semantically significant phrases in the descrip-
tion of app.

Our objective is to find a relatedness function r̂el approximating the actual
relatedness between the description and embedded text as closely as possible.

r̂el(T,D) =

{

1 if T is deemed related to D

0 otherwise

We then need to introduce a few assumptions.
First, we suppose there is an ideal function rel.

rel(T,D) =

{

1 if T is actually related to D

0 otherwise

Second, suppose that for most applications, its description and embedded
text is related.

∑

app∈App

rel(Tapp,Dapp) ≈ |App|

App here means the set of all applications in the dataset.
Third, there exist some similar applications, among which these descriptions

and embedded text points to similar functionalities and thus relate to each other.
Given an application, the number of applications similar to it grows linearly with
the size of the dataset.

More specifically, given an X uniformly distributed on the set App, there
exist α and β, such that the following equation is satisfied.

E(
∑

app∈App

rel(TX ,Dapp) +
∑

app∈App

rel(Tapp,DX)) ≈ α · |App| + β

The expectation is calculated as:
∑

X∈App

∑

app∈App

rel(TX ,Dapp) +
∑

X∈App

∑

app∈App

rel(Tapp,DX)

≈ α · |App|2 + β · |App|
2 ·

∑

app1∈App

∑

app2∈App

rel(Tapp1 ,Dapp2) ≈ α · |App|2 + β · |App|
∑

app1∈App

∑

app2∈App

rel(Tapp1 ,Dapp2) ≈ α′ · |App|2 + β′ · |App|

APP Vetting Based on the Consistency of Description and APK 263

We then introduce two measurements, precision and recall, to examine the
effectiveness of our approximation r̂el. To avoid the introduction of subjective
error, we take the fact of whether the texts are from the same application as
ground truth, which is to say, we deem a piece of embedded text and a description
as matched if and only if they are from the same application. Hence, precision
and recall should be in forms as below.

precision =

∑

app∈App r̂el(Tapp,Dapp)
∑

app1∈App

∑

app2∈App r̂el(Tapp1 ,Dapp2)

recall =

∑

app∈App r̂el(Tapp,Dapp)
|App|

Recall stands for the portion of applications that have their own embedded
text and description deem related, which, according to assumption two, should
be approximate to 1. On the other hand, precision stands for the portion of
embedded text and description pairs that actually come from the same applica-
tion, among all that are deemed related, which, according to assumption number
three, is approximately 1

α′·|App|+β′ .
In order to avoid the presence of |App| in precision’s ideal value, we define

precision′ as a replacement of precision. We define precision′ as the expected
precision when each piece of embedded text is compared with two descriptions,
one from the applications itself, and another randomly chosen among all test
samples, which gives,

precision′ =

∑
app∈App r̂el(Tapp, Dapp)∑

app∈App(EX(r̂el(Tapp, DX)) + r̂el(Tapp, Dapp))

≈ |App|
α′ · |App| + β′ + |App|

≈ 1

α′ + 1
when |App| is large

α′ is dependent on the real life condition. Our goal is to let recall be close to 1,
which precision′ is close to 1

α′+1 ; thus the objective function is defined as,

F1 =

⎧

⎨

⎩

2 · precision′·recall
precision′+recall if precision′ ≤ 1

1+α′

2 ·
1

1+α′ ·recall
1

1+α′ +recall
otherwise

And the problem becomes to find a r̂el to make F1 as high as possible.
For example, suppose the total number of applications is 1,000, with a recall

of 90 % and a precision of 10 %, then the adjusted F1 score should be 94 % when
α′ is less than 1 %.

This applies when in the test set, each application has its embedded text
matched against all 1,0000 descriptions. However, we now want to reduce the
workload by randomly selecting 49 descriptions, in addition the one description
from the applications, to matched against the embedded text. Suppose in this
case, the recall is still 90 % which the precision become 12 %, the adjusted F1

score should be 88 % with precision′ as 86 %.

264 W. Han et al.

4 System Design

4.1 Framework

Our system takes in an application and a description, after a serious of processing
and decision making, decides whether these two are related semantically.

Fig. 1. System implementation outline

As shown in Fig. 1, the system is designed into the following modules.

Sanitization. In sanitization, we remove filter and clean the texts to extract
strings with semantic relevance. Using the tools of NLTK, we split the sen-
tences according to regular expression, tag words with their part of speech,
combine words into phrases, stem words and remove stopwords, obtain a list
of phrases in the ends.

Vectorization. Using 0 and 1 to represent the existence of a word in semantic
vector. The involved vectors includes,
v1 The vector representing the given description
v2 The vector representing the embedded text in the given application
V3 The reference semantic vectors generated before hand from 50 randomly

chosen descriptions.
ESA Semantic Relatedness Analysis. Using v1 and v2 generated in Vector-

ization, ESA relatedness are calculated. Average ESA Relatedness are the
average of the relatedness between v2 and the 50 vectors in V3.

APP Vetting Based on the Consistency of Description and APK 265

Logistic Regression Classification. Using the classification function trained
before hand, applying which to input vector given by the current ESA relat-
edness, average ESA relatedness, description, and embedded text, we obtain
a result in the range of 0 to 1. Based on the threshold, the system then gives
a conclusion on whether the two pieces of text are deemed related.

4.2 Data Setup

Obtaining Data. To obtain the description information of Android applica-
tions, we use an open-source third party script, android-market-api [3]. Since
Google Play strictly restricts the number of requests to 500 applications per
user, denying to reply useful information when the limitation is exceeded, we
have to use multiple google account to accomplish the crawling of application
description as well as apk file. Even then, we are only able to obtain about 10,000
applications’ information. To extract semantic information from the apk file, we
use the tool apktool [10] provided by Google to obtain string file strings.xml,
and layout files. Since by coding convention, the text displayed in user interface
would be stored in these files, we choose these as the source of embedded text
information.

Data Sanitization. After gathering the application descriptions, we then san-
itize them to extract key phrases for further processing.

First, we substitute the non English characters to their closest English coun-
terparts, such as converting Loẅis to Lowis.

Second, we customize the RegexpTokenizer to deal with cases of abbrevi-
ation (e.g. U.S.), combined-words and percentage, currency, and numbers (e.g.
10.2 %). Then we split the sentence according to punctuation and spaces. The
specific regular expressions used are as listed.

Abbreviation ([A-Z])(\.[A-Z])+\.?
Combined-words \w+(-\w+)*
Percentage, currency and numbers \$?\d+(\.\d+)?%?
Ellipse \.\.\.

Third, we use the tool tag.pos tag to perform part of speech tagging.
Fourth, we use RegexpParser to extract phrases, focusing mainly on noun

phrases, including single noun, noun+noun, adjective+noun which make up
84.8 % (need change) of the noun phrases in our dataset.

In addition, we decide to keep all the verbs that is identified. These two types
of words are what we believe contains most semantic meaning.

Noun Phrases <NN.*|JJ>*<NN.*>
Verb <VB.*>

At last we stem all the extracted words, remove stopwords, duplicates or
words that are too long or too short.

266 W. Han et al.

Embedded Text. In dealing with embedded text, we need to first remove
spacing characters such as “\n” and “\t”, line numbers and html tags. Texts
embedded in apk file can be classified into two type, phrases and sentences.
Phrases are fragments of words lacking a full grammatical structure, usually
used as texts on buttons, or options; while sentences are used in introduction
of the application, copyright information, documentations, etc. In this case, we
roughly assume that word sequences consisting of more than four words are
sentences.

Sanitization are performed to these sentences in ways similar to those in
descriptions.

Data Model. The semantic information we processed in Sect. 4.2 is then stored
in json file, with a mapping relationship as below.

MD [app] = [wi1 , wi2 , ..., win
]

In the definition, app means the name of the given application, n means the
total number of phrases in the application description. While W is the list of all
phrases extracted from descriptions, with wi meaning the ith words in W . MD
stores the phrases mapping of descriptions.

Embedded text are stored in similar ways.

MT [app] = [wi1 , wi2 , ..., win
]

In the case, MT stores the mapping of embedded text.

4.3 Classification Model

Since the r̂el function to be generated is a classification function, we use logistic
regression, one of the most popular forms of binary regression [15], to derive the
model.

Preliminary Analysis. We give an preliminary analysis of the dataset, which
consists of 7,570 applications.

First, we analyze the difference in relatedness across various categories.
According to Fig. 2, there are actually observable difference in description text
relatedness across categories.

Applications in Categories like “Media and Video”, “Personalization”, “Pro-
ductivity” and “Tools” have a higher relatedness on average. The number of
applications in “Media and Video” is rather low, taking up on 52 among the total
of 7,570 applications. Typical applications in this category include hdplayer,
videoeditor, and utorrent, all require the technique of video encoding or fast
decoding, some even need a high bandwidth to provide video content to the
client. All these functionalities are demanding on the technical side, usually sup-
ported by well developed software company or website, with considerable number

APP Vetting Based on the Consistency of Description and APK 267

of staffs and users. It is quite natural for these kind of applications to have well
written descriptions.

“Personalization” includes mobile theme, mobile font management applica-
tions, lock screens, etc. Descriptions and embedded texts in this category tend
to be short, functionalities tend to be focused; thus the descriptions and texts
do not diverge due to the simplicity.

“Productivity” and “Tools” are mostly used to provide technical service (such
as file management and anti-virus), which are also mostly provided by established
companies.

On the other hand, categories like “Books &References”, “Education”
and “Libraries &Demo” seems to have a lower relatedness on average. With
“Libraries &Demo”, applications in this categories are under development, the
lack of relatedness seems quite natural. For “Education” and “Book &Refer-
ences”, these two categories are mostly intended as a learning aid. Some are
originally intended to meet the developer’s own need, without a marketing team
to write the description.

Fig. 2. ESA relatedness distribution across categories

From Fig. 3, we can reenforce our claim that “Media and Video”, “Produc-
tivity” and “Tools” are mostly developed by established teams since they all
have a longer description length on average; while “Libraries &Demo” have a
very small average description length.

We then go on to analyze whether the relatedness between an application’s
embedded text and its own description is actually higher than that between
others. As the reference point, we randomly selected 50 descriptions; for a given
embedded text, we calculated the average relatedness between it and the selected
descriptions.

268 W. Han et al.

Fig. 3. Description length distribution across categories

Fig. 4. Relatedness and average relatedness distribution

From Fig. 4, we can observe that texts from the same applications generally
have a higher relatedness than the average. However, there is no distinct bound-
ary between these two, which is to say, we will not able to find a threshold that
could perfectly tell apart whether the texts are from one application. Say, we set
the threshold to 0.2, 87.7 % of the applications can have its own embedded text
and description correctly related; while 66.1 % of the average relatedness would
be beyond the threshold, giving a precision’ of 56.9 %.

A sampled average of relatedness is compared to the relatedness from same
applications. As shown in Fig. 5, the dots in the lower triangle stands for applica-
tions whose embedded text has a relatedness to its own description lower than the
average of sample texts, taking up 11.5 % of all applications. This means that using
average relatedness as aid to classification can improve the recall over threshold-

APP Vetting Based on the Consistency of Description and APK 269

Fig. 5. Relatedness against average relatedness

based classification; however, there is still 46.6 % of the average relatedness above
that of the applications own relatedness, giving a precision’ of 65.0 %.

Beyond the usage of relatedness and average relatedness we develop a more
detailed model to perform the classification.

Logistic Regression. First we examine the factors that would possibly reflect
the actual relatedness.

score the ESA relatedness value between the embedded text and description to
be classified

avgScore the average ESA relatedness between the given embedded text and
50 randomly chosen descriptions

descLen the number of phrases in the given description
textLen the number of phrases in the given embedded text

The effect of average relatedness had been discussed in Sect. 4.3. Considering
this avgScore is compared against score, we use reScore which is score

avgScore to
replace it.

In addition, in descLen and textLen affect the dimensions of the semantic
vector they are kept as influencing factors.

Running Logistic Regression on the factors listed gives result are shown in
Table 1.

Using the model, and ground truth classifications we can then project the
four factors on to the region (0, 1), making the projected value for texts from
the same application close to 1 while that for texts from different applications

270 W. Han et al.

Table 1. Weights in logistic regression

Estimate Standard Err Z value p value

Intersect -7.625e+00 4.214e-02 -180.948 < 2e-16

score 6.860e+00 1.427e-01 48.077 < 2e-16

reScore 1.803e+00 3.301e-02 54.628 < 2e-16

descLen -5.570e-04 1.653e-05 -33.699 < 2e-16

textLen 6.077e-07 1.965e-07 3.092 0.00199

close to 0. As shown in Fig. 6, most of the projected value for not matched pairs
are hold in a small region.

Fig. 6. Logistic regression classification

As was described in Sect. 3, given α′ we want to find the threshold, such that
F1 is the highest.

In Fig. 7, we plot recall against precision′, depending on α′ different thresh-
old is selected, detailed values are listed in Table 2.

5 Evaluation

5.1 Prototype Implementation

All codes in python are written and run in Python2.7, with Windows 8 Oper-
ation System, 4-Gigabytes of memory. Functionalities implemented through
python includes text sanitization and storage, handling of length information,
determining threshold, and part of the graphs. ESA relatedness calculation is
implemented in Java, with OpenJDK 7u51 on Operating System Ubuntu 13.10,
16-Gigabytes of memory.

APP Vetting Based on the Consistency of Description and APK 271

Fig. 7. Recall against Precision′

5.2 Experiment Setup

There are 7,570 valid applications obtained and used in our work, whose apk
files and descriptions are crawled from Google’s official Android market, Google
Play. Although the default language is English, due to some intentional of unin-
tentional error, some of the applications’ descriptions are not in English, which
are discarded.

In order to evaluate our system, we divide the applications into two sperate
parts, performing as the training set and the test set. The training set consists
of 347,428 applications while the test set consists of 38,602 applications.

Based on different choice of α′ the measurements are calculated, as is shown
in Table 3.

Table 2. Threshold and corresponding F1 score

1
1+α′ Threshold Recall Precision′ F1

0.6 0.0050 0.915 0.600 0.725

0.7 0.0090 0.861 0.700 0.772

0.8 0.0143 0.803 0.800 0.801

0.9 0.0203 0.767 0.855 0.809

1.0 0.0203 0.767 0.855 0.809

We compare our method, based on Logistic Regression (annotated as LR),
with the straight forward threshold on ESA relatedness approach (annotated
as TH). As shown in Table 4 and illustrated in Fig. 8, logistic regression has

272 W. Han et al.

Table 3. Evaluation results

1
1+α′ TP FP FN Recall Precision Precision’ F1

0.6 662 23743 64 0.912 0.0271 0.576 0.706

0.7 616 14255 110 0.848 0.0414 0.674 0.751

0.8 575 7716 151 0.792 0.0694 0.776 0.784

0.9 544 4837 182 0.749 0.101 0.835 0.790

1 544 4837 182 0.749 0.101 0.835 0.790

Table 4. Comparison with Threshold-based approach

Recall precision precision′ F1

LR TH LR TH LR TH

0.749 0.101 0.0605 0.835 0.752 0.790 0.750

0.792 0.0694 0.0478 0.776 0.705 0.784 0.746

0.848 0.0414 0.0351 0.674 0.637 0.751 0.728

0.912 0.0271 0.0234 0.576 0.539 0.706 0.678

Fig. 8. Method precision comparison

made noticeable improvement in comparison to the threshold-based approach,
especially when recall is not that high.

5.3 Our Findings

We examined the applications that have their own embedded text and descrip-
tion deemed unrelated, and classifies the reason behind such misclassification.
We find that there are about 23 % applications deemed related by manual exam-
ination, containing adequate text length and indicative sentences. However, for
the rest 77 % there are four reasons behind our “misclassification”, the distrib-

APP Vetting Based on the Consistency of Description and APK 273

Table 5. Distribution of reasons behind “Misclassification”

Type Percentage(%)

Related 23

Inadequate Embedded Text 50

Short Description 26

Unsuited Description 12

Malicious Application 1

ution of which is as shown in Table 5. Note that some applications actually fall
in multiple categories.

Inadequate Embedded Text. From Fig. 9, we can observe that some of the
applications deemed unrelated have much less embedded text then normal ones.

The lack of embedded text is normally the result of two conditions. Either the
application has very few functionalities so not much text is displayed in the user
interface, a typical example of which is Muzika. This application only provides
the functionality to search and download copyleft music, therefore, the only
application related words in the embedded text are “search”, “length”, “size”
and “bps”, which can not set up an effective correlation with its description.

Another condition is when the developer do not follow the coding convention
of putting interface text into the string.xml or layout file, but instead hardcoded
it or put it in the database, leaving little useful information for our system. One
typical example of this is ANT+, it has only a few entries in layout file and even
fewer in string.xml, however, the magnitude of the strings hardcoded in the apk
file actually approaches 72 kilo-bytes.

The inadequacy of embedded text can be somewhat mitigated by the intro-
duction of hardcoded string as embedded text, however, it would introduce much
noise to the system, considering that we should encourage the adherence to cod-
ing convention, we decide not to take in the hardcoded string into consideration.

Fig. 9. Distribution of embedded text length

274 W. Han et al.

Fig. 10. Distribution of description length

Short Description. From Fig. 10, some of the applications deems unrelated
has much shorter description then normal ones. This lack to description makes
it harder to establish a connection between the application and the description.
Typical applications that fall into this category is either made by individuals
instead of a company or that it relies on introduction channel other the appli-
cation market.

A typical example is Subway Surfers News, as a fan-made application dis-
playing news, videos for the game Subway Surfer, the application is spread
through fan groups of the game. Hence, its description is rather simple, only
pointing out the functionality of news and video display, with no reference to
functionalities implemented such as, QR-code scanning, initiating events, build-
ing albums, audio recording and coupons.

Inadequate descriptions like this could drive away potential users. Our system
would warn the developers when such things happen, thus help the developers
to better promote their application.

Unsuited Description. Some descriptions, although pretty long, failed to
cover the actual functionalities of the application. Some elaborate on the intro-
duction of their company (e.g. DHgate Mobile, some quoted many reviewers
opinion (e.g. Nexercise), but talk little about the functionality.

All these lacks a strong correlation with the application, thus leading to
a rather low relatedness. Our system can spot such problem, and suggest the
developers to amend their description to a more informative state, making better
impression on the potential users.

Although fetch from the Google Play in U.S., some applications still use
a foreign language as its description (e.g. Weibo), these also pose as unsuited
descriptions. Since some English words are mingled in the description they are
not filtered out during preprocessing.

Malicious Application. Some applications due to reason unknown, use the
application content for other, put on a different name and get into the mar-
ket (e.g. Friend Locator, who stoles content from 360live), which leads to
difference between the application description and the embedded text.

APP Vetting Based on the Consistency of Description and APK 275

6 Discussion

Based on the relatedness between embedded text and description, we study the
state of description writing currently on the Android market. We implemented
an innovative system to decided whether the description is in accordance with
the application, helping the developers and Android market administrator to
evaluate the quality of the description automatically.

Different from related works, our study focus on the semantic related-
ness,using text shown to the user during usage to judge the description, which
is an approach never attempted before.

6.1 Weaknesses

In calculating text-to-text relatedness, because the limit training set size we
currently possess, we use ESA as the tool, which relies on external knowledge
base in calculation. However, since new words are continually emerging in this
age, external knowledge base may become outdated, failing to catch the meaning
of new brand names, product names, etc. This may reduce the accuracy of our
classification over time.

In terms of description aid, we are only able to alert the developers of unjust
descriptions, without detailed suggestions on how it may be improved.

7 Related Work

The closest related work is AutoCog [16], which examines the consistency
between an application’s description on Google Play and the permissions it
requires, they also leverage NPL to understand the functionality of an appli-
cation, while they tried to fetch semantic features from “what the developer
tells the user”, i.e. the description, we get this information from “what the user
actually see”, i.e. the actual semantic strings, we argue that semantic strings
extracted from user interfaces of applications contains more straightforward and
more detailed information about what this application would do.

There are many previous works that focuses on these kinds of problems in
Android permission system. Han et al. [11] proposed a framework of Collabora-
tive policy administration, where the malicious applications can be detected due
to abnormal permission configuration. The descriptions of applications may be
used to measure the similarity of two applications, then help identify the abnor-
mal permission configuration [17]. The descriptions of applications can be used
to help role mining algorithms too. Enck et al. [6] observed that some specific
combinations of permissions could be used as signature of malware, so they intro-
duced a set of security rules and a tool called Kirin to check the application’s
permission requirements against these rules. Kirin cares about application’s per-
mission request only but does not examine whether these permission are really
need by the application. Kathy et al. [4] moved one step further, they introduced

276 W. Han et al.

PScout to statically check the source code of Android and built a set of map-
pings between Android Framework APIs and the permissions each API needed.
With this set of mappings at hand, one can easily verify that whether an appli-
cation over claimed privileges that it would not use, but they cannot handle the
permission misuse problem nor the situation where repackaged malware invoked
additional APIs that are irrelevant to the functionality of the origin application
to do malicious things.

8 Conclusion and Future Work

Our system takes in apk files and descriptions; uses natural language processing
to normalize the text into semantic vectors; calculate the relatedness between
vectors from the given text; taking into consideration size of embedded text,
description length, and relatedness, decide whether the apk file and the descrip-
tion are related.

Assuming tested applications all have their descriptions and embedded text
related, we performed a test over 7,570 applications, and achieved a recall of
91.2 % in the most tolerant scenario. Under a stricter standard, 25.1 % of the
applications are misclassified, by manual examination, we find that among these
25.1 % of applications, about 77 % fall into one of the four categories: (1) Inad-
equate Embedded Text, (2) Short Description, (3) Unsuited Description, (4)
Malicious Application.

We hope to dealt with the problem of inadequate embedded text, finding the
threshold, below which the developers should be notified that the given applica-
tion contains too little information. And if we detect that there is many semantic
information hardcoded in the program, we should suggest the developers to per-
form a reconstruction.

For the to-be-outdated knowledge base, as the training set grows larger we
consider using the training set itself, instead of the external knowledge base, to
generate text-relatedness measurement. Online learning [12] can then be used to
keep the measurement updated.

In the future we may design a better storage schema for the semantic vectors,
so that pieces semantically close to the given text can be quickly located and
used for description suggestion.

Acknowledgement. This paper is supported by 12th Five-Year National Develop-
ment Foundation for Cryptography (MMJJ201301008), Key Lab of Information Net-
work Security, Ministry of Public Security (C13612), Natural Science Foundation of
Shanghai (12ZR1402600). We thanks anonymous reviewers for their comments.

References

1. Number of android applications. Technical report, AppBrain (2014)
2. Research also shows steady and significant drop in number of malicious apps being

removed in past three years. Technical report, RiskIQ (2014)

APP Vetting Based on the Consistency of Description and APK 277

3. An open-source api for the android market. https://code.google.com/p/
android-market-api. Accessed 2014

4. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: Pscout: Analyzing the android per-
mission specification. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS 2012, pp. 217–228. ACM, New York (2012)

5. Chau, M., Reith, R., Ubrani, J.: Worldwide quarterly mobile phone tracker. Tech-
nical report, International Data Corporation (2014)

6. Enck, W., Ongtang, M., Mcdaniel, P.D.: On lightweight mobile phone application
certification. In: ACM Conference on Computer and Communications Security, pp.
235–245 (2009)

7. Fang, Z., Han, W., Li, Y.: Permission based android security: issues and counter-
measures. Comput. Secur. (COSE) 43, 205–218 (2014)

8. Fellbaum, C.: WordNet An Electronic Lexical Database (1998)
9. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-

based explicit semantic analysis. In: International Joint Conference on Artificial
Intelligence, pp. 1606–1611 (2007)

10. Google. android-apktool. https://code.google.com/p/android-apktool. Accessed
2014

11. Han, W., Fang, Z., Yang, L.T., Pan, G., Wu, Z.: Collaborative policy administra-
tion. IEEE Trans. Parallel Distrib. Syst. (TPDS) 25(2), 498–507 (2014)

12. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm.
In: International Symposium on Neural Networks (1993)

13. Knoth, P., Zilka, L., Zdrahal, Z.: Cross-lingual link discovery in wikipedia using
explicit semantic analysis. In: The 9th NTCIR Workshop Meeting, pp. 6–9, Tokyo,
Japan, December 2011. Knowledge Media Institute

14. Porter, M.: An algorithm for suffix stripping. Program-electron. Libr. Inf. Syst. 14,
130–137 (1980)

15. Pregibon, D.: Logistic regression diagnostics. Ann. Stat. 9, 705–724 (1981)
16. Qu, Z., Rastogi, V., Zhang, X., Chen, Y., Zhu, T., Chen, Z.: AutoCog: measuring

the description-to-permission fidelity in android applications. In: ACM Conference
on Computer and Communications Security (2014)

17. Zhang, X., Han, W., Fang, Z., Yin, Y., Mustafa, H.: Role mining algorithm evalua-
tion and improvement in large volume android applications. In: Proceedings of the
First International Workshop on Security in embedded systems and smartphones
(SESP 2013), conjunction with ASIACCS 2013 (2013)

https://code.google.com/p/android-market-api
https://code.google.com/p/android-market-api
https://code.google.com/p/android-apktool

Traitor Tracing Based on Partially-Ordered
Hierarchical Encryption

Yan Zhu(B), Dandan Li, and Liguang Yang

School of Computer and Communication Engineering,
University of Science and Technology, Beijing 100083, China

zhuyan@ustb.edu.cn

Abstract. Recently, more and more enterprises and individuals have
moved their data into the cloud. To meet this practical requirement, this
paper addresses how to establishes a bridge between role-based access
control (RBAC) and cloud storage in order to fully preserve investment
in existing RBAC systems. We present a new scheme for secure migrat-
ing the resources from RBAC systems to cloud storage. This scheme
takes full advantage of RBAC, which provides a well-designed and easy-
to-manage approach for accessing cloud resources without user inter-
vention. This scheme, called Partially-ordered Hierarchical Encryption
(PHE), which implements the partial-order key hierarchy, similar to role
hierarchy in RBAC, in public-key infrastructure. In addition, this con-
struction provides traitor tracing to support efficient digital forensics.
The performance analysis shows that our construction has following fea-
tures: dynamic joining and revoking users, constant-size ciphertexts and
decryption keys, and lower overloads for large-scale systems.

Keywords: Security · Encryption · Cloud storage · Partial order ·
Key hierarchy · Traitor tracing

1 Introduction

In recent years, more and more enterprises and individuals have moved their
data, such as personal data and large archive system, into the cloud. Cloud-
based storage could be particularly attractive for consumers by providing on
demand capacity, low-cost service, and long-term archive. Furthermore, cloud
services have brought great convenience to people’s lives because consumers can
access applications and data from the cloud anywhere in the world on demand.

However, there exist some obstacles for migrating the resources in informa-
tion systems, especially for an amount of existing RBAC systems, into the public
cloud. One of these obstacles is the security of migrated resources. Several recent
surveys [1] show that 88% potential cloud consumers worry about the privacy
of their data, and security is often cited as the top obstacle for cloud adoption.
Unfortunately, traditional security mechanisms, such as access control technol-
ogy, are not suitable for the cloud environment due to the outsourcing-service

c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 278–293, 2016.
DOI: 10.1007/978-3-319-27998-5 18

Traitor Tracing Based on Partially-Ordered Hierarchical Encryption 279

characteristics of cloud storage and the untrusted or honest-but-curious assump-
tion of cloud service providers. On the other hand, the protection of the out-
sourced data against illegal redistribution via traitor’s illegal decoders (or illegal
decryption softwares) has become increasingly important due to huge potential
commercial value of data stored in cloud.

In order to solve this issue, attribute-based encryption (ABE) [2–6] has been
proposed in the recent years. Although ABE is a powerful tool which meets a
variety of application requirements, the current ABE schemes cannot fulfill the
requirements for the existing RBAC systems owing to lack of support for partial
ordering relations. It is well-known that RBAC is an industry recognized and
widely adopted access control model. In this model, role hierarchy (RH) is an
important notion, which reflects organization’s lines of authority and responsibil-
ity. Mathematically, role hierarchies are partial orders. Unfortunately, this kind
of partial ordering relation still cannot be implemented in the existing ABEs.
Therefore, it is necessary to develop a new RBAC-compatible encryption scheme
to support the secure migration from RBAC systems into the cloud.

To construct a cryptosystem compatible with RBAC model [7], several
schemes for hierarchical key management (HKM) have been designed [8,9]. These
existing schemes have following common features: 1) each user has a secret-key
ski corresponding to a role ci in RH; 2) there exists an efficient way to derive a
descendant’s key skj from the own key ski in accordance with the partial order
relation cj � ci in RH; and 3) key derivation can be implemented under the
precondition of the existence of an one-way function.

Existing schemes can effectively derive the keys with the help of partial order
structure. However, such kind of derivation process has following problems:

– A role may be assigned to multiple users who share the same secret-key. That
means there is no way to distinguish those assigned users; and

– The secret-key derivation is not able to support additional function, such as
the traitor tracing, in terms of digital forensics for group-oriented cryptosys-
tem.

To address these problems, it is necessary to design a construction for hierarchical
cryptosystems, considering the new features provided by some recently proposed
cryptography technologies, such as IBE [2], HIBE [10] and ABE [11]. In such a
construction, a user secret-key must be unique and is accompanied by the user
identity. In addition, the derivation of secret-key in such a construction should
be avoided. To this end, we introduce a new hierarchical key structure using the
public-key settings. Our construction can achieve following functions:

– Each role is assigned with a public-key (called role-key) in RBAC, and there
exists a derivation function on these public-keys in accordance with RH;

– Each user has a unique identity and private key, which retain his/her role
information, but the derivation of secret-key is prohibited; and

– Such a key structure can be used to establish some important security mech-
anisms, such as encryption, signature, revocation, and traitor tracking.

280 Y. Zhu et al.

One compelling advantage of our key structure is that it can be seamlessly
integrated into the existing RBAC systems. Consequently, an RBAC system can
directly use the public role-key to encrypt resources in terms of users’ assigned
roles, and then the users owned the senior roles can use their privacy-keys to
decrypt the encrypted resources. This kind of cryptosystem can be used for secure
migrating the resources from existing RBAC systems to cloud. Other potential
applications of our solution include email encryption system (EES), privacy preser-
vation for peer-to-peer (P2P) data sharing, and encrypted file system (EFS).

Table 1. Comparison of several key management methods with user management a

Stateful schemes Stateless schemes

LKH [12] CS [13] LSD [14] Our Works

Cryptography

settings

symmetric-key symmetric-key symmetric-key pubic-key

User key

storage

O(log n) O(log n) O(log1+ε n)b O(1)

Encryption

cost

O(n1/k)c O(log log n) O(log n) O(t + n
m)

Average

band-

width

O(t log(n/t)) O(t log(n/t)) O(t) O(t + n
m) fixed

Worst case

band-

width

min(t log n
t + t, n − t) min(t log n

t , n − t) min(4t − 2, n − t) t + n
m fixed

Traitor

tracing

O(log n) O(log n) O(t log(n/t)) O(log(n
m) + m

t)d

Key-updating

complex-

ity

high moderate low not modify

where, a n is the total number of users, t is the number of revoked devices, and m is the average

number of users in a subset. b ε is any number > 0. c k is a parameter which mean the number of

stratified subsets to obtain a reasonable computation cost, i.e., when n is less than one trillion,

n1/8 < log n. d references the preference evaluation.

Our Contributions. In this paper, our objective is to establishes a bridge
between RBAC and secure cloud storage in order to fully preserve investment
in existing RBAC systems. To meet this goal, our core task is construct an
effective RBAC-compatible cryptosystem for cloud data encryption. This kind of
cryptosystem takes full advantage of RBAC, which provides a well-designed and
easy-to-manage approach for accessing cloud resources without user intervention.
To achieve our task, we present a new cryptosystem, called as Partially-ordered
Hierarchical Encryption (PHE) with traitor tracing. The major contributions of
this work are summarized as follows:

– We provided a practical Partially-ordered Hierarchical Encryption (PHE) con-
struction, which not only has semantic security and secure key hierarchy, but
also supports following features: stateless receivers, dynamic granting, tight
security, and a large number of users;

Traitor Tracing Based on Partially-Ordered Hierarchical Encryption 281

– We given a full security analysis of our cryptosystem, including semantical
security under chosen plaintext attacks. More important, our scheme satisfied
a new security definition of key management, called secure key hierarchy,
against privilege attack and access attack; and

– We provided traitor tracing mechanism based on key hierarchy, which has
great practical significance to preserve the integrity and validity of long-term
cryptosystems and to prevent the leakage of cloud outsourced data via illegal
decoders (or illegal decryption softwares).

In addition, our PHE scheme provides several new secure features, such as public
user label, constant-size user key storage, O(log(n)) tracing, lower computational
costs and communication bandwidths.

Table 1 shows a comparison of our scheme and some broadcast encryption
schemes including Logical Key Hierarchy(LKH) [12], Complete Subtree(CS) [13],
Subset Difference(SD) [15], and Layered Subset Difference(LSD) [14]. Although
some existing public-key schemes have adopted the hierarchical structure, this
comparison does not consider them due to the reason that they do not have a
unique key assigned to eash user, and therefore cannot achieve the features of
traitor-tracking. From Table 1, it is obvious that the performance of our scheme is
substantially better than existing methods with respect to transmission, storage,
computation, and traitor tracing costs.

Organization. The rest of the paper is organized as follows. Section 2 describes
the research background and the definition of key structure. In Sect. 3, we address
our PHE scheme for cryptographic access control on RBAC. Section 4 describes
the traitor tracing mechanism, for digital forensics. The results of security analy-
sis is showed in Sect. 5, respectively. We summary the related workin Sect. 6. We
conclude and discuss the future work in Sect. 7.

2 Background and Definition

Given a secure key hierarchy Ψ = 〈C, E, K〉 and the total number n of classes,
we can define a (t, n)-Partially-ordered Hierarchical Encryption (PHE), which
ensures a content provider to securely transmit a message to a subset of autho-
rized users under the assumption of at most t collusion. More formally, a (t, n)-
PHE scheme with a security parameter s is a 6-tuple of probabilistic algorithms
(Setup, Join,Encrypt,Decrypt, T race) described as follows:

1. Setup(Ω, s, t): Takes as input a partial-order hierarchy Ω, a security para-
meter s and a maximal collusion number t. It outputs a main encryption key
pk0 as the starting point of cryptosystem, a set of public parameters P 1, and
a master key mk as the manager secret.

2. Join(P,mk, ci or ui,j): Includes two sub-algorithms:

1 The signature of P can be generated avoid tampering.

282 Y. Zhu et al.

– Join(P,mk, ci): Takes as input the manager secret mk and a group iden-
tifier ci. It generates an encryption key pki and some public parameters
ppi as the description of this class. P = P ∪ {ppi} is made public.

– Join(P,mk, ui,j): Takes as input the manager secret mk and a user
identifier ui,j . It outputs a user key ski,j = (labi,j , dki,j). P = P ∪{labi,j}
and ski,j is sent to ui,j securely.

3. Encrypt(P, pki,M): Encrypts a message M using the public key pki and
outputs a ciphertext Ci.

4. Decrypt(P, ski,j , Ck): Decrypts a ciphertext Ck using a decryption keys dki,j

and outputs the message M , if ui,j ∈ ci and ci � ck.
5. TraceD(P, pk,mk): Suppose an adversary uses k user keys R =

{ski1,j1 , · · · , skik,jk
} to create a decryption box D. As an oracle algorithm

on D, it takes as input pk, mk, and can determine at least one key in the
collusion R.

A tracing algorithm is said to be ’Black Box’ if the decoder D can only be
queried as an Oracle but not opened to reveal its internal keys. The scheme is
said to be ’t-resilient’ if there is an effective cryptosystem with the collusion of
at most t keys. Note that, the four algorithms (Setup, Join,Encrypt,Decrypt)
are used to realize basic cryptographic access control under RBAC model, and
the algorithms Trace provide traitor tracing for digital forensics.

3 PHE Scheme for Access Control

3.1 Proposed PHE Scheme

Given a secure key hierarchy Ω = 〈C, E〉, a security parameter s, and the maxi-
mal coalition size t. Let Gq be a group of prime order q and log2 q > s. One can
take as Gq the subgroup of Z∗

p of order q, where p is a large prime with q|p − 1.
Let g ∈R Z

∗
p be a generator of Gq.

1. Setup(Ω, s, t): The manager chooses t random integers a1, · · · , at ∈
Z

∗
q to construct a random polynomial f(x) =

∑t
i=1 aix

i (mod q)
with degree t. It therefore randomly chooses t integers x1, · · · , xt

to generate (x1, f(x1)), · · · , (xt, f(xt)). It makes the parameters P =
{p, q, (x1, g

f(x1)), · · · , (xt, g
f(xt))} public. Without loss of generality, we

assume that c0 be only the senior-most class in Ω. It chooses a random integer
s0 ∈R Zq for c0 as its secret, so that the random polynomial f(x) is replaced
by p0(x) = s0 +

∑t
i=1 aix

i (mod q). It then uses (x1, p0(x1)), · · · , (xt, p0(xt))
to generate an initial encryption key:

pk0 = 〈g, z0,0, (x1, z0,1), · · · , (xt, z0,t), T0〉 (1)

= 〈g, gp0(0), (x1, g
p0(x1)), · · · , (xt, g

p0(xt)), ∅〉
where, z0,i = gp0(xi) = gs0 · gf(xi) (mod p) is computed from P and T0 =
∅ denotes a null initial control domain. The system manager keeps mk =
{s0, a1, · · · , at} secret.

Traitor Tracing Based on Partially-Ordered Hierarchical Encryption 283

2. Join(P,mk, ci or ui,j): which includes two forms:
(a) Join(P,mk, ci): To generate pki and ppi of ci ∈ C, the manager assigns

the random si ∈ Zq for ci as its secret. For ∀cl ∈ C and ci ≺d cl, it
computes ti,l = g(sl−si) (mod p) as the public parameter of this relation,
and then defines ppi = {ti,l}ci≺dcl

as the set of all relations which directly
dominate ci. Finally, it appends si and ppi into mk and P respectively,
i.e., mk = mk ∪ {si} and P = P ∪ ppi.
The encryption key pki in ci can be computed from the polynomial
pi(x) = si + f(x). In terms of mk and P , the manager has

pki = 〈g, zi,0, (xk, zi,k)t
k=1, Ti〉 (2)

= 〈g, gpi(0), (xk, gpi(xk))t
k=1, Ti〉,

where, Ti is a set of all relations in ↑ ci, i.e., Ti = {tj,l}cj ,cl∈↑ci,cj≺dcl
.

(b) Join(P,mk, ui,j): To generate ski,j of ui,j , the manager computes the
random polynomial pi(x) = si + f(x) (mod q) by using the secret in
mk. It generates a new random integer xi,j ∈R Zq and sends ski,j =
(xi,j , pi(xi,j)) to the user via a secret channel, where labi,j = xi,j , dki,j =
pi(xi,j), and P = P ∪ {labi,j}.

3. Encrypt(P, pki,M): For a session key ek ∈ Gq
2, the user randomly chooses a

random number r ∈R Zq, and then computes the ciphertext by pki as follows:

Ci = 〈h, Si, (xk, hi,k)t
k=1, T

′
i 〉 (3)

= 〈gr, ek · zr
i,0, (xk, zr

i,k)t
k=1, {t′k1,k2

}tk1,k2∈Ti
〉.

where, hi,k = zr
i,k (mod p), t′k1,k2

= trk1,k2
, and T ′

i = {trk1,k2
}tk1,k2∈Ti

denotes
a control domain which includes all relations in ↑ ci.

4. Decrypt(P, ski,j , Cl):
After receiving a cipher-text Cl = 〈h, Sl, (xk, hl,k)t

k=1, {t′k1,k2
}tk1,k2∈Tl

〉, the
user computes the following equation by the private key ski,j = 〈xi,j , yi,j〉 if
we hold ui,j ∈ ci, ci � cl, and

UCl
(ski,j) =

hyi,j ·λ0(xi,j)
∏t

k=1 h
λk(xi,j)
l,k

(
∏

ck1≺dck2∈Δ(l,i) t′k1,k2
)λ0(xi,j)

, (4)

where, λk(xi,j) =
∏t

l=0,l �=k
xl

xl−xk
(mod q) is the coefficient of Lagrange inter-

polation polynomial3 for {x0 = xi,j , x1, · · · , xt}, and Δ(l, i) = {ck1 ≺d ck2 :
ck1 , ck2 ∈ Γ(l, i)} denotes the set of direct dominations on an arbitrary path
between ci and cl. It therefore can obtain the plaintext ek = Si/UCl

(ski,j).

2 The plaintext (ek or M) must be converted into an element of Gq, see ElGamal
encryption system.

3 Given a set of t + 1 different data points (x0, y0), · · · , (xt, yt), the language interpo-
lation polynomial is a linear combination L(x) =

∑t
j=0 yjλj(x) where the coefficient

λj(x) =
∏t

i=0,i=j
x−xi
xj−xi

. Here, we set x = 0 to compute L(0).

284 Y. Zhu et al.

Before going further, we briefly show that the encryption scheme is valid by

UCl
(ski,j) =

gpi(xi,j)·λ0(xi,j)·r ∏t
k=1 gpl(xk)·λk(xi,j)·r

(
∏

ck1≺dck2∈Δ(l,i) trk1,k2
)λ0(xj)

=
gpi(xi,j)·λ0(xi,j)·r ∏t

k=1 gpl(xk)·λk(xi,j)·r

g
∑

ck1
≺dck2

∈Δ(l,i)(sk2−sk1)·λ0(xi,j)·r

=
gpi(xi,j)·λ0(xi,j)·r ∏t

k=1 gpl(xk)·λk(xi,j)·r

g(si−sl)·λ0(xi,j)·r

= gpl(xi,j)·λ0(xi,j)·r
t

∏

k=1

gpl(xk)·λk(xi,j)·r

x0=xi,j= g
∑t

k=0 pl(xk)·λk(x0) · r = gpl(0)·r = zr
l,0. (5)

where si − sl =
∑

ck1≺dck2∈Δ(l,i)(sk2 − sk1) (mod q) for an arbitrary path Γ(l, i)
between ci and cl

4, and pl(xi,j) = sl + f(xi,j) = pi(xi,j) − (si − sl) (mod q).

3.2 Further Discussion

In fact, the above process is also constructed from bottom (junior-class) to top
(senior-class). In the case of many senior-most classes, the Setup algorithm is
still available. Without loss of generality, we assume that c

(1)
0 , c

(2)
0 , · · · , c

(l)
0 are l

senior-most classes in Ω. Then, it chooses a random integer s
(i)
0 ∈R Zq for c

(i)
0 as

the secret of this class, such that it constructs l random polynomials, p
(i)
0 (x) =

s
(i)
0 +

∑t
k=1 akxk, where i ∈ [1, l]. Finally, the encryption key is generated:

pk
(i)
0 = 〈g, z

(i)
0,0, (x1, z

(i)
0,1), · · · , (xt, z

(i)
0,t), T0〉

= 〈g, gp
(i)
0 (0), (x1, g

p
(i)
0 (x1)), · · · , (xt, g

p
(i)
0 (xt)), ∅〉,

where, gp
(i)
0 (xk) = gs

(i)
0 gf(xk) (mod p).

In order to share information, the encryption keys pkn of junior-most classes
are usually made public, which is called the main encryption key, e.g., for a
enterprise management system, if the encryption key of “Engineering Dept” class
is used to send the message, all employees are able to decrypt it by their own
private keys. Moreover, the storage ratio of encryption keys is also an important
feature considering a number of classes in the large-scale organizations. We, of
course, expect that it is as low as possible. Since pi(x) = (si−sl)+pl(x), the user
can generate pki by using a known pkj and public parameters P for i �= j. For
example, the user can compute her/his own encryption key pki from a junior-
most encryption key pkn by Ṫi =

∏

cj≺dcl∈Δ(n,i) tj,l = g
∑

cj≺dcl∈Δ(n,i)(sl−sj) =
gsi−sn (mod p) and
4 For the different pathes, we have the same polynomial pi(x) = si +

∑t
i=1 aix

i,
because pi(x) = (si − si−1) + (si−1 − si−2) + · · · + (s1 − sl) + pl(x) for any path
si, si−1, · · · , s1, sl.

Traitor Tracing Based on Partially-Ordered Hierarchical Encryption 285

pki = 〈g, zi,0, (xk, zi,k)t
k=1, Ti〉 (6)

= 〈g, zn,0 · Ṫi, (xk, zn,k · Ṫi)t
k=1, Ti〉,

where, zn,k · Ṫi = gpn(xk) · gsi−sn = gpi(xk) (mod p), and Ti is found from P in
terms of Eq. (2). Therefore, the user only needs to store an encryption key pki

and a private key ski,j = (labeli,j , dki,j).
The key hierarchy is saved in public parameters P , irrespective of the user

private keys, so that the public parameters can be merely modified dynamically
to support the change of the key hierarchy.

4 PHE Scheme for Traitor Tracing

It is very hard for the adversary to directly break a cryptosystem with prov-
able security, but the adversary could make other means to break it. It is well-
known that “the easiest way to capture a fortress is from within”. Based on the
same idea, the collusion attack between the adversary and some corrupted users
(called traitors) is such an internal attack for group-oriented cryptosystem. In
this attack, the adversary may have access to a set of legitimate user’s secret
keys to decrypt the ciphertext. In order to withstand such attacks, traitor trac-
ing is introduced in the recent years. Usually, the traitor tracing algorithm is
an effective detection approach to find out the corrupted users from a group of
authorized users based on a found pirate decoder. We prefer that the tracing
algorithm is only able to access any pirate decoder as a black box and perform
the tracing based on the decoder’s response on different input ciphertexts.

The traitor tracing is an efficient mechanism to support digital forensics in
the existing group-oriented cryptosystems. Some tracing schemes have also been
proposed via the polynomial interpolation method in the recent years. We here
propose a new traitor tracing scheme for our partial-order key hierarchy on the
basis of these existing schemes. This algorithm only needs to know the public
label labeli,j of users rather than their private keys. Note that, traitor tracing, as
a way of digital forensics, has a precondition where the adversary cannot forge
an ’unused’ key to avoid tracing. We will prove that this attack is infeasible
for our scheme. We now turn our attention to the tracing algorithm from the
following two aspects:

4.1 Single-Key Tracing

The single-key tracing algorithm focuses on finding the traitors of collusion one
by one. It is easy to find that at most t users cannot forge a new unused key in
the corrupted class, such that we can find all traitors only if we search all used
keys in this class. For such a collusion attack, we can use the revocation-based
algorithm to construct a ciphertext, revoked by the suspicious key, into the illegal
decoder. If the decoder does not work, this revocation-based key includes at least

286 Y. Zhu et al.

a traitor. Otherwise, we search other users in this subset. Finally, we can find
all traitors. To improve the performance, we can check out t suspicious keys at
the same time. Hence, the searching complexity is O(m/t), where m is the total
number of users in a security class or a group of users.

Many tracing algorithms [16] have noticed that a certain linear combination
of sk1, · · · , skm is also a ’new’ private key, but in this case the adversary is not
confined to the original decryption algorithm to build a decryption box. In such
a case, this ’single-key’ is not a new key but a linear combination of some keys.
For such a decoder, we can construct an encryption key, which includes t user
keys, and search all combinations among the keys in this subset. Hence, the
searching complexity is O(

(

t
m

)

).

4.2 Hierarchical Tracing

The hierarchical tracing algorithm is a more efficient method to find the traitors
in terms of partial-order key hierarchy. According to the property of threshold
cryptosystem, our proposed scheme is a t-resilient encryption based on CDH
assumption in the honest classes, showing that the traitors cannot collude to
forge a new key outside the corrupted classes. This property gives us an advan-
tage for constructing the tracing algorithm.

In contrast to single-key tracing, we can first go through each class ci in a key
hierarchy Ψ to locate the suspicious classes of the traitors, and then use single-
key tracing algorithm to find the actual traitors in every class. In terms of this
idea, given an illegal decoder, we present a black-box traitor tracing algorithm
based on the key hierarchy, which involves two steps: subtree searching and subset
traversing, as follows:

V1. Subtree searching : Given a key hierarchy Ψ , we start from ci ← cn (the
junior-most class) in C and run the following processes from bottom to top:

S1. Randomly selects t unused shares 〈x1, x2, · · · , xt〉 and constructs an
enabling block:

Ci = 〈gr, ek · grpi(0), (xk, grpi(xk))tk=1, {trj,l}tj,l∈Ti〉.
S2. Sends 〈Ci, E(ek, M)〉 to the decoder.
S3. If the decoder can return correctly the message M , we consider ci as a suspi-

cious class and run V1 by ci ← cj for ∀cj ≺d ci, otherwise, repeat V1 by a
sibling node of ci.

V2. Subset traversing : Let 〈c′
1, c

′
2, · · · , c′

k〉 be the set of suspicious subset by V 1,
for each c′

i in this set, we run the following processes:
T1. Chooses any m user’s labels in c′

i at random, {xi,1, · · · , xi,m}, m ≤ t,
and then randomly selects t − m unused shares, 〈v1, v2, · · · , vt−m〉, and
constructs an enabling block:

C′
i =

〈

gr, ek · grpi(0), (xi,j , g
rpi(xi,j))m

j=1,

(vk, grpi(vk))t−m
k=1 , ∅

〉

.

T2. Sends 〈C′
i, E(ek,M)〉 to the pirate decoder.

Traitor Tracing Based on Partially-Ordered Hierarchical Encryption 287

T3. If the decoder does not output correctly M , we consider the set of label,
{xi,1, · · · , xi,m}, as a set of traitors and decrease the number of key of
this set to run T1. Otherwise, repeats T1 until no more users.

Therefore, our tracing algorithm improves computation complexities and
searching times as a result that key hierarchy divides the users into a large
number of classes in the key hierarchy. Especially, in the worst case, the com-
plexity of subtree searching is O(log n) time queries, where n is the number of
classes.

5 Security Analysis

We define the security of PHE scheme in terms of a family of security games
between a challenger and an adversary. The partial-order hierarchy Ω and system
parameters P are fixed, and the adversary is allowed to depend on them. The
users can be divided into two categories: the honest users and the corrupted
users, so that a set of corrupted users R is built. The responsive classes is called
as honest classes C1 or corrupted classes C2, in which the corrupted users can
access all encrypted messages. Sometimes, there exist many honest and corrupted
users in the same class. We first define a general model against collusion attacks:

1. Initial: The challenger B constructs an arbitrary partial-order hierarchy Ω,
and then runs Setup(Ω, s, t) to generate the partial-order key hierarchy Ψ
and initial public parameters P , and sends them to the adversary A.

2. Learning: A adaptively issues n times queries q1, · · · , qn to learn the infor-
mation of Ψ , where qi is one of the following:
– Honest class/user query (ui,j �∈ R): using Join(P,mk, ci or ui,j), B gen-

erates a class/user label (ppi, pki, labi,j) and sends labi,j to A.
– Corrupted class/user query (ui,j ∈ R): B generates a class (ppi, pki) with

the corrupted users, or a user label labi,j and a decryption key dki,j , and
returns (labi,j , dki,j) to A.

A ends up with a key hierarchy Ψ (include P, pki) and a collusion set
{ski,j}ui,j∈R. Note that the decryption query is unnecessary because A can
use the corrupted key to generate it.

3. Challenge: A chooses two equal length plaintexts M0, M1 ∈ M and appoints
a classes ci on which it wishes to be challenged. B picks a random bit
b ∈ {0, 1} and sends the challenge ciphertext Ci = Encrypt(P, pki,Mb) or
Revoke(P, pki,Mb, Ri) to A. where, Ri denotes all corrupted users in ↑ ri.

4. Guess: A outputs a guess b′ ∈ {0, 1}. A wins if b = b′, and otherwise it loses.

There are several important variants for this game:

– In a game for chosen plaintext attack (CPA), the adversary A may not issue
the corrupted user queries and decryption queries during the learning phase.

288 Y. Zhu et al.

– In a game for user’s private key attack, the challenger B may not issue the
challenge ciphertext during the challenger phase. The adversary A returns a
forged private-key in polynomial time during the guess phase.

– In a game for unauthorized access attack, by which user can exceed its author-
ity, we hold the above game.5

We denote by AdvE,A(t, n) the advantage of adversary A in winning the
game:

AdvE,A(t, n) =
1
2

|Pr[AE(Ci) = b] − Pr[AE(Ci) �= b]|

=
∣

∣

∣

∣

Pr[AE(Ci) = b] − 1
2

∣

∣

∣

∣

We say that a PHE is (t, n)-secure if for all setup parameter P and all proba-
bilistic polynomial-time adversaries A, the function AdvE,A(t, n) is a negligible
function of s.

Semantic security is a widely-used security notion in a public-key encryp-
tion scheme. Informally, it requires that it is infeasible to learn anything about
the plaintext from the ciphertext. This security requirement is also fit for PHE
scheme. We show that our encryption scheme is semantically secure agaist chosen
plaintext attack (IND-CPA) under the Decision Diffie-Hellman (DDH) assump-
tion as the following theorem:

Theorem 1. The proposed (t,n)-PHE scheme is semantically secure under cho-
sen plaintext attacks assuming the difficulty of Decisional Diffie-Hellman (DDH)
problem in Gq.

Obviously, semantic security is not enough to satisfy the security requirement
of “1:n” encryption scheme. It is important to consider all types of potential
attacks when we attempt to design the key hierarchy and broadcast scheme.
The security of key hierarchy must assure that the adversary cannot gain any
advantage by analyzing public-keys, ciphertexts, and user’s private keys. There
exist two strategies to attack the PHE scheme:

1. Privilege Attack: it focuses on changing the privileges of the granted users or
getting the keys of the other users. This attack also involves two ways:

– Collusion attack for corrupted classes, in which the corrupted users in
R = {uik,jk

}t
k=1 wish to forge a (new or unused) key in {ci1 , · · · , cit

}
(called as the corrupted classes). The aim of this attack is to avoid tracing
and frame the innocent users.

– Collusion attack for honest classes, in which the corrupted users in R =
{uik,jk

}t
k=1 wish to forge a (new or unused) key in C \{ci1 , · · · , cit

}. The
aim of this attack is to change the privileges in partial order hierarchy.

5 This game may be more strict than the other two games.

Traitor Tracing Based on Partially-Ordered Hierarchical Encryption 289

2. Access Attack: it focuses on gaining the advantage of adversary to break the
cryptosystem or extending the range of access by the collusion of corrupted
users, especially gaining the advantage to break the revocation-based algo-
rithm.

We would like to adopt appropriate technologies to prevent the above attacks,
but the collusion attack is unavoidable in the way of technology because the
traitor has been a granted user before s/he is not found. Thus traitor tracing
is an efficient method to frighten the collusion attack. However, we must ensure
that the traitors cannot forge an ‘unused’ key to avoid tracing but leave some
‘foregone’ clue of evidence to find them. We present such a definition for Secure
Key Hierarchy (SKH) as follows:

Definition 1 (Secure Key hierarchy). A (t, n)-PHE scheme (S, J , E , D) is
said to have a secure key hierarchy 〈C, E, K〉 satisfying the following conditions:

1. Validity: for any member ui,j in ci ∈ C, the session key ek can be efficiently
computed from Bl and ski,j, where ci ≺ cl. Then for every pair (pkl, ski,j) in
the range of G(1n) and every sequence Mn, |Mn| ≤ poly(n),

Pr [D(ski,j, E(pkl,Mn)) = Mn] ≥ 1 − 1
|p(n)| ; (7)

1
|p(n)| denotes negligible or negligibly small, which means that the absolute
value is asymptotically smaller than any polynomial bound.

2. Privilege attack: for any set R ⊆ {ui1,j1 , · · · , uim,jm
}, |R| ≤ t, it is com-

putationally infeasible to compute ski,j of a user ui,j �∈ R and the (public)
encryption key pk. Then for every probabilistic polynomial-time algorithm A,
every polynomial p(·), and all sufficiently large n,

Pr
[A(pk, {skil,jl

}uil,jl
∈R) = ski,j

: skil,jl
�∈ {ski,j}uil,jl

∈R

]

<
1

|p(n)| ; (8)

where, pk = P ∪ {pki}ci∈C .
3. Access attack: for any set R ⊆ {ui1,j1 , · · · , uim,jm

} |R| ≤ t, it is computa-
tionally infeasible to gain the advantage to break the revocation-based algo-
rithm from the collusion set R and any ciphertexts Cl = ER

pkl
(Mn), where

ER denotes revocation-based algorithm on R and Mn is a sequence with
|Mn| ≤ poly(n). Then for every probabilistic polynomial-time algorithm A,
every pair of polynomially-bounded functions f, h : {0, 1}∗ → {0, 1}∗ (see
[17]), every polynomial p(·), and all sufficiently large n,

Pr
[

A
(

pk, h(Xn), ER
pkl

(Xn),
{ski,j}ui,j∈R

)

= f(Xn)
]

(9)

< Pr
[

A
(

pk, h(Xn),
{ski,j}ui,j∈R

)

= f(Xn)
]

+ 1
|p(n)| .

Where, f(Xn) denotes the information that the adversary tries to obtain from
the plaintext Xn and h(Xn) denotes a priori partial information about the
plaintext.

290 Y. Zhu et al.

In this definition, the condition 3) aims at the risk of revocation-based mech-
anism and puts forward this security requirement (tighter than Theorem 1),
which conforms to the definition of ’semantic security’ besides the additional
key information {ski,j}ui,j∈R for a set of revoked users R. As is well known, the
encryption scheme is semantically secure if and only if it has indistinguishable
encryptions (see Theorem 5.2.5 in [17]). So, we replace Eq. (9) with the following
equation

∣

∣

∣

∣

Pr[A(pk, {ski,j}ui,j∈R, ER
pkl

(Xn)) = 1]−
Pr[A(pk, {ski,j}ui,j∈R, ER

pkl
(Yn)) = 1]

∣

∣

∣

∣

<
1

|p(n)| , (10)

such that it is easier than ever to prove the security of scheme against access
attack. According to this definition, we can prove the following theorem.

Theorem 2. The proposed (t, n)-PHE scheme has a secure key hierarchy satis-
fying Definition 1 against the privilege attack and the access attack.

In the proof of this theorem, the security against privilege attack includes
two cases: privilege attack for honest classes and one for corrupted classes. The
proofs of the above-mentioned theorems were omitted due to space limitations.6

6 Related Work

For a large-scale group-oriented communication, broadcast encryption was first
considered [18] in 1991 and, subsequently, formally defined by Fiat and Naor [19]
in 1994. Since then, it has become one attractive topic in cryptography commu-
nity. In symmetric-key setting, only trusted system designer can broadcast data
to the receivers. However, the public-key scheme, first introduced by Boneh et al.
in 1999 [20], can publish a short public key, which enables anybody to broadcast
data, thus overcome the deficiency of symmetric-key setting. Also, Boneh et al.
have done massive work in the development of group-oriented encryption, e.g.,
Boneh, Sahai, and Waters [21] propose a fully collusion resistant traitor tracing
with ciphertexts of size O(

√
n) and private keys of size O(1) in 2006, where n

is the total number of users. However, these work did not take into account the
hierarchy structure.

Boneh and Franklin proposed the first fully identity-based encryption (IBE)
[22] in 2001, in which the public key can be an arbitrary string such as an
email address. Unfortunately, IBE does not support broadcast function unless
some members can share the same private-key when they hold the same iden-
tity. According to this idea, Boneh et al. provided a hierarchical identity-based
encryption (HIBE) system to support an organizational hierarchy [23], but this
kind of hierarchy must be a tree structure and cannot provide identity-based
revocation and tracing due to the global sharing of hierarchical identity/privacy-
key for all users. In addition, attribute-based encryption (ABE) is also considered

6 The interesting readers may read the full proofs in the website: crypto.ustb.edu.cn.

Traitor Tracing Based on Partially-Ordered Hierarchical Encryption 291

as an effective group communication method [24], but the existing ABE schemes
have not yet been able to support the hierarchical structure.

For cryptosystems on the partial order relation, Akl and Taylor put forward
a simple scheme to solve multilevel security problem in 1982. In 2005, Kim [25]
proposed a new key management system for multilevel security using various
one-way functions. In 2008, Chung [26] proposed a method based on the elliptic
curve cryptosystem and one-way hash function to solve dynamic access prob-
lems. Another related field is hierarchical key management with time control.
For example, in 2002, Tzeng proposed a time-bound scheme based on Lucas
function [27], but it is insecure against collusion attacks by Yi and Ye. Another
similar schemes based on the tamper-resistant device and the hash function were
proposed by Chien [28] in 2004 and Bertino et al. [29] in 2008. Although these
work support real-time broadcast with time control rather than common access
control and digital forensics, their hierarchy techniques are worth learning for
hierarchy managements. In 2007, Santis et al. summarized and provided sev-
eral provably-secure hierarchical key assignment schemes based on an existing
schemes [30].

7 Conclusion and Future Work

In this paper we construct an effective RBAC-compatible cryptosystem for cloud
data encryption. In our future work, we are planning to introduce a compre-
hensive role-based cryptosystem to support various secure mechanisms, such as
encryption, signature, and authentication. Also, we would investigate a more
efficient cryptosystem to realize massive-scale conditional access control systems
for the practical RBAC applications of large-scale organizations.

Acknowledgments. The authors are indebted to anonymous reviewers for their
valuable suggestions. This work is supported by the National 973 Program (Grant
No. 2013CB329605) and National Natural Science Foundation of China (Grant Nos.
61170264 and 61472032).

References

1. F.R. Institute: Personal data in the cloud: a global survey of consumer
attitudes (2010). http://www.fujitsu.com/downloads/SOL/fai/reports/fujitsu/
personal-data-in-the-cloud.pdf

2. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

3. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

4. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on CCS, pp. 89–98
(2006)

http://www.fujitsu.com/downloads/SOL/fai/reports/fujitsu/personal-data-in-the-cloud.pdf
http://www.fujitsu.com/downloads/SOL/fai/reports/fujitsu/personal-data-in-the-cloud.pdf

292 Y. Zhu et al.

5. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM Conference on Computer and Communi-
cations Security, pp. 195–203 (2007)

6. Nishide, T., Yoneyama, K., Ohta, K.: Attribute-based encryption with partially
hidden ciphertext policies. IEICE Trans. 92–A(1), 22–32 (2009)

7. Zhu, Y., Ahn, G.-J., Hu, H., Ma, D., Wang, S.: Role-based cryptosystem: a new
cryptographic rbac system based on role-key hierarchy. IEEE Trans. Inf. Forensics
Secur. 8(12), 2138–2153 (2013)

8. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key
management for access hierarchies. ACM Trans. Inf. Syst. Secur. 12(3), 1–43
(2009)

9. Blanton, M., Frikken, K.B.: Efficient multi-dimensional key management in broad-
cast services. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010.
LNCS, vol. 6345, pp. 424–440. Springer, Heidelberg (2010)

10. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005)

11. Zhu, Y., Ahn, G.-J., Hu, H., Yau, S.S., An, H.G., Hu, C.-J.: Dynamic audit services
for outsourced storages in clouds. IEEE Trans. Serv. Comput. 6(2), 227–238 (2013)

12. Wallner, D.M., Harder, E.G., Agee, R.C.: Key management for multicast: Issues
and architecture. In: Internet draft draft-waller-key-arch-01.txt (1998)

13. Asano, T.: Reducing receiver’s storage in CS, SD and LSD broadcast encryption
schemes. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 88(1), 203–210
(2005)

14. Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

15. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

16. Tzeng, W.-G., Tzeng, Z.-J.: A public-key traitor tracing scheme with revocation
using dynamic shares. In: Public Key Cryptography, pp. 207–224 (2001)

17. Goldreich, O.: Foundations of Cryptography. Basic Application, vol. II. Cambridge
University Press, New York (2004)

18. Berkovits, S.: How to broadcast a secret. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 535–541. Springer, Heidelberg (1991)

19. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

20. Boneh, D., Franklin, M.K.: An efficient public key traitor scheme (extended
abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353.
Springer, Heidelberg (1999)

21. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

22. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

23. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005)

24. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

Traitor Tracing Based on Partially-Ordered Hierarchical Encryption 293

25. Kim, H.K., Park, B., Ha, J.C., Lee, B., Park, D.G.: New key management systems
for multilevel security. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A.,
Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481,
pp. 245–253. Springer, Heidelberg (2005)

26. Chung, Y.F., Lee, H.H., Lai, F., Chen, T.S.: Access control in user hierarchy based
on elliptic curve cryptosystem. Inf. Sci. 178, 230–243 (2008)

27. Tzeng, W.G.: A time-bound cryptographic key assignment scheme for access con-
trol in a hierarchy. IEEE Trans. Knowl. Data Eng. 14(1), 182–188 (2002)

28. Chien, H.Y.: Efficient time-bound hierarchical key assignment scheme. IEEE Trans.
Knowl. Data Eng. 16(10), 1301–1304 (2004)

29. Bertino, E., Bettini, C., Ferrari, E., Samarati, P.: An access control model support-
ing periodicity constraints and temporal reasoning. ACM Trans. Database Syst.
23(3), 231–285 (1998)

30. De Santis, A., Ferrara, A.L., Masucci, B.: Efficient provably-secure hierarchical
key assignment schemes. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol.
4708, pp. 371–382. Springer, Heidelberg (2007)

SCIATool: A Tool for Analyzing SELinux
Policies Based on Access Control Spaces,

Information Flows and CPNs

Gaoshou Zhai1(&), Tao Guo1,2, and Jie Huang1

1 School of Computer and Information Technology,
Beijing Jiaotong University, Beijing, China

{gszhai,11120437,13120394}@bjtu.edu.cn
2 Henan Center of Patent Examination Cooperation of the Patent Office SPIO,

Henan, China

Abstract. Although security policies configuration is crucial for operating
systems to constrain applications’ operations and to protect the confidentiality
and integrity of sensitive resources inside the systems, it is an intractable work
for security administrators to accomplish correctly and consistently solely by
hands. Thus policies analysis methods are becoming research hotspots. A great
deal of such researches are focused on SELinux, which is a security-enhanced
module of open-source and popular Linux. Among various analysis methods for
SELinux policies, those based on access control spaces, information flows and
colored Petri-nets (CPNs) can be thought as the three most valuable methods
and they can be exploited together and complementarily. In this paper, a pro-
totype of SELinux policies Configuration Integrated Analysis Tool, i.e. SCIA-
Tool, is designed and implemented by integrating these three methods together.
Test results are provided and further researches as to construct a computer-aided
configuration tool for SELinux policies are discussed.

Keywords: Security policies configuration � Analysis method � Access control
spaces � Information flows � Colored Petri-nets � SELinux

1 Introduction

Security of operating systems is always the research focus in the fields of information
security for their irreplaceable position inside the whole information systems. As Linux
is becoming popular and powerful SELinux has been embedded into the Linux kernel,
they are being research hotspots in domain of security of operating systems.

SELinux can enforce mandatory access control through policies configuration based
on TE, RBAC and MLS models [1, 2] to defend against local and remote attacks and to
protect systematic integrity and confidentiality and thus make Linux fulfill various
security requirements for most situations. However, statements and rules of policies
configuration are immense and complex because there are so many programs that can
become potential subjects and somany objects including processes,files, devices, sockets
and other resources of sorts inside computer systems. Moreover, subjects, objects and
relationships among them are complicated and confused. Thereafter, it is difficult and

© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 294–309, 2015.
DOI: 10.1007/978-3-319-27998-5_19

error-prone for security administrators to accomplish the correct and consistent config-
uration manually without auxiliary means.

Computer-aided policies analysis is thus becoming an effective way to provide
more helpful information for policies configuration. Such analysis typically includes
TCB integrity analysis and validity analysis. Generally, the former is to find all rules
that could potentially influence integrity of the initially specified TCB while the latter is
to work out authorized or prohibited permissions as for a specified subject and/or a
specified object as well as a specified information flow path so as to verify whether the
policies configuration satisfies the security targets.

A lot of researches have been done as to policies analysis methods and those based
upon access control spaces [3–6], information flow [5–8] and colored Petri-nets (CPNs)
[9–12] reflect more practical values. In addition, the last method also depends on
information flow query and verification and is essentially an information flow analysis
method. Furthermore, all of these methods have their own limitation while more
analysis targets or results will be more helpful for policies configuration. In details, the
policy analysis method using access control method is convenient for designing
security policies while the other two methods can be used to verify whether a special
security goal is in practice enforced by corresponding policies configuration. In addi-
tion, the latter two methods can provide more detailed security requirements for val-
idation by information flow inquiries. Therefore, they are complementary and can be
exploited together.

In this paper, a prototype of SELinux policies Configuration Integrated Analysis
Tool, i.e. SCIATool, is designed and implemented in C language by integrating
methods based on access control spaces, information flows and colored Petri-nets. The
main contributions of this paper are:

• The approach presented in this paper is, to the best of our knowledge, among the
first efforts on systematic integration of such three methods for SELinux policies
configuration analysis. And SCIATool is the first such prototype implemented
independently without other software tools.

• Integrating different methods is always a challenging problem because it is not only
to put them together but also to bring them into full play in a redundancy minimized
framework. An integrated architecture is put forward for SCIATool so as to make
full use of different analysis methods but minimize the redundant design.

• Both the TCB integrity analysis and various validity analyses can be achieved
effectively by SCIATool. Various analysis targets such as all rules that could
potentially influence integrity of the initially specified TCB, authorized or prohib-
ited permissions as for a specified subject and/or a specified object as well as
information flow path in CPN of policy configuration as for a specified information
flow path requirement can be worked out, which provides richer analysis results
than many available analysis prototypes and will be more helpful for
computer-aided policies configuration.

SCIATool: A Tool for Analyzing SELinux Policies 295

The remaining part of the paper is organized as follows: Sect. 2 introduces SELinux
policies configuration, typical analysis methods and main idea about our integrated
analysis method; Sect. 3 describes our design and implementation of SCIATool; Sect. 4
tests and evaluates our SCIATool prototype with a SELinux policy configuration
illustration as for some student-teacher application security requirements, then com-
pares our research in this paper with related work of others; Sect. 5 summarize the
research work in this paper and discusses the limitations of SCIATool and future work
as to construct a practical computer-aided configuration tool for SELinux policies.

2 Methodology

2.1 SELinux Policies Configuration

SELinux policies configuration is made up of a series of policy source files. In another
word, it is the collection of statements, i.e. rules that determine allowed access for a
system, and it defines the roles any SELinux user may assume, the domains a role can
access, the types any process can access and how. When a process tries to gain access
to a particular object, a security decision has to be made whether the access is allowed
or denied depending on the security context (i.e. <useri, rolej, typek>) of the subject, the
security context of the object, and the corresponding policies.

SELinux has combined three different policy models in its policies configuration,
where its RBAC model associates users with roles and roles to TE domains that are
authorized to specific access permissions. All roles are used to constrain the association
of users with the types of processes, except that the dummy role object_r is used in
security contexts for all object types. The SELinux types are classified based on the
functions performed by processes and the operations performed on the different objects.
Types in SELinux can be classified into domain types, security types, device types, file
types, procfs types, devpts types, nfs types and network types while domain types are
special for processes and can be further classified into system domains, user program
domains, and user login domains. In general, Security policy description language of
SELinux provide users the following top-level components such as Flask definitions,
TE and RBAC declarations and rules, user declarations, constraint definitions, and
security context specifications for a policy configuration.

2.2 Typical SELinux Policies Analysis Methods

Among analysis methods for SELinux security policies, those based upon access
control spaces, information flows and colored Petri-nets are the three most valuable
types of methods that can be exploited in practical configuration.

Method Based on Access Control Spaces. The policy analysis method based on
access control spaces is put forward by Trent Jaeger et al. and is firstly used in Gokyo
[3] to analyze a SELinux policy configuration for ApacheWeb server system and the
example policy of the SELinux for Linux 2.4.16. And a formal model called SELAC is
developed on this basis by Giorgio Zanin and Luigi Vincenzo Mancini [4] for ana-
lyzing an arbitrary security policy configuration for the SELinux system.

296 G. Zhai et al.

Access control space is the core concept for this method, which is defined as the set
of all possible permission assignments of a subject (or role) and can be divided into
three natural subspaces: the permissible subspace (contains the permission assignments
in the current configuration), the prohibited subspace (contains the permission
assignments precluded by the constraints) and the unknown subspace (contains the
permission assignments that are neither permitted nor prohibited). Ideally, these three
subspaces should partition the access control space without intersection and the
unknown subspace should be minimal. But in practice, subspaces are not disjoint and
the unknown subspace is large. In another word, sometimes the specified space con-
flicts with the prohibited space and the unknown space. In addition, the permission
assignments within the permissible subspace can be divided into two parts: one part is
explicitly expressed in the configuration and the other part is not yet specified. The
former part constitutes so-called the specified subspace and it contains a subset of the
permissible assignments (accordingly named by the obligated subspace) that are
obligated required for correct operation of the system.

Once access control spaces are constructed for a given SELinux policies configu-
ration, all possible integrity conflicts embodied by the conflicting subspaces for TCB
subjects can then be identified and classified for solving related conflicts. So the
method can be used to help security administrator to accomplish custom-made SELi-
nux policies configuration. However, it is focused on single special analysis target and
it is not appropriate for analysis on multiple targets.

Method Based on Information Flows. The policy analysis method based on infor-
mation flows is firstly developed and applied in SELinux policies for the e-commerce
processing system by Guttman et al. [7, 8].

Information flow is the key conception for this method. If a subject with security
context <u1, r1, t1> can write an object with security context <u2, r2, t2>, we say that
there is a write-like information flow transition from the subject with security context
<u1, r1, t1> to the object with security context <u2, r2, t2>. Similarly, if a subject with
security context <u2, r2, t2> can read an object with security context <u1, r1, t1>, we say
that there is a read-like information flow transition from the object with security context
<u1, r1, t1> to the subject with security context <u2, r2, t2>. Both cases can be for-
malized as an information flow from security context <u1, r1, t1> to security context
<u2, r2, t2> through event <c, p> where c, p represents corresponding class and per-
mission for the object. Furthermore, if there is an information flow from security
context <ui, ri, ti> to security context <ui+1, ri+1, ti+1> through event <ci, pi> for all
0 ≤ i ≤ n − 1, it can be concluded that there is an information flow from security
context <u0, r0, t0> to security context <un, rn, tn> through event sequence {<ci, pi> |
0 ≤ i ≤ n − 1}. In addition, an information flow can be accepted if and only if all
entities passed in the flow are trusted.

Once the information flow model for a given SELinux policies configuration is
built up, information flow security goal statements for the objectives that SELinux is
intended to achieve can be expressed in linear temporal logic and model checking
method can be used to determine whether security goals hold in the given system. So
the method is focused on the whole information flow path and can be used to validate
whether the SELinux policies configuration is fully in accordance with the whole

SCIATool: A Tool for Analyzing SELinux Policies 297

desired security objectives of the system. At the same time, those expressions or
inquiries for security goal statements to be validated are difficult to write and provide
and thus its application is restricted to some extent. Moreover, it is not appropriate for
designing or developing policies configuration directly.

Method Based on Colored Petri-Nets. The policy analysis method based on colored
Petri-nets is firstly developed and applied in SELinux policies for the e-commerce
processing system by Chen and Kao [9]. It is also used to model the trusted computing
based secure systems [10].

This method is also developed based on information flows model thus it can be
viewed as a special policy analysis method based on information flows. But it describes
the SELinux policies configuration and security objectives in the way of colored
Petri-nets instead of information flow graphs. It is obvious that colored Petri-net is the
key conception for this method. Colored Petri-net (CPN) is formulated on the basis of
traditional Petri-net concept by introducing color set. Furthermore, colored Petri-net
can be formally defined by a tuple CPN = <Σ,P,T,A,NA,CP,GT,EA,IP> which satisfies
the following requirements: (1) Σ is color set, i.e. a finite set of non-empty data types.
Different color stands for different place sort, i.e. type place or permission place.
(2) P is a finite set of places which are used to describe types and permissions in
SELinux. Each place can hold 0, 1 or several token(s). (3) T is a finite set of transitions
which are used to describe access relationships between type places and permission
places. (4) A is a finite set of directed arcs which are used to link places and transitions
and to describe flow directions. (5) NA: A → P × T [T × P is a node function that
associates directed arcs with two nodes (place or transition). (6) CP: P → Σ is a color
function that associates places with color set. (7) GT: T → EXP is a guard function that
associates transitions with expressions such that: 8t 2 T, (type(GT(t)) = bool) ∧ (type
(var(GT(t))) � Σ), where type(e) denotes the data type of an expression e, type({e1,
e2, …}) denotes the set of data types of expressions e1,e2, …, var(e) denotes the set of
free variables of an expression e, and EXP denotes the set of all expression. GT is used
to describe necessary conditions for information flows. (8) EA: A → EXP is an arc
expression function that associates directed arcs with expressions such that: 8a 2 A,
(type(EA(a)) = CP(p(a))MS) ∧ (type(var(EA(a))) � Σ), where p(a) is the place of NA(a),
and ‘tMS’ denotes type ‘multi-set of type t’. EA is used to describe the tokens passes the
directed arcs and corresponding update modes. (9) IP: P → EXP is an initialization
function that associates places with expressions such that: 8p 2 P, type
(IP(p)) = CP(p)MS. IP is used to set initial token values for those places corresponding
with source types of inquiry statements.

In addition, two type places are generally linked by one permission place and two
transitions. This means that the former type place has the authorization of permission
denoted by the permission place against the latter type place. Obviously, it is consistent
completely to allow statements in SELinux policies configuration. Thereafter, it is
mainly by analysis and process of allow statements to construct the CPN model for
policy analysis.

A token is a dynamic entity in a place and it can move from one place to another
place. A transition can be initiated if and only if the value of the token in the place
matches the description on the directed arc and thus pass the test of guard function

298 G. Zhai et al.

associated with the transition. During the procedure of analysis as for a given inquiry, a
token will record types, permissions and all other information related to inquiry in the
information flow path from the place corresponding to source type of the inquiry
statement to the current place, called inquiry information flow path. So it can be
denoted as a tuple <bool, queryType, typeList, permissionList> where bool is a Boolean
value to store the decision result whether the type in the current place matches the type
in the inquiry statement; queryType is a char string to record the recent classification
label in the inquiry statement during analysis procedure; typeList is a char string list to
store all types on the inquiry information flow path; permissionList is also char string
list but it is used to record all permissions on the inquiry information flow path. Values
of tokens in places on the inquiry information flow path ought to be updated with the
proceeding of analysis according to corresponding different classification labels.

This method has powerful analysis and verification capabilities for SELinux poli-
cies configuration. But it has also the disadvantage at difficult inquiry description as
well as the information flow analysis method for its essence of information flow.

2.3 Main Idea About an Integrated Analysis Method Based on Access
Control Spaces, Information Flows and Colored Petri-Nets

SELinux policies configuration is the basic foundation for systematic security
enforcement and it can be viewed as the embodiment of security objectives. Thus the
analysis of SELinux policies configuration ought to dedicate to validate if it faithfully
supports confidentiality and integrity under mandatory access control, to check if there
is any loophole that may impair the security goals, and to help security administrator to
make appropriate configuration solution that accords with principles such as least
privilege and separation of permission. According to the facts that each method has its
own advantages and disadvantages, an integrated analysis method should be developed
based upon access control spaces, information flows and colored Petri-nets. Thus
different analysis method can be exploited to achieve different analysis goals so as to
make full use of respective advantages.

The main idea of the integrated analysis method can be induced as follows:

1. Method based on access control spaces can be used for validity analysis (i.e. to check if
policies configuration meets security goals), e.g. to sum up all objects that a specified
subject can access and all subjects that can access a specified object and to decide if a
specified subject can access a specified object (where subject/object specification can
take the way of assigning security context and access can also be assigned as a special
access mode), and it is helpful for security administrator to separate permissions,
detect configuration bugs (such as undesired authorization or obligations that cannot
be fulfilled because of the lack of authorizations) and make complete configuration.

2. Method based on information flows can be used along with access control spaces to
analyze integrity and the integrity of trusted computing base (TCB) is the premise
and foundation to ensure the security of whole system. By analyzing integrity
conflicts between the TCB entities and the non-TCB entities, information can be
provided to help security administrators to ameliorate SELinux policies configu-
ration and to optimize and consummate the assignment of TCB entities.

SCIATool: A Tool for Analyzing SELinux Policies 299

3. Method based on colored Petri-nets can be also used for validity analysis and to find
potential problems such as information flow leaks. By elaborate design to make it
support both inquiries in positive description and those in negative description as
well as inquiries including intermediate types, it will be convenient for security
administrators to check completeness and consistency of policies configuration
against security objectives.

4. All these methods ought to be implemented in a uniform architecture while mod-
ular, simple but effective design principle should be pursued and followed.

3 Prototype Design and Implementation

3.1 Architecture Design

SCIATool takes aims at validity analysis and integrity analysis for a given SELinux
policies configuration.

Validity analysis is to make sure that the configuration has put expected access
regulations into effect and met corresponding security goals thus inquiries ought to be
processed correctly for the following cases. Firstly, if a subject is specified by security
context, all objects with corresponding security context and permissions (in the form of
<class_name, access_mode>) that it is authorized to access can be worked out. Sec-
ondly, if an object is specified by security context, all subjects with corresponding
security context and permissions that it is authorized to be accessed can also be worked
out. Thirdly, if a subject is specified by security context, all objects with corresponding
security context and permissions that it is prohibited to access can be worked out.
Fourthly, if an object is specified by security context, all subjects with corresponding
security context and permissions that it is prohibited to be accessed can also be worked
out. Fifthly, if a subject and an object are specified in the way of security context
respectively, corresponding access relationships (i.e. authorized or prohibited permis-
sions) can be figured out. Finally, if the feature of an information flow path is specified,
whether it can be supported by the configuration ought to be analyzed and concluded.
Except that last inquiry is processed using colored Petri-nets method, all others are
analyzed based on access control spaces.

Integrity analysis in this paper is processed around the TCB. Integrity of the TCB
holds if there is no type that can be written by a type outside the TCB and read by a
type inside the TCB, except for special cases in which a designated trusted program
sanitizes untrusted data when it enters the TCB. Thereafter, integrity analysis is to
verify that subjects inside TCB are prohibited to read wrong information from
non-trusted objects while sensible information inside TCB objects are protected from
wrongly modified. If results show that no non-TCB subject or object can infect any
TCB ones, it can be proved that the integrity of TCB is protected by the policy
configuration. In fact, it is necessary that information flow from a non-TCB one into a
TCB one in some cases. But such information flow ought to be audited, which can be
ensured by a different authorization way of auditallow statement (opposite to allow
authorization way). So that any information flow ought to be worked out if it could

300 G. Zhai et al.

influence the integrity of TCB without audit. Integrity analysis is performed based upon
access control spaces and information flows.

Accordingly, SCIATool can be divided into following functional parts: (1) a
common module that is to extract security elements from source files for SELinux
policies configuration and to store them in elaborated data structures in memory; (2) a
pair of modules that are to construct security context spaces for subjects and objects
respectively; (3) a group of modules that are to construct valid access control spaces for
subjects and objects respectively so that analysis of authorization and prohibition for
special subject and/or object denoted by security context can be figured out conve-
niently; (4) a group of modules that are to perform analysis of authorization and
prohibition as for inquiry with specified subject and/or object; (5) a pair of modules that
are to construct TCB space and to analyze integrity conflicts of TCB on premise of
specifying initial TCB entities; (6) a pair of modules that are to construct colored
Petri-nets for SELinux policies configuration and to perform inquiry analysis for
specified information flow path. The modular architecture of SCIATool can thus be
designed and illustrated as Fig. 1.

3.2 Main Problems and Solutions About Integration

Because we have already designed and implemented three prototypes based on the
former three methods respectively, the prototype of SCIATool is implemented by the
way of integrating them together.

Module of Extracting Security Elements
from Configuration

SetC, SetCP, SetA, SetT, SetR and SetU;
MappingSubtoObjCP

Module of Generating
Security Context

Spaces for Subjects

Module of Generating
Security Context

Spaces for Objects

Module of
Generating Valid

Authorized
Access Spaces for

Subjects

Module of
Generating Valid

Prohibited
Access Spaces

for Objects

Source Files of SELinux
Configuration

Module of
Generating
TCB Space

Module of
Constructing

Colored
 Petri-Nets for

SELinux
Policy

Configuration

Module of
Integrity
Analysis
Output

Module of
Authorization
Analysis for

Subject

Module of
Authorization
Analysis for

Object

Module of
Prohibition
Analysis for

Subject

Module of
Prohibition
Analysis for

Object

Module of
Permission
Analysis for

Subject/Object

Module of
Information

Flow Analysis
for Inquiry

Module of
Generating Valid

Prohibited
 Access Spaces for

Subjects

Module of
Generating Valid

Authorized
Access Spaces

for Objects

Fig. 1. Architecture of SCIATool

SCIATool: A Tool for Analyzing SELinux Policies 301

The primary problem about integration is to start with clear and relationships among
both data structures and modules whether within same prototype or across different
prototypes and then to figure out a uniform framework to place those necessary modules
at appropriate layer together with corresponding data structures. Just as the architecture
of SCIATool we have designed finally (refer to Fig. 1), the module of extracting security
elements from configuration is concluded as the fundamental module of SCIATool (thus
completeness and correctness of policy information that it extracted will affect all other
modules and quality for all kinds of analysis) while modules of generating security
context spaces for subjects or objects and that of constructing colored Petri-nets can be
placed at the second layer. In addition, all other modules can be placed at a higher layer to
perform various practical and flexible analyses.

Another critical problem is that different programming styles and identifier naming
habits reflected in different prototypes. So it is a rather difficult work to compose them
together, especially when we select the module of extracting security elements from
configuration and put it into the final prototype. The module version we have selected is
more compatible with other modules placed in the final prototype but another eliminated
module version have more strong extracting functions, e.g. it can process policy con-
figuration sources files across different directories which is more closer to real appli-
cation situations. Therefore, a great deal of work needs to be done to strengthen functions
and to improve compatibility as for those modules of the SCIATool prototype.

The third aspect is to enrich practical analysis functions and to provide a more
complete analysis result in a more convenient way for security administrators. For
example, all sorts of inquiry services are provided including what kind of objects (i.e.
objects in what security context) with what permissions a specified subject has been
authorized or prohibited, who (i.e. subjects in what security context) is authorized or
prohibited to access a specified object with what permissions and what permissions are
authorized or prohibited as for a specified subject and a specified object. In addition, both
input of formal inquiry statement and wizard-style inquiry input are supported by our
prototype of SCIATool to provide security administrator with convenient inquiry input.

3.3 Prototype Implementation

The prototype of SCIATool is developed on Red Hat Enterprise Linux Server release
5.4 while it is written in standard C language and compiled by GCC 4.1.2 20080704
(Red Hat 4.1.2-46). Source codes of the prototype are made up of more than 6000 lines.
Compared with some typical SElinux policy analysis tools such as SLAT [7, 8],
SEAnalyzer [9] and etc., SCIATool is implemented completely independently and it
can be executed and perform analysis tasks without any other available software tools.

4 Test Results and Discussion

The prototype is tested by using a suite of SELinux policies configuration designed for
a simplified student-teacher system. And related test cases are devised around validity
analysis about authorized or prohibited permissions as for a specified subject or object

302 G. Zhai et al.

in the way of security context, validity analysis as for inquiry of a specified information
flow path, and integrity analysis of the TCB.

4.1 Test Results and Analysis

Validity analysis about authorized and prohibited permissions is tested by having
security administrator specified any subject and/or object with security context. Test
results for validating prohibited permissions by specifying an object with security
context <student_u, student_r, student_t>, and validating authorized permissions by
specifying a subject with security context <teacher_u, object_r, coursemark_t> are
illustrated in Figs. 2 and 3 respectively.

By careful analysis and comparison, it is confirmed that test results are consistent
with the policy configuration and the configuration faithfully satisfies the original
security goals of the system.

Validity analysis about inquiry of an information flow path is focused on allow
rules in the policy configuration. So a series of formal description of inquiry statements
are devised for its test (refer to Table 1). Because some security goals of configuration

Fig. 2. Test results for prohibited permissions of subject <student_u, student_r, student_t>

Fig. 3. Test results for authorized permissions of object <teacher_u, object_r, coursemark_t>

SCIATool: A Tool for Analyzing SELinux Policies 303

are not convenient to be described in positive mode (i.e. inquiry described in accor-
dance with security goal), negative mode (i.e. inquiry described opposite to or not in
accordance with configuration) is also adopted for some inquiries, e.g. inquiry state-
ments of No. 16–18 in Table 1.

Screenshot about test for inquiry statement No. 11 in Table 1 is illustrated as Fig. 4.
Note that the inquiry statement is input by a wizard-style way.

It can be seen from Fig. 4 that a subject with type student_t can operate firstly in the
way of process transition and turn into a subject with type accessrecord_t and then can
write the object with type courserecord_t.

Inquiry statements in Table 1 have been input into the running prototype and test
results show that all the security targets can be met with the policy configuration.

In order to verify whether the prototype can executed effectively as for policy
configuration with some bugs, some test cases are also devised and used to test the
prototype. For example, it is required that a subject with type student_t ought to be
authorized to have read permission as for an object with type coursesourse_t. Thus a
new test case for inquiry statement No. 7 in Table 1 is devised for validity analysis
based on CPN that the rule statement “allow student_t coursesourse_t:file{read}” is
deleted from the configuration. Then run the prototype again with the same inquiry
statement and test result shows that no information flow can be found and verifies that
there is some bug about permission authorization for type student_t and coursesourse_t
in the configuration. Therefore, the prototype is proved to be correct and effective from
the negative aspect.

Table 1. Inquiry statements about security configuration goals

No Mode Inquiry statements

1 positive collegeadmin_t:(RL,-,!()):coursepremark_t
2 positive collegeadmin_t:(RL,-,!()):coursemark_t
3 positive collegeadmin_t:(RL,-,!()):coursework_t
4 positive collegeadmin_t:(RL,-,!()):coursesourse_t
5 positive collegeadmin_t:(RL,-,!()):coursesourse_t
6 positive collegeadmin_t:(WL,+,!()):coursemark_t
7 positive student_t:(RL,-,!()):coursesourse_t
8 positive student_t:(RL,-,!()):courserecord_t
9 positive student_t:(RL,-,!()):coursemark_t
10 positive student_t:(WL,+,!()):coursework_t
11 positive student_t:(WL,+,!()):courserecord_t
12 positive teacher_t:(RL,-,!()):coursesourse_t
13 positive teacher_t:(RL,-,!()):coursework_t
14 positive teacher_t:(WL,+,!()):coursesourse_t
15 positive teacher_t:(WL,+,!()):coursepremark_t
16 negative student_t:(WL,+,!()):coursepremark_t
17 negative student_t:(WL,+,!()):coursemark_t
18 negative teacher_t:(WL,+,!(coursepremark_t)):coursemark_t

304 G. Zhai et al.

Above results show that the prototype can not only work out all objects (or sub-
jects) with corresponding permissions that any subject (or objects) with specified
security context are authorized or prohibited according to the given SELinux policies
configuration, but also can it verify correctness of configuration based upon informa-
tion flow inquiry. In addition, the TCB integrity analysis can be done successfully and
all rules that could potentially influence integrity of TCB subjects and objects can be
detected.

4.2 Related Work and Discussion

A lot of research work has been done around SELinux policies analysis. As mentioned
in the Sect. 2, Gokyo [3] and [13, 14], SELAC [4], SLAT [7, 8] and [15] and
SEAnalyzer [9] provide valuable reference for our research in this paper. However,
Gokyo is mainly used to check integrity of a proposed trusted computing base (i.e. to
identify where untrusted data may enter the TCB) and to resolve constraint conflicts for
SELinux that has multiple security goals with obviously different kinds of trust rela-
tionship, and it cannot cover all the aspects of policy violations; SELAC is focused on
formalization of SELinux configuration language and to model the relationships
occurring among sets of configuration rules and verification whether a given subject
can access a given object in a given mode as for an arbitrary given security policy
configuration; SLAT draws support from the model checker NuSMV for information
flow model checking; SEAnalyzer also makes use of a software tool named CPN to aid
its analysis procedure. Only one analysis method either based on access control space
or based on information flow or based on colored Petri-net is used for policy analysis
by each of them, and the analysis must be restricted by limitations of each method.

Fig. 4. Screenshot about test for inquiry statement No. 11

SCIATool: A Tool for Analyzing SELinux Policies 305

In addition, logic-programming approach [16, 17], deductive database approach
[18], deductive spreadsheets based approach [19], model-based approach [20] and
learning-based approach [21] are also used or put forward for analyzing SELinux
policies. Specifically, PAL [16] uses SLAT’s information flow model and creates a
logic program using the XSB logic-programming system to run queries for analyzing
SELinux policies; PALMS [17] is implemented in Prolog for policy analysis based on a
logical specification for SELinux MLS policies; Lopol [18] normalizes and encodes
SELinux policies as logical relations in conjunction with inference rules to perform a
number of simple analyses and it can quickly tailor a large default policy (such as strict,
targeted, or reference policy) to the specific needs of a system or a class of systems by
using a logical rule set as a high-level language; XcelLog [19] is implemented based
upon deductive spreadsheets as an add-in to Microsoft Excel and the XSB tabled logic
programming system is used as the underlying deductive engine for security policy
analysis while SELinux policies in policy.conf format are loaded into XcelLog by using
a Perl script to transform the policy into comma-separated-value (.csv) format and then
opening the .csv files in Excel; A model-based approach [20] is presented to analyze
the dynamic proliferation of access rights in SELinux, which maps SELinux policies to
an isomorphic HRU security model whose safety properties can then be analyzed by
applying methods and tools available for the analysis of HRU model safety; A
learning-based approach [21] is devised to analyze system call logs and to monitor an
application’s behavior through system calls and an application’s policy within SELinux
can be improved by reducing the number of Domain-Type associations, i.e. reducing
SELinux application access to minimum set of types used by the application.

Compared with above research, SCIATool integrates methods based on access
control spaces, information flows and colored Petri-nets organically and realizes the
mutual supplement with each other’s advantages. Most importantly, SCIATool is
implemented independently in C language and its policy analysis doesn’t require the
help of other available software tools, thus it is easier to be enlarged to construct a
well-functioning computer-aided SELinux configuration tool and is convenient to be
integrated into other available SELinux configuration tools. However, trends of visu-
alization and engineering [22–30] reflected in recent work to improve SELinux policy
configuration ought to be considered and referenced in our future efforts to put
SCIATool into practice. Furthermore, SCIATool can be improved by adopting a
visualization-based policy analysis framework and it should be implemented as a
policy engineering workbench encompassing the automation of engineering steps,
prebuilt model patterns, integrated plausibility checks, and model analysis tools.

5 Conclusions

In this paper, we have done some exploratory research and practice for the analysis of
SELinux policies configuration by making integrated use of three typical analysis
methods based upon access control spaces, information flows and colored Petri-nets.
And corresponding prototype, i.e. SCIATool is designed and implemented and tested.
To our best of knowledge, SCIATool is the first analysis tool that integrating such three
methods together.

306 G. Zhai et al.

By synthesizing complementary advantages of different methods, SCIATool can
perform the TCB integrity analysis and various validity analyses effectively, as have
been verified by test results. Furthermore, it can not only detect all rules that could
potentially influence integrity of the initially specified TCB, but also can it figure out
authorized or prohibited permissions as for a specified subject and/or a specified object
as well as information flow path in CPN of policy configuration as for a specified
information flow path requirement.

Specially, by using inquiry analysis based on colored Petri-nets, a whole or com-
paratively independent part of security goals can be described as a series of inquiry
statement and then be testified by SCIATool. Therefore, SCIATool can not only per-
form analysis tasks of security goals (i.e. authorized and prohibited permissions) as for
a single entity (i.e. subject, object or subject-object pair), but also can it perform
analysis tasks of security goals as for a whole system or subsystem by in turn detecting
and deciding whether there is an information flow path that satisfies each statement of
security goals denoted as the specified inquiry requirement.

SCIATool is implemented completely in popular standard C language and can run
independently without the help of any other available software, as make it easy to be
enlarged to construct a well-functioning computer-aided SELinux configuration tool
and be convenient to be integrated into other available SELinux configuration tools.

Although some non-expert oriented interface design schemes (e.g. support of
wizard-style inquiry input and hierarchical display of security elements in policies con-
figuration) have been adopted, a lot of efforts, such as comprehensive support for
graphical interface and policy configuration engineering, need to be taken in order to
make SCIATool achieve real practicality. At the same time, for complexity and
large-scale features that the real configuration of SELinux policies has, performance of
analysis and how to improve analysis efficiency ought to be considered in our futurework.

Acknowledgements. The research presented in this paper was performed with the support of the
Fundamental Research Funds for the Central Universities (No. 2009JBM019). This paper was
also supported by the State Scholarship Fund of China Scholarship Council (File
No. 201307095025).

References

1. Smalley, S., Vance, C., Salamon, W.: Implementing SELinux as a linux security module.
NAI labs report #01-043 (2006)

2. Smalley. S.: Configuring the SELinux policy. NAI Labs Report #02-007 (2005)
3. Jaeger, T., Zhang, X., Edwards, A.: Policy management using access control space. ACM

Trans. Inf. Syst. Secur. 6(3), 327–364 (2003)
4. Zanin, G., Mancini, L.V.: Towards a formal model for security policies specification and

validation in the SELinux system. In: Proceedings of the 9th ACM Symposium on Access
Control Models and Technologies, pp. 136–145. Association for Computing Machinery
(ACM), New York (2004)

5. Zhai, Gaoshou, Tong, Wu: Algorithms for automatic analysis of SELinux security policy.
Int. J. Secur. Appl. 7(1), 71–84 (2013)

SCIATool: A Tool for Analyzing SELinux Policies 307

6. Zhai, Gaoshou, Tong, Wu: Automatic analysis method for SELinux security policy. Int.
J. Secur. Appl. 6(2), 229–234 (2012)

7. Guttman, J.D., Herzog, A.L., Ramsdell, J.D.: Information flow in operating systems: eager
formal methods. In: Workshop on Issues in the Theory of Security (WITS 2003). IFIP WG
1.7, ACM SIGPLAN and GI FoMSESS. Warsaw, Poland (2003)

8. Guttman, J.D., Herzog, A.L., Ramsdell, J.D., Skorupka, C.W.: Verifying information flow
goals in security-enhanced linux. J. Comput. Secur. 13, 115–134 (2005)

9. Chen, Y.-M., Kao, Y.-W.: Information flow query and verification for security policy of
security-enhanced linux. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y.,
Kawamura, S.-I. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 389–404. Springer, Heidelberg
(2006)

10. Gu, L., Guo, Y., Yang, Y., Bao, F., Mei, H.: Modeling TCG-based secure systems with
colored petri nets. In: Chen, L., Yung, M. (eds.) INTRUST 2010. LNCS, vol. 6802, pp. 67–
86. Springer, Heidelberg (2011)

11. Ahn, G.J., Xu, W., Zhang, X.: Systematic policy analysis for high-assurance services in
SELinux. In: Proceedings of 2008 IEEE Workshop on Policies for Distributed Systems and
Networks, pp. 3–10. IEEE Computer Society (2008)

12. Guo, Tao, Zhai, Gaoshou: Automatic analysis of SELinux security policies based on colored
petri-net (in Chinese). Inf. Secur. Technol. 4(11), 35–40 (2013)

13. Jaeger, T., Sailer, R., Zhang, X.: Analyzing integrity protection in the SELinux example
policy. In: Proceedings of the 12th USENIX Security Symposium, pp. 59–74. Washington,
D.C., USA (2003)

14. Jaeger, T., Sailer, R., Zhang, X.: Resolving constraint conflicts. In: SACMAT 2004,
pp. 105–114. Yorktown Heights, New York, USA (2004)

15. Guttman, J.D., Herzog, A.L., Ramsdell, J.D.: SLAT: information flow in security enhanced
linux. Included in the SLAT distribution, available from http://www.nsa.gov/SELinux
(2003)

16. Sarna-Starosta, B., Stoller, S.D.: Policy analysis for security-enhanced linux. In: Proceedings
of the Workshop on Issues in the Theory of Security (WITS 2004), pp. 1–12. IFIP WG 1.7,
ACM SIGPLAN and GI FoMSESS. Barcelona, Spain (2004)

17. Hicks, B., Rueda, S., St. Clair, L., Jaeger, T., McDaniel, P.: A logical specification and
analysis for SELinux MLS policy. ACM Trans. Inf. Syst. Secur. 13(3), 26 (2010)

18. Kissinger, A., Hale, J.C.: Lopol: a deductive database approach to policy analysis and
rewriting. In: Proceedings of the Second Annual Security-enhanced Linux Symposium.
Baltimore, Maryland, USA (2006)

19. Singh, A., Amakrishnan, C.R., Ramakrishnan, I.V.: Security policy analysis using deductive
spreadsheets. In: FMSE 2007, pp. 42–50. Fairfax, Virginia, USA (2007)

20. Amthor, P., Kühnhauser, W.E., Pölck, A.: Model-based safety analysis of SELinux security
policies. In: 2011 5th International Conference on Network and System Security (NSS),
pp. 208–215. IEEE Press, New York (2011)

21. Marouf, S., Phuong, D.M., Shehab, M.: A learning-based approach for SELinux policy
optimization with type mining. In: Proceedings of the Sixth Annual Workshop on Cyber
Security and Information Intelligence Research (CSIIRW 2010). ACM, New York (2010)

22. Tresys Technology: SETools—policy analysis tools for SELinux. http://oss.tresys.com/
projects/setools

23. Wenjuan, X., Shehab, M., Ahn, G.-J.: Visualization-based policy analysis for SELinux:
framework and user study. Int. J. Inf. Secur. 12, 155–171 (2013)

308 G. Zhai et al.

http://www.nsa.gov/SELinux
http://oss.tresys.com/projects/setools
http://oss.tresys.com/projects/setools

24. Clemente, P., Kaba, B., Rouzaud-Cornabas, J., Alexandre, M., Aujay, G.: SPTrack: visual
analysis of information flows within SELinux policies and attack logs. In: Huang, R.,
Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds.) AMT 2012. LNCS, vol.
7669, pp. 596–605. Springer, Heidelberg (2012)

25. Marouf, S., Shehab, M.: SEGrapher: visualization-based SELinux policy analysis. In: 2011
4th Symposium on Configuration Analytics and Automation (SAFECONFIG), pp. 1–8.
Arlington, VA. IEEE Press, New York (2011)

26. Amthor, P., Kuhnhauser, W.E., Polck, A.: WorSE: a workbench for model-based security
engineering. Comput. Secur. 42, 40–55 (2014)

27. Athey, J., Ashworth, C., Mayer, F., Miner, D.: Towards Intuitive tools for managing
SELinux: hiding the details but retaining the power. Tresys Technology. http://www.tresys.
com/innovation/papers/Power_of_SELinux.pdf. Accessed 12 March 2007

28. MacMillan, K., Brindle, J., Mayer, F., Caplan, D., Tang, J.: Design and Implementation of
the SELinux policy management server. Tresys Technology. http://www.tresys.com/
innovation/papers/Design-And-Implementation-of-PMS.pdf. Accessed 1 March 2006

29. Singh, S.: Automatic verification of security policy implementations. Doctoral Dissertation
in Computer Science, University of Illinois at Urbana-Champaign (2012)

30. Nakamura, Y., Sameshima, Y., Yamauchi, T.: SELinux security policy configuration system
with higher level language. J. Inf. Process. 18, 201–212 (2010)

SCIATool: A Tool for Analyzing SELinux Policies 309

http://www.tresys.com/innovation/papers/Power_of_SELinux.pdf
http://www.tresys.com/innovation/papers/Power_of_SELinux.pdf
http://www.tresys.com/innovation/papers/Design-And-Implementation-of-PMS.pdf
http://www.tresys.com/innovation/papers/Design-And-Implementation-of-PMS.pdf

Faster Pairing Computation on Jacobi Quartic
Curves with High-Degree Twists

Fan Zhang1 , Liangze Li1,2, and Hongfeng Wu3(B)

1 LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China
viczf@pku.edu.cn, liliangze2005@163.com

2 Beijing International Center for Mathematical Research, Beijing 100871, China
3 College of Sciences, North China University of Technology, Beijing 100144, China

whfmath@gmail.com

Abstract. In this paper, we first propose a geometric approach to
explain the group law on Jacobi quartic curves which are seen as the
intersection of two quadratic surfaces in space. Using the geometry inter-
pretation we construct Miller function. Then we present explicit formulae
for the addition and doubling steps in Miller’s algorithm to compute the
Tate pairing on Jacobi quartic curves. Our formulae on Jacobi quartic
curves are better than previously proposed ones for the general case of
even embedding degree. Finally, we present efficient formulas for Jacobi
quartic curves with twists of degree 4 or 6. Our pairing computation on
Jacobi quartic curves are faster than the pairing computation on Weier-
strass curves when j = 1728. The addition steps of our formulae are
fewer than the addition steps on Weierstrass curves when j = 0.

Keywords: Elliptic curve · Jacobi quartic curve · Tate pairing · Miller
function · Group law

1 Introduction

In recent years, pairings on elliptic curves have become extremely useful in cryp-
tography, and pairing-based cryptography develops rapidly. The efficient algo-
rithms for pairing computation play a very important role in pairing-based cryp-
tograph. The well-known method for pairing computation is Miller’s algorithm.
Consequently, many improvements [5,6,14] on Miller’s algorithm were presented.
The Weierstrass model is widely used in the early stage of elliptic curves cryp-
tography, and many efficient formulae for pairing computation for this model
can be found in [1,7,9,20,22].

One of the ideas to make improvements is to compute pairings on other ellip-
tic curve models which may provide more efficient algorithms for the group law.
Various elliptic curve models and coordinate systems show different efficiency of
pairing computation. Consequently, it’s necessary to carry out more research on
pairing computation for different models of elliptic curves. Recently, other mod-
els, for example, Edwards curves [2,11] and twisted Edwards curves [3] are widely

c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 310–327, 2016.
DOI: 10.1007/978-3-319-27998-5 20

Faster Pairing Computation on Jacobi Quartic Curves 311

discussed. Pairing computation on twisted Edward curves was first considered by
Das and Sarkar in [10] and Ionica and Joux in [18]. Then, in 2009, Arène et al. [1]
developed explicit formulae for pairing computation on twisted Edwards curves.
Arène et al.’s formulae for computing the Tate pairing on Edwards curves are as
fast as the fastest previously published formulas on Weierstrass curves.

The use of Jacobi quartic curves in cryptology was explained in [8] and [4].
Then many other formulae for the point addition and doubling on Jacobi quartic
curves were given in the literatures, see [16] for a brief introduction of the devel-
opment of Jacobi quartic curves. Later, pairing computation on Jacobi quartic
curves was proposed by Wang et al. [17] in 2011. A complicated geometric inter-
pretation of Jacobi quartic curves was given in [17]. They pointed out that the
doubling step of their algorithm for computing the Tate pairing was competitive
with that on Weierstrass curves and Edwards curves. However the addition step
of Wang et al.’s algorithm needs to be optimized.

In this paper, we present a geometric interpretation of the group law on
Jacobi quartic curves. The geometric interpretation is based on the observation
in [16] that Jacobi quartic curves can be seen as the intersection of two quadratic
surfaces. For general elliptic curves given by intersection of two quadratic sur-
faces, the geometric interpretation of the group law had been discussed by Merri-
man et al. in [21]. And we put it into a description for Jacobi quartic curves. Using
the geometric interpretation we construct Miller function and present explicit
formulae for the addition steps and doubling steps in Miller’s algorithm to com-
pute the Tate pairing on Jacobi quartic curves. Miller function in this paper can
reduce the cost of updating the iteration function in Miller’s algorithm. So, both
the addition steps and doubling steps of our formulae for pairing computation on
Jacobi quartic curve are faster than that proposed by Wang et al. [17]. And our
formulae on Jacobi quartic curves are better than previously proposed ones on
Weierstrass curves and Edwards curves for the general case of even embedding
degree.

The cost of the algorithm for pairing computation consists three parts: the
cost of updating the point, the cost of updating the iteration function, and
the cost of evaluating Miller function at some point Q. To reduce the cost of
evaluating Miller function on Jacobi quartic curves, we employ quadratic, quartic
or sextic twists to our formulae. The high-twists had been sufficiently studied by
Costello, Lange and Naehrig [9] on Weierstrass curves, however, only quadratic
and quartic twist had been studied for Jacobi quartic curves in [12,17]. Sextic
twists of Jacobi quartic curves don’t have Jacobi quartic models, this leads to
some difficulties to apply sextic twists. However, the Tate pairing is performed
with both P and Q on original curve, we only choose Q as the image of certain
Q′ on the twist curve. Thus, it’s unnecessary for the twist curve to be written in
Jacobi quartic form. We write the twist curve in Weierstrass form and overcome
the complex derivation. Then the costs of evaluating in j = 0 case can reduce to
a third, this result is the same as that of Weierstrass curves.

In general, when j = 1728, our formulae on Jacobi quartic curves are better
than the formulae on Weierstrass curves. When j = 0, the addition steps in

312 F. Zhang et al.

our formulae on Jacobi quartic curves are fewer than the addition steps on
Weierstrass curves, while the doubling steps are slower. In practice, there are
some famous families of paring-friendly elliptic curves, such as KSS16 [19] and
TN8 [23] which have j = 1728. Thus, the Tate pairing computation on these
curves by using Jacobi quartic model are faster than using Weierstrass curves.

The remainder of this paper is organized as follows: Sect. 2 recalls the pre-
liminaries of the Tate pairing, Miller algorithm and the background of Jacobi
quartic curves. Section 3 introduces the geometric interpretation of the group
law on Jacobi quartic curves. Section 4 constructs the explicit formulae of Miller
function. Section 5 proposes explicit formulae of Tate pairing on Jacobi quartic
curves with quadratic, quartic or sextic twists respectively. Finally we conclude
our paper and give the examples.

Note that we use m and s denote the costs of multiplication and squaring in
the base field Fq; M and S denote the costs of multiplication and squaring in
the extension field Fqk ; mc denotes the cost of multiplying by a constant in the
base field.

2 Preliminaries

In this section we briefly review the preliminaries of Tate pairing and the back-
ground of Jacobi quartic curves.

2.1 Tate Pairing

Let p > 3 be a prime and Fq be a finite field with q = pn, E be an elliptic
curve defined over Fq with neutral element denoted by O and r be a prime such
that r|#E(Fq). Let k > 1 denote the embedding degree, i.e. k is the smallest
positive integer such that r|qk − 1. For any point P ∈ E(Fq)[r], there exists a
rational function fP defined over Fq such that div(fP) = r(P) − r(O), which is
unique up to a non-zero scalar multiple. The group of r-th roots of unity in Fqk

is denoted by μr. The reduced Tate pairing is defined as follows:

Tr : E(Fq)[r] × E(Fqk)/rE(Fqk) → μr : (P,Q) �→ fP (Q)(q
k−1)/r.

The rational function fP can be computed in polynomial time by using Miller’s
algorithm ([22]). Let r = (rl−1, · · · , r1, r0)2 be the binary representation of
r, where rl−1 = 1. Let gP1,P2 ∈ Fq(E) be the rational function satisfying
div(gP1,P2) = (P1) + (P2) − (O) − (P1 + P2), where P1 + P2 denotes the sum of
P1 and P2 on E, and additions of the form (P1) + (P2) denote formal additions
in the divisor group. gP1,P2 is referred as Miller function in this paper. Miller’s
algorithm which starts with T = P, f = 1 is written as Algorithm 1.

2.2 The Jacobi Quartic Curves

A Jacobi quartic curve defined over a finite field Fq is given by the following
equation:

Ea,d : y2 = dx4 + 2ax2 + 1

Faster Pairing Computation on Jacobi Quartic Curves 313

Algorithm 1. Miller’s algorithm
Ensure: r =

∑l−1
i=0 ri2

i, where ri ∈ {0, 1}. P ∈ E(Fq)[r], Q ∈ E(Fqk).

return fP (Q)(q
k−1)/r

1: f ← 1, T ← P
2: for i = l − 2 down to 0 do
3: f ← f2 · gT,T (Q), T ← 2T
4: if ri = 1 then
5: f ← f · gT,P (Q), T ← T + P
6: end if
7: end for
8: return f (qk−1)/r

where d, a ∈ Fq, d �= 0 and the discriminant � = 256(a2−d)2 �= 0. In [4], O.Billet
and M.Joye proved that if an elliptic curve defined over Fq has an Fq-point of
order 2 then E is birationally equivalent to a Jacobi quartic curve over Fq.

The projective closure of Ea,d in P
2 is

{(X : Y : Z) ∈ P
2 : Y 2Z2 = dX4 + 2aX2Z2 + Z4}.

This curve consists of the points (x, y) on the affine curve Ea,d, embedded as
usual into P

2 by (x, y) �→ (x : y : 1) and some extra points at infinity, i.e. the
points when Z = 0. There is exactly one infinity point, namely Ω = (0 : 1 : 0).
This point is singular.

In fact, from Hisil et al’s paper [16], the Jacobi quartic curve can be seen as
the intersection of two quadratic surfaces in space. That is, the Jacobi quartic
curve can be written as

Ja,d : 2aX2 + Z2 + dW 2 − Y 2 = 0, X2 − ZW = 0. (1)

With the projective coordinates (X : Y : W : Z), the identity element is
represented by the quadruplet O = (0 : 1 : 0 : 1). The negative of (X : Y : W : Z)
is (−X : Y : W : Z). The formulae of the addition steps and doubling steps on
Jacobi quartic curve with projective coordinates are discussed in [16].
Point addition in Ja,d Given P1 = (X1 : Y1 : W1 : Z1) and P2 = (X2 : Y2 :
W2 : Z2) be two different points on Ja,d. Let P1 +P2 = (X3 : Y3 : W3 : Z3), then
the formulae of point addition are given in [16] as follows:

X3 = (X1Y2 − Y1X2)(W1Z2 − Z1W2),
Y3 = (Y1Y2 − 2aX1X2)(W1Z2 + Z1W2) − 2X1X2(Z1Z2 + dW1W2),
Z3 = (X1Y2 − Y1X2)2,
W3 = (W1Z2 − Z1W2)2.

(2)

[16] points out that without any assumption on the curve constants, Y3 can be
alternatively written as:

Y3 = (W1Z2 + Z1W2 − 2X1X2)(Y1Y2 − 2aX1X2 + Z1Z2 + dW1W2) − Z3.

314 F. Zhang et al.

Point doubling in Ja,d If P1 = P2, let 2P1 = (X3 : Y3 : W3 : Z3), then the
formulae of point doubling are given in [16] as follows:

X3 = 2X1Y1(2Z1
2 + 2aX1

2 − Y1
2),

Y3 = 2Y1
2(Y1

2 − 2aX1
2) − (2Z1

2 + 2aX1
2 − Y1

2)2,
Z3 = (2Z1

2 + 2aX1
2 − Y1

2)2,
W3 = 4X1

2Y1
2.

(3)

3 Geometric Interpretation of the Group Law over Ja,d

In [17], a geometric interpretation of the group law on Jacobi quartic curves was
presented. They used a cubic curve to construct Miller function. In this paper, we
see the Jacobi quartic curve as the intersection of two quadratic surfaces in space
as stated in [16] and adopt a standard geometric approach to explain the group
law. For general elliptic curves given by intersection of two quadratic surfaces,
the geometric interpretation of group law had been discussed by Merriman et al.
in [21]. And we put it into a description for Jacobi quartic curves. This natural
construction leads to a simpler formula for Miller function, as we will see in this
section.

A projective plane is given by a homogeneous projective equation Π = 0. By
abuse of notation we still use the symbol Π to denote the projective plane. Since
the intersection of Π and Ja,d is the intersection of two quadratic curves on the
projective plane, any plane Π intersects Ja,d at exactly four points, counted with
appropriate multiplicities. The divisor of Π is defined as:

div(Π) =
∑

R∈Π∩Ja,d

nR(R) (4)

where nR is the intersection multiplicity of Π and Ja,d at the point R. Then the
quotient of two projective planes is a well defined function which gives a principal
divisor. As we will see, this divisor leads to the geometric interpretation of the
group law on Ja,d.

When saying the plane Π passes three points P1, P2 and P3 (not necessary
distinct) which means div(Π) ≥ (P1) + (P2) + (P3). In fact, by Riemann-Roch
theorem or by explicit discussion on multiplicity, one can know that there exists
a unique plane which satisfies the above inequality. We denote this plane by
ΠP1,P2,P3 in the following section.

Abel-Jacobi theorem connects the group law with principal divisor. And we
can get the following lemma.

Lemma 1. For Jacobi quartic curve Ja,d with neutral element O = (0 : 1 : 0 : 1).
Then 4 points(not necessary distinct) P1, P2, P3 and P4 satisfy P1+P2+P3+P4 =
O if and only if there is a plane Π with div(Π) = (P1) + (P2) + (P3) + (P4).

Proof. Firstly, it is easy to get that div(Y − Z − aW) = 4(O). Then the “if”part
follows directly: if div(Π) = (P1) + (P2) + (P3) + (P4), the principal divisor

Faster Pairing Computation on Jacobi Quartic Curves 315

div(Π
Y −Z−aW) = (P1) + (P2) + (P3) + (P4) − 4(O) is translated to equation

P1 + P2 + P3 + P4 = O by the Abel-Jacobi Theorem.
For the “only if” part, suppose P1 + P2 + P3 + P4 = O. Consider the plane

ΠP1,P2,P3 , we can assume that div(ΠP1,P2,P3) = (P1) + (P2) + (P3) + (P ′
4), so

it derives P1 + P2 + P3 + P ′
4 = O from the “if”part. Then we get P4 = P ′

4, i.e.
div(ΠP1,P2,P3) = (P1) + (P2) + (P3) + (P4).

By this lemma, we can easily construct some planes to obtain a geometry
approach to explain the group law on Ja,d: the fourth intersection of ΠP1,O,O

and Ja,d is −P1 i.e. the negative point of P1. The fourth intersection of ΠP1,P2,O

and Ja,d is −P1 − P2, and its negative point is P1 + P2. Actually, this geometric
interpretation is parallel with the tangent and chord law for the cubic plane
curves.

4 Miller Function over Ja,d

4.1 The Construction of Miller Function

In this section we construct Miller function over Ja,d. Let P1 and P2 be two points
on Ja,d, by Lemma 1 we can get div(ΠP1,P2,O) = (P1)+ (P2)+ (−P1 −P2)+ (O)
and div(ΠP1+P2,O,O) = (P1 + P2) + 2(O) + (−P1 − P2). Thus,

div(
ΠP1,P2,O

ΠP1+P2,O,O
) = (P1) + (P2) − (P1 + P2) − (O).

In Miller’s algorithm, P is always a fixed point, T is always nP for some integer
n. For the addition steps, Miller function gT,P over Ja,d can be given by setting
P1 = T, P2 = P :

gT,P =
ΠT,P,O

ΠT+P,O,O
(5)

For the doubling steps, Miller function gT,T over Ja,d is given by setting P1 =
P2 = T as follows:

gT,T =
ΠT,T,O

Π2T,O,O
(6)

We use the equation CXX +CY Y +CZZ +CW W = 0 to denote a projective
plane. Because all the planes in Formulas (5) and (6) pass through O = (0 : 1 :
0 : 1), the equations of them have the form CXX + CY (Y − Z) + CW W = 0.
Thus, to obtain the equation of the planes present in Formulas (5) and (6), we
only need to compute CX , CY and CW .

To unify the notation, we use P1, P2 to denote the points in the Miller algo-
rithm for both the addition and doubling steps, and consider P1 �= P2 and
P1 = P2 respectively when it is necessary. Assume that P1 = (X1 : Y1 : W1 :
Z1), P2 = (X2 : Y2 : W2 : Z2) and P3 = P1 + P2 = (X3 : Y3 : W3 : Z3).

316 F. Zhang et al.

4.2 The Equation of ΠP1,P2,O with P1 �= P2

Lemma 2. ΠP1,P2,O : CXX + CY (Y − Z) + CW W = 0 is the plane passing
through P1,P2, O where P1 �= P2 and P1, P2 �= O then we have:

CX = W1(Z2 − Y2)− W2(Z1 − Y1), CY = X2W1 − X1W2, CW = X2(Z1 − Y1)− X1(Z2 − Y2).

Proof. Since P1 and P2 are two distinct points, the coefficients are obtained by
evaluating CXX + CY (Y − Z) + CW W = 0 at P1 and P2. Then we obtain two
linear equations in CX , CY and CZ ,

CXX1 + CY (Y1 − Z1) + CW W1 = 0, CXX2 + CY (Y2 − Z2) + CW W2 = 0.

The coefficients of the plane ΠP1,P2,O follow from the (projective) solutions

CX =

∣

∣

∣

∣

∣

Y1 − Z1 W1

Y2 − Z2 W2

∣

∣

∣

∣

∣

, CY =

∣

∣

∣

∣

∣

W1 X1

W2 X2

∣

∣

∣

∣

∣

, CW =

∣

∣

∣

∣

∣

X1 Y1 − Z1

X2 Y2 − Z2

∣

∣

∣

∣

∣

.

Thus we can get the formulae in the Lemma 2:

CX = W1(Z2 − Y2)− W2(Z1 − Y1), CY = X2W1 − X1W2, CW = X2(Z1 − Y1)− X1(Z2 − Y2).

4.3 The Equation of ΠP1,P2,O with P1 = P2

Lemma 3. ΠP1,P2,O : CXX + CY (Y − Z) + CW W = 0 is the plane passing
through P1,P2 and O, where P1 = P2 �= O, then we have:

CX = 2aX1W1 + 2X1(Z1 − Y1), CY = −Y1W1, CW = dW 2
1 − Z2

1 + Y1Z1.

Proof. When P1 = P2 �= O, the tangent line to Ja,d at P1 is the intersection of the
tangent planes to 2aX2+Z2+dW 2−Y 2 = 0 and X2−ZW = 0 at P1. The tangent
plane to 2aX2 +Z2 +dW 2 −Y 2 = 0 at P1 is 2aX1X +Z1Z +dW1W −Y1Y = 0.
The tangent plane to X2 − ZW = 0 at P1 is 2X1X − W1Z − Z1W = 0. Then
ΠP1,P1,O has the following equation:

λ(2aX1X + Z1Z + dW1W − Y1Y) + μ(2X1X − W1Z − Z1W) = 0,

where at least one of the constants λ, μ is non-zero. Note that ΠP1,P1,O passes
O, i.e. λ(Z1 − Y1) − μW1 = 0. It is clear that λ = W1, μ = Z1 − Y1 satisfy
the equation and at least one of them is non-zero because P1 �= O. Hence, the
equation of ΠP1,P1,O is

W1(2aX1X + Z1Z + dW1W − Y1Y) + (Z1 − Y1)(2X1X − W1Z − Z1W) = 0.

Then we can get the coefficients of ΠP1,P1,O as follows:

CX = 2aX1W1 + 2X1(Z1 − Y1), CY = −Y1W1, CW = dW 2
1 − Z2

1 + Y1Z1.

Faster Pairing Computation on Jacobi Quartic Curves 317

4.4 The Equation of ΠP3,O,O

Lemma 4. ΠP3,O,O : CXX + CY (Y − Z) + CW W = 0 is the plane passing
through P3, O and O, where P3 �= O, then we have:

CX = 0, CY = W3, CW = (Z3 − Y3).

Proof. This proof is similar to the proof of Lemma3. Since ΠP3,O,O passes
through the tangent line of Ja,d at O, then equation of ΠP3,O,O is λ(Z − Y) −
μW = 0. For it passes P3 �= O, we have λ = −W3, μ = Y3−Z3 and at least one of
them is non-zero. Then the equation of ΠP3,O,O is W3(Y −Z)+(Z3−Y3)W = 0.

4.5 The Explicit Formula of Miller Function

We summarize the above results as the following theorem:

Theorem 5. Let Ja,d : 2aX2+Z2+dW 2−Y 2 = 0, X2−ZW = 0 be a Jacobi
quartic curve, O = (0 : 1 : 0 : 1). Let P1 = (X1 : Y1 : W1 : Z1), P2 = (X2 : Y2 :
W2 : Z2) be two points on Ja,d. Let P3 = P1 + P2 = (X3 : Y3 : W3 : Z3). Then
Miller function gP1,P2(X,Y,W,Z) which satisfies div(gP1,P2) = (P1) + (P2) −
(P3) − (O) is:

gP1,P2(X,Y,W,Z) =
ΠP1,P2,O

ΠP3,O,O
=

CXX + CY (Y − Z) + CW W

W3(Y − Z) + (Z3 − Y3)W
.

In the case P1 �= P2 and P1, P2 �= O, the coefficients are given by

CX = W1(Z2 − Y2)− W2(Z1 − Y1), CY = X2W1 − X1W2, CW = X2(Z1 − Y1)− X1(Z2 − Y2).

If P1 = P2 �= O, the coefficients are given by

CX = 2aX1W1 + 2X1(Z1 − Y1), CY = −Y1W1, CW = dW 2
1 − Z2

1 + Y1Z1.

By the definition of Miller function, it’s unique up to a factor in the base
field. In practice, without changing the value of Tate pairing we can multiply
Miller function by an appropriate factor in the base field to reduce the cost.

5 Tate Pairing Computation on Ja,d Using Projective
Coordinates

In this section, we analyze the formulae in Miller’s algorithm explicitly. As it’s
shown in Algorithm1, each addition or doubling step consists of three parts:
computing the point T +P or 2T and the function gT,P or gT,T ; evaluating gT,P

or gT,T at Q; updating the variable f by f ← f ·gT,P (Q) or by f ← f2 ·gT,T (Q).
The updating part costs 1M for the addition step and 1M+1S for the dou-

bling step. It is usually the main cost but it’s difficult to give further optimization
for the updating part. For the evaluating part, when the embedding degree k is

318 F. Zhang et al.

even, as we will introduce in the following section, some standard methods such
as denominator elimination and subfield simplification can be used.

As usual, we choose P ∈ Ja,d(Fq)[r] and Q ∈ Ja,d(Fqk), where k > 1 is the
embedding degree. In fact as stated in [15], Q can be chosen from a subgroup
which is given by a twist of Ja,d. More precisely, for t = # Aut(Ja,d), there
is a twist of Ja,d over Fqk/t with degree t denoted as E′ such that there is
an isomorphism ψ : E′ → Ja,d over Fqk . Then Q is chosen as ψ(Q′), where
Q′ belongs to E′(Fqk/t). It is noticeable that E′ is not necessary to have a
Jacobi quartic model. The following theorem shows that the evaluation of Miller
function can be simplified by choosing Q in the above way.

5.1 Tate Paring Computation on Ja,d With Even Embedding
Degrees

When the embedding degree k is even, one of the standard methods to cut down
the expense is called denominator elimination. In this section, we can see how
the denominator elimination works on Ja,d in details.

Theorem 6. Assume that embedding degree k is even. Let δ be a generator of
Fqk over Fqk/2 with δ2 ∈ Fqk/2 . Let ψ : Jaδ2,dδ4 → Ja,d be the twist isomorphism
given by (X : Y : W : Z) �→ (δX : Y : δ2W : Z). For Q′ = (X0 : Y0 : W0 : Z0) ∈
Jaδ2,dδ4(Fqk/2), Q = ψ(Q′) ∈ Ja,d(Fqk) and P3 = P1 + P2 �= O, we have

gP1,P2(Q) ∈ (CXθδ + CY + CW η)F∗
qk/2 ,

where θ = X0
Y0−Z0

, η = W0δ2

Y0−Z0
and CX , CY , CW are given in Theorem5.

Proof. By Theorem 5,

gP1,P2(Q) =
ΠP1,P2,O(Q)
ΠP3,O,O(Q)

=
CXδX0 + CY (Y0 − Z0) + CW δ2W0

W3(Y0 − Z0) + (Z3 − Y3)δ2W0

=
CX

X0
Y0−Z0

δ + CY + CW
W0δ2

Y0−Z0

W3 + (Z3 − Y3) W0δ2

Y0−Z0

∈ (CXθδ + CY + CW η)F∗
qk/2 .

From the above theorem, the denominator of gP1,P2(Q) can be eliminated
by the final exponentiation, since it belongs to F

∗
qk/2 . Moreover, note that

θ, η ∈ Fqk/2 and they are fixed during the whole computation, so they can be
precomputed. The coefficients CX , CY and CW are in Fq, thus when the coeffi-
cients of the plane are given, the evaluation at Q can be computed in km (the
multiplications by θ and η need k

2m each).
Various tricks can be used when computing the coordinates of the points and

the coefficients of the planes. We will discuss them respectively for the addition
and doubling step as follows.

Faster Pairing Computation on Jacobi Quartic Curves 319

Addition Step. Let P1 = T and P2 = P be two distinct points. By Theo-
rem 5 and Formula (2), the explicit formulas for computing P3 = T + P and
CX , CY , CW are given as follows:

A = X1 · X2; B = Y1 · Y2; C = Z1 · Z2; D = W1 · W2;
E = (X1 − Y1) · (X2 + Y2) − A + B;
F = W1 · Z2; G = W2 · Z1

H = (Y1 − W1) · (Y2 + W2) − B + D;
I = (X2 − W2) · (X1 + W1) − A + D;
J = (X2 + Z2) · (X1 − Z1) − A + C;

Z3 = E2; X3 = E · (F − G);
Y3 = (F + G − 2A) · (B − 2aA + C + dD) − Z3;

CX = H + F − G; CY = I; CW = E − J ;

The coordinate W3 is not computed in this step, because by using a trick
we don’t need the value of W3 in following doubling step (see the details in the
following Sect. 5.1). Then the total costs of computing T + P and CX , CY , CW

are 12m+ 1s+ 2mc, where 2mc are multiplication by a and d. Since P is fixed
during the pairing computation, we can use the mixed addition which means
Z2 = 1, then the costs reduce to 10m + 1s + 2mc.

So the total costs of an addition step are 1M+ (k + 12)m+ 1s+ 2mc, while
a mixed addition step costs 1M + (k + 10)m + 1s + 2mc.

Doubling Step. From Theorem 5, for P1 = P2 = T , P3 = 2T , we have:

CX = 2aX1W1 + 2X1(Z1 − Y1), CY = −Y1W1, CW = dW 2
1 − Z2

1 + Y1Z1

In order to exclude W1, we make a trick by multiplying the above coefficients
by 2Y1Z1 which belongs to the base field. Instead of computing CX , CY , CW , we
compute the following C ′

X , C ′
Y , C ′

W :

C ′
X = 2X1Y1(Y 2

1 − 2Y1Z1) + 2X1Y1(2Z2
1 + 2aX2

1 − Y 2
1)

C ′
Y = −2X2

1Y 2
1

C ′
W = −2Y1Z1(2Z2

1 + 2aX2
1 − Y 2

1) + 2Y 2
1 Z2

1

Now the explicit formulas for computing 2P and C ′
X , C ′

Y , C ′
W are given as

follows:

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = aA; E = 2C + 2D − B;

F = (X1 + Y1)2 − A − B; G = (Y1 + Z1)2 − B − C;
Z3 = E2; W3 = F 2; X3 = ((E + F)2 − Z3 − W3)/2;
Y3 = 2B2 − aW3 − Z3; C ′

X = F · (B − G) + X3;
C ′

Y = −W3/2; C ′
W = ((G − E)2 − Z3)/2.

Then the total costs are 1m+ 10s+ 2mc, where mc is the multiplication by
a. Hence, a doubling step costs 1M + 1S + (k + 1)m + 10s + 2mc.

We compare the costs of pairing computation on Jacobi quartic curves [17],
Weierstrass curves [1] and twisted Edwards curves [1] in the following table.

320 F. Zhang et al.

Table 1. Costs comparison for even embedding degree(j �=0,1728)

DBL mADD ADD

Weierstrass [1]
1m + 11s + 1mc

≈ 9.8m

6m + 6s

≈ 10.8m

9m + 6s

≈ 13.8m

Weierstrass a4 = −3[1]
6m + 5s

≈ 10m

6m + 6s

≈ 10.8m

9m + 6s

≈ 13.8m

Edwards [1]
6m + 5s + 2mc

≈ 10m

12m + 1mc

≈ 12m

14m + 1mc

≈ 14m

Jacobi quartic [17]
4m + 8s + 1mc

≈ 10.4m

16m + 1s + 4mc

≈ 16.8m

18m + 1s + 4mc

≈ 18.8m

Ja,d this paper
1m+10s + 2mc

≈ 9m

10m + 1s + 2mc

≈ 10.8m

12m + 1s + 2mc

≈ 12.8m

Each doubling step (DBL) needs 1M+km+1S for the evaluation at Q and the
update of f . Each mixed addition step (mADD) and addition step (ADD) needs
1M+km for the evaluation at Q and the update of f . In the table we do not
report these expenses, since they do not depend on the chosen model. If we let
1s=0.8m, without considering the cost of multiplication by constants, we can
see the result shows that our formulae for Tate pairing computation on Jacobi
quartic are effective (Table 1).

5.2 Tate Pairing on Ja,d with quartic or sextic twists

Let t|k, an elliptic curve E′ over Fqk/t is called a twist of degree t of E/Fqk/t if
there is an isomorphism ψ : E′ → E defined over Fqk , and this is the smallest
extension of Fqk/t over which ψ is defined. Depending on the j-invariant j(E)
of E, there exist twists of degree at most 6, since char(Fq) > 3. Elliptic curves
with twists of degree higher than 2 arise from constructions with j-invariants
j(E) = 0 and j(E) = 1728. Theorem 6 shows that we can reduce the cost using
the twists of degree 2. In this section, we will show that twists of higher degree
can further reduce the cost.

Jacobi Quartic Curve with j = 1728. The Jacobi quartic curve J0,d : Y 2 =
dW 2 + Z2,X2 = ZW has j-invariant which is equal to 1728, hence, there exist
twists of degree 4. We have the following theorem.

Theorem 7. Assume that 4|k . Let δ be a generator of Fqk over Fqk/4 and
δ4 ∈ Fqk/4 , which implies δ2 ∈ Fqk/2

1. Then J0,dδ4 is a twist of J0,d with degree
4 and ψ : (X : Y : W : Z) �→ (δX : Y : δ2W : Z) is the twist isomorphism. For
Q′ = (X0 : Y0 : W0 : Z0) ∈ J0,dδ4(Fqk/4), Q = ψ(Q′) ∈ J0,d(Fqk), P1, P2 �= O
and P3 = P1 + P2 �= O, we have

gP1,P2(Q) ∈ (CXθδ + CY + CW ηδ2)F∗
qk/2 ,

1 This δ exists if and only if Fqk/4 contains 4th-roots of unity, i.e. 4 | qk/4 − 1.

Faster Pairing Computation on Jacobi Quartic Curves 321

where θ = X0
Y0−Z0

, η = W0
Y0−Z0

and CX , CY , CW are given in Theorem 5.

Proof Theorem 5 shows us the explicit formulae of Miller function gP1,P2 is:

gP1,P2(Q) =
ΠP1,P2,O(Q)
ΠP3,O,O(Q)

=
CXδX0 + CY (Y0 − Z0) + CW δ2W0

W3(Y0 − Z0) + (Z3 − Y3)δ2W0

=
CX

X0
Y0−Z0

δ + CY + CW
W0

Y0−Z0
δ2

W3 + (Z3 − Y3) W0
Y0−Z0

δ2
∈ (CXθδ + CY + CW ηδ2)F∗

qk/2 .

From the above theorem, the denominator of gP1,P2(Q) can be eliminated
by the final exponentiation, since it belongs to F

∗
qk/2 . In addition, note that

θ, η ∈ Fqk/4 and they are fixed during the whole computation, so they can be
precomputed. The coefficients CX , CY and CW are in Fq, thus the evaluation at
Q given the coefficients of the plane can be computed in k

2m (multiplications by
θ and η need k

4m each).

Addition step: Using the algorithm in Sect. 5.1, 1mc can be saved for a = 0.
Hence, an addition step in Miller’s algorithm costs 1M+(k

2 +12)m+1s+1mc,
and a mixed addition step in Miller’s algorithm costs 1M+(k

2 +10)m+1s+1mc,
where 1mc is multiplication by d.

Doubling step: Using the algorithm in Sect. 5.1, we compute X1Y1 instead of
computing A = X2

1 and F = (X1 + Y1)2 − A − B, since a = 0 leads to D = 0 in
algorithm. Furthermore, 1mc can be saved for a = 0. Hence a doubling step in
Miller’s algorithm costs 1M + 1S + (k

2 + 2)m + 8s.
The following table shows the concrete comparison with previous results on

elliptic curves with quartic twists. Each doubling step (DBL) needs 1M+k
2m+1S

for the evaluation at Q and the update of f . Each mixed addition step (mADD)
and addition step (ADD) needs 1M+ k

2m for the evaluation at Q and the update
of f . In the table we do not report these expenses, since they are the same on
Weierstrass model and Jacobi model. Both the addition steps and the doubling
steps in our formulae for Tate pairing computation on Jacobi quartic curves are
faster than the fastest known results on Weierstrass curves and previous results
on Jacobi quartic curves (Table 2).

Table 2. Costs comparison for j = 1728

j = 1728 DBL mADD ADD

y2 = x3 + ax [9]
2m + 8s + 1mc

≈ 8.4m

9m + 5s

≈ 13m

12m + 7s

≈ 17.6m

y2 = dx4 + 1 [12]
3m + 7s + 1mc

≈ 8.6m

12m + 7s + 1mc

≈ 17.6m

12m + 11s + 1mc

≈ 20.8m

J0,d this paper
2m + 8s

≈ 8.4m

10m + 1s + 1mc

≈ 10.8m

12m + 1s + 1mc

≈ 12.8m

322 F. Zhang et al.

Jacobi Quartic Curves with j =0. The Jacobi quartic curve Ea,d : y2 =
dx4 + 2ax2 + 1 has j-invariant ja,d = 16(4a2+12d)3

d(a2−4d)2 . Hence, ja,d = 0 if and only if
a2 + 3d = 0. Now we look into the Jacobi quartic curve

Ea,−a2/3 : y2 = −a2

3
x4 + 2ax2 + 1

which has j-invariant equal to 0, hence, there exist twists of degree 6. Sextic
twists of Jacobi quartic curves don’t have Jacobi quartic model, this leads to
some difficulties to apply sextic twists. However, the Tate pairing is performed
with both P and Q on original curve, we only choose Q as the image of certain
Q′ on the twist curve. Thus, it’s unnecessary for the twist curve to be written
in Jacobi quartic form. The following lemma gives a twist of degree 6 written in
Weierstrass form.

Lemma 8. Assume that 6|k, δ is a generator of Fqk over Fqk/6 with δ6 ∈ Fqk/6 ,
which implies δ2 ∈ Fqk/2 and δ3 ∈ Fqk/3

2. Then the Weierstrass elliptic curve

Wa : v2 = u3 +
64a3

27
δ6

is a twist of degree 6 over Fqk/6 of Ea,−a2/3. The isomorphism can be given as

ϕ : Wa −→ Ea,−a2/3

(u, v) �−→ (x, y) =
(

6uδ + 8aδ3

3v
,
3u − 2aδ2

6δ2
(
6uδ + 8aδ3

3v
)2 − 1

)

.

Proof. Firstly, we check that ϕ is well defined, i.e. ϕ(u, v) ∈ Ea,−a2/3. Note that

y =
3u − 2aδ2

6δ2
(
6uδ + 8aδ3

3v
)2 − 1 = (

vx

4δ3
− a)x2 − 1

so

y + 1 + ax2 =
vx3

4δ3
=

2
v2

(u +
4aδ2

3
)3 = 2 + 2ax2 − 16a2δ3

3v
x

Then we have

(y + 1 + ax2)(y − 1 − ax2) = −vx3

4δ3
16a2δ3

3v
x = −4a2

3
x4,

y2 = −a2

3
x4 + 2ax2 + 1.

Moreover, it can be easily checked that ϕ is invertible and satisfies ϕ(O) = O,
i.e. ϕ is an isomorphism. Besides, the minimal field that ϕ can be defined over is
Fqk which has degree 6 over Fqk/6 . Hence, the twist degree is 6. In fact, Ea,−a2/3

is isomorphic to Ja,−a2/3 by ι : (x, y) �→ (x : y : x2 : 1). Let ψ = ι ◦ ϕ, we get the
following theorem.
2 This δ exists if and only if Fqk/6 contains 6th-roots of unity, i.e. 6 | qk/6 − 1.

Faster Pairing Computation on Jacobi Quartic Curves 323

Theorem 9. Using the notation in Lemma 8, for Q′ = (u, v) ∈ Wa(Fqk/6),
Q = (XQ : YQ : WQ : ZQ) = (xQ : yQ : x2

Q : 1) = ψ(Q′) ∈ Ja,−a2/3(Fqk),
P1, P2 �= O and P3 = P1 + P2 �= O, we have

gP1,P2(Q) ∈ (−CXθδ − (aCY + CW)ηδ2 + (aCY − CW)δ4)F∗
qk/2 ,

where θ = 3v
8a , η = 3u

4a and CX , CY , CW are given in Theorem 5.

Proof. Since Q′ ∈ Wa(Fqk/6), we have Q = ψ(Q′) ∈ Ja,−a2/3(Fqk). One can check
by substituting that:

XQ

YQ − ZQ − aWQ
=

xQ

yQ − 1 − ax2
Q

= −yQ + 1 + ax2
Q

4
3a2x3

Q

= − 3v

16a2δ3
= − 1

2a
θδ−3

WQ

YQ − ZQ − aWQ
=

x2
Q

yQ − 1 − ax2
Q

= − 3u

8a2δ2
− 1

2a
= − 1

2a
ηδ−2 − 1

2a

YQ − ZQ

YQ − ZQ − aWQ
= 1 − aWQ

YQ − ZQ − aWQ
=

3u

8aδ2
+

1
2

= −1
2
ηδ−2 +

1
2

Then we get

gP1,P2(Q) =
ΠP1,P2,O(Q)
ΠP3,O,O(Q)

=
−CXθδ − (aCY + CW)ηδ2 + (aCY − CW)δ4

(−aW3 + Y3 − Z3)ηδ2 + (aW3 − Z3 + Y3)δ4

∈ (−CXθδ − (aCY + CW)ηδ2 + (aCY − CW)δ4)F∗
qk/2 .

The above theorem shows that the denominator of gP1,P2(Q) can be elimi-
nated by the final exponentiation, since it belongs to F

∗
qk/2 . Moreover we may

precompute θ and η since they are fixed during the whole computation. When
CX , CY , CW ∈ Fq and θ, η ∈ Fqk/6 are given, the evaluation at Q can be com-
puted in k

3m + mc, with k
6m for multiplications by θ and η respectively and a

constant multiplication by a.
Special simplification has not been found for this case. Hence, we use the

algorithm in Sect. 5.1. Then the total cost of the addition step using mixed
addition is 1M + (k

3 + 10)m + 1s + 3mc, where 3mc are multiplication by a, a

and d, and the total cost of the doubling step is 1M+1S+(k
3 +1)m+10s+3mc,

where mc is the multiplication by a.
The following table shows the concrete comparison with previous results on

elliptic curves with sextic twists. The cost of evaluating Miller function at some
point Q on Weierstrass curves and Jacobi quartic curves both reach k

3m. Each
doubling step (DBL) needs 1M + k

3m + 1S for the evaluation at Q and the
update of f . Each mixed addition step (mADD) and addition step (ADD) needs
1M + k

3m for the evaluation at Q and the update of f . In the table we do
not report these expenses, since they are the same on Weierstrass model and
Jacobi model. The addition steps in our formulae for Tate pairing computation
on Jacobi quartic curves are faster than those on Weierstrass curves, while the
doubling steps are slower than those on Weierstrass curves. The Weierstrass

324 F. Zhang et al.

curves gain advantages in the doubling steps that is because when j = 0 the
formulae of the point doubling turn to much simpler. While for Jacobi quartic
curves the special simplification of the point doubling has not been found when
j = 0. Thus, if we want the Jacobi quartic curves to be competitive with Weier-
strass curves in the future, we should focus on the optimization of formulae for
the point doubling on Jacobi quartic curves with j = 0 (Table 3).

Table 3. Costs comparison for j = 0

j = 0 DBL mADD ADD

y2 = x3 + c2 [9]
3m + 5s

≈ 7m

10m + 2s + 1mc

≈ 11.6m

14m + 2s + 1mc

≈ 15.6m

y2 = x3 + b [9]
2m + 7s + 1mc

≈ 7.6m

10m + 2s

≈ 11.6m

14m + 2s

≈ 15.6m

Ja,−a2/3 this paper
1m+10s + 3mc

≈ 9m

10m + 1s + 3mc

≈ 10.8m

12m + 1s + 3mc

≈ 12.8m

Table 4. Costs comparison for TN8 and KSS16

k Security level hw Δ

TN8 in Appendix 8 128bits 79 173.8m385

KSS16 in Appendix 16 192bits 148 325.6m489

6 Conclusion and Example

Table 1 shows that Jacobi model provides efficient formulae for Tate pairing
computation when the embedding degree is even and j �= 0, 1728. When j = 1728
our formulae on Jacobi quartic curves are better than the previous results on
Jacobi quartic curves as shown in Table 2; In doubling steps, the cost on Jacobi
quartic curves is the same as that on Weierstrass curves; in addition steps, our
formulae on Jacobi quartic curves are better than the formulae on Weierstrass
curves. When j = 0 the addition steps of our formulae on Jacobi quartic curves
are fewer than the formulae on Weierstrass curves , while the doubling steps
are slower as showed in Table 3. In practice, pairing-friendly elliptic curves with
j = 0 are more popular and gain some benefits. However, there are still some
famous families of pairing-friendly elliptic curves with j = 1728, such as TN8
[23] and KSS16 [19]. In the following, we consider Weierstrass model and Jacobi
quartic model for two examples of these families and compare the expense of
Tate pairing computation. In the next table, we denote Δ = “total expense of
Weierstrass model” − “total expense of Jacobi model”, hw = the Hamming

Faster Pairing Computation on Jacobi Quartic Curves 325

weight of r. m385 and m489 are one multiplication in a finite field Fq with q a
prime of 385 and 489 bits respectively (Table 4).

Acknowledgment. This work was supported by National Natural Science Founda-
tion of China (No. 11101002, No. 11271129 and No. 61370187), Beijing Natural Science
Foundation (No. 1132009), and the General Program of Science and Technology Devel-
opment Project of Beijing Municipal Education Commission of China.

A Examples with j = 1728

Using the construction in [19] and [23] to present Jacobi quartic curves with
j = 1728 over Fq for embedding degree k = 8, 16, we list some pairing friendly
Jacobi quartic curves with 4|k. Let q be the prime for the finite field Fq, r be
the large prime order of a subgroup in J(Fp), ρ = log(p)/ log(r) and hw be the
Hamming weight of r (Tables 5, 6).

Table 5. An example of TN8 curve

k = 8, ρ ≈ 1.5, log(r) = 255 bits, log(q) = 383 bits, hw=79

r = 5789604461888328473187612216222827406174508028319419831112462543

8026980406793

q = 295515046474682705429515125141597998302307794019859572300106528

48790224291066312454095939377235935464811282292789377

Table 6. An example of KSS16 curve

k = 16, ρ ≈ 1.25, log(r) = 383 bits, log(q) = 488 bits, hw=148

r = 20932325269710659737858222928918597621906521162495153660390985

510504518081043867594459370646498465476316910404455073;

q = 139212548489946705066222986670698451921764161755321072047959

7528772367360913929603420595895158913690224251885915353327

227845228730555448847040327617

B Examples with j = 0

Using the construction in [13] to present Jacobi quartic curves Ja,d : y2 = dx4 +
2ax2 + 1 with j = 0 over Fq for embedding degree k = 12, 24. For each k, curves
at two security levels are given. Let t be the Frobenius trace, q be the prime for
the finite field Fq, r be the large prime order of a subgroup in J(Fq), n = �J(Fq),
and ρ = log(q)/ log(r) (Table 7).

326 F. Zhang et al.

Table 7. J−27,−9 : y2 = −27x4 − 18x2 + 1 over Fq for embedding degree k = 12, 24

Jd,a: k = 12, ρ ≈ 1.5, log(r) = 161 bits

t = 1099511630726;

r = 1461501653010476419563824324075703470606892615001;

q = 588949031069444133073901154871238181495184955246312443152921173078632117;

n = 588949031069444133073901154871238181495184955246312443152920073567001392;

Jd,a: k = 12, ρ ≈ 1.5, log(r) = 257 bits

t = 18446744073709566686;

r = 115792089237316573782155187176721246041819494261423946279472403661265709

211401;

q = 131340020654648907770463105939534559233037081469140706166941871781698452

36078372714249135715340284274851981554471437;

n = 131340020654648907770463105939534559233037081469140706166941871781698452

36078372714249135715340265828107907844904752

Jd,a: k = 24, ρ ≈ 1.25, log(r) = 161 bits

t = 1048646;

r = 1462271190260300144437063963469081833553287590001;

q = 535997570850424991004603472670510699116309175557541914541557;

n = 535997570850424991004603472670510699116309175557541913492912

Jd,a: k = 12, ρ ≈ 1.5, log(r) = 257 bits

t = 4294970102;

r = 115792694219902283104896857472114286433363041969413694482375021616015000

100401;

q = 712000328294678868876783282504789296312203977034350694809035024149143440

464464180057177127640101;

n = 712000328294678868876783282504789296312203977034350694809035024149143440

464464180057172832670000

References

1. Arène, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster computation of the tate
pairing. J. Number Theor. 131, 842–857 (2011)

2. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

3. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008)

4. Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis.
AAECC 2003. LNCS, vol. 2643, pp. 34–42. Springer, Heidelberg (2003)

5. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 354.
Springer, Heidelberg (2002)

6. Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups.
SAC 2003. LNCS, vol. 3006, pp. 17–25. Springer, Heidelberg (2003)

Faster Pairing Computation on Jacobi Quartic Curves 327

7. Chatterjee, S., Sarkar, P., Barua, R.: Efficient computation of tate pairing in pro-
jective coordinate over general characteristic fields. In: Park, C., Chee, S. (eds.)
ICISC 2004. LNCS, vol. 3506, pp. 168–181. Springer, Heidelberg (2005)

8. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition
in formal groups and new primality and factorization tests. Adv. Appl. Math. 7(4),
385–434 (1986)

9. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with
high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol.
6056, pp. 224–242. Springer, Heidelberg (2010)

10. Das, M.P.L., Sarkar, P.: Pairing computation on twisted edwards form elliptic
curves. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209,
pp. 192–210. Springer, Heidelberg (2008)

11. Edwards, H.M.: A normal form for elliptic curves. Bull. Am. Math. Soc. 44(3),
393–422 (2007)

12. Duquesne, S., Fouotsa, E.: Tate pairing computation on Jacobi’s elliptic curves.
In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 254–269.
Springer, Heidelberg (2013)

13. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptology 23(2), 224–280 (2010)

14. Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the tate pairing. In:
Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, p. 324. Springer,
Heidelberg (2002)

15. Hess, F., Smart, N.P., Vercauteren, F.: The Eta pairing revisited. IEEE Trans. Inf.
Theor. 52, 4595–4602 (2006)

16. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Jacobi quartic curves revisited.
In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 452–468.
Springer, Heidelberg (2009)

17. Wang, H., Wang, K., Zhang, L., Li, B.: Pairing computation on elliptic curves of
Jacobi quartic form. Chin. J. Electron. 20(4), 655–661 (2011)

18. Ionica, S., Joux, A.: Another approach to pairing computation in edwards coordi-
nates. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS,
vol. 5365, pp. 400–413. Springer, Heidelberg (2008)

19. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing brezing-weng pairing-friendly
elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Pater-
son, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg
(2008)

20. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:
Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005)

21. Merriman, J.R., Siksek, S., Smart, N.P.: Explicit 4-descents on an elliptic curve.
Acta Arithmetica 77(4), 385–404 (1996)

22. Miller, V.S.: The Weil pairing and its efficient calculation. J. Cryptol. 17(44),
235–261 (2004)

23. Tanaka, S., Nakamula, K.: Constructing pairing-friendly elliptic curves using fac-
torization of cyclotomic polynomials. Pairing 2008. LNCS, vol. 5209, pp. 136–145.
Springer, Heidelberg (2008)

DATAEvictor: To Reduce the Leakage
of Sensitive Data Targeting Multiple Memory

Copies and Data Lifetimes

Min Zhu, Bibo Tu(&), Ruibang You, Yanzhao Li, and Dan Meng

Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

{zhumin,tubibo,youruibang,liyanzhao,

mengdan}@iie.ac.cn,

Abstract. In modern operating systems, when a process terminates, the data
still remain in the memory for an uncertain time. In addition, encryption is
insufficient because the keys may be leaked through some compulsory means. In
this paper, we present a novel OS-level approach called DATAEvictor, which
thoroughly and timely evicts the sensitive data not only in the user stack, heap,
kernel stack, but also in page cache, kernel buffer, slab objects and virtual
memory swap when the process terminates. It aims to cut short the lifetime of
sensitive data in memory as early as possible, so as to reduce the possibility of
these data being leaked. DATAEvictor provides a “private mode” execution for
any application according to user requirements, and just needs an appropriate
code extension to the Linux kernel sources. The results of performance evalu-
ation show that the implementation of DATAEvictor only results in a reasonable
system performance loss.

Keywords: Sensitive data leakage � Data encryption � Data lifetime � Memory
attack � OS security

1 Introduction

Data privacy is becoming an increasing focused issue for users. In many cases, users
are not willing to leave any information of their activities in the computer. For example,
a user may wish to browse prohibited websites, read confidential files, or send an email
without keeping a record of these activities in the computer. However, modern oper-
ating systems have no built-in mechanisms for limiting or reducing the lifetime (from
creation to overwritten) of application’s data [1], which results in that modern operating
systems accumulate significant amounts of memories of user’s activities in cleartext –
even long after the corresponding activities are terminated [2].

As sensitive data lifetime increases, so does the risk of exposure. Unfortunately, as
said above, most of OSes, especially Linux, have widely overlooked the issue in their
design. As a result, the sensitive data of user’s activities, such as confidential accounts
and passwords, are pushed on the cusp of exposure, since they are often scattered
widely throughout application and OS memory and remain there for indefinite periods

© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 328–345, 2015.
DOI: 10.1007/978-3-319-27998-5_21

[3, 4], parts of which may be swapped to an area on swap device where they could sit
for days or months, even after the user discards, or otherwise dumps the swap device.

It is very difficult for user-level applications to guarantee their sensitive data not
being recoverable in the presence of forensic analysis. For example, in order to auto-
matically remove all traces of user activities from the target computer, current browsers
introduce a special mode, called private browsing mode. Even in this mode, attackers
are able to recover the data of emails by using the image tool LiME [5] and the analysis
tool Volatility [6]. We have illustrated this in Sect. 5.1. Since most applications do not
support lifetime enforcement, the problem is much harder to solve in practice [7].

One OS-level solution to avoiding leaving sensitive data in cleartext on volatile
memory is to use encryption techniques, such as drive encryption systems [8],
encrypted RAM [9] and encrypting virtual memory [10]. Although they are effective
and realizable approaches to protect sensitive data, they do not completely address the
exposure of sensitive data, especially the vulnerable encryption keys, remained in the
kernel, and also these approaches did not take the physical insecurity into account.
Furthermore, another drawback of these kind of solutions is that with legal or other
compulsory means users may be coerced into disclosing their encryption keys, which
makes the encryption approaches useless [11, 12].

Since complete exemption from hacking is kind of difficult, data erasing at
OS-level is a good choice for avoiding the leakage of sensitive data. However, the PaX
patch [13], and secure deallocation [14] still don’t deal with many traces of user’s
activities in memory, including the page cache, kernel buffers, etc. Given this, it is
essential to build a more effective and comprehensive data eviction approach to min-
imize the disaster of data leakage.

In this paper, we describe the design and implementation of DATAEvictor, an
OS-level approach that protects the privacy of data by clearing all memories (including
user stack and heap, kernel stack, page cache, kernel buffers, and virtual memory swap)
related to a specific process timely. Inspired by the browser’s “Incognito mode”,
DATAEvictor enables the OS to support a private execution, in which mode the user
can securely execute an application to process sensitive data. During a private process
execution, a per-process key and linked list are respectively used to encrypt all data
written to swap device and track the kernel buffers. In addition, DATAEvictor clears
the user space and slab objects when they are freed. While for the page cache and
kernel stack, they are cleared while a file is closed and a system call returns, respec-
tively. Once a private process ends, all memory becomes unrecoverable. Meanwhile,
the per-process key and linked list are destroyed.

DATAEvictor does not require any explicit application supports, like application
modification or recompilation, neither any supports of hardware. Nor the user expe-
rience will be changed. Unlike the encryption approaches, the sensitive data of a private
process cannot be exposed through compulsory measures. We give our prototype
implementation of DATAEvictor with a reasonable performance overhead through
extending the existing and well-testing mechanisms of the Linux kernel. In summary,
the contributions of this paper are given as follows.

DATAEvictor: To Reduce the Leakage 329

• For each private process, DATAEvictor creates a temporary data recorder, a doubly
linked list that assists the private process to track and clear the kernel buffers used
the private execution through the recorded address and size of them.

• DATAEvictor creates a random key to each private process for its swap-pages, so
that each swapped page of a private process is encrypted and decrypted only
through the key of this process. The swap data become useless with the per-process
key destroyed when the process exits.

• We design and implement a prototype of DATAEvictor in the Linux kernel to
thoroughly and timely evict the sensitive data, which focuses not only on the user
stack, heap, kernel stack, but also on the page cache, kernel buffers, slab objects and
swap space. The evaluation results of security and performance show that
DATAEvictor can effectively prevent the leakage of sensitive data, with a rea-
sonable overhead that poses indistinguishable impact to the user.

The remainder of this paper is organized as follows. Section 2 provides further
motivation why we present this approach, and describes the threat model we assume for
this work. Section 3 describes the design and implementation of DATAEvictor. Our
evaluation experiments for both the protection effectiveness and performance are
shown in Sect. 4. Section 5 discusses the limitations of our approach and how to
improve it in the future. At last, in Sects. 6 and 7 we respectively describe the related
work and make a brief summary.

2 Approach Overview

2.1 Motivation

Today attackers are no longer dedicated to cracking crypto directly. Instead, as shown
in the report [15], attackers began to focus on stealing sensitive data. Consider the
severely adverse impact on a company if its business files are disclosed to its oppo-
nents; consider the damage to a person’s reputation for the leakage of his crucially
private information. Leakages of sensitive data are caused through many channels, such
as DMA memory attack [16], core dump [16, 17] and cold boot attack [8, 18, 19]. Due
to space constraints, we aren’t able to provide details of these attacks again here.

Despite the best efforts of protection mechanism, there are many other attacks to
obtain sensitive data. For example, software will continue to have exploitable bugs, and
malicious parties will continue to gain physical access to system hardware and those
raised by [20]. Due to space constraints, we will not enumerate them in details.

2.2 Thread Model

As long as the data exists, the attackers could have a chance to get them through a
certain type of memory attack. Therefore, the best way to protect the data from being
stolen is not to set enough security guards, but to disappear them in advance.

We assume that a private process is short-lived. In our threat model, on the base of
executive status the execution of a private process can be divided into three periods:

330 M. Zhu et al.

before, during and after its execution. To specifically illustrate the threats, we presented
two scenarios, one for before and during a private process executes, and another for
after the private process terminates.

In the first scenario, we assume that the target computer is completely safe before
running a private process. According to the concept of the “trusted computing base”
(TCB), in a computer system the trusted components should be as small as possible.
But it is not suitable for this case, because if malware has already existed on the system
before the process running, the attacker could directly access the memory or scan the
swap space through special technology. Therefore, in this case, the TCB is the entire
system. During the process running, we also assume that the memory of the target
computer cannot be scanned and imaged, and so also does the swap space.

In the second scenario, we assume that the attacker has the complete control of the
target computer after the private process terminates, which means the attacker not only
has access to the memory and swap space in the physical, but also is able to use some
memory forensics tools to scan and recover the legacy data. So in this case, the TCB is
empty. The entire system, including the Linux kernel, can be considered as a malware.

Our approach does not restrict communication between processes because we
assume that the user clearly understands and follows that the sensitive data cannot be
handled by both public and private process at the same time. The IPC buffers also can
be cleared by our solution in the slab allocator. Also our approach cannot completely
eliminate the data leakage from the core dump, but only little leaked.

3 Design and Implementation

3.1 System Architecture

To minimize the disclosure of sensitive data resulting from an application,
DATAEvictor exploits several mechanisms to clear the data out the memory when they
are no longer used. On the top of the design, DATAEvictor provides a private exe-
cution, in which the process must be subject to special principles to achieve our aim.
Since DATAEvictor does not explicitly define the sensitive data, a private process must
treat all data as sensitive. The system architecture of DATAEvictor is shown in Fig. 1,
in which the entire sensitive data protection work are divided into six related parts:
user-space, kernel stack, page cache, kernel buffers, swap space and slab objects,
correspondingly as seen in the part 1–6 of Fig. 1.

3.2 Initiating the Private Process

The first requirement from DATAEvictor OS is how to create a private process.
According to the user requirement, DATAEvictor must be capable of launching an
application in private mode. In Linux kernel, every process has a process descriptor,
represented by the structure of task_struct, which contains all the information for
execution. Through the clone or fork system call, that finally invokes the function
do_fork(), a new process is created and initiated.

DATAEvictor: To Reduce the Leakage 331

In order to create a private process, we first extended a new process flag,
PF_PRIVATE, to the flags field of task_struct for indicating that it is a private process.
In our implementation, we assumed that all sub-processes or sub-threads of a private
process are still in private mode by inheriting the private flags of the parent. In order to
enable the communication between the users and process manager, we introduced a
new flag, CLONE_PRIVATE. We modified do_fork function to set the PF_PRIVATE
flag for subsequent use through checking the exist of CLONE_PRIVATE in the flags
bitset. For applications to request private execution, we developed a small tool to pass
the CLONE_PRIVATE flag to the clone system call and implemented the tool to the
context-menu, named “private run”. Thus, the user can directly launch a process of
“private mode” by clicking the “private run” context-menu. The summary of all
modifications to the Linux kernel described in this section is presented in Table 1.

Process

device disk swap space

User
Kernel

Device

linked list file

K-stack

page table buddy system

buffer page- cache anon- page

user space
track

add

R/W fsync
free & clear

free & clear

encrypt decrypt

swap out/in

free & clear
exit|brk
|unmap mapping

sys_call return

R/W

close

slab object

kmem_cache

free & clear

Fig. 1. The system architecture of DATAEvictor

Table 1. Changes for creating a private process

File path Modified Description

include/linux/sched.h task_struct Define PF_PRIVATE flag
clone flags Define CLONE_PRIVATE flag

kernel/fork.c do_fork() Modify it for creating a private process
If the parent is a private process, its children are all
private process

kernel/exit.c do_exit() Clear the random key
context-menu We use nautilus-actions to create a context-menu that is used to pass

the flag CLONE_PRIVATE to the clone system call to create a
“private mode” process

332 M. Zhu et al.

3.3 Clearing the User-Space

In traditional OS, the expired data of user space are overwritten until the next allo-
cation. A process’s user space is subdivided into three segments: mapping segment user
stack and user. In [14], a kernel thread is waked up periodically to zero pages that in
polluted pool longer than a configurable amount of time. For user stack, we have two
pre-selected schemes for clearing the stack pages. The first is the same as [14].
Describe no longer about it because of space cause. The second is the case that every
time the process exits, all pages of the entire stack are cleared. Tests show the first has
no performance advantage compared to the second, but also requires the assistance of
the second in exit. Thus, DATAEvictor adopts the centralized treatment. While for
heap and mapping segment, DATAEvictor clears these data immediately when the
munmap and brk system-calls are called. Due to the “memory leak”, DATAEvictor
clears all non-freed data in exit, as illustrated in part 1 of Fig. 1.

Concretely, we extended the page’s flags with PF_clear and PF_clean, which are
located prior to the __NR_PAGEFLAGS in enum pageflags, and defined the operation
macros of the two flags. When pages of a private process’s user-space are released, the
function __tlb_remove_page() is called, which we modified to support data clearing. At
the __tlb_remove_page(), if the owner of the freeing page is a private process, the page
flags field is marked with PF_clear, indicating that the page need to be cleared before
released. And then in free_pages_check(), DATAEvictor clears the page flags,
excepting the PF_clear by PAGE_FLAG_CHECK_PRIVATE, newly defined in
page-flags.h. Finally, in function free_pages_prepare(), every page marked with
PG_clear is cleared by clear_page(). Meanwhile the page flags is marked with PG_-
cleaned, denoting the page is clean and can be reused directly.

A summary of all modifications to the Linux kernel described in this section is
presented in Table 2.

3.4 Sanitizing the Kernel Stack

After the process changes to kernel mode, its execution context is stored in the kernel
stack. As a result, after the system call returns or the process terminates, sensitive data
put in stack-allocated variables still persist for a period of time [21]. In the solution of
[14], the kernel stack is not taken into consideration. In our solution, we adopt the
mechanism shown in part 2 of Fig. 1, which is zeroing the kernel stack on every return
from a system call, but without causing a significant performance overhead.

To achieve this, we mainly modified two files: entry_32.S and ia32entry.S. We first
created a global function named clear_kstack, in which we first checked the process
mode by locating the flags filed of task_struct through thread_info. For a private
process, we counted how many bytes had been written in this system call. Finally, we
immediately cleared the data. We present all the modifications to the Linux kernel
made in this section in Table 2.

DATAEvictor: To Reduce the Leakage 333

3.5 Flushing the Page Cache

In modern Linux system, in order to accelerate the speed of disk, page cache is
introduced. [14] suggested that there is no need to clear the page cache. But much of
our daily work is to handle a variety of files. During the process execution, all files that
are not directly read/written from/to the filesystem will be catched in the page cache.
These pages may exist, even rewritten to the disk, until they are reallocated.

Existing solutions such as PaX and [14] do not timely handle this issue. In order to
prevent sensitive data from leakage, DATAEvictor clear the page cache when the file is
closed, as shown in part 3 of Fig. 1. A file is closed by either a close system call or the
termination of the private process. Though the time point is different in both scenarios,
but the working process is the same.

Concretely, DATAEvictor adds a new function, clear_page_cache(), to the function
filp_close(), invoked during a file closed. In Linux system, each opened file is allocated
with the structure file and inode, while the inode is the sole representative of this file. In
our modifications, when a file is closed, DATAEvictor firstly checks whether the
process is in private mode. If so, through the reverse lookup, the structure inode and
address_space are confirmed. And if the inode is dirty, the next action is to synchronize

Table 2. Changes for clearing the private process’s user-space and kernel stack

File path Modified Description

include/linux/page-flags.h enum pageflags Extend two flags: PG_clear, PG_clean
Define the macros of the two flags
Define PAGE_FLAG_CHECK_
PRIVATE

mm/memory.c __tlb_remove_page Mark the page structure with PG_clear
for clearing the page data

mm/page_alloc.c free_pages_prepare Decide whether to invoke the
clear_page () function

free_pages_check Not clear the two new flags’ bit by
using
PAGE_FLAG_CHECK_PRIVATE

include/linux/highmem.h clear_page Clear pages that are marked with
PG_clear and mark the pages with
PG_clean

mm/page_alloc.c prep_new_page Cancel the page structure’s PG_clean
flag

arch/x86/kernel/entry_32.S clear_kstack
clear_kstack

We introduce a new function for
clearing the kernel stack for int80
system call

arch/x86/ia32/ia32entry.S clear_kstack To clear the kernel stack for quick
system call

arch/x86/kernel/asm-offsets_32.
c

foo Define THTRED_SIZE_asm,
TS_flags, TS_private for clearing
kernel stack

334 M. Zhu et al.

the dirty pages through the fsync function of the file operations. After that, through the
f_mapping field of file structure, we can locate the address_space structure which
contains the pages of the file in the page cache. Finally, all pages contained in the radix
tree are released and marked with PG_clear through the function clear_inode_pages().
Also the pages are marked with PG_clean after cleared.

All changes to the Linux kernel made in this section are shown in Table 3.

3.6 Tracking the Kernel Level Buffers and Clearing Slab Objects

From Chow’s paper [3], we learn that after a password is typed into Mozilla its journey
goes through a wide range of locations, which includes keyboard queue and sk_buff
etc. Contrary to the expected, PaX doesn’t clean write_buf of TTY that stores the data
written to the TTY device. In the solution of [14], the I/O buffers are cleared through
slab buffers when they are freed. But some I/O buffers, such as the network buffer
(sk_buffs) and tty buffer (write_buf) may be used for a long time at a process execution.
This violates the idea of [14], clearing the data as soon as possible. In our solution, the
kernel buffers are cleared immediately after every time used.

Only the private process itself knows what kernel buffers has been used during
execution, so DATAEvictor creates a linked list for each private process during its
creation. The private process can utilize the per-process linked list to track different
kernel buffers, because the linked list connects the private process with each kernel
buffer through a small node for recording the virtual address and size of buffers.
Whenever a kernel buffer is used by a private process, DATAEvictor adds a new node
to the linked list. When the read or write operation to kernel buffers is finished,
DATAEvictor can rely on the linked list to clear the buffers immediately. The linked
list as a bond connects its owner and kernel buffers as shown in part 4 of Fig. 1.

The choice of where to intercept kernel buffer in DATAEvictor requires careful
consideration. In particular, in order to build a generic solution that is independent of

Table 3. Changes for clearing the page cache and kernel buffer

File path Modified Description

fs/open.c filp_close Synchronize the data and clear them
immediatelyclear_page_cache

mm/slub.c slab_free Clear the freed slab objects
include/linux/sched.h task_struct Extend task_struct with a linked list

Define PF_TRACK for tracking
kernel/fork.c copy_process Initiate the linked list
arch/x86/include/asm/uaccess.
h

clear_data_node Define a new structure to contain the
kernel buffer’s address and size

arch/x86/lib/usercopy_32.c copy_to_user Add the buffer to the linked list
copy_from_user Add the buffer to the linked list

fs/read_write.c sys_read Set the PF_TRACK
Clear the buffer when read finishessys_readv

sys_write Set the PF_TRACK
Clear the buffer when write finishessys_writev

DATAEvictor: To Reduce the Leakage 335

the underlying drivers, we should leverage the drivers’ common characters. If the
processes read devices, it must copy the data from the kernel buffer to user-space
through the function copy_to_user(). On the contrary, the function copy_from_user() is
called. DATAEvictor takes advantage of these two functions to achieve its purpose. We
modified the two functions to track the kernel buffers.

To achieve this, we first extended the task_struct with a field for the linked list, and
extended its flags field with PF_TRACK, which indicates a private process is able to
record the address of kernel buffers. To store the buffer’s address and size, we defined a
new structure in uaccess.h as the linked list node. The linked list is initiated in the
function copy_process(). We added a new function, named track_buffers(), to the
copy_to_user() and copy_from_user() to record the kernel buffers. During the private
process execution, we first modified the read, readv, write and writev, etc. system calls
to check whether the process is private, and if it is, the PF_TRACK flag is set to the
flags field of task_struct. After all the above work is already in place, then we also
modified the two system calls in order to clear the buffers’ data through traversal of the
linked list node. For network devices, the recvfrom, sendto, etc. system calls also need
to be modified for supporting tracking.

The cleanup mechanisms described in the above sections insufficiently prevent
sensitive data resulting from private execution from being leaked in the cleartext. For
example, we visit a file with Vim. After Vim exits, a physical memory contains
complete data of inode and dentry that may be useful for attackers or forensics.

Specifically, as shown in part 6 of Fig. 1, DATAEvictor also imposes cleanup on
slab objects to prevent metadata leaks, such as mm_struct and file_struct. This is also a
complementary mechanism to protect the I/O buffers. In our implementation, the slab
manager is slub allocator. In kmem_cache definition, there are two fields we used: size
and ctor. The size field represents the size of an object and its metadata, while the ctor
field is the constructor of a slab object. To clear a slab object, we modified the objects
freed function slab_free(). If the objects owner is a private process, the object data are
cleared, and then a check is performed to test whether the ctor field of the kmem_cache
is set. If so, the actor is invoked to initialize the object for later use. For task_struct,
since it is released by its parent of the process, so when a task_struct slab object is freed
the presence of PF_PRIVATE must check. If present, the task_struct is cleared. In
general, since the kernel thread has no mm_struct structure and can only borrow the
prior process’s mm_struct. Therefore, we modified do_exit to mark the mm_struct with
a flag during a private process termination. So a mm_struct is cleared if the marked flag
is existence.

A summary of all modifications to the Linux kernel described in this section is
presented in Table 3.

3.7 Encrypting Swap-Space and Puring the Pages by PFRA

Any data that were originally encrypted with FDE can be found as plaintext in memory
when processed by a process, while if these pages are swapped out, these data will be
stored as cleartext in swap space. In case of magnetic storage, it is possible for sensitive

336 M. Zhu et al.

data to be contained in swap space for an indeterminate period of time even undergone
several reboot and shutdown [19, 22–24].

The most radical solution is to avoid using swap. However, DATAEvictor relies on
the RNG and crypto [25] API to encrypt swapped out pages and decrypt swapped in
pages (see part 5 of Fig. 1). This is different from existing approaches to swap
encryption, which uses a single key to encrypt the entire swap device, or use multiple
rotating keys. DATAEvictor imposes a per-application partitioning of the swap through
private keys and clears the pages of a private process from PFRA.

To achieve this, our first modification is during a private process creation, a random
key (PEK) is generated with the RNG of the kernel, and is stored in the new field of
task_struct. We also can store the random key in the TPM hardware, but for the sake of
utilization we assume the task_struct is safe, protected by the OS, and never disclosed
to others. In our future work, we will store the random key in TPM, and combine with
the Intel TXT [26] or SGX [27–29] technology.

The exact implementation is divided into two parts. For page-in, which is handled
by the kswapd, a kernel thread, we modified the pageout() function for supporting page
encryption. First, based on the swapping page we can locate the mm_strcut structure
through reverse mapping and then gain the task_struct structure. At this point, it is able
to judge whether the page belongs to a private process. If so, the swapping page is
encrypted by using the PEK. Finally, all pages that are belonged to a private process
and released by kswapd thread are cleared.

While for page-out it is relatively simple. DATAEvictor first checks whether the
owner of the page is a private process. If so, once the asynchronous read of the page
from the swap devices has completed, DATAEvictor uses the PEK to decrypt the data
prior to switching to the user mode. All the modifications to the Linux kernel made in
this section are presented in Table 4.

3.8 Discussion

Our design and implementation above-mentioned have reached the expected goal we
set. Our approach is distributed at different stages of a private process’s execution,
which ensures that it is able to enforce the cleanup of sensitive data timely and
guarantees the security of user’s data. By its very nature, DATAEvictor is a double
edged sword, which also makes the computer forensics work more difficult [30, 31].

Table 4. Changes for encrypting swap space and clearing the pages by PFRA

File path Modified Description

include/linux/sched.h task_struct Extend a filed storing the random key
mm/vmscan.c pageout Encrypt the swapped out page
mm/memory.c do_swap_page Decrypt the swapped in page
mm/vmscan.c shrink_page_list Mark the page for clearing

DATAEvictor: To Reduce the Leakage 337

4 Evaluation

In this section, we first demonstrate the security and feasibility of Linux’s applications
with DATAEvictor that are used frequently to process sensitive data. Next, we measure
the performance of DATAEvictor by testing its throughput and time-delay with
benchmarks. We ran all benchmarks on a Lenovo ThinkVision with Intel Core i5-3470
3.20 GHz CPU, 4 GB of RAM, running Ubuntu 12.04 desktop edition with the kernel
2.6.32.60.

4.1 Security Analysis

In this section, we firstly demonstrate the feasibility, which means any application runs
normally in private mode. And next, we validate the security of DATAEvictor, namely,
no traces of private processes are left in memory after they are terminated. To
demonstrate these, we selected 10 popular free applications to test, which cover many
kinds of categories, reported by Ubuntu Software Center [32]. Using the memory
forensic methodology, we ran each application with “taint-tokens”, such as a specific
file, a web page data and an email, and then examined these “taint-tokens”.

In our experiment, we first launched each application with DATAEvictor and
checked whether they work as intended. Results of the test show that all of them have
no abnormal behaviors and work correctly. Now that the applications can run as usual
with DATAEvictor, we next ought to justify DATAEvictor’s security character. We
selected 5 representative applications that are most often used for processing a
tremendous amount of sensitive data for the security test. For each test application, we
used the LiME-forensic [5] to make an entire memory image in advance to ensure there
were no “taint-tokens”, and then ran it, and finally made a memory image again before
and after the application terminated, respectively with the unmodified kernel. For
comparison, we did the same experiment with PaX and DATAEvictor one hour after
the computer shutdown. Finally, we utilized the image analysis tool Volatility [6] and
hex editor Neo [33] to search the “taint-tokens” among these images.

From the results of experiments, we can see that without DATAEvictor, the tokens
are present in many places after a process terminates. Even though with PaX, there also
some tokens exist in memory. While with DATAEvictor, no tokens are found in the
place specified by our prototype after the private process terminates. Let’s work
through an example. The test result of Gedit application shown that, on average, with
PaX 5 tokens were found. While with DATAEvictor the fragments of the token were
reduced to 2, about 40 % of before, and even as low as 20 %. Though we have no
sufficient testimony to prove all data of a private process are clear, but this experiment
is enough to justify DATAEvictor achieves the goals of our design.

4.2 Performance Evaluation

In this section, we measured the performance overhead introduced by DATAEvictor.
First, we would like to measure the CPU utilization overhead with and without

338 M. Zhu et al.

DATAEvictor, respectively. Then we would like to use benchmarks to measure the
filesystem I/O throughput. Finally, we would like to measure the performance of a
private process at runtime in macroscopic fashion.

CPU Utilization Overhead. To evaluate raw performance overhead, we measured the
CPU utilization for unmodified Linux kernel and DATAEvictor by sampling the CPU
utilization of the process at 1 s interval, and computed an average score as the test
results. The experiment used 6 popular applications to test the CPU utilization with and
without DATAEvictor. Table 5 illustrates these results.

From the “Orig. CPU” and “DATAEvictor CPU” columns of Table 5, we can see
that DATAEvictor has no adverse impact (under 6 % overhead) on all 6 application.

Filesystem I/O Benchmark. Next, we used Bonnie++ [34], a widely used filesystem
benchmark suite for the Linux operating system, to measure the filesystem I/O per-
formance of DATAEvictor. Our main goal is to test the throughput of write, rewrite,
and read operations by using 5 × 8 GB files. Comparably, we ran Bonnie++ with and
without DATAEvictor, respectively, repeated 10 times, and calculated an average score
as the final results. The results of experiments are shown in Table 6.

The results show that DATAEvictor has a reasonable performance with the over-
head 1.06 % and 0.28 %, respectively for write and rewrite, because the time of
clearing data are negligible compared to the time of writing data to disk. However,
since DATAEvictor has to clear the page cache and kernel buffers but don’t need to
write the disk during read, so the read has a relatively high overhead.

Application’s Execution Runtime Overhead. Finally, to estimate application run-
time overhead, we ran the application with DATAEvictor. In these experiments, we
measured the overhead with kinds of common but representative desktop and console

Table 5. CPU utilization results for six representative applications

App. Orig.
CPU (%)

DATAEvictorCPU
(%)

App. Orig.
CPU(%)

DATAEvictor
CPU (%)

Thunderbird 16.86 17.86 Gedit 8.26 8.93
Libreoffice 30.07 29.90 Eog 4.48 4.94
Firefox 12.30 13.20 Evince 24.71 26.20

Table 6. Filesystem performance of DATAEvictor

Operations Orig. Performance Orig. Performance Overhead

Write 82674.9 K/s (%5 cpu) 81805.75 K/s (%6 cpu) 1.06 %
Rewrite 39148 K/s (%4 cpu) 39040.13 K/s (%5 cpu) 0.28 %
Read 105324 K/s (%6 cpu) 83939.38 K/s (%6 cpu) 25.47 %

DATAEvictor: To Reduce the Leakage 339

applications. Since manual operations may cause errors, so we employ some accurate
automation frameworks and testing tools.

We firstly measured the entire application’s runtime overhead with DATAEvictor.
We selected 8 popular Linux applications. They are audio and video players, email
client, web browser, picture processing, document processing applications and a sys-
tem tool (full details in the following). While for these applications we utilized the
shortcut key provided by the applications themselves, and Xdotool [35], an X
automation tool that can simulate keyboard, mouse and window management events.
Similar to the prior experiments, we repeated each test for10 times and calculated an
average of the runtimes. In a summary, we present all the results in Fig. 3.

• LibreOffice: LibreOffice is a powerful office suite. We used it to open word doc-
uments, repeated 10 times with 10 different documents (each about 5 M) that
contain images, forms and text.

• Gedit: Gedit is a common text editor. We used it to open 20 different text files (each
about 50 K), repeated 10 times.

• Evince: Evince is a document viewer for multiple document formats. We used it to
open PDF format documents, repeated 10 times with 10 different documents (each
about 550 K).

• SMPlayer: SMPlayer is a built-in codecs desktop media player. We used it to open
MP4 format media, repeated 10 times with 10 different files (each about 135 M).

• Audacious: Audacious is a very friendly audio player. We configured it to open 25
MP3 files in sequence through the playlist, repeated 10 times.

• Eog: Eog is a photo viewer in a variety of formats. We utilized it to open 10 JPEG
format images, repeated 10 times.

• Thunderbird: Thunderbird is a popular graphical email client. We configured it to
open 20 email messages, that some with attachment, repeated 10 times.

• Firefox: Firefox is the Ubuntu built-in web browser. We used it to visit local
websites, which contain images and tables, repeated 10 times with 10 different
websites.

In Fig. 2, experiments results make it clear to understand that the overhead of
DATAEvictor is under 20 % in most test cases, which indicates that running with
DATAEvictor the runtime overhead of the applications cannot be obviously perceived
by the users. From Fig. 3, we know that the overall performance of an application also
depends on how much data is handled by the private process, and how often the data
are released during its execution, that is why Libreoffice’s overhead is higher than
others. The pink and green curves of Fig. 3 show that most of the overhead is intro-
duced by page cache cleanup, because during the execution of a private process dozens
of files are opened and closed. Our test results also show that DATAEvictor spends
64.31 µs in total clearing 100 pages, on average 0.643 µs per page, which also explains
the reason why the overhead is high to dispose big files.

340 M. Zhu et al.

5 Limitations and Future Work

While our prototype aims at offering an effective approach to protect user’s sensitive
data. Although our approach is able to effectively clear sensitive data in memory on
most points, our current prototype has several limitations.

First, in our approach, we cannot control all the internal data of device drivers if
there exist multiple copies, due to we can only track the data in drivers copied from the
process user-space without making modifications to drivers. As a result, a private
process may leave a very small amount of sensitive data in the peripheral drivers.

Second, in a Linux system, graphics process’s display is controlled by the X server,
which we did not take into account. The memory of the X server may hold a few
sensitive data from a private process. Due to the code of the X server is notorious for its
size and complexity, directly erasing graphical output is impractical.

The last is not a limitation but improvement. For performance reason, we are like to
modify pages allocation strategy of the buddy system. We intend to divide the buddy
system into two parts for a separate purpose, one for storing pages uncleared, and the
other one as the storage of the cleared pages. It is obvious understand that when the
system need zeroed pages, the buddy system directly allocates pages from the cleared
part, otherwise from the uncleared part. In this way, we can achieve a higher execution
performance for different page requirements.

As future work, one avenue we plan to investigate is whether we can take
advantage of the hardware features (like X86 TXT and SGX) to enhance the privacy of
application’s data [36]. If necessary, we would like to extend the architecture to deal
with the privacy issue [37–41].

6 Related Work

Operating system frequently process data that requires protection from attackers. In
many case, the OS cannot against protean attacks. There are a variety of existing
methods proposed to mitigate or address data leakage. Chow et al. proposed a secure
deallocation, which aims at clearing the process user data at different levels [14].

Fig. 2. The 8 popular applications’ runtime
overheads of DATAEvictor

Fig. 3. As the file size increasing the Libre-
office’ overheads

DATAEvictor: To Reduce the Leakage 341

Due to the design in multiple levels, thus the secure deallocation has relatively large
code changes. Its first requirement is programmer’s cooperation [42]. Furthermore, it
needs to modify the library functions, and requires an idle process for clearing the
process’s stack regularly. Owing to secure deallocation limitation, the security deal-
location implementation did not put page caches, device buffers into consideration.

While for encryption system, Peter et al. introduced CryptKeeper [9], in which the
RAM is divided into two regions, a small cleartext working set and an encrypted area.
Thus ensures only a small amount of cleartext may be exposed to the attacker.
Although to some extent the encryption system protects the sensitive data of user
processes, but it does not guarantee that after the process exits the related data abso-
lutely become unrecovered, and the key management is also a problem. CleanOS [46]
encrypts sensitive data after a period of non-use, and then evict the key to clouds to
prevent data from disclosing. While how to define the sensitive data is a challenge. And
it does not prevent leaks through the OS and I/O.

To against physical attack, two tiers of cryptographic mechanisms are proposed by
Dorrendorf [8]. First, every opened file is bound with a separate key that is encrypted
with the master key of this system. When the system change to unattended state, such
as log out, the master key is cleared, that ensures even an attacker control the computer
it is impossible to extract the master key.

Application’s data may disclose via the swap, so encrypt virtual memory [10] is
proposed that used a key to encrypt the page that is swapped out to the swap. Inspired
by the browser’s “ncognito mode”, Kaan et al. proposed the PRIVEXEC in 2013 [11].
While SandBox, such as Vx32 [43] and Native Client [44], is another type of private
execution. SandBox is able to isolate the memory access path of malicious code and
delete the trace of the application running in the SandBox. Storage Capsules [45] can
achieve this by using the snapshot and encryption. However, they didn’t fully consider
the legacy data in memory.

In 2012, Dunn et al. proposed Lacuna [2] which utilizes the ephemeral channels,
VM and PaX to protect sensitive data in the process memory. First, using the virtual
machine to isolate the space and then making use of the ephemeral channels to translate
the encrypted data. Ultimately, the VM’s memory is cleared by PaX. However, it also
exposes a shortcoming, the data in hardware drivers is out of its control. Also to be
noted that the use of virtual machine performance loss greatly and need to modify the
appropriate hardware drivers.

7 Conclusion

Data privacy is of paramount importance for many users, companies and organizes.
Indisputably, there is a huge demand from users for privacy-enabling technologies [11].
In this paper, we have described the design, implementation and evaluation of
DATAEvictor, a novel OS approach that can throughly (targeting multiple memory
copies) and timely (targeting data lifetimes) clear a private process’s sensitive data
before it completely terminates. We have implemented a prototype of this approach as a

342 M. Zhu et al.

modification to the Linux kernel on Ubuntu. We have demonstrated that DATAEvictor
is an effective approach to sensitive data protection from security analysis and per-
formance evaluation.

References

1. Lyman, J.: Security: TaintBochs testing highlights the persistence of OS memory. http://
archive09.linux.com/feature/36916. Accessed 22 June 2004

2. Dunn, A.M., Lee, M.Z., Jana, S., Kim, S., Silberstein, M., Xu, Y., Shmatikov, V., Witchel,
E.: Eternal sunshine of the spotless machine: protecting privacy with ephemeral channels, In:
OSDI 2012 (2012)

3. Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., Rosenblum, M.: Understanding data
lifetime via whole system simulation. In: Proceedings of the 13th Conference on USENIX
Security Symposium, 09–13 August 2004

4. Czeskis, A., Hilaire, D.J.S., Koscher, K., Gribble, S.D., Kohno, T., Schneier, B.: Defeating
encrypted and deniable file systems: TrueCrypt v5.1a and the case of the tattling OS and
applications. In: Proceedings of the 3rd Conference on Hot Topics in Security, 29 July 2008
(2008)

5. Google Project Hosting. LiME-Linux memory extractor. http://code.google.com/p/lime-
forensics/

6. The Volatility Framework. https://code.google.com/p/volatility/
7. Kannan, J., Altekar, G., Maniatis, P., Chun, B.-G.: Making programs forget: enforcing

lifetime for sensitive data. In: Proceedings of the 13th USENIX Conference on Hot Topics in
Operating Systems, 09–11 May 2011

8. Dorrendorf, L.: Protecting Drive Encryption Systems Against Memory Attacks. IACR
Cryptology ePrint Archive (2011)

9. Peterson, P.A.H.: Cryptkeeper: improving security with encrypted RAM. In: Proceedings of
the IEEE International Conference on Technologies for Homeland Security (2010)

10. Provos, N.: Encrypting virtual memory. In: Proceedings of the 9th Conference on USENIX
Security Symposium, p. 3, 14–17 August 2000

11. Onarlioglu, K., Mulliner, C., Robertson, W., Kirda, E.: PRIVEXEC: private execution as an
operating system service. In IEEE Symposium on S&P (2013)

12. Thing, V.L.L., Ying, H.-M.: A novel time-memory trade-off method for password recovery.
In: Proceedings of the Ninth Annual DFRWS Conference, vol. 6, Supplement, pp. S114–
S120, September 2009

13. Homepage of the PaX team. http://pax.grsecurity.net
14. Chow, J., Pfaff, B., Garfinkel, T., Rosenblum, M.: Shredding your garbage: reducing data

lifetime through secure deallocation. In: Proceedings of the 14th Conference on USENIX
Security Symposium, 31 July–05 August 2005

15. A new type of attack (2005). http://tech.163.com/05/1228/13/262HR1J000091KUI.html
16. Gubanovis, Y., Afonin, O.: Catching the Ghost: How to Discover Ephemeral Evidence

through Live RAM Analysis (2013). http://forensic.belkasoft.com/download/info/Live_
RAM_-Analysis_in_Digital_Forensics.pdf

17. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M.: Data lifetime is a systems problem. In:
ACM SIGOPS European Workshop, 19–22 September 2004

DATAEvictor: To Reduce the Leakage 343

http://archive09.linux.com/feature/36916
http://archive09.linux.com/feature/36916
http://code.google.com/p/lime-forensics/
http://code.google.com/p/lime-forensics/
https://code.google.com/p/volatility/
http://pax.grsecurity.net
http://tech.163.com/05/1228/13/262HR1J000091KUI.html
http://forensic.belkasoft.com/download/info/Live_RAM_-Analysis_in_Digital_Forensics.pdf
http://forensic.belkasoft.com/download/info/Live_RAM_-Analysis_in_Digital_Forensics.pdf

18. Halderman, J.A, Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A.,
Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold boot attack on
encryption keys. In: USENIX Security Symposium (2008)

19. Di Crescenzo, G., Ferguson, N., Impagliazzo, R., Jakobsson, M.: How to forget a secret. In:
Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 500–509. Springer,
Heidelberg (1999)

20. Harrison, K., Xu, S.: Protecting cryptographic keys from memory disclosure attacks. In:
IEEE/IFIP International Conference on DSN (2007)

21. Oberheide, J., Rosenberg, D.: Stackjacking your way to grsecurity/PaX bypass (2011).
https://jon.oberheide.org/files/stackjacking-hes11.pdf

22. Gutmann, P.: Secure deletion of data from magnetic and solid-state memory. In: Proceedings
of the 6th USENIX Security Symposium (1996)

23. Hamilton, T.: ‘Error’ sends bank files to eBay. Toronto Star, 15 September 2003 (2003)
24. Perlman, R.: File system design with assured delete. In: Proceedings of the Third IEEE

International Security in Storage Workshop, pp. 83–88 (2005)
25. Crypto Introduction: http://www.gnu.org/software/gnu-crypto/
26. Evolution of Integrity Checking with Intel® Trusted Execution Technology: an Intel IT

Perspective. http://www.intel.cn/content/www/cn/zh/pc-security/intel-it-security-trusted-
execution-technology-paper.html

27. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue, V.,
Savagaonkar, U.R.: Innovative instructions and software model for isolated execution. In:
HASP, 2013, vol. 13, p. 10 (2013)

28. Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., Del Cuvillo, J.: Using innovative
instructions to create trustworthy software solutions. In: Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy. ACM (2013)

29. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for cpu based
attestation and sealing. In: Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, HASP (2013)

30. Graziano, M., Lanzi, A., Balzarotti, D.: Hypervisor memory forensics. In: Stolfo, S.J.,
Stavrou, A., Wright, C.V. (eds.) RAID 2013. LNCS, vol. 8145, pp. 21–40. Springer,
Heidelberg (2013)

31. Petroni, N.L., Walters, A., Fraser, T., Arbaugh, W.A.: FATKit: a framework for the
extraction and analysis of digital forensic data from volatile system memory. Digital Invest.
3(4), 197–210 (2006)

32. Ubuntu Software Center:http://www.ubuntu.org.cn/ubuntu/features/ubuntu-software-centre
33. HHD Software Ltd. Free Hex Editor Neo. http://www.hhdsoftware.com/free-hex-editor
34. Bonnie++. http://www.coker.com.au/bonnie++/
35. Sissel, J. (a hacker): Xdotool - fake keyboard/mouse input, window management, and more.

http://www.semicomplete.com/projects/xdotool/. Posted Sun, 21 July 2013
36. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted cloud with

Haven. In: Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation. USENIX Association (2014)

37. Suh, G.E., Clarke, D., Gassend, B., Van Dijk, M., Devadas, S.: AEGIS: architecture for
tamper-evident and tamper-resistant processing. In: Proceedings of the 17th Annual
International Conference on Supercomputing. ACM (2003)

38. Suh, G.E., Clarke, D., Gassend, B., Dijk, M.V., Devadas, S.: Efficient memory integrity
verification and encryption for secure processors. In: Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society (2003)

39. Lie, D., Thekkath, C.A., Horowitz, M.: Implementing an untrusted operating system on
trusted hardware. In: ACM SIGOPS Operating Systems Review. ACM (2003)

344 M. Zhu et al.

https://jon.oberheide.org/files/stackjacking-hes11.pdf
http://www.gnu.org/software/gnu-crypto/
http://www.intel.cn/content/www/cn/zh/pc-security/intel-it-security-trusted-execution-technology-paper.html
http://www.intel.cn/content/www/cn/zh/pc-security/intel-it-security-trusted-execution-technology-paper.html
http://www.ubuntu.org.cn/ubuntu/features/ubuntu-software-centre
http://www.hhdsoftware.com/free-hex-editor
http://www.coker.com.au/bonnie%2b%2b/
http://www.semicomplete.com/projects/xdotool/

40. Champagne, D., Lee, R.B.: Scalable architectural support for trusted software. In: 2010
IEEE 16th International Symposium on High Performance Computer Architecture (HPCA).
IEEE (2010)

41. Chhabra, S., Rogers, B., Solihin, Y., Prvulovic, M.: Secureme: a hardware-software
approach to full system security. In: Proceedings of the International Conference on
Supercomputing. ACM (2011)

42. Viega, J.: Protecting sensitive data in memory (2001). http://www.ibm.com/developerworks/
library/s-data.html?n-s-311

43. Ford, B., Cox, R.: Vx32: lightweight, user-level sandboxing on the x86. In: USENIX
Annual Technical Conference (2008)

44. Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R., Ormandy, T., Okasaka, S., Narula, N.,
Fullagar, N.: Native client: a sandbox for portable, untrusted x86 native code. In: IEEE
Symposium on Security and Privacy (2009)

45. Borders, K., Vander Weele, E., Lau, B., Prakash, A.: Protecting confidential data on
personal computers with storage capsules. In: USENIX Security Symposium (2009)

46. Tang, Y., Ames, P., Bhamidipati, S., Bijlani, A., Geambasu, R., Sarda, N.: CleanOS:
limiting mobile data exposure with idle eviction. In: USENIX Conference on Operating
Systems Design and Implementation (2012)

DATAEvictor: To Reduce the Leakage 345

http://www.ibm.com/developerworks/library/s-data.html%3fn-s-311
http://www.ibm.com/developerworks/library/s-data.html%3fn-s-311

Template Attacks Based on Priori Knowledge

Guangjun Fan1(B) , Yongbin Zhou2 , Hailong Zhang2, and Dengguo Feng1

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

guangjunfan@163.com, feng@tca.iscas.ac.cn
2 State Key Laboratory of Information Security, Institute of Information Engineering

Chinese Academy of Sciences, Beijing, China
{zhouyongbin,zhanghailong}@iie.ac.cn

Abstract. Template attacks are widely accepted as the strongest side-
channel attacks from the information theoretic point of view, and they
can be used as a very powerful tool to evaluate the physical security of
cryptographic devices. Template attacks consist of two stages, the pro-
filing stage and the extraction stage. In the profiling stage, the attacker
is assumed to have a large number of power traces measured from the
reference device, using which he can accurately characterize signals and
noises in different points. However, in practice, the number of profiling
power traces may not be sufficient. In this case, signals and noises are
not accurately characterized, and the key-recovery efficiency of template
attacks is significantly influenced. We show that, the attacker can still
make template attacks powerfully enough in practice as long as the pri-
ori knowledge about the reference device be obtained. We note that,
the priori knowledge is just a prior distribution of the signal component
of the instantaneous power consumption, which the attacker can easily
obtain from his previous experience of conducting template attacks, from
Internet and many other possible ways. Evaluation results show that, the
priori knowledge, even if not accurate, can still help increase the power
of template attacks, which poses a serious threat to the physical security
of cryptographic devices.

Keywords: Side-channel attacks · Power analysis attacks · Template
attacks · Priori knowledge

1 Introduction

Template attacks were proposed by Chari et al. in 2002 [1], which consist of two
stages, i.e. the profiling stage and the extraction stage. In the profiling stage,
the attacker has a reference device identical or similar to the target device, and
he can use the reference device to characterize the leakage of the target device.
In the extraction stage, the attacker can exploit a small number of power traces
measured from the target device to recover the correct (sub)key. In order to
make template attacks powerfully enough, the attacker needs to use a large
number of power traces to accurately characterize signals and noises in different
c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 346–363, 2015.
DOI: 10.1007/978-3-319-27998-5 22

Template Attacks Based on Priori Knowledge 347

interesting points. However, in practice, the number of profiling traces may be
limited. For example, a common countermeasure is to limit the operation times
of the reference device, or the key used by the reference device will be refreshed
after being used several times. In these scenarios, the attacker can only obtain
a limited number of power traces in the profiling stage, and signals and noises
are not accurately characterized, which significantly influences the key-recovery
efficiency of template attacks.

1.1 Motivations

A natural question is whether or not it is possible to further increase the power of
template attacks even if the number of profiling traces is limited? We anticipate
that using the priori knowledge about the reference device may be a possible way.
The priori knowledge is just a kind of prior distribution of the actual value of
the signal component in the instantaneous power consumption. There are many
ways that the attacker can obtain the priori knowledge in practice. We show
three typical examples here.

Example 1: Assume that the attacker has characterized the power leakages of
some cryptographic devices whose leakage characterizations are similar to the
reference device. Then, he may obtain the priori knowledge about the reference
device. For example, noises in different interesting points are usually assumed
to follow the normal distribution. If the attacker can estimate the mean value
and the variance of the normal distribution using power traces measured from
previous cryptographic devices, then the priori knowledge about the reference
device can be obtained.

Example 2: From Internet (e.g. [18,19]), the attacker may obtain some power
traces or other potential useful information (e.g. Signal-to-Noise Ratio) of dif-
ferent devices which are similar to the reference device, using which he can infer
the priori knowledge of the reference device (similarly to Example 1).

Example 3: For a sophisticated attacker, after obtaining power traces from the
reference device in the profiling stage, he can use the power traces to obtain
an interval estimation of the actual value of the signal component and roughly
infer the prior distribution is a kind of distribution (e.g. normal distribution or
uniform distribution) over the interval.

To sum up, for a seasoned attacker, it is not only reasonable but also realistic
for him to possess the priori knowledge about the reference device from a prac-
tical point of view. Therefore, we need to consider the power of template attacks
when the attacker can not obtain enough power traces from the reference device
in the profiling stage but has the priori knowledge about the reference device.
Specifically, two questions need to be answered. The first question is how can
the attacker exploit the priori knowledge during the profiling stage in a the-
oretically correct and practically feasible way to make template attacks more
powerful (i.e. achieve better classification performance)? The second question is

348 G. Fan et al.

whether or not the priori knowledge (even if it may not be very accurate) will
make template attacks more powerful really?

Of course, one may ask such question: Why not the attacker exploits the
power traces obtained from the similar devices (from his previous experience of
conducting template attacks or from Internet) together with the power traces
obtained from the reference device to build the templates to make template
attacks more powerful? In fact, if one directly exploits power traces from the
similar devices and the reference device to build the templates, the classifica-
tion performance of template attacks will be decreased [21]. The reason is that
the acquisition campaigns about the devices are different1 even if the leakage
distributions of the similar devices and the reference device are similar [21].

If we can give positive answers to the above two important questions, then
in order to make template attacks more powerful in the above scenarios, the
attacker can first extract the priori knowledge from the power traces obtained
from the different but similar devices and then conduct template attacks with the
priori knowledge as well as the limited power traces obtained from the reference
device. From this point of view, these two questions are worth researching.

1.2 Contributions

Main contributions of our work are two-folds. Firstly, based on the method of
Bayes estimation [13], we give a theoretically correct and practically feasible way
of exploiting the priori knowledge when the attacker conducts template attacks
with limited power traces obtained from the reference device in the profiling stage.

Secondly, we verify our way of exploiting the priori knowledge using both
simulated and practical experiments. Evaluation results show that, template
attacks will be more powerful if the attacker can possess accurate priori knowl-
edge. Additionally, the more accurate the priori knowledge is, the more powerful
template attacks will be. Therefore, with the priori knowledge we can further
increase the power of template attacks.

1.3 Related Work

Answers to some practical issues of template attacks were provided by [2], such as
how to choose interesting points in an efficient way and how to preprocess noisy
data. Choudary et al. proposed efficient methods to avoid possible numerical
obstacles when implementing template attacks in [4]. In [10], Hanley et al. pre-
sented a variant of template attacks which can be applied to block ciphers when
the plaintext and ciphertext are unknown. In [7], template attacks were used to
attack a masked implementation. Recently, a simple pre-processing technique of
template attacks, normalizing the sample values using the means and variances
was evaluated [6]. Standaert et al. [20] showed how to best evaluate profiling and
extraction of profiled attacks by using the information theoretic metric and the
security metric. Principal Component Analysis (PCA)-based template attacks

1 For example, there exist offsets in the different acquisition campaigns.

Template Attacks Based on Priori Knowledge 349

were investigated in [3]. However, this kind of template attacks may not improve
the classification performance [6]. Therefore, PCA-based template attacks are
not widely used in practice. Linear Discriminant Analysis (LDA)-based template
attacks were introduced in [8] and depend on the condition of equal covariances
[4], which does not hold in most settings. Therefore, it is not a better choice
compared with PCA-based template attacks [4]. Up to now, no previous work
considered our important questions.

1.4 Organization of This Paper

The rest of this paper is organized as follows. In Sect. 2, we review the concept
of template attacks and Bayes estimation. In Sect. 3, we give a reasonable way
of exploiting the priori knowledge to make template attacks more powerful. In
Sect. 4, we verify the way of exploiting the priori knowledge by both simulated
and practical experiments. In Sect. 5, we conclude the whole paper.

2 Preliminaries

Template attacks mainly include: classical template attacks [1] and reduced tem-
plate attacks (p. 108 in [9]). In this section, we briefly review these two kinds of
template attacks and the method of Bayes estimation.

2.1 Classical Template Attacks

We will introduce the two stages of classical template attacks: the profiling stage
and the extraction stage.

The Profiling Stage. Assume that there exist K different (sub)keys keyi, i =
0, 1, . . . ,K − 1 which need to be classified. Also, there exist K different
key-dependent operations Oi, i = 0, 1, . . . ,K − 1. Usually, one will gener-
ate K templates, one for each key-dependent operation Oi. One can exploit
some methods to choose N interesting points (P0, P1, . . . , PN−1). The inter-
esting points are those time samples that contain the most information about
the characterized key-dependent operations. Each template is composed of a
mean vector and a covariance matrix. The mean vector is used to estimate
the signal component of side-channel leakages. It is the average signal vector
Mi = (Mi[P0], . . . , Mi[PN−1]) for each one of the key-dependent operations.
The covariance matrix is used to estimate the probability density of the noise
component at different interesting points. It is assumed that noises at differ-
ent interesting points approximately follow the multivariate normal distribution.
A N dimensional noise vector ni(S) is extracted from each actual power trace
S = (S[P0], . . . , S[PN−1]) representing the template’s key dependency Oi as
ni(S) = (S[P0] − Mi[P0], . . . , S[PN−1] − Mi[PN−1]). One computes the (N × N)
covariance matrix Ci from these noise vectors. The probability density of the

350 G. Fan et al.

noises occurring under key-dependent operation Oi is given by the N dimensional
multivariate Gaussian distribution pi(·), where the probability of observing a
noise vector ni(S) is:

pi(ni(S)) =
1

√

(2π)N |Ci|
exp

(

− 1
2
ni(S)C−1

i ni(S)T
)

ni(S) ∈ R
N . (1)

In Eq. (1), the symbol |Ci| denotes the determinant of Ci and the symbol C−1
i

denotes its inverse.

The Extraction Stage. Assume that one obtains t power traces (denoted by
S1,S2, . . . ,St) from the target device in the extraction stage. When the power
traces are statistically independent, one will apply maximum likelihood approach
on the product of conditional probabilities (p. 156 in [9]), i.e.

keyck := argmaxkeyi

{ t
∏

j=1

Pr(Sj |keyi), i = 0, 1, . . . ,K − 1
}

,

where Pr(Sj |keyi) = pf(Sj ,keyi)(nf(Sj ,keyi)(Sj)). The keyck is considered to be
the correct (sub)key. The output of the function f(Sj , keyi) is the index of a
key-dependent operation.

2.2 Reduced Template Attacks

In order to avoid numerical obstacles with the inversion of the covariance matrix
Ci, one can set the covariance matrix equal to the identity matrix. This essen-
tially means that one does not take the covariances between different interesting
points into consideration. A template that only consists of a mean vector is called
a reduced template (p. 108 in [9]). Correspondingly, template attacks based on
reduced templates are called as reduced template attacks. In reduced template
attacks, the probability density of the noises occurring under key-dependent
operation Oi is given by the distribution p′

i(·), where the probability of observ-
ing a noise vector ni(S) is:

p′
i(ni(S)) =

1
√

(2π)N
exp

(

− 1
2
ni(S)ni(S)T

)

ni(S) ∈ R
N .

2.3 Bayes Estimation

In the following, we briefly introduce the method of Bayes estimation [13]. We
firstly introduce the definition of Bayes estimators. Then, we introduce how to
compute a Bayes estimator.

Suppose an unknown parameter θ is known to have a prior distribution Λ
(The prior distribution can be discrete or continuous distribution. In this paper,
we only assume the prior distribution is continuous.). Quite generally, suppose

Template Attacks Based on Priori Knowledge 351

that the consequences of estimating g(θ) by a value δ(X) (based on some mea-
surements X) are measured by L(θ, δ(X)). As of the loss function L, we shall
assume that

L(θ, δ(X)) ≥ 0 for all θ and δ(X),

and L[θ, g(θ)] = 0 for all θ, so that the loss is zero when the correct value is
estimated. The accuracy, or rather inaccuracy, of an estimator δ is then measured
by the risk function

R(θ, δ) = Eθ{L[θ, δ(X)]},

the long-term average loss resulting from the use of δ(X). This defines the risk
function as a function of δ(X). An estimator δ(X) minimizing

r(Λ, δ) =
∫

R(θ, δ)dΛ(θ)

is called a Bayes estimator with respect to the prior distribution Λ. Note that,
the prior distribution Λ is a probability distribution of the parameter θ, that is,

∫

dΛ(θ) = 1.

Now, we will introduce how to compute a Bayes estimator of an unknown
parameter θ. Let λ(θ) denote the prior probability density of the parameter θ.
The prior probability density of the population (or discrete probability func-
tion) is denoted by f(X; θ). If one extracts n samples (X1,X2, . . . , Xn) from the
population, then the probability density of this group of samples is

f(X1; θ)f(X2; θ) · · · f(Xn; θ).

Thereby, we can compute the marginal density

p(X1,X2, . . . , Xn) =
∫

λ(θ)f(X1; θ)f(X2; θ) · · · f(Xn; θ)dθ.

Then, the following posterior probability density is computed:

λ(θ|X1, . . . , Xn) = λ(θ)f(X1; θ) · · · f(Xn; θ)/p(X1,X2, . . . , Xn). (2)

In general, the Bayes estimator of the parameter θ is set to be the mean value
of λ(θ|X1, . . . , Xn).

3 Using Priori Knowledge to Improve Template Attacks

In this section, we introduce how to use the priori knowledge about the reference
device for template attacks. The usage of the priori knowledge for template
attacks is the same for both classical template attacks and reduced template
attacks.

352 G. Fan et al.

It is well known that the instantaneous power consumption PCtotal can
be modeled as the sum of an operation-dependent component PCop, a data-
dependent component PCdata, the electronic noise PCel.noise, and a constant
component PCconst (pp. 62–65 in [9]), i.e.

PCtotal = PCop + PCdata + PCel.noise + PCconst.

The value PCop + PCdata (or PCop + PCdata + PCconst) can be viewed
as the signal component and the value PCel.noise can be viewed as the noise
component. Usually, for each point Pj in an actual power trace, when the
operation and the data are all fixed, its power consumption PCtotal follows
a normal distribution N (μj , σ

2
j) and the electronic noise PCel.noise follows

the normal distribution N (0, σ2
j) (pp. 62–65 in [9]). For fixed operation on

fixed data, due to V ar(PCop) = V ar(PCdata) = V ar(PCconst) = 0, we have
PCop +PCdata +PCconst = μj . The priori knowledge is a kind of prior distribu-
tion of the actual value of the signal component μj . Due to the existence of the
electronic noise, we can reasonably assume the prior distribution of the actual
value of μj obtained by the attacker is a normal distribution.

There are many ways that the attacker can obtain the prior distribution and
we just give out a specific one of them. Considering Example 1 in Sect. 1, for
the same position about the target intermediate value, the attacker obtains n
samples (For convenience, the samples are denoted by X1, . . . , Xn.) from power
traces obtained from his previous experience of conducting template attacks
against different devices which are similar to the reference device. Then, by
computing

θ1 =
1
n

·
n

∑

i=1

Xi, θ22 =
1

n − 1
·

n
∑

i=1

(Xi − θ1)2,

the attacker can easily obtain the prior distribution which is the normal dis-
tribution N (θ1, θ22). Because the leakage distributions of the devices are very
similar to that of the reference device, the prior distribution can be used for the
interesting points correspond to the same position about the target intermediate
value for the reference device. We note that, compared with traditional template
attacks, the computational price of obtaining the priori knowledge about the ref-
erence device is very small. This implies that the attacker can obtain the prior
distribution easily in practice.

The more accurate the signal component (the value of μj) is estimated, the
more accurate the noise component (the value PCtotal − μj) will be estimated.
For an interesting point, if the signal component and the noise component are
accurately estimated, accurate templates (reduced templates) will be built and
template attacks (both classical template attacks and reduced template attacks)
will be more powerful. In the classical way of building templates (reduced tem-
plates), for an interesting point, the attacker computes the mean value of the
samples to estimate the actual value of the signal component μj . Specifically,
for the key-dependent operation Oi, the point Pj is an interesting point and the
attacker obtains n power traces (S1,S2, . . . ,Sn) from the reference device in the

Template Attacks Based on Priori Knowledge 353

profiling stage. Therefore, the attacker obtains n values of the power consump-
tion of the point Pj , one from each power trace. The n values are denoted by
S1[Pj], S2[Pj], . . . , Sn[Pj]. The actual value of μj is estimated by μ′

j :

μ′
j = Mi[Pj] =

n
∑

k=1

Sk[Pj]/n.

However, in our scenario, the attacker not only has n power traces (The power
traces are obtained from the reference device. However, the number of the power
traces is limited.), but also possesses the priori knowledge about the reference
device which can be used to estimate the actual value of μj more accurately. Let’s
consider the most common case. Assume that the attacker knows that the actual
value of μj follows the normal distribution N (θ1, θ22) from priori knowledge1 but
does not know what the actual value of μj accurately is. The attacker can use
the method of Bayes estimation to estimate the actual value of μj with the priori
knowledge N (θ1, θ22) in the profiling stage as follows: The attacker computes the
probability density of the actual value of the signal component μj from priori
knowledge as

λ(μj) = (
√

2πθ2)−1exp
[

− 1
2θ22

(μj − θ1)2
]

.

Moreover, the power consumption of the point Pj satisfies the following prob-
ability density function:

f(x;μj , σj) = (
√

2πσj)−1exp
[

− 1
2σ2

j

(x − μj)2
]

.

From Eq. (2), the attacker computes the posterior probability density:

λ(μj |S1[Pj], . . . , Sn[Pj]) = C1exp
[

− 1
2θ22

(μj − θ1)2 − 1
2σ2

j

n
∑

k=1

(Sk[Pj] − μj)2
]

,

the constant C1 only has relation with θ1, θ2, σj , S1[Pj], . . . , Sn[Pj] and has no
relation with μj . It has that

− 1
2θ22

(μj − θ1)2 − 1
2σ2

j

n
∑

k=1

(Sk[Pj] − μj)2 = − 1
2A2

(μj − B)2 + C2,

where A2 = σ2
j θ22/(σ2

j +nθ22), B = (nMi[Pj]+σ2
j θ1/θ22)/(n+σ2

j /θ22), and C2 has
no relation with μj . Furthermore, the attacker can obtain

λ(μj |S1[Pj], . . . , Sn[Pj]) = C3exp
[

− 1
2A2

(μj − B)2
]

,

1 Note that, the normal distribution N (θ1, θ
2
2) itself may not be very accurate. How-

ever, from the priori knowledge, the parameters θ1, θ
2
2 are all known to the attacker.

354 G. Fan et al.

where C3 = C1e
C2 . Because it has that

∫ +∞

−∞
λ(μj |S1[Pj], . . . , Sn[Pj])dμj = 1,

hence C3 = (
√

2πA)−1. Up to now, the attacker obtains the Bayes estimator of
the actual value of μj as

μ′′
j =

n

n + σ2
j /θ22

(∑n
k=1 Sk[Pj]

n

)

+
σ2

j /θ22
n + σ2

j /θ22
θ1. (3)

The Eq. (3) shows that if the attacker does not have the priori knowledge
(i.e. the prior distribution N (θ1, θ22)), he can only use

∑n
k=1 Sk[Pj]/n to esti-

mate the actual value of μj . If the attacker does not have power traces obtained
from the reference device, he can only use the priori knowledge (i.e. the value
θ1) to estimate the actual value of μj . If the attacker has power traces obtained
from the reference device as well as the priori knowledge, by equation (3), he
will use the weighted average of

∑n
k=1 Sk[Pj]/n and θ1 to estimate the actual

value of μj under the ratio n : σ2
j /θ22 in the profiling stage. This ratio is rea-

sonable and the relevant reasons are as follows. On one hand, when more power
traces are obtained from the reference device by the attacker, the proportion
of

∑n
k=1 Sk[Pj]/n should be larger. On the other hand, when the value θ22 is

smaller (This implies that the prior distribution of the actual value of μj is more
accurate.), the proportion of θ1 should be larger. Although the attacker may not
know the actual value of σ2

j in practice, the Bayes estimator about the actual
value of μj can still be computed. The reason is that the attacker can reasonably
assume that the actual value of σ2

j equals to a constant value. Of course, when
the attacker knows the actual value of σ2

j , more accurate Bayes estimation about
μj can be obtained.

Other details of building templates (reduced templates) remain unchanged.
Our way only exploits the priori knowledge to estimate the actual value of the
signal component more accurately. We note that, due to the computational price
of obtaining and exploiting the priori knowledge is very small, the priori knowl-
edge can easily be used by practical attackers.

4 Experimental Evaluations

For the implementation of a cryptographic algorithm with countermeasures, one
usually tries his best to use some approaches to delete the countermeasures
from power traces at first. If the countermeasures can be deleted, then one
tries to recover the correct (sub)key using some attacks against unprotected
implementation. For example, if one has power traces with random delays [11],
he may first use the approach proposed in [12] to remove the random delays
from power traces and then uses some attacks to recover the correct (sub)key.
The approaches of deleting countermeasures from power traces are beyond the

Template Attacks Based on Priori Knowledge 355

scope of this paper. Moreover, considering power traces without any countermea-
sures shows the upper bound of the physical security of the target cryptographic
device. Therefore, we take unprotected AES-128 implementation as an example.

We verified both classical template attacks and reduced template attacks by
conducting simulated and practical experiments. In both simulated and practical
experiments, we tried to attack the outputs of the S-boxes in the 1st round of
AES-128. Before introducing the specific experiment details, we first introduce
how to get the prior distribution of the actual value of the signal component for
every interesting point for both simulated and practical experiments.

The work [17] showed that reduced template attacks are more powerful com-
pared with classical template attacks when the number of power traces used
in the profiling stage is limited. Therefore, we mainly exploit reduced template
attacks to exhibit our discoveries (Note that, our method can be used for both
classical template attacks and reduced template attacks.).

For simplicity, for both simulated and practical experiments, let np denote
the number of traces used in the profiling stage and let ne denote the number
of traces used in the extraction stage. In this paper, we use the typical metric
Guessing Entropy [5] as the metric about the classification performance of tem-
plate attacks (Many other papers also used Guessing Entropy (e.g. [4,14,15]).).

4.1 How to Get the Priori Knowledge

In order to get the priori knowledge, we simulated the cases that the attacker can
obtain the priori knowledge from his previous experience of conducting template
attacks against a device similar to the reference device.

For both simulated and practical experiments, we get the prior distribution
of the actual value of the signal component for every interesting point using the
traces which were generated in the same way as those were used in the two stages
of template attacks. In this way, we can clearly give out an upper bound of how
powerful template attacks will become by exploiting the priori knowledge.

In both simulated and practical experiments, for each key-dependent opera-
tion Oi and each interesting point Pj , we considered the prior distribution under
four different levels of accuracy and assumed the prior distribution is a normal
distribution N (θ1, θ22) (For different interesting points, the corresponding prior
distributions are different.).

For each key-dependent operation Oi, we generated 400 traces (simulated
traces or actual power traces). The 400 traces were used to estimate the prior
distributions for every interesting point as follows. We repeated the following
process 300 times. Every time, we chose m traces (denoted by S1, . . . , Sm) from
the 400 traces uniformly at random and computed

∑m
k=1 Sk[Pj]/m. Therefore,

there were 300 different values about
∑m

k=1 Sk[Pj]/m. The mean value of the 300
different values was set to be θ1 and the variance of the 300 different values was
set to be θ22. In this way, the prior distribution N (θ1, θ22) was got. Note that, in
practice, the attacker has many ways to get the prior distribution N (θ1, θ22). Our
method which were used in this paper is just one of them. We respectively let m =
16, 32, 64, 128 and obtained four different estimation of the prior distribution.

356 G. Fan et al.

Clearly, when the value m is larger, the estimation of θ1 and θ22 is more accurate.
Therefore, we obtained four different prior distributions under different levels of
accuracy, which represent the priori knowledge that the attacker can possess in
practical attack scenarios.

We considered many kinds of template attacks and define the following sym-
bols to denote them. In all the experiments, we let the symbol “CTA” denotes the
classical template attacks without any priori knowledge. The symbol “CTA-16”
denotes classical template attacks based on priori knowledge which is obtained
when the value m equals to 16. Similarly, we define the symbols “CTA-32”,
“CTA-64”, and “CTA-128” to denote the cases that the value m equals to 32,
64, and 128 respectively. We let the symbol “RTA” denotes the reduced template
attacks without any priori knowledge. The symbol “RTA-16” denotes reduced
template attacks based on priori knowledge which is obtained when the value m
equals to 16. Similarly, we define the symbols “RTA-32”, “RTA-64”, and “RTA-
128” to denote the cases that the value m equals to 32, 64, and 128.

4.2 Simulated Experiments

In simulated experiments, we chose 4 interesting points and the typical Hamming-
Weight power model (pp. 40–41 in [9]) was adopted to describe the power con-
sumption. The standard deviation of simulated Gaussian noise is denoted by σ.
We employed three different noise levels to test the influence of noises on the clas-
sification performance of template attacks. The standard deviations of simulated
Gaussian noise for the three noise levels were 2, 3, and 4.

For each noise level, we respectively used 2,000 and 4,000 simulated traces
to build the 256 reduced templates in the profiling stage for the five kinds of
reduced template attacks (RTA, RTA-16, RTA-32, RTA-64, and RTA-128). This
means that the attacker respectively obtained 2,000 and 4,000 traces from the
reference device in the profiling stage. The simulated traces used in the profil-
ing stage were generated with a fixed subkey and random plaintext inputs. We
generated additional 100,000 simulated traces with another fixed subkey and
random plaintext inputs under each noise level. The 100,000 simulated traces
were used in the extraction stage. For fixed np and σ, we tested the Guessing
Entropy of the five kinds of reduced template attacks when the attacker could use
ne simulated traces in the extraction stage as follows. We respectively repeated
the five kinds of reduced template attacks 1,000 times. For each time, we chose
ne simulated traces from the 100,000 simulated traces uniformly at random and
the five kinds of reduced template attacks were conducted with the same ne

simulated traces. We respectively computed the Guessing Entropy of the five
kinds of reduced template attacks with the results of the 1,000 times attacks.
The Guessing Entropy of the five kinds of reduced template attacks for different
values of np and σ is shown in Fig. 1.

The Guessing Entropy of the five kinds of reduced template attacks for the
case {np = 2, 000, ne = 20, σ = 4} is shown in Table 1. From Fig. 1 and Table 1,
we find that the classification performance of reduced template attacks with
accurate priori knowledge will be obvious better than that of reduced template

Template Attacks Based on Priori Knowledge 357

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Number of Power Traces

G
ue

ss
in

g
E

nt
ro

py

RTA
RTA−16
RTA−32
RTA−64
RTA−128

(a) np = 2, 000, σ = 2

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Number of Power Traces

G
ue

ss
in

g
E

nt
ro

py

RTA
RTA−16
RTA−32
RTA−64
RTA−128

(b) np = 4, 000, σ = 2

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Number of Power Traces

G
ue

ss
in

g
E

nt
ro

py

RTA
RTA−16
RTA−32
RTA−64
RTA−128

(c) np = 2, 000, σ = 3

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Number of Power Traces

G
ue

ss
in

g
E

nt
ro

py

RTA
RTA−16
RTA−32
RTA−64
RTA−128

(d) np = 4, 000, σ = 3

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Number of Power Traces

G
ue

ss
in

g
E

nt
ro

py

RTA
RTA−16
RTA−32
RTA−64
RTA−128

(e) np = 2, 000, σ = 4

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Number of Power Traces

G
ue

ss
in

g
E

nt
ro

py

RTA
RTA−16
RTA−32
RTA−64
RTA−128

(f) np = 4, 000, σ = 4

Fig. 1. The simulated experiment results

Table 1. The simulated experiment results for the case np = 2, 000, ne = 20, σ = 4

RTA RTA-16 RTA-32 RTA-64 RTA-128

21.22 6.66 5.97 5.68 5.61

attacks without priori knowledge. For example, in Table 1, the Guessing Entropy
of RTA equals to 21.22, while the Guessing Entropy of RTA-128 equals to 5.61.
Moreover, if the priori knowledge is more accurate, the classification performance

358 G. Fan et al.

of reduced template attacks with priori knowledge will be better. For example,
in Table 1, the Guessing Entropy of RTA-16 equals to 6.66, while the Guessing
Entropy of RTA-128 obviously reduces to 5.61.

Table 2. The simulated experiment results for different levels of noises

np = 2, 000, ne = 20 σ = 2 σ = 3 σ = 4

RTA 1.27 8.23 21.22

RTA-128 1.03 2.11 5.61

Table 2 shows the Guessing Entropy of RTA and RTA-128 for different levels
of noises when np is fixed to 2,000 and ne is fixed to 20. From Fig. 1 and Table 2,
we further find that, when the noise level is higher, reduced template attacks with
priori knowledge will achieve larger advantage over reduced template attacks
without priori knowledge. For example, in Table 2, the Guessing Entropy of RTA
and RTA-128 is almost equal when σ equals to 2 (1.27 and 1.03). However, when
σ equals to 4, the Guessing Entropy of RTA-128 (5.61) is much lower than that
of RTA (21.22).

When more simulated traces can be obtained from the reference device (e.g.
np = 4, 000) in the profiling stage, the advantages of reduced template attacks
with priori knowledge over template attacks without priori knowledge will be
smaller. For classical template attacks, we computed the Guessing Entropy of
the five kinds of classical template attacks (CTA, CTA-16, CTA-32, CTA-64,
and CTA-128) similarly. The simulated experiment results show that classical
template attacks with accurate priori knowledge have advantages over classical
template attacks without priori knowledge.

4.3 Practical Experiments

We tried to attack the outputs of all the S-boxes in the 1st round of an unpro-
tected AES-128 software implementation on an typical 8-bit microcontroller
STC89C58RD+ whose operating frequency is 11MHz. The actual power traces
were acquired with a sampling rate of 50MS/s. The average number of actual
power traces during the sampling process was 10 times. For our device, the
condition of equal covariances [4] does not hold.

We generated two sets of actual power traces, Set A and Set B. The Set
A captured 10,000 power traces which were generated with a fixed main key
and random plaintext inputs. The Set B captured 100,000 power traces which
were generated with another fixed main key and random plaintext inputs. The
power traces in Set A were used in the profiling stage and the power traces in
Set B were used in the extraction stage. The device that was used to generate
the two sets of actual power traces is the same as that was used to get the
prior distribution in Sect. 4.1, which provides a good setting for the focuses
of our research. In this way, we can show the actual and the greatest threats

Template Attacks Based on Priori Knowledge 359

caused by the priori knowledge. For each S-box of the unprotected AES-128
software implementation, we chose 4 interesting points in 4 continual clock cycles,
one in each clock cycle1. Both classical template attacks and reduced template
attacks were conducted based on the same 4 interesting points. We only show
the practical experiment results of the 1st and the 2nd S-box in this paper. For
other S-boxes in the 1st round, similar evaluation results were obtained by us.
In all practical experiments, we reasonably assumed that the actual value of σ2

j

equals to a constant value for each interesting point and each target intermediate
value.

For reduced template attacks, we respectively chose 2,000 and 4,000 different
power traces from Set A to build the 256 templates for the five kinds of reduced
template attacks (RTA, RTA-16, RTA-32, RTA-64, and RTA-128). The 100,000
power traces of Set B were used in the extraction stage for the five kinds of
reduced template attacks. For fixed np, we tested the Guessing Entropy of the
five kinds of reduced template attacks when one uses ne power traces in the
extraction stage similarly to that of the simulated experiments but used actual
power traces. The Guessing Entropy of the five kinds of reduced template attacks
for the 1st S-box are shown in Fig. 2. The Guessing Entropy of the five kinds of
reduced template attacks for the 1st S-box when np is fixed to 2, 000 and ne is
fixed to 20 is shown in Table 3.

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Number of Power Traces

G
ue

ss
in

g
En

tro
py

RTA
RTA−16
RTA−32
RTA−64
RTA−128

(a) np = 2, 000

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Number of Power Traces

G
ue

ss
in

g
En

tro
py

RTA
RTA−16
RTA−32
RTA−64
RTA−128

(b) np = 4, 000

Fig. 2. The experiment results of reduced template attacks for the 1st S-box

From Fig. 2 and Table 3, we find that the classification performance of
reduced template attacks with accurate priori knowledge will be obvious better
than that of reduced template attacks without priori knowledge. For example,
in Table 3, the Guessing Entropy of RTA equals to 15.16, while the Guessing
Entropy of RTA-16 reduces to 5.78.

For classical template attacks, in order to avoid numerical obstacles with
the inversion of the covariance matrix, we respectively chose 5,000 and 10,000
different power traces from Set A to build the 256 templates for the five kinds
of classical template attacks (CTA, CTA-16, CTA-32, CTA-64, and CTA-128).

1 In our device, the target intermediate values only continue 4 clock cycles.

360 G. Fan et al.

Table 3. The experiment results of reduced template attacks for the 1st S-box

np = 2, 000 RTA RTA-16 RTA-32 RTA-64 RTA-128

ne = 20 15.16 5.78 5.03 4.73 4.65

Moreover, using power traces from Set B, we computed the Guessing Entropy of
the five kinds of classical template attacks when one uses ne power traces in the
extraction stage similarly. The Guessing Entropy of the five kinds of classical
template attacks for the 1st S-box are shown in Fig. 3 in Appendix A.

For the 2nd S-box, we also used the actual power traces in Set A and Set B to
compute the Guessing Entropy of the five kinds of reduced template attacks and
the five kinds of classical template attacks similarly. The practical experiment
results for the 2nd S-box which can also verify our discoveries are shown in
Figs. 4, 5 and Table 4 in Appendix B.

The practical experiment results show that, for both reduced template
attacks and classical template attacks, if the priori knowledge is more accu-
rate, the classification performance will be better. For example, in Table 3, the
Guessing Entropy of RTA-16 equals to 5.78, while the Guessing Entropy of RTA-
128 reduces to 4.65. When more power traces can be obtained from the reference
device, the advantages of template attacks with priori knowledge over template
attacks without priori knowledge will be smaller.

5 Conclusion and Future Work

In this paper, we show that leaking the priori knowledge about the reference
device poses serious threat to the physical security of cryptographic devices.
Therefore, we suggest that the designers of a cryptographic device should take
the priori knowledge into consideration when he uses template attacks to eval-
uate the physical security of the cryptographic device. The future work is as
follows. First, our discoveries show that the approach to infer (estimate) the pri-
ori knowledge as accurately as possible is crucial and is worth being researched
from the attacker’s point of view. Second, it would be interesting to research how
to prevent the attacker to obtain the priori knowledge (Using countermeasures
such as the random delays [11] may be a good choice.). We should also concern on
how to exploit the priori knowledge to make other profiled side-channel attacks
(such as stochastic model based attacks [16], PCA-based template attacks etc.)
become more powerful in a reasonable way. It is also necessary to further verify
our discoveries in other devices such as ASIC and FPGA.

Acknowledgments. This work was supported by the National Basic Research Pro-
gram of China (No.2013CB338003), the National Natural Science Foundation of China
(Nos.61472416, 61272478), and the National Key Scientific and Technological Project
(No.2014ZX01032401-001).

Template Attacks Based on Priori Knowledge 361

Appendix A: Practical Experiments for the 1st S-box

5 10 15 20 25 30 35 40 45 50
10

12

14

16

18

20

22

24

26

28

30

Number of Power Traces

G
ue

ss
in

g
En

tro
py

CTA
CTA−16
CTA−32
CTA−64
CTA−128

(a) np = 5, 000

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Number of Power Traces

G
ue

ss
in

g
En

tro
py

CTA
CTA−16
CTA−32
CTA−64
CTA−128

(b) np = 10, 000

Fig. 3. The experiment results of classical template attacks for the 1st S-box

Appendix B: Practical Experiments for the 2nd S-box

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Number of Power Traces

G
ue

ss
in

g
En

tro
py

RTA
RTA−16
RTA−32
RTA−64
RTA−128

(a) np = 2, 000

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Number of Power Traces

G
ue

ss
in

g
En

tro
py

RTA
RTA−16
RTA−32
RTA−64
RTA−128

(b) np = 4, 000

Fig. 4. The experiment results of reduced template attacks for the 2nd S-box

5 10 15 20 25 30 35 40 45 50
10

12

14

16

18

20

22

24

26

28

30

Number of Power Traces

G
ue

ss
in

g
En

tro
py

CTA
CTA−16
CTA−32
CTA−64
CTA−128

(a) np = 5, 000

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Number of Power Traces

G
ue

ss
in

g
En

tro
py

CTA
CTA−16
CTA−32
CTA−64
CTA−128

(b) np = 10, 000

Fig. 5. The experiment results of classical template attacks for the 2nd S-box

362 G. Fan et al.

Table 4. The experiment results of reduced template attacks for the 2nd S-box

np = 2, 000 RTA RTA-16 RTA-32 RTA-64 RTA-128

ne = 20 19.05 6.64 5.76 5.34 5.25

References

1. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

2. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)

3. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006)

4. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Heidelberg (2014)

5. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

6. Montminy, D.P., Baldwin, R.O., Temple, M.A., Laspe, E.D.: Improving cross-
device attacks using zero-mean unit-variance mormalization. J. Cryptographic Eng.
3(2), 99–110 (2013)

7. Oswald, E., Mangard, S.: Template attacks on masking—resistance is futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006)

8. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008)

9. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, New York (2007)

10. Hanley, N., Tunstall, M., Marnane, W.P.: Unknown plaintext template attacks. In:
Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 148–162. Springer,
Heidelberg (2009)

11. Coron, J.-S., Kizhvatov, I.: Analysis and improvement of the random delay coun-
termeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010)

12. Durvaux, F., Renauld, M., Standaert, F.-X., van Oldeneel tot Oldenzeel, L.,
Veyrat-Charvillon, N.: Efficient removal of random delays from embedded soft-
ware implementations using hidden markov models. In: Mangard, S. (ed.) CARDIS
2012. LNCS, vol. 7771, pp. 123–140. Springer, Heidelberg (2013)

13. Lehmann, E.L., Casella, G.: Theory of Point Estimation, 2nd edn. Springer, New
York. ISBN 978-0-387-98502-6

14. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. comparison side-
channel distinguishers: an empirical evaluation of statistical tests for univariate
side-channel attacks against two unprotected CMOS devices. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg (2009)

Template Attacks Based on Priori Knowledge 363

15. Medwed, M., Standaert, F.-X., Joux, A.: Towards super-exponential side-channel
security with efficient leakage-resilient PRFs. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 193–212. Springer, Heidelberg (2012)

16. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005)

17. Ye, X., Eisenbarth, T.: Wide collisions in practice. In: Bao, F., Samarati, P., Zhou,
J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 329–343. Springer, Heidelberg (2012)

18. The DPA Contest. http://www.dpacontest.org/home/
19. Power analysis attacks-revealing the secrets of smartcards. http://dpabook.org/
20. Standaert, F.-X., Koeune, F., Schindler, W.: How to compare profiled side-channel

attacks? In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 485–498. Springer, Heidelberg (2009)

21. Choudary, O., Kuhn, M.G.: Template attacks on different devices. In: Prouff, E.
(ed.) COSADE 2014. LNCS, vol. 8622, pp. 179–198. Springer, Heidelberg (2014)

http://www.dpacontest.org/home/
http://dpabook.org/

Some Observations on the Lightweight Block
Cipher Piccolo-80

Wenying Zhang1,2(B), Jiaqi Zhang1, and Xiangqian Zheng1

1 School of Information Science and Engineering,
Shandong Normal University, Jinan 250014, China

2 Science and Technology on Information Assume Laboratory, Beijing 100072, China
wenyingzh@sohu.com

Abstract. Piccolo is a 64-bit lightweight block cipher proposed by
SONY corporation to be used in the constrained environments such as
wireless sensor net work environments. In this paper, by algebraic analy-
sis, we give some observations on Piccolo, including the linear analysis
of the F-function, and a weakness of key scheduling. We found that the
F-function could be matched with linear permutation with high probabil-
ity. We revealed the statistical character of the F- function, which gives
the attackers chance to distinguish piccolo from random permutation.
We attack two rounds Piccolo-80 with the computational complexity 217

two rounds Piccolo-80 encryptions. We found that the subkeys in last
two rounds of Piccolo-80 do not play the roles of hide information of
internal states well, 16 bits of cipher text can be represented by the state
of last but one round.

Keywords: Block cipher · Piccolo · Linear analysis · Key scheduling
weakness

1 Introduction

Cryptographic techniques move into applications like sensor nodes, radio fre-
quency identification tags and integrated circuit (IC) printing. The ever increas-
ing demand for security and privacy in these very constrained environments
requires new cryptographic primitives, like low cost, tiny and efficient ciphers.
As a result, some new block ciphers were presented. Such as Lblock [1], PRINT-
cipher [2], LED [3] and Piccolo [4].

A 64-bit block cipher Piccolo proposed in CHES 2011 by SONY corporation
supports 80- and 128- bit secret keys [4]. According to the length of the secret
key, they are denoted by Piccolo-80 and Piccolo-128, respectively. The number
of rounds of Piccolo-80 and Piccolo-128 is 25 and 31, respectively. The iterative

Funded by the National Science Foundation of China (No. 61272434), the Natural
Science Foundation of Shandong Province (No. ZR2012FM004, ZR2013FQ021) and
the Foundation of Science and Technology on Information Assume Laboratory (No.
KJ-13-004).

c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 364–373, 2015.
DOI: 10.1007/978-3-319-27998-5 23

Some Observations on the Lightweight Block Cipher Piccolo-80 365

structure of Piccolo is a variant of generalized Feistel network. Until now, sev-
eral cryptanalytic results on them were proposed. In [4], the strength of Piccolo
against some well-known attacks were examined by the designers, including dif-
ferential cryptanalysis, linear cryptanalysis, impossible differential cryptanalysis,
truncated differential cryptanalysis, related-key cryptanalysis, Boomerang crypt-
analysis and some other well-known attacks. The best result of actual single-key
attack is 3-Subset Meet-in-the-Middle(MITM)attacks on a 14-round reduced
Piccolo- 80 and a 21-round reduced Piccolo-128 without whitening keys [5].
Wang et al. introduced a biclique cryptanalysis of the full round Piccolo-80 with-
out post whitening keys and a 28-round Piccolo-128 without prewhitening keys
[6]. These attacks are respectively with data complexity of 248 and 224 chosen
cipher texts, and with time complexity of 278.95 and 2126.79 encryptions. In [7],
the authors give differential fault analysis on Piccolo. In [8], the authors evaluate
the security of Piccolo, their attacks on Piccolo-80/128 require computational
complexities of 279.13 and 2127.35, respectively.

In this paper, we give some reports on Piccolo that the F-function could be
matched with linear permutation with high probability and certain weakness
of the key schedule. By linear analysis, we attack the two rounds Piccolo with
the computational complexity of 217 two rounds Piccolo-80 encryptions. The
weakness of the key schedule of Piccolo 80 is the whitening key and the round
key are canceled on part of the cipher, and the cipher text leak 16 bits information
of the internal state of round 23. We give a proposal to improve the key schedule.
We also evaluate the key scheduling of Piccolo-128.

This paper is organized as follows. In Sect. 2, we briefly introduce the struc-
ture of Piccolo and give the inverse function of F. The linear approximation rep-
resentation of the round function of Piccolo-80 is given in Sect. 3. Our attacks on
two rounds Piccolo based on linear analysis are presented in Sect. 4. In Sect. 5,
a weakness of the key schedule is presented. Finally, we give our conclusion in
Sect. 6.

2 Description of Piccolo

2.1 Notations

a|b or (a|b): Concatenation.
a ← b : Updating a value of a by a value of b.
at : Transposition of a vector or a matrix a.
aL: The left half bits of the string, aR: the right half bits of the string.
iL: The left half bits of ki, iR: the right half bits of ki, 0 ≤ i < 5.
S = (y0, y1, y2, y3): a 64-bit intermediate state. yji the j-th bit of yi.
C = (C0, C1, C2, C3): a 64-bit ciphertext.

2.2 Data Processing Part

Piccolo-80 is a 64-bit block cipher supporting 80-bit keys proposed by Shibutani
et al. in 2011. Piccolo-80 consist of 25 rounds of a variant of a generalized Feistel
network. The encryption function is defined as follows:

366 W. Zhang et al.

X0 | X1 | X2 | X3 ← Plain text

X0 ← X0 ⊕ wk0,X2 ← X2 ⊕ wk1,

for i ← 0 to r-2 do

X1 ← X1 ⊕F (X0) ⊕ rk2i,X3 ← X3 ⊕ F (X2) ⊕ rk2i+1

XL
1 |XR

3 |XL
2 |XR

0 |XL
3 |XR

1 XL
0 |XR

2

X1 ← X1 ⊕F (X0) ⊕ rk2r−2,X3 ← X3 ⊕ F (X2) ⊕ rk2r−1

X0 ← X0 ⊕ wk2,X2 ← X2 ⊕ wk3,

Cipher text ← X0 | X1 | X2 | X3.
Where F is a 16-bit F-function defined in the following:
F-function F : {0, 1}16 → {0, 1}16 consists of two S-box layers separated by

a diffusion matrix M. The S-box layer consists of four 4-bit bijective S-boxes S.
S is given by S = Array(14, 4, 11, 2, 3, 8, 0, 9, 1, 10, 7, 15, 6, 12, 5, 13), and
updates a 16-bit data X by (x0, x1, x2, x3) ← (S(x0), S(x1), S(x2), S(x3)).

The diffusion matrix for M is

M =

⎛

⎜

⎜

⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞

⎟

⎟

⎠

.

Where the multiplications between matrix and vectors are performed over
GF (24) defined by an irreducible polynomial x4 + x + 1. The diffusion func-
tion updates a 16-bit data X as follows: (x0, x1, x2, x3)t ← M(x0, x1, x2, x3)t.

Constant Values. The constants coni used in the key scheduling is a 16 bits
binary string which is generated as follows:

Con2i|Con2i+1 = (i + 1)|00000|(i + 1)|00|(i + 1)|00000|(i + 1) ⊕ (0f1e2d3c),

where i + 1 is a 5-bit representation of i + 1, e.g., 12 = 01100.
The key scheduling function for the 80-bit key mode divides an 80-bit key

K into five 16-bit subkeys ki, (0 ≤ i < 5) and provides wki(0 ≤ i < 4) and
rkj(0 ≤ j < 2r) as follows:

Whitening key.

wk0 ← kL0 | kR1 , wk1 ← kL1 | kR0 , wk2 ← kL4 | kR3 , wk3 ← kL3 | kR4
Round key. For i = 0 to (r − 1) do

(rk2i, rk2i+1) ← (con2i, con2i+1) ⊕
⎧

⎨

⎩

(k2, k3) (if i mod 5 = 0 or 2)
(k0, k1) (if i mod 5 = 1 or 4)
(k4, k4) (if i mod 5 = 3)

From the round key scheduling we see that the last two round keys are (k4, k4)
for round 23, and (k0, k1) for round 24, and the whitening key for the last round
is wk2 ← kL4 | kR3 , wk3 ← kL3 | kR4 . Among the last used six 16-bit round keys
(whitening keys), k4 appears three times, this is the vulnerability of Piccolo-80.

Some Observations on the Lightweight Block Cipher Piccolo-80 367

2.3 The Inverse Function of F

In this subsection, we study the inverse function of F . F−1 : {0, 1}16 → {0, 1}16
is also consists of two S−1-box layers separated by a diffusion matrix M−1(See
Fig. 1). By Gauss-Jordan elimination method, we get the inverse of the matrix M .

Theorem 1. M−1 =

⎛

⎜

⎜

⎝

14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14

⎞

⎟

⎟

⎠

.

Proof. 2×14+3×9+13+11 = x ·x11 +x4 ·x14 +13+11 = 15+8+13+11 = 1

2 × 11 + 3 × 14 + 9 + 13 = x · x7 + x4 · x11 + 9 + 13 = 5 + 1 + 9 + 13 = 0,

and the other inner products of the rows of M and the columns of M−1 can be
verified.

It is obvious that S−1 = Array(6, 8, 3, 4, 1, 14, 12, 10, 5, 7, 9, 2, 13, 15, 0, 11).
And hence F−1 = S−1 ◦ M−1 ◦ S−1

Fig. 1. The F−1 function

3 The Linear Approximation Representation
of the Round Function

Let n be any positive integer, and let F2 be the Galois field of two elements, i.e.,
F2 = {0, 1}. An n-variable Boolean function is a mapping f : {0, 1}n → {0, 1}.

An n-variable Boolean function f(x1, · · · , xn) can be represented as a mul-
tivariate polynomial over F2 uniquely, called algebraic normal form (ANF),

a0 +
n

∑

i=1

aixi +
∑

1≤i<j≤n

aijxixj + · · · + a12···nx1x2 · · ·xn,

where the coefficients a0, ai, aij , · · · , a12···n ∈ F2, the addition and multiplication
operations are in F2.

368 W. Zhang et al.

The ANF of S-box in Piccolo is S(x0, x1, x2, x3) = ((x0+1)(x1+1)+x3, (x1+
1)(x2 + 1) + x0, x0 + x3 + x0x1 + x0x2 + x1x2 + x2x3 + x0x1x2, x0 + x1 + x2 +
x0x2+x0x3+x1x3+x2x3+x0x1x2+x1x2x3) = (S0, S1, S2, S3) = ((x0+1)(x1+
1) + x3, (x1 + 1)(x2 + 1) + x0, (S0 + 1)(x2 + 1) + x1 + 1, (S0 + 1)(S1 + 1) + x2)).

Note that the last two components of the S-box can be simply represented
by the first two components functions, this is a novel and interesting character
of the S boxes in the new proposed block ciphers. Although the ANF of S-box is
very complex, S box formulation ((x0+1)(x1+1)+x3, (x1+1)(x2+1)+x0, (S0+
1)(x2 + 1) + x1 + 1, (S0 + 1)(S1 + 1) + x2)) in its first two output components is
very simply. This simply formulation made it to be efficiency implemented both
for software and hardware.

It is not unique, but has its counterpart. The light weight block cipher
PRIDE designed by Albrecht et al., presented in CRYPTO2014 also employs
the similar S box. The designers claim that their constructing method is
good both in security and efficiency. The formulation of S-box in PRIDE is
A = c⊕ ab,B = d⊕ bc, C = a⊕AB,D = b⊕BC, where a, b, c, d and A,B,C,D
are the four components of the inputs and outputs of the S-box respectively.

From the ANF of S-box, (x3, x0, x1 + 1, x2) is the best linear approximation
representation of S-box. In fact, with the value table of S box and the linear
mapping L(x0, x1, x2, x3) = (x3, x0, x1 + 1, x2),

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) E 4 B 2 3 8 0 9 1 A 7 F 6 C 5 D
L(x) 2 A 3 B 0 8 1 9 6 E 7 F 4 C 5 D

it can be observed that the S box matches with linear permutation with proba-
bility 7/16.

The ANF of x multiplied by 2 or 3 over finite field F 4
2 are:

2(x0, x1, x2, x3) = (x1, x2, x0 + x3, x0),
3(x0, x1, x2, x3) = (x0 + x1, x1 + x2, x0 + x2 + x3, x0 + x3).

After multiply matrix layer, the first four bits of outputs can be linearly
approximated as following 2(x0, x1, x2, x3)+3(x4, x5, x6, x7)+(x8, x9, x10, x11)+
(x12, x13, x14, x15) = (x1, x2, x0 + x3, x3) + (x4 + x5, x5 + x6, x4 + x6 + x7, x4 +
x7) + (x8, x9, x10, x11) + (x12, x13, x14, x15) = (x1 +x4 +x5 +x8 +x12, x2 +x5 +
x6 +x9 +x13, x0 +x3 +x4 +x6 +x7 +x10 +x14, x3 +x4 +x7 +x11 +x12). After
the second S box the 16 bits output of F-function can be linearly approximated
as following:

Some Observations on the Lightweight Block Cipher Piccolo-80 369

v0 = x3 + x6 + x7 + x10 + x14, 33792
v1 = x0 + x4 + x7 + x11 + x15, 33728
v2 = x1 + x4 + x5 + x8 + x12 + 1, 33856
v3 = x2 + x3 + x5 + x6 + x7 + x9 + x13 + 1,
v4 = x2 + x7 + x10 + x11 + x14,
v5 = x3 + x4 + x8 + x11 + x15,
v6 = x0 + x5 + x8 + x9 + x12 + 1,
v7 = x1 + x6 + x7 + x9 + x10 + x11 + x13 + 1,
v8 = x2 + x6 + x11 + x14 + x15,
v9 = x3 + x7 + x8 + x12 + x15,
v10 = x0 + x4 + x9 + x12 + x13 + 1,
v11 = x1 + x5 + x10 + x11 + x13 + x14 + x15 + 1,
v12 = x2 + x3 + x6 + x10 + x15,
v13 = x0 + x3 + x7 + x11 + x12,
v14 = x0 + x1 + x4 + x8 + x13 + 1,
v15 = x1 + x2 + x3 + x5 + x9 + x14 + x15 + 1.

Where (x0, x1, · · · , x15) are the 16 bits input of F. By computation on a com-
puter, the first component of F equals to the boolean function v0 at 33792 vectors
in F 16(2), which is greater than 32768. Here 33728 and 33856 are the numbers
of i’th i = 1, 2 component of F match with vi among the 65536 vectors. Hence
we get a linear approximation representation (v0, v1, · · · , v15) of F-function. This
can be applied to distinguish the round function of Piccolo from random permu-
tation.

4 The Linear Cryptanlysis of Two Rounds Piccolo

We give the algebraic representation of internal states firstly.

4.1 The Algebraic Representation of Internal States

Denote the 64 bits plain text of Piccolo by

P = (P0, P1, P2, P3) = (y0, y1, y2, y3) ∈ F 64
2 , (1)

where yi, i = 0, 1, 2, 3 are 16 bits binary strings. After the F-layer the internal
state is

y0, F (y0) + y1 + wk0 + k2, y2, F (y2) + y3 + wk1 + k3. (2)

After the round permutation, the output of round 0 is

F (y0)
L+yL

1 +kL
2 , F (y2)

R+yR
3 +kR

3 , y
L
2 , y

R
0 , F (y2)

L+yL
3 +kL

2 , F (y0)
R+yR

1 +kR
3 , y

L
0 , y

R
2 .

370 W. Zhang et al.

After the F-function, the output of first two rounds is

(C0, C1, C2, C3) = ([F (y0 + wk0) + y1 + rk0]L, [F (y2 + wk1) + y3 + rk1]R,
F{[F (y0 + wk0) + y1 + rk0]L, [F (y2 + wk1) + y3 + rk1]R} + y2

LyR0 + rk2,
[F (y2 + wk1) + y3 + rk1]L, [F (y0 + wk0) + y1 + rk0]R,
F{[F (y2 +wk1) + y3 + rk1]L, [F (y0 +wk0) + y1 + rk0]R} + yL0 y

R
2 + rk3). By the

algebraic representation, we give attack of two rounds Piccolo.

4.2 The Attack

Step 1. Assumed that y0 = y2 = 0 and let (yL1 , y
R
3) runs from 0 to 65535, hence

([F (wk0) + y1 + rk0]L, [F (wk1) + y3 + rk1]R)

runs from 0 to 65535. Denote the first component of

F{[F (y0 + wk0) + y1 + rk0]L, [F (y2 + wk1) + y3 + rk1]R} = C1 + rk2

by f0, let v0 = y30 + y60 + y70 + y100 + y140 , which is the linear combination of the
components of the plain text P0.
Step 2. Recover rk2.

Count the numbers of (yL1 , y
R
3) satisfy f0 + v0 = 0. If the number is 33792,

then the first component of rk2 is equal to the first component of C1. If the
number is 65536-33792=31744, the two bits are complementary each other.
Step 3. Similarly get the rest 15 bits of rk2 and all 16 bits of rk3. Hence we
recover rk2 = k0 + con, rk3 = k1 + con. Since wk0 ← kL0 | kR1 , wk1 ← kL1 | kR0 ,
the wk0, wk1 are known.
Step 4. Recover rk0 = k2 + con, rk1 = k3 + con by

rkL0 = [C0 + F (wk0) + y1]L, rkR0 = [C2 + F (wk0) + y1]R, (3)

rkL1 = [C2 + F (wk2) + y3]L, rkR1 = [C0 + F (wk1) + y3]R. (4)

where (C0, C1, C2, C3) is the corresponding output of round 1 with the input
y0, y2 = 0 and y1, y3 selected randomly.
Step 5. At last, exhaustively test k4 by the encryption oracle until the correct
key is found.

The computational complexity of the attack is 216 + 216 = 217 two rounds
Piccolo-80 encryptions. The data complexity is 217 pairs of known plaintext-
ciphertext.

In [4], The authors recognized that the figures for the maximum differential
probability and the maximum linear probability of the F-function are not optimal
for a 16-bit bijective function. However, they said it is sufficient for their design,
since Piccolo has enough differentially and linearly active F-functions over a
certain number of rounds. We think the statistical character of the F-function
matches with linear permutation will gives the attackers a chance to distinguish
piccolo from random permutation.

Some Observations on the Lightweight Block Cipher Piccolo-80 371

5 A Weakness of the Key Schedule

We start the research at the algebraic representation of the last two rounds.
Denote the round number of Piccolo-80 varied from 0 to 24. Denote the 64 bits
initial state of round 23 by

S = (y0, y1, y2, y3) ∈ F 64
2 , (5)

where yi, i = 0, 1, 2, 3 are 16 bits binary string. After the F-layer the internal
state is

y0, F (y0) + y1 + k4, y2, F (y2) + y3 + k4. (6)

After the round permutation, the output of round 23 is

F (y0)
L+yL

1 +kL
4 , F (y2)

R+yR
3 +kR

4 , y
L
2 , y

R
0 , F (y2)

L+yL
3 +kL

4 , F (y0)
R+yR

1 +kR
4 , y

L
0 , y

R
2 .

which is the initial state of round 24. The cipher text is

F (y0)L + yL1 +kL4 + kL4 , F (y2)R + yR3 + kR4 + kR3 ,
F (F (y0)L + yL1 + kL4 , F (y2)R + yR3 + kR4) + (yL2 , y

R
0) + k0,

F (y2)L + yL3 + kL4 + kL3 , F (y0)R + yR1 +kR4 + kR4 ,
F (F (y2)L + yL3 + kL4 , F (y0)R + yR1 + kR4) + (yL0 , y

R
2) + k1.

Let us focus on the first part and the fifth part of the cipher text, the round
keys are canceled in the encryption process. Hence, the first part and the fifth
part of the cipher text are F (y0)L +yL1 , F (y0)R +yR1 . This shows that the round
keys in round 23 and the whiten keys are both equal to k4, which invokes that
the subkeys do not play the roles of hide information of internal states. That is
to say, there are 16 bits of cipher text equal to F (y0) + y1 exactly, which is only
related to the internal states of the last but one round without secret key. Hence
there are 16 bits of internal state information exposed to the attacker.

Figure 2 shows the way on which the round key diffuse vividly, where the red
blocks are the intermediate states or round keys related to kL4 , the yellow blocks
are the intermediate states or round keys related to kR4 , and the green blocks
are the cipher text which are not affected by k4. In order to emphasize our idea,
we did not colored the blocks indirectly related to our analysis.

6 Concluding Remarks and Proposals

In this paper, we give some observations on the lightweight block Piccolo, includ-
ing the inverse function of F-function, the linear analysis of the F-function, and
the weakness of the key scheduling of lightweight block cipher Piccolo-80. We do
not agree with the designers on the security of nonlinear F-function, since the
statistical character of the F-function matches with linear permutation, which
gives the attackers chance to distinguish piccolo from random permutation.

372 W. Zhang et al.

Fig. 2. The key scheduling are canceled in the last two rounds of Piccolo-80 (Color
figure online)

To avoid the above weakness, the key scheduling should be modified. We
suggest that wk2 ← kL2 | kR3 , wk3 ← kL3 | kR2 instead of the current key schedule.
There are five 16-bit string subkeys ki, i = 0, 1, 2, 3, 4, and six ki needed in
the last two rounds including the whitening layer. According to the Pigeonhole
Principle, there must be two of the subkeys are the same. We can use the same
subkey one in right and the other in the left to avoid cancel out each other.

As for the Piccolo-128, the last two round keys are k6, k3 for round 29, k2, k5
for round 30 and the whiten keys are wk2 = kL4 |kR7 , wk3 = kL7 |kR4 . The round keys
for last two rounds and the whiten keys has no intersection, hence Piccolo-128
does have this kind of weakness.

References

1. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

2. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: a
block cipher for IC-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)

3. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Pre-
neel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

4. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

Some Observations on the Lightweight Block Cipher Piccolo-80 373

5. Isobe, T., Shibutani, K.: Security analysis of the lightweight block ciphers XTEA,
LED and Piccolo. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol.
7372, pp. 71–86. Springer, Heidelberg (2012)

6. Wang, Y., Wu, W., Yu, X.: Biclique cryptanalysis of reduced-round Piccolo block
cipher. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232,
pp. 337–352. Springer, Heidelberg (2012)

7. Kitae, J.: Security analysis of block cipher Piccolo suitable for wireless sensor net-
works. Peer-to-Peer Networking Appl. 7(4), 636–644 (2014)

8. Kitae, J., Hyung, C.K., Changhoon, L., Jaechul, S., Seokhie, H.: Biclique crypt-
analysis of lightweight block ciphers PRESENT, Piccolo and LED. IACR Cryptol-
ogy ePrint Archive 2012: 621 (2012)

9. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block
ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg (2014)

A Memory Efficient Variant
of an Implementation of the F4 Algorithm

for Computing Gröbner Bases

Yun-Ju Huang1(B), Wei-Chih Hong2, Chen-Mou Cheng3,
Jiun-Ming Chen4, and Bo-Yin Yang5

1 Graduate School of Mathematics, Kyushu University, Fukuoka, Japan
y-huang@math.kyushu-u.ac.jp

2 Department of Information Engineering and Computer Science,
Feng Chia University, Taichung, Taiwan

3 Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
4 Department of Mathematics, National Taiwan University, Taipei, Taiwan

5 Institute of Information Science, Academia Sinica, Taipei, Taiwan

Abstract. Solving multivariate systems of polynomial equations is an
important problem both as a subroutine in many problems and in its own
right. Currently, the most efficient solvers are the Gröbner-basis solvers,
which include the XL algorithm [6], as well as F4 [9] and F5 [10] algo-
rithms. The F4 is an advanced algorithm for computing Gröbner bases.
However, the algorithm has exponential space complexity and does not
provide much flexibility in terms of controlling memory usage. This poses
a serious challenge when we want to use it to solve instances of sizes of
practical interest.

In this paper, we address the issue of memory usage by proposing a
variant of F4 algorithm called YAGS (Yet Another Gröbner-basis Solver).
YAGS uses less memory than the original algorithm and runs at com-
parable speed with F4. Furthermore, YAGS runs even faster than F4

when solving dense polynomial systems. In other words, the proposed
algorithm can reach better time-memory compromise via deliberately
designed techniques to control its memory usage and efficiency. We have
implemented a prototype of YAGS and conducted an extensive set of
experiments with it. The experiment results demonstrate that the pro-
posed modification does achieve lower time-memory products than the
original F4 over a broad set of parameters and problem sizes.

Keywords: Gröbner basis · F4 algorithm · Time-memory trade-off

1 Introduction

The method of Gröbner bases, originated by Buchberger in 1965 [2], has been
gathering more and more interest due to its widespread applications in various
areas of computer science and engineering, including algorithmic algebra [7],
cryptanalysis [8,11,12,18], model checking [1,5,20], coding theory [13,17,19],
c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 374–393, 2015.
DOI: 10.1007/978-3-319-27998-5 24

A Memory Efficient Variant of an Implementation of the F4 Algorithm 375

multidimensional signal processing and systems theory [15], etc. The power of
the Gröbner bases method, including its theory and algorithms, lies in its abil-
ity to transform an arbitrary finite set of multivariate polynomials into another
equivalent, algorithmically solvable basis. Gröbner bases can be viewed as a gen-
eralization of the Euclidean Division algorithm from the univariate polynomials
to the multivariate cases. Therefore, it can be applied to solving or analyzing
any problem that can be modeled by a multivariate polynomial system.

The original Buchberger algorithm is not optimized and often fails to compute
the Gröbner bases for large problems owing to its inefficiency in pair selection
and redundancy reduction, as well as its exponential complexity. However, real
systems usually have a relatively large number of variables. For example, the
algebraic attack in cryptography is done by modeling the encryption of a plain-
text block x as a set of multivariate polynomials (f1(x), f2(x), . . . , fm(x)), and
solving the system using computational techniques. The number of variables in
such systems grows linearly with the size of the plaintext x, which is often rather
large in cryptographic systems.

Along with the applications of Gröbner bases theory, there were also research
efforts on improving the efficiency of their computation. Some of the improving
techniques have been proposed to rapidly eliminate unnecessary S-polynomials
by examining the corresponding polynomial pairs directly since a major part of
the execution time of Buchberger algorithm is spent on checking S-polynomials.
For example, Buchberger further improved his algorithm by presenting a number
of criteria to remove useless S-polynomials in [3,4].

On the other hand, the F4 algorithm proposed by Faugère in 1999 [9] focused
on the pair selection strategy. It substantially elevated the speed of computing
the Gröbner bases by dealing with multiple pairs simultaneously and exploiting
the techniques in sparse linear algebra. The F4 was shown to be at least one order
of magnitude faster than its predecessors and able to solve previously intractable
problems like Cyclic-9. Many researches recently works on the variant of F4

algorithm focus on avoiding all reductions to zero [10,14]. However, the algorithm
still has exponential space complexity, which makes it rather challenging to solve
systems of sizes of practical interest. For example, if we are going to solve a
multivariate polynomial system of 40 equations in 40 variables, then most of
today’s computers will run out of memory before the execution of the algorithm
finishes, let alone to implement the algorithm in an FPGA.

In this paper, we set out to address this shortcoming by starting with the
following questions about F4’s memory consumption.

1. Can F4, or any variant of it, be executed under any memory limitation?
2. If not, at least how much memory is necessary for F4 to be successfully exe-

cuted?
3. Can we modify F4 algorithm to run faster when given more memory?

Throughout the process of answering these questions, we observe the memory
usage in each part of the F4 algorithm, based on which we propose an improved
F4 algorithm called YAGS (Yet Another Gröbner-basis Solver). YAGS uses less
memory than the original F4. More importantly, YAGS computes Gröbner basis

376 Y.-J. Huang et al.

with comparable speed to F4 and provides better performance considering both
its time and memory usage. In certain cases, YAGS even runs faster than F4

while using smaller amount of memory.
YAGS controls its memory consumption by dividing the work into chunks

of smaller working sets and executing them one at a time. In the first place,
such design intends to trade time for memory since some computation might
have to be carried out repeatedly. However, due to the suboptimality of the pair
selection strategy of F4, reducing the number of pairs selected in each round of
computation might eliminate some unnecessary work and speed up the procedure
as well. We will show that such design makes sense in terms of time-memory
product and is extremely flexible by showing the following.

1. On average, YAGS yields smaller time-memory products than the original F4

algorithm in most simulated cases.
2. YAGS allows the Gröbner basis be computed using an arbitrary amount of

memory as long as it is above the minimum amount of memory required to
solve the instance.

3. When dealing with dense polynomial systems, YAGS even runs a bit faster
than F4.

The rest of this paper is structured as follows. Section 2 introduces the back-
ground knowledge about the Gröbner bases theory as well as the computing algo-
rithms, including Buchberger and F4. Section 3 illustrates the proposed YAGS
algorithm and its proof of correctness. We then demonstrate the performance
comparisons of YAGS via experiment results in Sect. 4 and conclude this paper
in Sect. 5.

2 Background

In this section, we give a brief introduction to the background knowledge of this
paper, including the basic concept of Gröbner basis, the necessary definitions
and notations, and a couple of the previously proposed construction algorithms,
e.g. the Buchberger and the F4 algorithms.

2.1 Preliminary Definitions

We define K[x] the multivariate polynomial ring over the finite field K, and
x = (x1, . . . , xn) is the n-tuple of the variables. Let α = (α1, . . . , αn) be an
n-tuple of non-negative integers, a monomial of multidegree α is denoted by
xα =

∏n
i=1 xαi

i , and a polynomial is a finite linear combination of monomials
with coefficients in K.

Let F = {fi|i = 1, . . . , m; fi ∈ K[x]} be a set of m polynomials. The ideal I
generated by F is defined as

I(F) =

{

m
∑

i=1

hifi

∣

∣

∣

∣

hi ∈ K[x], i = 1, . . . ,m

}

. (1)

A Memory Efficient Variant of an Implementation of the F4 Algorithm 377

Alternatively, we can write I = 〈F 〉 = 〈f1, . . . , fm〉 to represent that I is the
ideal spanned by the basis F .

Before introducing the Gröbner basis, we need to define an ordering of the
monomials in K[x] so that we can arrange the terms of each polynomial. There
are three commonly used orders in a multivariate polynomial ring. They are
defined as follows.

1. Lexicographic Order(>lex)
Given two monomials xα1

1 and xα2
2 , we say xα1

1 >lex xα2
2 if the leftmost

nonzero element of the difference vector (α1 − α2) is positive.
2. Graded Lex Order(>grlex)

The total degree of a monomial xα is defined by

deg(xα) = |α| =
n

∑

i=1

αi. (2)

In graded lex order, we say xα1
1 >grlex xα2

2 if |α1| > |α2|, or |α1| = |α2| and
xα1
1 >lex xα2

2 .
3. Graded Reverse Lex Order(>grvlex)

Like the graded lex order, this order compares the total degree first, but
breaks ties according to a reversed lex order, which checks the rightmost
nonzero element of (α1 − α2) instead.

With regard to a chosen ordering, we can arrange the terms of a polyno-
mial f in a descending order and denote the leftmost term with HT(f), i.e. the
head term of f . The order of two polynomials f1 and f2 can be determined by
comparing their terms sequentially until the tie is broken.

It is noteworthy that we do not take the coefficients into account when order-
ing the monomials or polynomials.

2.2 Gröbner Basis

Definition 1 (Gröbner Basis). For a chosen monomial order, a finite subset
G of I = 〈f1, . . . , fm〉 is said to be a Gröbner basis if and only if ∀f ∈ I, ∃ g ∈ G,
such that HT(f) is divisible by HT(g), denoted as g |HT f .

The definition above indicates that the head terms of the polynomials in a
Gröbner basis must span an ideal containing all the head terms of the member
polynomials of I. It has been shown that every ideal I ⊂ K[x] other than {0} has
a Gröbner basis. Furthermore, thanks to some good properties of the Gröbner
basis, it serves as a powerful tool in solving multivariate polynomial systems.

However, since it is impossible to examine all the arithmetic combinations
of f1, . . . , fm, such definition does not provide an efficient way to verify whether
a set G ⊂ K[x] is a Gröbner basis, nor does it illustrate how to construct
a Gröbner basis from an arbitrarily given set of polynomials F ⊂ K[x]. The
following section presents the definition and theorem introduced by Buchberger
for working with these problems.

378 Y.-J. Huang et al.

2.3 Buchberger Algorithm

Definition 2 (S-polynomial and pre-S-polynomial). Let lcmHT(fi, fj) be
the least common multiple (LCM) of the head terms of fi, fj ∈ K[x], and
ci = lcmHT(fi,fj)

HT(fi)
, cj = lcmHT(fi,fj)

HT(fj)
. The S-polynomial of (fi, fj), denoted by

Spoly(fi, fj), is defined as

Spoly(fi, fj) = cifi − cjfj . (3)

In addition, cifi and cjfj are the two pre-S-polynomials of the pair, denoted as
PSpolyi(fi, fj) and PSpolyj(fi, fj) respectively.

Theorem 1 (Buchberger Theorem). Let G = {g1, . . . , gt} be a basis of I,
then G is a Gröbner basis of I if and only if ∀gi, gj ∈ G, Spoly(gi, gj) can be
reduced to zero by G, i.e. there exist polynomials hi ∈ K[x] such that

Spoly(gi, gj) =
t

∑

k=1

hkgk, (4)

where HT(hkgk) ≤ HT(Spoly(gi, gj)) for all k.

This theorem reduces the seemingly impossible work of checking all the
head terms of the polynomials in I into a reasonable job of examining the S-
polynomials of all the pairs (gi, gj) in G. Based on the theorem, Buchberger
devised an algorithm for the construction of Gröbner basis. The idea of this
algorithm is simple. It repeatedly checks the S-polynomial of a selected pair of
polynomials by multivariately dividing it with G. If the remainder is not equal
to zero, it adds the remainder into the set G and checks the next pair. The
selection strategy is unspecified. One can adopt any strategy as long as all the
pairs will be checked eventually. Nevertheless, the strategy is very important to
the efficiency of the implemented program since bad selections can incur a large
amount of redundant work. It was suggested by Buchberger that the pairs with
the least LCM degree should be selected first. Algorithm 1 shows the pseudocode
of the Buchberger Algorithm.

Additionally, Buchberger proposed two more criteria to speed up the process
of checking the S-polynomials.

Criterion 1 (Buchberger’s First Criterion). Let gcdHT(fi, fj) be the great-
est common divisor of the head terms of fi, fj ∈ I. If gcdHT(fi, fj) = 1, then
Spoly(fi, fj) can be reduced to zero by {fi, fj}.
Criterion 2 (Buchberger’s Second Criterion). Let fi, fj , fk ∈ I and
lcmHT(fi, fj) |HT lcmHT(fj , fk), lcmHT(fi, fk) |HT lcmHT(fj , fk). If both
Spoly(fi, fj) and Spoly(fi, fk) can be reduced to zero by G, then so can
Spoly(fj , fk).

A Memory Efficient Variant of an Implementation of the F4 Algorithm 379

Algorithm 1. Buchberger Algorithm

Input: F
1 F ←− ReducedRowEchelon(F)

2 G,P ←− UpdateGP(G,P, F)

3 while P �= ∅ do
4 spoly, P ←− SelectPair(P)

5 r ←− MultivariateDivision(spoly,G)

6 if r �= 0 then
7 G,P ←− UpdateGP(G,P, {r})
8 end

9 end
Output: G

Algorithm 2. UpdateGP function

Input: G,P, F
1 forall the f ∈ F do
2 P ←− P ∪ {getPair(f, gi) | gi ∈ G}
3 P ←− BuchbergerCriteria(P)

4 G ←− G ∪ {f} \ {gi | gi ∈ G, f |HT gi}
5 end

Output: G,P

Both criteria are implemented in the UpdateGP function to check the necessity
of adding each polynomial while updating G and P with the newly generated
remainders.

It has been proved that this algorithm terminates deterministically and cor-
rectly produces a Gröbner basis of the ideal spanned by the input F . However,
the computing complexity grows drastically as the number of variables and poly-
nomials becomes large. It is not hard to notice that the set P expands quickly
as we keep adding new remainders into G. Checking those pairs one by one is
time consuming and quite inefficient.

Besides, a large portion of the computing work in the Buchberger algorithm is
redundant. For example, if both fi, fj ∈ G contain the same monomial m, which
can be divided by another polynomial g ∈ G, then in Buchberger algorithm, g
has to be extended to m twice to do the reduction for fi and fj respectively. Such
redundancy calls for a smarter design of algorithm to improve the efficiency.

2.4 F4 Algorithm

The F4 algorithm is based on the ideas of the Buchberger algorithm and greatly
increases the pair-checking throughput by simultaneously selecting a set of pairs
and doing the reduction of their S-polynomials in matrix form. It is designed

380 Y.-J. Huang et al.

Algorithm 3. F4 Algorithm

Input: F
1 F ←− ReducedRowEchelon(F)

2 G,P ←− UpdateGP(G,P, F)

3 while P �= ∅ do
4 Poly, P ←− SelectPairs(P)

5 M ←− Monomials(Poly)
6 Done ←− Headterms(Poly)
7 while ∃ m ∈ M \ Done, ∃ g ∈ G, g |HT m do
8 Done ←− Done ∪ {m}
9 Poly ←− Poly ∪ {g ∗ m

HT(g)
}

10 M ←− Monomials(Poly)

11 end
12 Poly′ ←− ReducedRowEchelon(Poly)
13 R ←− {p | p ∈ Poly′,HT(p) /∈ HT(Poly)}
14 G,P ←− UpdateGP(G,P,R)

15 end
Output: G

Algorithm 4. SelectPairs function in F4

Input: P
1 d ←− min{deg(lcmHT(p)) | p ∈ P}
2 Pair ←− {p ∈ P | deg(lcmHT(p)) = d}
3 P ←− P \ Pair
4 Poly ←− {PSpolyi(fi, fj),PSpolyj(fi, fj) | (fi, fj) ∈ Pair}

Output: Poly, P

to efficiently compute the Gröbner bases using the graded reverse lex order.
Algorithm 3 gives the pseudocode of the F4 algorithm.

Unlike the Buchberger algorithm, F4 adopts a newly designed SelectPairs
function to select multiple pairs for one round of reduction. The selection strategy
suggested in F4 is called the normal strategy. It selects all the pairs with the least
head term LCM degree and returns the pre-S-polynomials of the selected pairs
(see Algorithm 4). The reason for keeping the pre-S-polynomials in the matrix is
to preserve the monomials that might be canceled out during the computation of
the S-polynomials, thus increasing the probability of reducing the redundant work.

After generating the pre-S-polynomials, F4 adds as many useful polynomials
into Poly as possible in order to further improve the computing efficiency. This
is done by examining each non-heading monomial of the polynomials in Poly.
If there exists a non-heading monomial m and a g ∈ G such that g |HT m, it
extends g and adds the result into the set Poly. This step ensures that after
performing the Gaussian elimination in the ReducedRowEchelon function, there
will not be any r ∈ R reducible by G.

A Memory Efficient Variant of an Implementation of the F4 Algorithm 381

F =

{

3x2 + 2xy + y2 + 3
2x2 + 4xy + y2 + 1

}

⇐⇒ M =

⎡

⎣

x2 xy y2 1
3 2 1 3
2 4 1 1

⎤

⎦

Fig. 1. Example of polynomial-matrix transformation.

The ReducedRowEchelon function transforms the set Poly into matrix form,
applies the Gaussian elimination, and then transforms the resultant matrix back
to a set of polynomials Poly′. Figure 1 gives a simple example of the transforma-
tion between polynomials and matrix. Such transformation and batch processing
are crucial to the F4 algorithm. The combination of these tricks greatly increases
the throughput of the reduction step and makes the computing procedure amaz-
ingly fast.

The final step of an iteration is to pick out the useful remainders with newly
“exposed” head terms and add them into G using the UpdateGP function.

3 Memory Control of F4 Algorithm

Although the F4 is proved to be at least one order of magnitude faster than all
previous algorithms, its memory consumption is not well-controlled. In Sect. 4,
it will be shown by experiments that the space complexity of F4 grows expo-
nentially. Therefore, most computers will run out of memory when solving large
multivariate polynomial systems. This is because the size of G and P grows
quickly during the execution of the algorithm, thus resulting in excessively large
matrices in the reduction stage.

An intuitive idea of controlling the memory usage might be simply adjusting
the pair selection strategy to cut down the number of selected polynomials.
However, the reduction step of F4 algorithm may still include a large number of
extended polynomials into Poly and produce a huge matrix. Moreover, selecting
too few pairs in each iteration would cut the claws of F4 algorithm and prolong
the whole computing process.

As a result, we need a redesigned version of F4 in order to achieve better
trade-off between time and memory usages. The goal of the new design is to limit
the memory usage while maintaining satisfactory speed. To this end, our YAGS
algorithm takes a new input parameter size as its memory usage constraint and
makes the following three major modifications to the original F4:

1. A new SelectPairs function to select pairs under a limitation based on the
memory usage parameter size.

2. A modified reduction step that avoids including all the extended member
polynomials of G at the same time, but splits the work into smaller chunks
instead.

3. A newly added ReduceG function which decreases the memory usage of G by
reducing the non-heading terms of its members.

382 Y.-J. Huang et al.

Algorithm 5. YAGS algorithm

Input: F, size
1 F ←− ReducedRowEchelon(F)

2 G,P ←− UpdateGP(G,P, F)

3 while P �= ∅ do
4 mat size ←− size − G size − P size
5 Poly, P ←− SelectPairs(P,mat size)
6 while Poly �= ∅ do
7 Poly′ ←− ReducedRowEchelon(Poly)
8 Poly′′ ←− Poly′′ ∪ {p | p ∈ Poly′,HT(p) /∈ HT(Poly)}
9 while Poly′′ �= ∅ do

10 p ←− min{Poly′′}
11 Poly′′ ←− Poly′′ \ {p}
12 if ∃ g ∈ G ∪ R, g |HT p then
13 Poly ←− Poly ∪ {p, h∗g | HT(p) = HT(h∗g)}
14 else
15 R ←− R ∪ {p}
16 end
17 if #Monomials(Poly)∗#Poly ≥ mat size then
18 break
19 end

20 end

21 end
22 G,P ←− UpdateGP(G,P,R)

23 G ←− ReduceG(G)

24 end
Output: G

Algorithms 5–7 gives the pseudocode of the proposed YAGS algorithm. As
will be explained in the following subsections, the compromises made in YAGS
do not merely improve the computing efficiency of the algorithm, but could bring
some benefits as well. Experiment results in Sect. 4 will give proof to this fact by
showing some cases when YAGS computes Gröbner bases faster than F4 using
less memory.

3.1 New Pair Selection Function

The first step of controlling the memory usage is to revise the pair selection algo-
rithm. Instead of selecting an uncertain number of polynomials in each iteration,
we modify the SelectPairs function so that the total amount of memory usage
is limited.

Let size be the total memory usable to the program; G size and P size be the
memory used to store G and P respectively. The SelectPairs function would
select as many pairs as possible and fill up the remaining space, mat size =
size−G size−P size, with their pre-S-polynomials. Also, the selection strategy

A Memory Efficient Variant of an Implementation of the F4 Algorithm 383

Algorithm 6. SelectPairs function in YAGS

Input: P,mat size
1 while P �= ∅ do
2 pair ←− min{lcmHT(p) | p ∈ P}
3 P ←− P \ pair
4 Poly ←− {PSpolyi(fi, fj),PSpolyj(fi, fj) | (fi, fj) ∈ pair}
5 if #Monomials(Poly)∗#Poly ≥ mat size then
6 break
7 end

8 end
Output: Poly, P

Algorithm 7. ReduceG function in YAGS

Input: G
1 for g ∈ G do
2 if length of g ≥ 1

2
max length then

3 Poly ←− {g}
4 for m ∈ Monomials(g) do
5 Poly ←− Poly ∪ {h∗g′ | g′ ∈ G, m = HT(h∗g′)}
6 end
7 Poly′ ←− ReducedRowEchelon(Poly)
8 g ←− g′ ∈ Poly′,HT(g′) = HT(g)

9 end

10 end
Output: G

needs a little adjustment. Unlike F4’s normal strategy, which selects all pairs with
least head term LCM degree, YAGS compares the head term LCM’s according
to the monomial order and selects the “minimum” one at a time before the
memory limit is reached (see Algorithm 6). In most cases, when the memory is
limited, the number of selected pairs is much smaller than those recommended
by the F4 as the size of G and P grows very quickly.

Such modification would confine the reduction throughput of each iteration,
but it might save some duplicated calculations as well. This is because at the end
of each iteration, there will be new basis elements added into G and some pairs
might be removed by the UpdateGP function according to the Buchberger Criteria.
It will be shown in Sect. 4 that the computing speed is not slowed down much.

3.2 S-Polynomial Reduction Step Modifications

In the S-polynomial reduction step of F4, it includes all the possibly useful polyno-
mials in G in addition to the pre-S-polynomials and generates a single huge matrix
(see lines 7–11 in Algorithm 3). Contrarily, in our new SelectPairs function, we

384 Y.-J. Huang et al.

load the matrix with as many pre-S-polynomials as possible, and hence there is
no free space for including any member of G. As a result, we need to redesign the
reduction step in order to perform similar operations to those in F4.

Lines 6–21 of Algorithm 5 illustrate our modified procedure for S-polynomial
reduction in YAGS. Since we do not include any member of G into the matrix
in the beginning of the reduction step, we do the Gaussian elimination first and
pick out a set Poly′′ containing the polynomials with newly exposed head terms.
Next we check the members of Poly′′ for their divisibility to the members of G.
If a p ∈ Poly′′ can not be divided by any g ∈ G, it is a new remainder and will
be stored in R temporarily for later update of G. Otherwise, if p is divisible by
some g ∈ G, we put both p and the extended g into a newly constructed Poly
for further reduction.

Our approach here can be seen as a hybrid of F4 and the Buchberger algo-
rithm. Owing to the limitation on the memory usage, we apply Gaussian elim-
ination to a submatrix of the huge matrix that would be generated by F4 at a
time. Meanwhile, unlike F4, we only add the polynomials that can reduce the
new head terms in each loop, and this strategy can limit the size of Poly that
need to be processed in the next round. Accordingly, we might have to include
the same g ∈ G several times to finish the reduction of one set of pairs selected
by SelectPairs.

Intuitively, limiting the available memory space makes the efficiency of the
modified S-polynomial reduction procedure worse than F4. Splitting the huge
matrix into smaller submatrices introduces more overhead of transforming back
and forth between the polynomials and the matrix representations. However, we
may save some operations on the other hand. For example, in line 12 ofAlgorithm5,
the inclusion of R when checking the S-polynomials helps discover the divisibility
among the newly exposed head terms. In F4, such discovery can not be done in the
same iteration and redundant new pairs will be generated in the UpdateGP func-
tion, thus resulting in unnecessary computation and memory usage.

After the reduction of S-polynomials is done, the new remainders in R are
added into G by calling the same UpdateGP function as in F4, and the primary
operations of an iteration are finished.

3.3 Reduction of G

The size of G becomes a new issue in our scheme since it occupies a segment of
the total available memory and it grows as the execution of the program. As we
select a smaller set of pairs and merely inspect the exposed head terms, the new
remainders added into G would be much longer in length than those produced
by F4. This effect makes it more memory-consuming to store G and lessens the
number of pairs that can be processed in one iteration, thus resulting in the
decline in reduction throughput. In the worst case, G and P might use up all
available memory and the program can no longer produce anything. Actually,
this phenomenon will impose a lower bound on the memory requirement of the
YAGS program. We have to deal with this issue if more memory efficiency is
required.

A Memory Efficient Variant of an Implementation of the F4 Algorithm 385

Accordingly, every time new members are added, the function ReduceG will
be called to shrink the space occupied by G through shortening the length of
the polynomials in it. In Algorithm 7, we examine the members of G which are
longer than 1

2max length, where max length is the maximum length of g ∈ G.
We then try to shorten their length by reducing the non-heading monomials with
other polynomials in G.

However, it is noteworthy that the operations in ReduceG do not necessarily
shorten the polynomials. For example, if we reduce x3 + x2 with x2 + x + 1, the
result will be x3 − x − 1 and its length is longer than the original polynomial.
This is one of the reasons why we reduce only the polynomials longer than
1
2max length. Another reason is for the efficiency of the program. Checking all
members of G would cost too much time.

3.4 Correctness of YAGS

In this subsection, we prove the correctness of the proposed YAGS algorithm by
showing that it terminates deterministically and generates a Gröbner basis of
the ideal spanned by the input F .

First, we claim that the S-polynomial reduction loop in YAGS terminates and
produces the corresponding remainders by proving the following proposition.

Proposition 1. For a set of finitely selected pairs, the S-polynomial reduction
loop in YAGS terminates deterministically and generates a set of new remainders
corresponding to the S-polynomials.

Proof. According to Algorithm 6, the pre-S-polynomials of the selected pairs will
be placed in the set Poly. As a result, the S-polynomials should be generated
after the first iteration of the reduction loop. In the following iterations, the
divisibilities of the new head terms of the S-polynomials to the elements in G
are checked, and the indivisible remainders will be placed in R, as described in
Subsect. 3.2. Since there are only finitely many S-polynomials each with finite
number of terms, such checking and reducing loop will terminate eventually.

In addition, for each selected pair fi, fj ∈ G, there will be a reduced S-
polynomial p when the reduction loop terminates. If p = 0, then this pair will
be discarded after this reduction. If p 	= 0, then we claim that p ∈ R according
to the following arguments.

Assume that there exists a p 	= 0 and p /∈ R, then p should be in Poly and
its head term should be divisible by some g ∈ G. In this case, the reduction loop
should not have terminated.

Basically, for the same set of selected pairs, the output set R of the reduction
step of YAGS will contain the same head terms as those produced by F4. Notice
that R could be empty, and in that case, no new remainders will be added into
G and no new pairs will be generated in the subsequent UpdateGP function.
However, should R contain any new remainder, the newly updated G will span
a larger head term ideal than the original set.

Next, we prove the following theorem to justify the termination and correct-
ness of the YAGS algorithm.

386 Y.-J. Huang et al.

Theorem 2. The YAGS algorithm terminates deterministically and computes
a Gröbner basis G for any input finite set of polynomials F .

Proof. Termination: Let Rt be the output set of new remainders, Gt be the
temporary result basis after the tth iteration of main loop and G0 = F .

Let It denote the ideal spanned by the head terms of polynomials in Gt, i.e.
It = I(HT(Gt)). Thus we have

{

It−1 = It , if Rt = ∅,

It−1 � It , otherwise,
(5)

and subsequently

I0 ⊆ I1 ⊆ I2 ⊆ (6)

Assume for a contradiction that the main loop of YAGS does not stop. There
must exist an infinite ascending sequence d1, d2, . . . of natural numbers such that
Rdk

	= ∅ and
Id1 � Id2 � Id3 � . . . (7)

This contradicts with the fact that the polynomial ring is noetherian. If such
infinite sequence does not exist, there should be a D such that Rt = ∅ for t ≥ D
and the main loop must terminate since no new pairs will be generated after the
Dth iteration. As a result, the YAGS algorithm terminates deterministically.

Correctness: According to the pseudocode of UpdateGP function, the upda-
ted G will always contain all the member polynomials or their factors in F . In
addition, all the added new remainders in each iteration are linear combinations
of the members of the previous G. Therefore, we have F ⊆ Gt ⊂ I(F) holds for
all t, and this suffice to prove that all Gt’s are also bases of I(F).

When the algorithm terminates, P does not contain any pair, which means
Spoly(gi, gj) can be reduced to zero by G for all gi, gj ∈ G. Hence G is a Gröbner
basis of 〈G〉 = I(F).

4 Experiment Results

In this section, we will show by experiment results that the proposed YAGS
algorithm can achieve better time-memory product than the original F4. In other
words, we can save huge amount of memory without sacrificing much computing
speed.

We have implemented YAGS and F4 with C++ coded programs. Both use
the same data structure and field operation codes. All experiments are performed
on a machine with two Intel Xeon E5620 CPUs running at 2.40 GHz and 24 GB
of main memory running at 1333 MHz.

We have run two sets of experiments. The first set is to solve randomly
generated general systems of polynomials in GF16[x] by computing their Gröbner
bases using F4 and YAGS. The number of variables in each general system is

A Memory Efficient Variant of an Implementation of the F4 Algorithm 387

n and the number of polynomials is m. In each run of the experiment, each
input polynomial of the general system is produced by generating uniformly
distributed random coefficients for each of the monomials except the constant
term. Afterwards, the constant terms are obtained by evaluating the polynomial
with a randomly generated solution. In this way we can ensure the input system
is solvable. We run 20 repetitions and take average for each parameter setting
of the first set of experiments.

The second set of experiments is to solve Katsura benchmark systems [16]
over the prime field GF31 using F4 and YAGS. A Katsura n system has n + 1
unknowns and is a sparse system of the form:

{

∑n
i=−n xixm−i = xm,∀m ∈ {−n + 1, . . . , n − 1},

∑n
i=−n xi = 1,

(8)

where x−i = xi and xi = 0 for |i| > n. Since the form is fixed, there is no
randomness in the computing procedure and we run each experiment only once.

In each run of both sets of experiments, we first compute the Gröbner basis
with F4 and measure its memory usage. Then we run the YAGS program with
various memory budgets, e.g. the conditions when only 1/3, 1/4, and 1/10 of
the memory used by F4 are available.

4.1 General Systems

We present the results of the randomly generated general problems in this sub-
section. In order to observe the performance of YAGS for ordinary as well as
overdetermined systems, we run three subsets of experiments with different num-
ber of equations setups, namely m = 2n, m = 1.5n, and m = n + 2. Figures 2
through 4 illustrate the performance results of the three general cases respec-
tively.

There are two interesting observations about the timing results of the gen-
eral cases. First, except for some instances (e.g. when YAGS uses only 1/10 of
memory and m = 2n, n = 11, 12, 13), F4 runs a bit slower than the proposed

Fig. 2. Performance comparisons of F4 and YAGS for the m = 2n case.

388 Y.-J. Huang et al.

Fig. 3. Performance comparisons of F4 and YAGS for the m = 1.5n case.

Fig. 4. Performance comparisons of F4 and YAGS for the m = n + 2 case.

YAGS, which actually consumes less memory. Second, there is no obvious con-
nection between the memory constraint and the running speed of YAGS. In fact,
YAGS with 1/10 of memory solves generic systems faster than with 1/3 or 1/4
memory in many of the experimented cases, whereas YAGS with 1/4 memory is
the fastest in other cases.

We believe such result is a combined effect of our modified tactics in pair
selection and S-polynomial reduction. As described in Sect. 3.2, restricting the
number of pairs processed in one iteration and reducing only the head terms may
introduce repeated work and lower the reduction throughput. On the other hand,
the inclusion of the remainder set R for checking and reducing S-polynomials
helps discover the inter-divisibility among newly exposed head terms. Further-
more, processing a portion of the huge matrix one at a time and selecting pairs
with smallest monomial order might have the effect of reducing the highest degree
of the monomials need to be checked. These techniques can effectively prevent
the generation of certain redundant pairs and decrease the total number of pairs
we have to process.

Table 1 gives the detailed statistics of the m = 2n case as an example show-
case. According to our analysis, the execution time of the program is dominated
by two types of multiplication operations, namely for GF numbers and monomi-
als respectively. In this case, it is obvious that YAGS processes smaller number

A Memory Efficient Variant of an Implementation of the F4 Algorithm 389

Fig. 5. Memory usage of F4 and YAGS for different problem setups.

of pairs with lower degree and thus executing fewer GF multiplications than F4.
In fact, the less memory allocated to YAGS, the smaller number of GF multi-
plications it needs to execute. However, the price of using less memory is the
increase in the number of monomial multiplications, which mainly comes from
the repeated work due to the inability to reduce a huge matrix in one iteration.
For example, for YAGS using 1/10 memory, the numbers of monomial multipli-
cations are relatively high when n = 11, 12, 13 (more than an order of magnitude
larger), the savings in GF multiplications are relatively low, and the combined
effect makes its computing time longer than F4. As n becomes larger, the run-
ning speed of YAGS with 1/10 memory turns into the fastest as the benefits of
the proposed techniques grows higher.

Another interesting finding is that when the m to n ratio gets smaller, YAGS
might not be able to complete the computation. Specifically, YAGS with 1/10
memory fails to compute the Gröbner bases when m = 1.5n, n = 8, and when
m = n + 2, n = 6 to 9. YAGS with 1/4 memory is also unable to solve the
system when m = n + 2, n = 6. Such cases indicate that there is a lower
bound on the memory usage of the proposed YAGS. Nevertheless, according to
Figs. 2(b), 3(b), and 4(b), YAGS provides better time-memory product than F4

in solving all general cases as long as the allocated memory is above the lower
bound. Note that all time-memory product values in these figures are normalized
with respect to the results of F4.

Figure 5 gives a comparison of the memory usages of F4 as well as the mini-
mum usages of YAGS in different experimented cases. In this figure, we also plot
the regression line for each set of the data to better observe their exponents. It is
obvious that both the memory usages of F4 and YAGS min. grow exponentially
with the number of variables n, but the exponents are smaller for problems with
larger m to n ratio. Given the same number of variables n, an input set F with
larger number of polynomials usually carries more redundant information about
the spanned ideal and can be solved with less memory. As a result, given fixed
amount of total memory, it is possible to solve problems with larger n when
the system is more overdetermined. Moreover, the exponents of the YAGS min.
memory are smaller than the corresponding usage of F4, which means that it is

390 Y.-J. Huang et al.

Table 1. Detailed statistics of the m = 2n case.

n Algorithm Time (s) Degree of Total # GF Monomial

regularity of pairs multiplications multiplications

10 F4 0.35 5 1350 3.188e+07 1.103e+05

YAGS size/3 0.3 4 469.9 1.482e+07 3.003e+05

size/4 0.25 4 408 1.165e+07 2.964e+05

size/10 0.25 4 293 4.294e+06 3.746e+05

11 F4 0.9 5 2165.5 9.117e+07 2.181e+05

YAGS size/3 0.75 4 616 4.238e+07 5.904e+05

size/4 0.65 4 543 4.286e+07 5.924e+05

size/10 0.95 4 393.6 1.816e+07 1.483e+06

12 F4 2.75 5 3537 2.722e+08 4.156e+05

YAGS size/3 2.1 4 820 1.620e+08 1.200e+06

size/4 1.95 4 722 1.368e+08 1.237e+06

size/10 3.9 4 647.9 5.786e+07 6.627e+06

13 F4 6.45 5 5427.85 6.253e+08 7.392e+05

YAGS size/3 5.2 4 1217.8 4.496e+08 2.144e+06

size/4 4.5 4 1070 3.580e+08 2.050e+06

size/10 9 4 876.4 2.156e+08 1.383e+07

14 F4 24.05 5 8288.35 2.432e+09 2.444e+06

YAGS size/3 14.7 4 1945.7 1.378e+09 4.701e+06

size/4 14.65 4 1945 1.376e+09 4.673e+06

size/10 13.2 4 1491 1.081e+09 6.047e+06

15 F4 108.85 5 12141 1.233e+10 7.273e+06

YAGS size/3 46.1 4 3568 4.688e+09 1.190e+07

size/4 46.15 4 3568 4.688e+09 1.192e+07

size/10 39.1 4 2955 3.771e+09 1.288e+07

16 F4 463.1 6 17833 5.579e+10 1.030e+07

YAGS size/3 305.15 5 7557.9 2.908e+10 1.420e+08

size/4 270.25 5 6633.1 2.454e+10 1.412e+08

size/10 182.1 5 4538.15 1.320e+10 1.398e+08

possible for YAGS to solve systems with larger number of variables using smaller
fraction of memory of F4.

4.2 Katsura

Figure 7 shows the performance results of F4 and the proposed YAGS solving
Katsura benchmark problems with n ranging from 6 to 10. The memory usage

A Memory Efficient Variant of an Implementation of the F4 Algorithm 391

Fig. 6. Memory usage of F4 and YAGS solving katsura benchmarks.

Fig. 7. Performance comparisons of F4 and YAGS for the Katsura benchmark.

and execution time of both algorithms for solving sparse systems still grow expo-
nentially with n.

In addition to F4 and YAGS min., we have included one more set of memory
usage results called YAGS max. in Fig. 6. We have found that YAGS might
not consume all the allocated memory while experimenting on different memory
assignments. For example, YAGS will use only a fixed amount of memory when
solving Katsura systems whether 1/3 or 1/4 of the F4 usage is allocated. In fact,
the maximum memory consumption of YAGS is lower than F4 since it tries hard
to avoid the generation of redundant pairs and shorten the length of polynomials
in G.

Besides, we have also found that there is larger margin for YAGS to adjust
its memory allocation when solving sparse systems. In the experimented case,
YAGS can solve the Katsura-10 system using as low as only 1/93 of the memory
consumed by F4. Consequently, we plot the performance results of 1/10, 1/20,
1/50 sizes in Fig. 7(a) and (b).

According to Fig. 7(a), F4 runs much faster than YAGS in this case. This
result shows the strength of F4’s strategy in solving sparse systems like Katsura,
though the memory usage is rather high. When solving randomly generated
dense systems, which in general consist of more dependent polynomials, F4 tends
to select too many pairs and spend substantial amount of time doing matrix

392 Y.-J. Huang et al.

reduction. However, when dealing with sparse systems, it is more efficient to
include as many relevant polynomials in G as possible and reduce not only the
head terms but all the monomials of the S-polynomials in one iteration.

On the contrary, by limiting the number of selected pairs and reducing the
set G at the same time, YAGS can prune the redundant pairs and avoid some
waste of execution time in solving dense systems. For sparse systems like Kat-
sura benchmark, YAGS dose not have such advantage and runs slower than F4.
Therefore, we have diverse results in the comparisons of the computing speeds
of YAGS and F4. We are aware of this interesting phenomenon and are further
investigating the structures that make the algorithms run faster.

Although the execution time of YAGS is longer, it still achieves much lower
time-memory products thanks to its significant savings in memory consumption.
In Fig. 7(b), almost all time-memory product values of YAGS are kept below
40 % of F4. This shows that the proposed algorithm can reach better compromise
between computing speed and memory usage and is better-suited for applications
with space limitation.

5 Conclusions

We have successfully designed a memory efficient variant of Gröbner bases solver
based on F4 algorithm. Via a divide and conquer strategy, the proposed YAGS
algorithm takes good care of its memory usage and maintains acceptable exe-
cution efficiency. It is capable of computing Gröbner bases using an arbitrary
amount of memory space as long as it is above the lower bound for solving the
instance. We have implemented YAGS and evaluated its performance with exten-
sive experiments. The results show that YAGS does provide better performance
than F4 in terms of the time-memory product. In other words, the proposed
algorithm can operate with as low as 2 % of memory usage while maintaining
comparable execution speed with F4. Such feature makes YAGS a better can-
didate for space-limited implementations of a Gröbner bases solver. Based on
current design, we are working on an FPGA implementation of YAGS, as well
as further boosts on the performance of the algorithm via better control on the
size of intermediate result sets.

References

1. Brickenstein, M., Dreyer, A., Greuel, G.M., Wedler, M., Wienand, O.: New devel-
opments in the theory of Gröbner bases and applications to formal verification. J.
Pure Appl. Algebra 213(8), 1612–1635 (2009)

2. Buchberger, B.: An algorithm for finding the bases elements of the residue class
ring modulo a zero dimensional polynomial ideal (German). Ph.D. thesis, Univ. of
Innsbruck (1965)

3. Buchberger, B.: An algorithmical criterion for the solvability of algebraic systems
(German). Aequationes Math. 4(3), 374–383 (1970)

A Memory Efficient Variant of an Implementation of the F4 Algorithm 393

4. Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory.
In: Bose, N.K. (ed.) Multidimensional Systems Theory, chap. 6, pp. 184–232. Reidel
Publishing Company, Dodrecht (1985)

5. Condrat, C., Kalla, P.: A Gröbner basis approach to CNF-formulae preprocessing.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 618–631.
Springer, Heidelberg (2007)

6. Courtois, N.T., Klimov, A.B., Patarin, J., Shamir, A.: Efficient algorithms for
solving overdefined systems of multivariate polynomial equations. In: Preneel, B.
(ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg
(2000)

7. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer,
Heidelberg (2007)

8. Faugère, J.-C., Perret, L., Petit, C., Renault, G.: Improving the complexity of
index calculus algorithms in elliptic curves over binary fields. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 27–44. Springer,
Heidelberg (2012)

9. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139(1–3), 61–88 (1999)

10. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, ISSAC 2002, pp. 75–83. ACM, New York
(2002)

11. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE)
cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

12. Huang, Y.-J., Petit, C., Shinohara, N., Takagi, T.: Improvement of Faugère et al.’s
method to solve ECDLP. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS,
vol. 8231, pp. 115–132. Springer, Heidelberg (2013)

13. Ikegami, D., Kaji, Y.: Maximum likelihood decoding for linear block codes using
Gröbner bases. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 1(3),
643–651 (2003)

14. Joux, A., Vitse, V.: A variant of the F4 algorithm. In: Kiayias, A. (ed.) CT-RSA
2011. LNCS, vol. 6558, pp. 356–375. Springer, Heidelberg (2011)

15. Lin, Z., Xu, L., Bose, N.K.: A tutorial on Gröbner bases with applications in signals
and systems. IEEE Trans. Circ. Syst. 55(1), 445–461 (2008)

16. Merlet, J.P.: Polynomial systems. http://www-sop.inria.fr/coprin/logiciels/
ALIAS/Benches/node1.html

17. Mora, T., Sala, M.: On the Gröbner bases of some symmetric systems and their
application to coding theory. J. Symbolic Comput. 35(2), 177–194 (2003)

18. Petit, C., Quisquater, J.-J.: On polynomial systems arising from a Weil descent.
In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 451–466.
Springer, Heidelberg (2012)

19. Saints, K., Heegard, C.: Algebraic-geometric codes and multidimensional cyclic
codes: a unified theory and algorithms for decoding using Gröbner bases. IEEE
Trans. Inf. Theory 41(6), 1733–1751 (1995)

20. Wienand, O., Wedler, M., Stoffel, D., Kunz, W., Greuel, G.-M.: An algebraic app-
roach for proving data correctness in arithmetic data paths. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 473–486. Springer, Heidelberg (2008)

http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node1.html
http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node1.html

Efficient Public Key Encryption
with Field-Free Conjunctive Keywords Search

Chenggen Song(B), Xin Liu, and Yalong Yan

Institute of Information Security,
Beijing Electronic Science and Technology Institute,

Beijing 100070, People’s Republic of China
{scg,liux,yalong}@besti.edu.cn

Abstract. In this article, we aim to the secure conjunctive keywords
search problem where the keywords are field-free. Actually, many schemes
have been proposed in the literature, while all the schemes need O(k)
pairing computing to determine a keywords set is in the ciphertext of
k keywords. In this paper, we give a couple of reciprocal maps based
on lagrange polynomial as basic tool to cope with this problem and we
propose an efficient public key encryption scheme with field-free conjunc-
tive keywords search(PEFCK) which reduces O(k) pairing computing to
O(1) in once search.

Keywords: Public Key Encryption with Keywords Search ·
Conjunctive search · Pairing based encryption · Lagrange polynomial

1 Introduction

Public Key Encryption with Keywords Search (PEKS in short) scheme, which
is also named searchable public-key encryption scheme, enables one to search
encrypted documents on the untrusted server without revealing any infor-
mation. Boneh et al. [13] first introduced PEKS scheme with a mail rout-
ing system in 2004. There are three entities in PEKS: data sender, receiver
and server. The basic idea is as follows. User Bob (data sender) wishes to
send an email to Alice (receiver). First, he encrypts the email M with key-
words w1, w2, · · · , wk using Alice’s public key and also appends the keywords
PEKS(Apub, w1), · · · , PEKS(Apub, wk). Then he sends the following ciphertext
to the mail server (server):

C = (CPKE ||CPEKS) = EApub
(M)||PEKS(Apub, w1), · · · , PEKS(Apub, wk)

where Apub is Alice’s public key. Alice can provide the server with a certain
trapdoor Tw (which is a trapdoor constructed by Alice on a keyword w) through
a secure channel that enables the server to test whether the encrypted keyword
associated with the message (CPEKS) is equal to the keyword w selected by

This paper was supported by Institute Grant 2014GCYY02.

c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 394–406, 2015.
DOI: 10.1007/978-3-319-27998-5 25

Efficient Public Key Encryption 395

Alice. Given PEKS(Apub, w
′) and Tw, the server can test whether w = w′. If

w �= w′, then the server learns nothing more about w′. In short, PEKS provides a
mechanism that allows Alice to have the email server extract emails that contain
a particular keyword by providing a trapdoor corresponding to the keyword,
while the email server and other parties rather than Alice will not learn anything
else about the email.

In [4], Abdalla et al. point out that we can translate any anonymous iden-
tity based encryption scheme [1,7,9,14,18] (AIBE) to a PEKS scheme. This
construction was later improved by several researchers ([6,8,20]).

In 2004, Golle et al. [19] first proposed the notion of secret key encryption
with conjunctive field keyword search scheme, which support Alice to retrieve
the emails which contain some keywords, e.g. “urgent”, “Monday” and “Marking
Department”. The notion of public key encryption with conjunctive field keyword
search was proposed by Park et al. [22]. Byun et al. [16] and Hwang et al.
[20] improved the efficiency of the conjunctive keyword search. However, all the
above four schemes employ the same keyword field assumptions as: (1) The same
keyword never appears in two different keyword fields in the same document. (2)
Keyword field is defined for each document.

Later, many researchers improved expression to disjunctions, polynomial
equations, inner products and so on [2,3,8,10,23,24].

Actually, the keyword field assumption restricts the application, keyword
should be listed in any order without keyword field. Public key encryption with
conjunctive field-free keyword search was studied in Boneh et al. BW scheme
[8], Wang et al. WWJ scheme [26] and Zhang et al. ZZ scheme [27]. In WWJ
and ZZ scheme, the basic idea is to computing the polynomial H(w1) + · · · +
H(wk) where the k keywords included in the ciphertext are the all roots of
polynomial H(x). One could achieve this idea throught the attribute-hiding inner
products encryption scheme OT [23]. However, all above 4 scheme cost O(k)
pairing computing to complete a conjunctive search in a ciphertext of k keywords.

A survey about provably secure searchable encryption was proposed in [15].

1.1 Our Contributions

The Lagrange polynomial was used in the scheme [17,25] to construct an anony-
mous multi-receiver identity-based encryption (AMIBE) scheme. We study the
polynomial, and give a couple of reciprocal maps on G

k, with which one could
immediately index the target group elements. Using the properties of the couple
of maps,we propose an efficient public key encryption with field-free conjunctive
keywords search scheme. Security of our construction is based on decision linear
Diffie-Hellman (DLIN) assumption in the random oracle model. To the best of
our knowledge, our scheme is the most efficient searchable encryption support
field-free conjunctive keywords search: we reduce the O(k) pairing computing in
Test function to O(1).

396 C. Song et al.

1.2 Organization

The paper is organized as follows. In Sect. 2 we summarize notations, definitions
and previous work. In Sect. 3 we study the Lagrange polynomial and give a couple
of reciprocal maps on G

k. In Sect. 4, we define security model for the public key
encryption with field-free conjunctive keyword search. Proposed schemes with
the security proofs are presented in Sect. 5. In Sect. 6, we give the performance
analysis and comparisons. At last, we conclude our work in Sect. 7.

2 Preliminaries

In this section we summarize notations, definitions and prior work which is
relevant to our result.

2.1 Bilinear Maps

We review bilinear maps, using the following standard notation [12,14]:

1. G and GT are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G;
3. e : G × G → GT is a bilinear map.

Let G and GT be two groups as above. A bilinear map is a map e : G×G → GT

with the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab;
2. Non-degenerate: e(g, g) �= 1.

We say that G is a bilinear group if the group action in G can be computed
efficiently and there exists a group GT and an efficiently computable bilinear
map e : G × G → GT as above. Note that e(,) is symmetric since e(ga, gb) =
e(g, g)ab = e(gb, ga).

2.2 Complexity Assumptions

The security of our schemes is based on the complexity assumption called Deci-
sion Linear Diffie-Hellman (DLIN) assumption. This assumption was introduced
by Boneh et al. [11] and was used to construct a short group signature [11]. Let
g1, g2, g3 be random elements in group G and a, b, c be random elements in Z

∗
p. We

define the DLIN problem in the G as: given 6 tuples < g1, g2, g3, g
a
1 , gb

2, g
c
3 >∈ G

6

as input, output 0 if c = a + b and 1 otherwise. One can easily show that an
algorithm for solving the DLIN problem in G gives an algorithm for solving
DDH in G. The converse is believed to be false. That is, it is believed that the
DLIN problem is a hard problem even in the bilinear groups where DDH is easy
[11,21]. We define the advantage of an algorithm A to solve the DLIN problem
in G as

AdvDLIN
A = |Pr[A(g1, g2, g3, ga

1 , gb
2, g

a+b
3) = 0] − Pr[A(g1, g2, g3, ga

1 , gb
2, z) = 0]|

where the probability is over the random choice of g1, g2, g3, z ∈ G and a, b ∈ Zp.

Efficient Public Key Encryption 397

Definition 1. We say that the (t, ε)-DLIN assumption holds in G if no t-time
adversary has an advantage at least ε in solving the DLIN problem in G.

3 Lagrange Polynomial

For k distinct numbers x = {xi, i = 1, · · · , k}, we have k polynomials

fi(x) =
∏

1≤j �=i≤k

x − xj

xi − xj
= ai,1 + ai,2x + · · · + ai,kxk−1

with degree k − 1. It is easy to find that

fi(xj) =

{

1 if i = j

0 if i �= j
(1)

Those polynomials were used in Fan’s [17] AMIBE scheme, we study more
properties about those polynomial.

If we consider the polynomial Ft(x) =
∑k

i=1 xt−1
i fi(x) for an constant t, 1 ≤

t ≤ k. It is easy to find that Ft(xj) = xt−1
j for any 1 ≤ j ≤ k(for the property of

Eq. (1)). However, the polynomials Ft(x) and polynomials xt−1 have the degree
at most k − 1, but have the same value at least k point. Thus, Ft(x) = xt−1. So
we have

Ft(x) = (
k

∑

i=1

xt−1
i ai,1) + (

k
∑

i=1

xt−1
i ai,2)x + · · · + (

k
∑

i=1

xt−1
i ai,k)xk−1 = xt−1

and
k

∑

i=1

xt−1
i ai,j =

{

1 if t = j

0 if t �= j
(2)

Let G be an group of order p. For k distinct numbers x = {xi ∈ Z
∗
p} for

i = 1, · · · , k, we could construct two maps r̂x and R̂x from G
k to G

k refer to
those polynomial fi(x) defined as above. That is

r̂x : G
k → G

k

(r1, r2, · · · , rk) → (R1, R2, · · · , Rk)

Rj =
k

∏

i=1

r
ai,j

i

R̂x : G
k → G

k

(R1, R2, · · · , Rk) → (r1, r2, · · · , rk)

ri =
k

∏

j=1

R
xj−1

i
j

398 C. Song et al.

Lemma 1. Let G, fi(x), r̂x and R̂x be defined as above. Then R̂x(r̂x) = 1 and
r̂x(R̂x) = 1. Thus, they are reciprocal.

Proof. Let (R1, R2, · · · , Rk) = r̂x(r1, r2, · · · , rk) and (w1, w2, · · · , wk) =
R̂x(R1, R2, · · · , Rk), so we have:

wi =
k∏

j=1

R
x

j−1
i

j = R1R
xi
2 · · ·Rxk−1

i
k

= (r
a1,1
1 r

a2,1
2 · · · rak,1

k) · (ra1,2xi
1 r

a2,2xi
2 · · · rak,2xi

k) · · · (ra1,kxk−1
i

1 r
a2,kxk−1

i
2 · · · rak,kxk−1

i
k)

= r
f1(xi)
1 r

f2(xi)
2 · · · rfk(xi)

k

= ri

the last equation comes from Eq. (1). Thus R̂x(r̂x) = 1.
Let (r1, r2, · · · , rk) = R̂x(R1, R2, · · · , Rk) and (W1,W2, · · · ,Wk) =

r̂x(r1, r2, · · · , rk), then we have:

Wj =

k∏

i=1

r
ai,j
i

= r
a1,j
1 r

a2,j
2 · · · rak,j

k

= (R
a1,j
1 R

x1a1,j
2 · · ·Rx

k−1
1 a1,j

k
) · (Ra2,j

1 R
x2a2,j
2 · · ·Rx

k−1
2 a2,j

k
) · · · (Rak,j

1 R
xkak,j
2 · · ·Rx

k−1
k

ak,j
k

)

= R

∑k
i=1 ai,j

1 R

∑k
i=1 xiai,j

2 · · ·R
∑k

i=1 x
k−1
i

ai,j
k

= Rj

the last equation comes from Eq. (2). Thus r̂x(R̂x) = 1. ��
So r̂x and R̂x can be considered as a couple of reciprocal maps. The couple

of maps will be used in our scheme and the security proof. Let R̂x,i denote the
i-th component of R̂x, that is R̂x,i(R1, R2, · · · , Rt) = ri.

4 Public Key Encryption with Field-Free Conjunctive
Keyword Search Scheme

4.1 Model

We consider that a users encrypted data is outsourced in the storage of the
untrusted server, such as email gateway, secure audit logs, and remote database
server. In a public key model for keyword search, the server stores encrypted
data collected from third parties and the user enables the server to retrieve
emails containing keywords, which are the user wants to search, without leaking
information. To support a conjunctive keyword search, Golle et al. [16,19,20,22]
employ the same keyword fields assumptions as:

1. The same keyword never appears in two different keyword fields in the same
document.

2. Every keyword field is defined for every document.

Efficient Public Key Encryption 399

With this assumption, their scheme could immediately index the target cipher-
text of keywords. Take the routing email system for example, they defined the
keyword fields names as To, From, Subject, Time etc. However, we claim that
these assumptions restrict the application. Normally, we would like to marker
the email with any interesting keywords, such as Sunshine, Seal, Homework
etc.

Actually keyword should be listed in any order without keyword fields. We
propose a scheme without this keyword fields assumption.

The public key encryption with field-free conjunctive keyword search
(PEFCK) consists of 4 polynomial time algorithms, (KeyGen, PEFCK,
Trapdoor, Test) such that:

KeyGen: It takes a security parameter as input and returns params(system
parameters) and the public/private key pair (pk, sk).

PEFCK: It is executed by the sender to encrypt a keyword set W =
{W1, ...,Wk}. It produces a searchable keyword encryption S of W with
the public key pk.

Trapdoor: It takes the secret key sk as input and the keyword query Q =
{Q1, ..., Qm} for m ≤ k, and returns a trapdoor TQ for the conjunctive
search of a given keyword query.

Test: It is executed by the server to search the documents with the keywords of
a trapdoor TQ. It takes the public key pk as input, the searchable keyword
encryption S, and the trapdoor TQ. Then output 1 if S include Q and 0
otherwise.

Actually, in the PEFCK scheme, to send a message m with keyword set W ,
a ciphertext has a form of

< Enc(pk,m), PEFCK(pk, (W1,W2, · · · ,Wk)) >

where Enc(·) is a secure public key encryption. We concentrate on searchable
encryption part.

4.2 Security Definition

We consider a semantic security against chosen keyword attacks as mentioned in
the previous works [16,19,20,22]. The security games of symmetric encryptions
for conjunctive keyword search was first defined in [19]. Then [16,20,22] modified
the security games for public key setting. The security of the PEFCK scheme
can be defined by two security games, indistinguishability of ciphertext from
ciphertext (IND-CC-CKA) and indistinguishability of ciphertext from random
oracle (IND-CR-CKA) against chosen keyword attacks. We briefly define them.
The IND-CC-CKA game is as follows.

Setup: The challenger C takes a security parameter 1l and runs the Keygen
algorithm. The public key pk and the system parameters params are given
to A. The challenger C keeps the secret key sk to itself.

400 C. Song et al.

Phase 1: A adaptively queries a number of keyword set Q1, · · · , Qd, to trapdoor
oracle as follows.
Trapdoor Queries < Qi >. The challenger runs Trapdoor (sk,Qi) and

generates the trapdoor TQi
. And then responds to A.

Challenge: A selects two target keyword sets W0 and W1, and sends them to
the challenger C. The challenger picks a random bit β ∈ {0, 1}. The only
restriction is that W0 and W1 should not be distinguished by trapdoors
issued in previous phases. And it sets Sβ = PEFCK(pk,Wβ). Then send it
to A.

Phase 2: A additionally queries keyword sets Qd+1, · · · , Qλ to trapdoor oracle.
Trapdoor Queries < Qi �= W0 or W1 >. The challenger runs Trapdoor

(sk,Qi) and generates the trapdoor TQi
. If TQi

cannot distinguish for
W0 and W1, then it responds TQi

to A.
Guess: Finally, A outputs a guess β′ ∈ {0, 1}. It wins the game if β′ = β.

We define the advantage of the adversary A against the PEFCK scheme as the
function of the security parameter 1l: AdvIND−CC−CKA

PEFCK,A (1l) = |Pr[β′ = β]− 1
2 |.

We introduce another security game IND-CR-CKA which is a variant of the
IND-CC-CKA game. This security game is the same as the IND-CC-CKA game
except for the Challenge phase. While in the IND-CC-CKA game the adversary
A selects two target keyword sets W0 and W1, and gives them to the challenger
C, in the IND-CR-CKA game A selects a target keyword set W0 and gives it to
C. Then C selects a random keyword set R and sets W1 = R. The IND-CR-CKA
game is as follows.

Setup: The challenger C takes a security parameter 1l and runs the Keygen
algorithm. The public key pk and the system parameters params given to
A. The challenger C keeps the secret key sk to itself.

Phase 1: A adaptively queries a number of keyword sets Q1, · · · , Qd, to trap-
door oracle as follows.
Trapdoor Queries < Qi >. The challenger runs Trapdoor (sk,Qi) and

generates the trapdoor TQi
. And then responds to A.

Challenge: A selects a keyword sets W ∗, and sends it to the challenger C.
The challenger selects a random keyword set R and picks a random bit
β ∈ {0, 1}. The only restriction is that W ∗ should not be distinguished for R
from trapdoors issued in previous phases. And it sets Sβ = PEFCK(pk,Wβ)
where W0 = W ∗ and W1 = R. Then sends < Sβ ,W0,W1 > to A.

Phase 2: A additionally queries keyword sets Qd+1, · · · , Qλ to trapdoor oracle.
Trapdoor Queries < Qi �= W0 or W1 >. The challenger runs Trapdoor

(sk,Qi) and generates the trapdoor TQi
. If TQi

cannot distinguish for
W0 and W1, then it responds TQi

to A.
Guess: Finally, A outputs a guess β′ ∈ {0, 1}. It wins the game if β′ = β.

We define the advantage of the adversary A against the PEFCK scheme as the
function of the security parameter 1l: AdvIND−CR−CKA

PEFCK,A (1l) = |Pr[β′ = β]− 1
2 |.

Efficient Public Key Encryption 401

The two security games, IND-CC-CKA and IND-CR-CKA, are all asymp-
totically equivalent [5,19].

Definition 2. We say that a PEFCK scheme is (t, qt, ε) (resp. (t, qt, qh, ε) in
random oracle model)-secure if for any t-time IND-CC-CKA (resp. IND-CR-
CKA) adversary A who makes at most qt trapdoor queries (and qh oracle
queries), we have that AdvATK

PEFCK,A < ε where ATK is IND-CC-CKA (resp.
IND-CR-CKA).

5 Our Construction

We introduce an efficient public key encryption with field-free conjunctive key-
word search in which the keyword field assumption is not necessary. In addition,
we provide a concrete security proof of our scheme. Our scheme is as follows.

KeyGen(1l): Given the a security parameter 1l, it returns params = (G,GT , e,
H1(·),H2(·),H3(·), g) where H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → G, H3 :
{0, 1}∗ → Z∗

p are three different collision-resistance hash functions and g is
a generator of G. And it picks a random value x in Z

∗
p and computes y = gx.

The public/private key pair (pk, sk) is given by

(pk, sk) = (y, x)

PEFCK(pk,W): To generate PEFCK with keyword set W = {W1, · · · ,Wk}
with public key pk, the algorithm performs the following tasks:

1. computes hi = H1(Wi), fi = H2(Wi), wi = H3(Wi), i = 1, · · · , k.
2. constructs the maps r̂w from G

k to G
k refer to w = {wi}.

3. Picks two random values s, r ∈ Z
∗
p.

4. Computes A = gr, B = ys.
5. For i = 1, · · · , k, computes ci = hr

i f
s
i .

6. Sets (C1, C2, · · · , Ck) = r̂w(c1, c2, · · · , ck)
7. Sets S =< A,B,C1, · · · , Ck > as the PEFCK.

Trapdoor(sk,Q): The algorithm first computes hi = H1(Qi), fi = H2(Qi),
qi = H3(Qi), i = 1, · · · ,m, where Q = {Q1, ..., Qm}. Then selects a random
value t ∈ Z

∗
p and computes D = gt, E = (h1 · · · hm)t, and F = (f1 · · · fm)t/x.

At last outputs TQ = (D,E, F, q1, · · · , qm).

Test(pk, S, TQ): The algorithm first computes qci =
∏k

j=1 C
qj−1

i
j , i = 1, · · · ,m.

Then checks if e(A,E)e(B,F) = e(D,
∏m

i=1 qci).

402 C. Song et al.

Correctness: If Q ⊆ W , then qi = wui
for some ui, so qci =

∏k
j=1 C

qj−1
i

j =
R̂w,ui

(C1, · · · , Ck) = cui
= hr

ui
fs

ui
, for i = 1, · · · ,m. So

e(D,

m
∏

i=1

qci) = e(D,

m
∏

i=1

cui
) = e(D,

m
∏

i=1

hr
ui

fs
ui

)

= e(gt,
m
∏

i=1

hr
ui

)e(gt,
m
∏

i=1

fs
ui

)

= e(gr, (
m
∏

i=1

hui
)t)e(gxs, (

m
∏

i=1

fui
)t/x)

= e(A,E)e(B,F)

5.1 Security

We prove that our PEFCK scheme is IND-CR-CKA secure under the DLIN
assumption in the random oracle model.

Theorem 1. Assmue that (t, ε)-DLIN assumption holds in G.Then PEFCK is
(t′, qt, qh, 4kqtε)-secure against IND-CR-CKA in the random oracle model for
arbitrary qt, qh, k and t′ < t − Θ(τmqtqh) where τ is the maximum time for an
exponentiation in G and k is the maximum number of keywords in one ciphertext.

Proof. Assume that A is an adversary with advantage ε′ in breaking PEFCK
against IND-CR-CKA and H1(·), H2(·), H3(·) are modelled as random oracles.
Then we can construct an adversary B who attacks the DLDH problem using A
as described below.

Setup. The DLDH challenger gives the DLDH parameters g1, g2, g3, v1, v2, v3
to the adversary B where v1 = ga

1 , v2 = gb
2 and v3 = ga+b

3 or z. B sets
g = g1 and y = g2. At that time,the private key is regarded as α where
g2 = gα

1 . In addition, it selects a random value η in Z
∗
p and keeps it secret.

This value is used in random oracles and Challenge phase. It gives A the
system parameters params = (G,GT , e,H1(·),H2(·),H3(·), g) and the public
key pk = y.
H1,H2,H3-queries A issues at most qh keyword queries to the random

oracles. It simultaneously responds these queries. B maintains a list of
tuples {Wi, cni;hi, di; fi, ei;wi} called the H list. If the keyword Wi is
already queried, B returns H1(Wi) = hi, H2(Wi) = fi and H3(Wi) = wi

in H list. Otherwise, it sets wi as a random value in Z
∗
p, and generates

a random coin cni ∈ {0, 1} so that Pr[cni = 1] = 1/(kqt). If cni = 0,
then it selects two random values di and ei in Z

∗
p, and sets hi = gdi

1 and
fi = gei

2 . Otherwise, it selects a random value di in Z
∗
p and computes ei =

di/η. And then it sets hi = gdi
3 and gei

3 . It adds {Wi, cni;hi, di; fi, ei;wi}
to H list, and returns hi, fi and wi to A.

Phase 1. A queries a number of keyword sets to trapdoor oracle.

Efficient Public Key Encryption 403

Trapdoor Queries A queries a keyword set Qi = {Qi,1, · · · , Qi,mi
} to

obtain a trapdoor TQi
. B obtains the list

such that {Wi,j , cni,j ;hi,j , di,j ; fi,j , ei,j ; qi,j} for 1 ≤ j ≤ mi by running
the above algorithm for responding to H1,H2,H3-queries. If there is any
cni,j = 1 for 1 ≤ j ≤ mi, then B aborts. Otherwise, it selects a ran-
dom value ti in Z

∗
p and outputs TQi

= (TQi,1
, TQi,2

, TQi,3
, qi,1, · · · , qi,mi

)

where TQi,1
= gti

1 , TQi,2
= g

ti(
∑mi

j=1 di,j)

1 and TQi,3
= g

ti(
∑mi

j=1 ei,j)

1 .
Challenge. A selects a target document W ∗ and sends it to B. It selects

a random document R and sets W0 = W ∗ and W1 = R where
W0 = {W0,1, · · · ,W0,k} and W1 = {W1,1, · · · ,W1,k}. The only restric-
tion is that W0 and W1 should not be distinguished by trapdoors
issued in previous phase. And then it selects a random bit β ∈ {0, 1}.
B queries all keywords of Wβ to H1,H2,H3-oracles and obtains lists
{Wβ,i, cnβ,i;hβ,i, dβ,i; fβ,i, eβ,i;wβ,i} for all i from oracles. If there is no
cnβ,i = 1 for all i, it aborts. Otherwise, it computes a challenge cipher-
text Sβ =< A,B,Cβ,1, · · · , Cβ,k > where {Cβ,i} = r̂wβ

(cβ,i), where wβ =
{wβ,1, · · · , wβ,k} and cβ,i = v

dβ,i

1 v
eβ,i

2 (in case that cnβ,i = 0) or v
dβ,i

3 (in case
that cnβ,i = 1), i = 1, · · · , k.

Phase 2. A continues to issue trapdoor queries which are not equal to W0 and
W1. The only restriction is that it cannot issue trapdoor query distinguishing
W0 for W1. B responds as in Phase 1.

Guess. Finally, A outputs a guess β′ ∈ {0, 1}. If β′ = β, then B outputs 1
meaning v3 = ga+b

3 . Otherwise, it outputs 0 meaning v3 = z.

The adversary B should not abort in Trapdoor Queries and Challenge
phase for the success. The probability that it does not abort in Trapdoor
Queries is (1−1/kqt)kqt for qt queries. And the probability that it does not abort
in Challenge phase is (1−(1−1/kqt)k). Therefore, the probability that it did not
abort during the simulation is greater than 1/(4·kqt) because (1−1/kqt)kqt ≥ 1/4
for any kqt ≥ 2 and (1 − (1 − 1/kqt)l) ≤ (1 − (1 − 1/kqt)) = 1/kqt. If v3 = ga+b

3 ,
then the challenge ciphertext is a valid encryption of the keyword set Wβ .

A = v1 = ga
1 = ga

B = vη
2 = gbη

2

{Cβ,i} = r̂wβ
(cβ,i)

(ifcnβ,i = 0) cβ,i = v
dβ,i

1 v
eβ,iη
2 = g

dβ,ia
1 g

eβ,ibη
2 = ha

β,if
bη
β,i

(ifcnβ,i = 1) cβ,i = v
dβ,i

3 = g
(a+b)dβ,i

3 = (gdβ,i

3)a(gdβ,i/η
3)bη

= (hβ,i)a(geβ,i

3)bη = ha
β,if

bη
β,i

In this case, A′s view is identical to its view in a real attack game and it must
satisfy |Pr[β′ = β] − 1/2| ≥ ε′. If v3 = z and B does not abort, since the map
r̂w is invertible refer to any w, then |Pr[β′ = β] = 1/2. Therefore, we have that

|Pr[B(g1, g2, g3, ga
1 , gb

2, g
a+b
3) = 0] − Pr[B(g1, g2, g3, ga

1 , gb
2, z) = 0]|

404 C. Song et al.

≥ 1
4lgt

|(1/2 ± ε′) − 1/2| =
1

4lgt

We complete the proof of the theorem. ��

6 Performance Analysis and Comparisons

Actually, our aim is that we want to find out whether a trapdoor (include some
keywords) could match with the ciphertext (matched when the keywords are
the subset of keywords in the message). In order to make the comparison, the
BW scheme [8], OT scheme [23], WWJ schem [26] and ZZ scheme [27] should
adapt to this problem, while the scheme [20,22] do not meet the target(since
the keyword field assumption). Assumption that there exist k keywords of the
message and m keywords in trapdoor, we simple comparison our scheme with
the BW scheme [8], OT scheme [23] and ZZ scheme [27] in Table 1.

Table 1. Performance comparisons

Scheme Encryption Trapdoor Test

BW [8] (6k + 2)G (5m + 2)G (2k + 1)e

OT [23] (k + 2)G (2k + 2)G (4k + 2)e

WWJ [26] (k + 1)G kG ke

ZZ [27] (2k + 4)G + 1e (3k + 2)e (2k + 1)e

Our scheme (k2 + 2k + 2)G 3G kG + 1e

G: exponentiation in G;
e: bilinear pairing mapping;
We omit the multiplication in G and GT

As other scheme use O(k) pairing computing to determine whether the key-
words set is in the ciphertext, our scheme reduce the O(k) pairing computing in
Test funciton to O(1).

7 Conclusion

In this paper, we study the Lagrange polynomial which was used in the scheme
[17,25] to construct an anonymous multi-receiver identity-based encryption
scheme, and give a couple of reciprocal maps on G

k, with which one could
immediately index the target group elements. Using the properties of the couple
of maps,we propose an efficient public key encryption with field-free conjunctive
keywords search scheme. This scheme’s aim is to find out whether a trapdoor
(include some keywords) could match with the ciphertext (matched when the

Efficient Public Key Encryption 405

keywords are the subset of keywords in the message). Security of our construc-
tion is based on decision linear Diffie-Hellman (DLIN) assumption. To the best
of our knowledge, our scheme is the most efficient searchable encryption support
field-free conjunctive keywords search: we reduce the O(k) pairing computing in
Test to O(1).

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

3. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013)

4. Kohno, T., Abdalla, M., Bellare, M., Catalano, D., Neven, G., Shi, H., Kiltz, E.,
Lange, T., Malone-Lee, J., Paillier, P.: Searchable encryption revisited: consis-
tency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

5. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword
searches over encrypted data. In: Qing, S., Mao, W., López, J., Wang, G. (eds.)
ICICS 2005. LNCS, vol. 3783, pp. 414–426. Springer, Heidelberg (2005)

6. Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword
search revisited. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun,
Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 1249–1259.
Springer, Heidelberg (2008)

7. Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor func-
tions and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 228–245. Springer, Heidelberg (2012)

8. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

9. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

10. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

11. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

12. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

13. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

406 C. Song et al.

14. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

15. Bösch, C., Hartel, P., Jonker, W., Peter, A.: A survey of provably secure searchable
encryption. ACM Comput. Surv. (CSUR) 47(2), 18 (2014)

16. Byun, J.W., Lee, D.-H., Lim, J.-I.: Efficient conjunctive keyword search on
encrypted data storage system. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006.
LNCS, vol. 4043, pp. 184–196. Springer, Heidelberg (2006)

17. Fan, C.-I., Huang, L.-Y., Ho, P.-H.: Anonymous multireceiver identity-based
encryption. IEEE Trans. Comput. 59(9), 1239–1249 (2010)

18. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

19. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over
encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004)

20. Hwang, Y.-H., Lee, P.J.: Public key encryption with conjunctive keyword search
and its extension to a multi-user system. In: Takagi, T., Okamoto, T., Okamoto, E.,
Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 2–22. Springer, Heidelberg
(2007)

21. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

22. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword
search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86.
Springer, Heidelberg (2005)

23. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012)

24. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

25. Wang, H., Zhang, Y., Xiong, H., Qin, B.: Cryptanalysis and improvements of an
anonymous multi-receiver identity-based encryption scheme. IET Inf. Secur. 6(1),
20–27 (2012)

26. Wang, P., Wang, H., Pieprzyk, J.: Keyword field-free conjunctive keyword searches
on encrypted data and extension for dynamic groups. In: Franklin, M.K., Hui,
L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 178–195. Springer,
Heidelberg (2008)

27. Zhang, B., Zhang, F.: An efficient public key encryption with conjunctive-subset
keywords search. J. Netw. Comput. Appl. 34(1), 262–267 (2011)

mOT+: An Efficient and Secure Identity-Based
Diffie-Hellman Protocol over RSA Group

Baoping Tian(B), Fushan Wei, and Chuangui Ma

State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, China

baoping tian@163.com

Abstract. In 2010, Rosario Gennaro et al. revisited the old and elegant
Okamoto-Tanaka scheme and presented a variant of it called mOT. How-
ever the compromise of ephemeral private key will lead to the leakage of
the session key and the user’s static private key. In this paper, we propose
an improved version of mOT(denoted as mOT+). Moreover, based on
RSA assumption and CDH assumption we provide a tight and intuitive
security reduction in the id-eCK model. Without any extra computa-
tional cost, mOT+ achieves security in the id-eCK model, and further-
more it also meets full perfect forward secrecy against active adversary.

Keywords: Public key cryptography · Diffie-Hellman · Composite
modulus · id-eCK model

1 Introduction

Designing authenticated key exchange protocol that is as efficient as the original
unauthentivated Diffie-Hellman protocol [1] attracts many cryptographers. In
the process of pursuing this objects, many excellent protocols are born, such as
HMQV [2] and MQV [3]. Efficient as they are, but when considering the verifi-
cation and transmission of public key certificates, they will lose some efficiency
and also result to a larger bandwidth. At the same time, the use of certificates
will introduce some other troubles. Of note are the problems of certificate man-
agement, such as revocation, storage and distribution. In order to eliminate the
requirement for certificates in the traditional PKI and some related issues with
them, Adi Shamir [4] first introduced the concept of identity-based public key
cryptography(ID-PKC) in 1984. Since then, much work has been dedicated to
designing identity-based authenticated key exchange(IB-AKE) protocols [5–7],
most of them are pairing-based after the pioneering work by Joux [8]. However,
pairings are hard to implement in the real word and the computational cost is
very expensive. Thus, pairing-free IB-AKE protocol has some advantages over
pairing-based ones both in efficiency and implementation.

Among the pairing-free IB-AKE protocols, the old and elegant Okamoto-
Tanaka scheme [9] catches our eyes. The exponentiation per user is very close
to that in unauthentivated Diffie-Hellman protocol [1] when e takes the value
c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 407–421, 2015.
DOI: 10.1007/978-3-319-27998-5 26

408 B. Tian et al.

of small exponent, e.g. e = 3. Masahiro Mambo and Hiroki Shizuya [10] showed
that breaking the Okamoto-Tanaka scheme can be reduced to breaking the Diffie-
Hellman scheme over ZN . Later, Seungjoo KIM et al. [11] analyzed the security of
the Okamoto-Tanaka protocol against active attacks, and they showed the rigor-
ous security of Okamoto-Tanaka scheme in their attack models. In 2010, Rosario
Gennaro et al. [12] analyzed Okamoto-Tanaka scheme at length, and they showed
that the original Okamoto-Tanaka scheme is susceptible to some attacks, par-
ticularly known-key and malleability attacks. After some simple modifications,
they obtained a variant(denoted as mOT) of Okamoto-Tanaka scheme and pro-
vided a security proof of mOT in the Canetti-Krawczyk(CK) model [13] based
on the RSA assumption. In addition, they proved full perfect forward secrecy of
mOT against active attacks.

Yet, both mOT [12] and the original Okamoto-Tanaka scheme [9] suffer from
ephemeral key compromise. The compromise of ephemeral key will lead to that
the adversary can compute the shared secret value by itself, then followed by the
leakage of session key. Furthermore, the compromise of ephemeral key can also
result to the leakage of the user’s long-term private key. Menezes and Ustaoglu
[14] pointed out that the compromise of ephemeral key may happen in the cases
of side-channel attack, the using of a weak random number generator and stored
insecurely. Taking the ephemeral key compromise into account, Lamacchia et al.
[15] proposed the eCK model on the foundation of the Canetti-Krawczyk(CK)
model [13]. Afterwards, huang et al. [16] extended the eCK model so that it can
be applied to identity-based setting, hence called id-eCK model.

In this paper, by applying the NAXOS trick [15] to mOT without incurring
any computational overhead, we obtain a securer two-pass authenticated Diffie-
Hellman protocol named mOT+. Further, based on RSA assumption and CDH
assumption with composite modulus, we prove the security of mOT+ in the
id-eCK model [16].

Organization. The rest of this paper is organized as follows: In Sect. 2, we
introduce some related preliminaries. Section 3 outlines the id-eCK model. Then,
we give the protocol description and prove the security of the first one in Sect. 5.
In the final section, we draw a conclusion on this paper.

2 Preliminaries

Notations. Let k be the security parameter. By A(x, y, · · ·), we denote a poly-
nomial time algorithm A with inputs (x, y, · · ·). And By r ←R A(x, y, · · ·), we
denote that running the polynomial time algorithm A with inputs (x, y, · · ·), it
outputs r. We denote by z ∈R Z choosing an element z uniformly at random
from Z.

The Group of Quadratic Residues. Let N = PQ be a safe-prime RSA
modulus(P = 2p + 1, Q = 2q + 1 and p, q are also primes) and ZN be the set of
integers modulo N . Z∗

N is defined as the set of elements from ZN that have an
inverse modulo N . The set of quadratic residues modulo N forms a multiplicative

An Identity-Based Diffie-Hellman Protocol over RSA Group 409

cyclic group denoted as QRN . The order of which is φ(N)
4 = pq. When selecting

a random element u from QRN , by convention we choose v ∈R Z
∗
N and set u =

v2. A random element from QRN is the generator of QRN with overwhelming
probability.

Definition 1 (Computational Diffie-Hellman(CDH) Assumption with
Composite Modulus). Let IG be an integer instance generator that on input
1k, outputs (N,P,Q) where P = 2p+1, Q = 2q+1 and P,Q, p, q are primes. Let
g be a random generator of order pq. CDH assumption holds for IG, if for all
probabilistic polynomial time adversary A, given (g, gu, gv) where u, v ∈R Zpq,
the probability is bounded by

Pr[guv ←R A(g,N,U = gu, V = gv) : (N,P,Q) ←R IG(1k);u, v ∈R Zpq] < ε(k)

where ε(k) is negligible in k. The probability is taken over the coin tosses of A,
uniformly random choice of u, v from Zpq and integer instance generator IG.

Remark. It is worth noting that if there exist an efficient algorithm to factor
N , then it is left with the CDH problem modulo the factors of N , which is
intractable provided P and Q are large enough. Actually, CDH assumption with
composite modulus can be implied by the hardness of factoring [17].

Definition 2 (RSA Assumption). Let IG be an RSA instance generator that
on input 1k outputs (N, e) such that N = PQ where P,Q are safe primes and
e ∈ Z

∗
φ(N) where φ is Euler’s totient function.

The RSA assumption holds relative to IG if for all probabilistic polynomial
time adversary A, the successful probability is

Pr[x ←R A(N, e, y) : (N, e) ←R IG(1k), y ∈R Z
∗
N] < ε(k)

where xe ≡ y (mod N) and ε(k) is negligible in k. The probability is taken over
the coin tosses of A, uniformly random choice of y from Z

∗
N and RSA instance

generator IG.
Lemma 1 [18]. Let N, e, d be the RSA parameters and b be an integer such
that gcd(e, b) = 1, then we can obtain xd (mod N) from (xb)d (mod N) where
x ∈ Z

∗
N .

3 A Review of id-eCK Model

We model the users from the finite set U of size n as probabilistic polynomial
time Turing machines(PPT). Each user owns an unique identifier IDi(e.g. a
binary string related to their actual name). The user obtains the static private
key corresponding to her/his identity from the KGC through a secure channel.

Sessions. An instance of a protocol is called a session which can be activated by
an incoming message of the forms (IDi, IDj) or (IDi, IDj , Y). If it’s activated

410 B. Tian et al.

by the first form, then IDi is called the session initiator, otherwise the session
responder. The session can be uniquely identified by the session identifier which
is in the form of sid = (IDi, IDj ,X, Y) where X and Y are the messages pre-
pared by IDi and IDj respectively. For sid = (IDi, IDj ,X, Y), we call IDi

the owner of session sid and IDj the peer. We denote by Πs
i,j the sth session

executed by the owner IDi with intended peer IDj . If the session identifier of
the tth session between IDi and IDj is of the form sid′ = (IDj , IDi,X, Y), then
we say Πt

j,i is the matching session of Πs
i,j and vice versa.

Adversary. The PPT adversary owns the competence of controlling all the com-
munications between users(e.g. intercept, modify, delay, inject its own messages,
schedule sessions etc.) except that between users and KGC. The adversary can
capture the leakage of private information of users via the following queries

1. StaticKeyReveal(IDi): The adversary learns the static private key of IDi.
2. EphemeralKeyReveal(Πs

i,j): The adversary learns the ephemeral secret key of
Πs

i,j .
3. SessionKeyReveal(Πs

i,j): The adversary learns the session key of Πs
i,j if it

holds one.
4. MasterKeyReveal(): The adversary learns the master key of KGC.
5. Establish(IDi): The adversary can register legal user on behalf of IDi, and

IDi is completely controlled by the adversary. Users who are not revealed by
this query are called honest.

6. Send(Πs
i,j ,m): The adversary sends a message m to the session Πs

i,j and
obtains a response according to the description of the protocol.

7. Test(Πs
i,j): On this query, the simulator flips a coin, and returns the session

key of Πs
i,j to the adversary if it’s 1, otherwise a random string under the

distribution of the session key. This query can only be asked once. The goal
of adversary is to distinguish the session key from a random string. If the
adversary guesses the coin correctly and the test session is still fresh, then we
say the adversary wins.

Definition 3 (Freshness). Let Πs
i,j be a completed session executed between

two honest users IDi and IDj. Let Πt
j,i be the matching session of Πs

i,j if it
exists. Πs

i,j is fresh if none of the following happens:

1. The adversary issues SessionKeyReveal(Πs
i,j or Πt

j,i) (if Πt
j,i exists)

2. Πt
j,i exists and the adversary makes either of the following queries:
(a) both StaticKeyReveal(IDi) and EphemeralKeyReveal(Πs

i,j)
(b) both StaticKeyReveal(IDj) and EphemeralKeyReveal(Πt

j,i)
3. Πt

j,i does not exist and the adversary makes either of the following queries:
(a) both StaticKeyReveal(IDi) and EphemeralKeyReveal(Πs

i,j)
(b) StaticKeyReveal(IDj)

Definition 4 (id-eCK Security). The advantage of the adversary M is
defined as

AdvIB−AKE
M (k) = Pr[Mwins] − 1

2
We say that an IB-AKE protocol is secure if the following conditions hold:

An Identity-Based Diffie-Hellman Protocol over RSA Group 411

– If two honest users complete matching sessions then they both compute the
same session key.

– For all PPT adversary, AdvIB−AKE
M (k) is negligible.

4 mOT+ Protocol

In this section, we first describe mOT+ protocol, then give some related argu-
ments. At last, we compare it with mOT [12] and Okamoto-Tanaka scheme [9].
In the rest of this paper, for simplicity we omit “ (mod N)” operation when
operating on Z

∗
N .

4.1 Protocol Description

Set up. Key Generation Center(KGC) chooses RSA parameters (N, e, d) prop-
erly where N is safe-prime RSA modulus(i.e. N is the product of two safe
primes), a random generator g for QRN and three hash functions H1 : {0, 1}∗ →
QRN , H2 : {0, 1}k ×QRN → S and H : {0, 1}∗ → {0, 1}k. Then, KGC publishes
(N, e, g,H1,H2,H). The user will receive the KGC’s RSA signature on his/her
identity as the secret key (e.g. the secret key of user U with identifier IDU is
the value SU = H1(IDU)d).

Key Agreement. Let’s assume that the initiator A and the responder B with
identifier IDA and IDB respectively want to establish a shared session key.

Step1: A first chooses x ∈R {0, 1}k, then computes x̃ = H2(x, SA) and α =
gx̃SA. On finishing computing α, A destroys x̃ and sends (IDA, α) to B.

Step2: On receiving the communication from A, B first checks if α ∈ Z
∗
N .

If so, B chooses y ∈R {0, 1}k and computes ỹ = H2(y, SB), after calculating
β = gỹSB , B destroys ỹ. Then, B sends (IDB , β) to A. At last, B computes

the shared secret value σ =
(

αe

H1(IDA)

)2H2(y,SB)

and sets the session key to be
H(σ, α, β, IDA, IDB).

Step3: After receiving the communication from B, A first checks if β ∈ Z
∗
N . If

so, A computes the shared secret value σ =
(

βe

H1(IDB)

)2H2(x,SA)

and sets the
session key to be H(σ, α, β, IDA, IDB).

In the process of key agreement, if any verification fails, then the user will
abort the session. If the key agreement is successful then it’s straightforward to
see that A and B share the same secret value g2eH2(x,SA)H2(y,SB) and therefore
the same session key (Fig. 1).

4.2 Some Arguments

Exponentiation with a Short Exponent Set S. If N = PQ where P =
2p + 1, Q = 2q + 1, normally S should be {1, . . . , pq}. But the knowledge of

412 B. Tian et al.

BA

(SA = H1(IDA)d () SB = H1(IDB)d)

x ∈R {0, 1}k, x̃ = H2(x, SA)
α = gx̃SA

Destroy x̃
IDA,α−−−−→

Check α
?∈ Z

∗
N

y ∈R {0, 1}k, ỹ = H2(y, SB)
β = gỹSB

Destroy ỹ
IDB ,β←−−−−

Check β
?∈ Z

∗
N

σ =
(

βe

H1(IDB)

)2H2(x,SA)

σ =
(

αe

H1(IDA)

)2H2(y,SB)

K = H(σ, α, β, IDA, IDB)

Fig. 1. mOT+ protocol

pq yields the factoring of N . But we can use {1, . . . , �N/4�} as a substitution,
because the two sets {gx (mod N), x ∈R {1, . . . , pq}} and {gx (mod N), x ∈R

{1, . . . , �N/4�}} are statistically close if p, q are in the same size [19]. Using the
related result in [20], we can derive that {gx (mod N), x ∈R {1, . . . , �N/4�}}
and {gx (mod N), x ∈R {1, . . . , 2λ}} are computationally indistinguishable. To
save time, we can implement with short exponents i.e. setting S = {1, . . . , 2λ}
on condition that the discrete logarithm problem over Z

∗
N is still hard with this

setting. For example, when the modulus is of size 1024 bits, the exponent can be
of length 164 bits(or 2048-bit modulus with 226-bit exponent).

Binding the Ephemeral Key with the Long-Term Private Key. In our
protocol, we bind the ephemeral key with the long-term private key with a
hashing operation. The merits of doing in this way is that without knowing
both the ephemeral private key and the static private key of user A, no one can
compute H2(x, SA). The leakage of ephemeral private key won’t put the session
key and the static private key at risk. Besides, this hash value is never stored.
Whenever the hash value is needed, it is computed.

The Square Operation in the Shared Value. In the original Okamoto-
Tanaka scheme [9], when computing the shared value, this is no extra square
operation for both users. While in mOT [12], in order to carry the simulation
the authors add a square operation in computing the shared value. During the
proof of mOT+ in the id-eCK model, we find that this square operation doesn’t
contribute to our simulation. In other words, no matter whether this square oper-
ation is added or not, we can carry the simulation smoothly. However, problem
is that the user cannot determine whether the received communication belongs
to the group of quadratic residues. What the user can determine is the Jacobi
symbol and the membership in Z

∗
N of the received communication. If the Jacobi

An Identity-Based Diffie-Hellman Protocol over RSA Group 413

symbol of the received communication is −1, then of course the received com-
munication is outside QRN . Otherwise, it’s hard to determine1. In other words,
the users cannot perform complete subgroup validation. In order to avoid the
potential small subgroup attack [22], we keep this square operation in our pro-
tocol. It is worth noting that if we instantiate our protocol over the group of
signed quadratic residues [23] in which the membership can be publicly verified,
then this square operation can be removed.

4.3 Comparison

In this section, we compare our protocol with the original Okamoto-Tanaka
scheme [9](denoted as OT) and mOT [12] in terms of efficiency(exponentiations
per party), CK-security, eCK-security and full perfect forward security(Full-
PFS). When considering the efficiency, we let e = 3. Then in this case, our
protocol is as efficient as OT and mOT. In the original paper [9], Okamoto and
Tanakam didn’t provide a proof, but mOT protocol [12] is proved in the CK
model [13]. Our protocol can be proved secure not only in the CK model as the
mOT does2, but also in the eCK model.

The most attractive place of mOT is that it meets the full perfect forward
security against active attackers. While for implicitly-authenticated 2-message
protocols, they can only achieve weak forward security against passive attack-
ers [2]. Arming full PFS for implicitly-authenticated 2-message protocols will
need an extra message or explicit signature. Thus, compared with implicitly-
authenticated protocols mOT enjoys full-PFS in only two messages without
additional message or explicit signature. Our modification doesn’t make mOT
to lose this desirable property, i.e. mOT+ achieves also full-PFS, and the proof
of which is almost identical to that of mOT. Thereby, we won’t repeat it in our
paper (Fig. 2).

efficiency(e=3) CK Model eCK Model Full-PFS

OT [9] 2 ? × ?

mOT [12] 2
√ × √

mOT+ 2
√ √ √

Fig. 2. Protocol comparison

5 Security Proof in the id-eCK Model

In this section, we will presents a formal security proof for mOT+ in the id-eCK
model.
1 With Jacobi symbol 1, determining the membership in QRN is equivalent to solving

the quadratic residues assumption [21].
2 As the simulation is almost the same with that in mOT, so we omit the proof in this

paper.

414 B. Tian et al.

Theorem 1. If RSA assumption and CDH assumption with composite modulus
hold for IG(1k), and H1,H2,H are modeled as random oracles, then mOT+ is
id-eCK secure.

Proof. Let M be a polynomially bounded adversary. We assume that there
are at most n(k) users and M activates up to s(k) sessions within a user. It’s
straightforward to verify that if two honest users complete the matching session,
then they must compute the same session key. Since the session key is computed
via H(σ, α, β, IDi, IDj), while H() is modeled as a random oralce, then the
adversary can only distinguish the session key from a random string in the
following three ways

1. Guessing attack: M guesses the session key correctly.
2. Key replication attack: M coerces two non-matching sessions to output

the same session key. Then, M selects one of two as the test session and
queries the session key of the left one.

3. Forging attack: M tries to compute σ of the test session, then queries H
with (σ, α, β, IDi, IDj) to get H(σ, α, β, IDi, IDj).

As H() is modeled as a random oralce, the output of which follows uniform
distribution. Without querying H(), the probability of guessing the session key
correctly for the adversary is O(1

2k
), which is negligible. Since the definition of

session key includes the session informatoin, two non-matching sessions cannot
have the same session key except with negligible probability. Thus, guessing
attack and key replication attack are excluded. So, forging attack is the only
possibly feasible method for the adversary. Let M be the event that the adversary
wins the distinguishing game by forging attack. Then, the following inequality
holds

AdvIB−AKE
M (k) ≤ Pr[M] +

1
2
(1 − Pr[M]) − 1

2
⇐⇒ AdvIB−AKE

M (k) ≤ 1
2

Pr[M]

Next, we will show that if adversary wins the distinguishing game with non-
negligible advantage, this implies that M happens with non-negligible probabil-
ity, then we can use M to construct an algorithm S to solve the RSA problem
or the CDH problem in polynomial time with non-negligible probability.

Considering the following three sub-events

E1. There exists an honest user B such that M queries H2(∗, SB) before (or
without) performing the StaticKeyReveal(IDB).

E2. E1 never happens and the test session has a matching session.
E3. E1 never happens and the test session has no matching session.

Let Ē1 denotes the complementary event of E1. Then we have Pr[M] =
Pr[M ∧E1]+Pr[M ∧Ē1], where Pr[M ∧E1] and Pr[M ∧Ē1] are the probabilities
that event M ∧ E1 and event M ∧ Ē1 happen respectively. While event M ∧ Ē1
can then be divided into two complementary events E2 and E3 with regard

An Identity-Based Diffie-Hellman Protocol over RSA Group 415

to whether the matching session of test session exists. Namely, the equation
Pr[M ∧ Ē1] = Pr[M ∧ E2] + Pr[M ∧ E3] holds. At last, we have

Pr[M] = Pr[M ∧ E1] + Pr[M ∧ E2] + Pr[M ∧ E3]

If M happens with non-negligible probability, then it must be that one of
the three events (event M ∧ E1, event M ∧ E2 and event M ∧ E3) occurs with
non-negligible probability. Next, we will analysis these three events separately.

5.1 Event E1

Assuming that event M ∧ E1 happens with non-negligible probability. In this
case, we will use the adversary as a subroutine to build a RSA problem solver
S. The input to S is (N, e, y) where N, e are drawn from the same distribution
as that in the protocol and y is chosen uniformly at random from Z

∗
N . The goal

of S is to output x such that xe ≡ y (mod N).
First, S prepares n(k) honest parties. Within these users, S selects the user

B at random with probability at least 1
n(k) . Then, it sets H1(IDB) = y2. For

the remaining n(k)−1 users, the simulator assigns random static key pairs. The
simulator S chooses r̄ ∈R QRN , and sets r = r̄e, g = (ry)e.

The simulation of the session whose owner is not B follows the description
of the protocol. However, there are some problems for S to simulate the session
related to B. Because it doesn’t have knowledge of the static private key of B,
but may have to answer the SessionKeyReveal. In order to keep the consistency
of the oracle H(), S maintains an extra list Slist. Next, we mainly simulate the
sessions between B and C where C is impersonated by the adversary. Without
loss of generality, let’s assume that B is responder.

1. Send(Πs
i,j ,m): S maintains an initially empty list Slist with entries of the

form (α, β, IDi, IDj ,K).
– if IDi = IDB , for simplicity, let IDj = IDC ,m = γ. S chooses b ∈R

Z�N/4�, then it returns β = gb/r̄ to the adversary. Afterwards, S searches
the H list to check if the entry (σ, β, γ, IDC , IDB , h) exists.

• if it exists in H list, with the choice of y = gd/r, β = gb/r̄, r =
r̄e, we have that βe/y = geb−d. While the shared secret value can
be represented as σ = CDH2(βe/y, γ/SC) = (γ/SC)2(eb−d). So, to
verify

σ
?= (γ/SC)2(eb−d)

is equivalent to
σe ?= (γ/SC)2(e

2b−1)

With the knowledge of SC , e, b, S can carry this verification
easily. If the verification passes, then S inserts the new tuple
(β, γ, IDC , IDB , h) into Slist where h comes from H list; otherwise, it
chooses K ∈R {0, 1}k, then stores the new tuple (β, γ, IDC , IDB ,K)
in Slist.

416 B. Tian et al.

• else(no such entry in H list) S chooses K ∈R {0, 1}k, then stores the
new tuple (β, γ, IDC , IDB ,K) in Slist.

– if IDi = IDB , S follows the description of the protocol.
2. H1(IDi): S maintains an initially empty list H list

1 with entries of the form
(IDi, p

e
i).

The action of S is as follows
– if IDi = IDB , S selects pi ∈ QRN randomly, then inserts the tuple

(IDi, p
e
i) into H list

1 . The benefits of setting in this way is that the simu-
lator knows all the users’ secret keys(except B) as SIDi

= H1(IDi)d =
ped

i = pi holds.
– else(IDi = IDB), S sets H1(IDB) = y2 and stores the tuple (IDB , y2)

in H list
1 , where y is chosen from Z

∗
N at random.

3. H2(x, SIDi
): S checks SIDi

e ?= y2, in which case the simulator stops and out-
puts (y2)d = SIDi

, then by using the lemma 1 we obtain x = yd successfully;
otherwise, S simulates a random oracle in the usual way.

4. H(σ, α, β, IDi, IDj): S maintains an initially empty list H list with entries
of the form (σ, α, β, IDi, IDj , h). S simulates a random oracle in the usual
way, except for the entries with the form (σ, β, γ, IDC , IDB). In which case,
it simulates in the following way

– if the entry (σ, β, γ, IDC , IDB) is already in the list, then S returns the
stored value.

– else the simulator searches the entry (β, γ, IDC , IDB , ∗) in the Slist.
• If such entry exists in Slist, then S verifies the correctness of

σ by checking if σe = (γ/SC)2(e
2b−1) holds, in which case S

returns the stored value K in Slist to the adversary and inserts
the tuple (σ, β, γ, IDC , IDB ,K) into H list where K comes from
Slist; otherwise S selects h ∈ {0, 1}k at random, and stores
(σ, β, γ, IDC , IDB , h) in H list.

• else(no such entry exists) S chooses h ∈ {0, 1}k randomly, and stores
the new tuple (σ, β, γ, IDC , IDB , h) in the H list.

5. EphemeralKeyReveal(Πs
i,j): S simulates this query faithfully.

6. SessionKeyReveal(Πs
i,j): S returns the stored value K in the Slist.

7. StaticKeyReveal(IDi): If IDi = IDB, S aborts; otherwise, responds faith-
fully.

8. Establish(IDi): S simulates this query faithfully.
9. Test(Πs

i,j): S simulates this query faithfully.
10. If M outputs a guess, S aborts.

Analysis of Event M ∧E1. The simulation of S for the adversary M is perfect
only except with negligible probability. In the precess of simulation, if the adver-
sary first query (∗, SB) to H2() before(or without) StaticKeyReveal(IDB), then
S is successful and the abortion won’t happen in the step7 and step10. Let Pr[S]
be the probability that S succeeds. Then, the following inequality holds

Pr[S] ≥ 1
n(k)

Pr[M ∧ E1] (1)

So, if event M ∧E1 occurs with non-negligible probability, i.e. Pr[M ∧E1] is
non-negligible, then the probability of S being successful is also non-negligible.

An Identity-Based Diffie-Hellman Protocol over RSA Group 417

5.2 Event E2

Let’s assume that event M ∧E2 happens with non-negligible probability. In this
case, given U = gu and V = gv where U, V ∈R QRN as input, we will use M
to construct a CDH solver S over QRN . The output of S is CDH(U, V) = guv.
Meanwhile, in this case, we can simulate the compromise of KGC i.e. KGC
forward secrecy(KGC-fs). One thing to be noted here is that when the RSA
secret key d compromises, then the adversary can factor N in polynomial time
deterministically owing to the contribution by Coron and May [24], i.e.knowing
the private key of RSA is equivalent deterministically to the factorization of N .
If the modulus N is factored, the adversary is still left with the CDH problem
modulo the factors of N . It’s easy to see that any solver of CDH problem with
modulus N can be used to solve the CDH problem modulo the factors of N .

S prepares n(k) honest users and chooses the RSA parameters (N = PQ, e, d)
for KGC where P,Q are safe primes. S distributes the secret keys of users as the
description of the protocol. Then, with probability at least 2

s(k)2 , S guesses M
will choose two sessions one as the test session and the other as the matching
session. Without loss of generality, we assume that the owners of the test session
and its matching session are A and B respectively. Since S owns all the users’
secret keys? it’s easy for it to simulate all the sessions. For the test session, S
sets α = USA as the outgoing message of user A. Similarly, the simulator sets
β = V SB to be the outgoing message of user B. By this setting, the simulator
implicitly defines H2(x, SA) = loggU and H2(y, SB) = loggV where x, y ∈R

{0, 1}k. When H2 is queried with (x, SA) or (y, SB), S aborts; otherwise simulates
a random oracle in the usual way. With the knowledge of all the users’ secret
keys, the simulator is easy to simulate all the other queries faithfully.

Analysis of Event M ∧ E2. In the simulation of above, if the adversary
queries the H2 with (x, SA) or (y, SB), then the simulation fails. But in the
case of E2, E1 doesn’t occur which means for every honest user B, before
querying H2 with (∗, SB), the adversary performs the StaticKeyReveal(IDB).
Becasue x is only used in the test session, so M can only know it by issuing
EphemeralKeyReveal(Πs

i,j). Thus, if M queries the H2 with (x, SA) in this
case, this implies the adversary knows the ephemeral secret key and static secret
key of user A, which violates the freshness of the test session. The same thing
will happen if the adversary queries the H2 with (y, SB). So, the simulation
of S for the adversary M is perfect only except with negligible probability. If
the adversary wins the test game in this case, then it must query H() with
(σ, α, β, IDA, IDB) where σ = CDH2e(U, V). Let h3(k) be the maximum num-
ber of query times to H() made by M. Then, the simulator can choose one of
these queries randomly to obtain the σ = CDH2e(U, V) with probability at least

1
h3(k)

. To extract the instance CDH(U, V) from σ = CDH2e(U, V), S performs

σ
d
2 = CDH2e d

2 (U, V) to get CDH(U, V) = σ
d
2 . The success probability of S is

Pr[S] ≥ 2
s(k)2h3(k)

Pr[M ∧ E2] (2)

418 B. Tian et al.

5.3 Event E3

Suppose that event M ∧ E3 occurs with non-negligible probability. Then, we
will construct a RSA problem solver S. Given as input (N, e, y) where N, e are
sampled from the same distribution as used in the protocol and y ∈R Z

∗
N , S

outputs x such that xe ≡ y (mod N).
First, the simulator prepares n(k) honest users. Then S guesses the adversary

will selects two users one as the owner of test session and other as the peer with
probability at least 2

n(k)2 . Without loss of generality, we assume that the test
session owner and the peer are A and B respectively. Further, with probability at
least 1

s(k) , S guesses M will choose Πs
A,B as the test session. S sets H1(IDB) = y2

and assigns random key pairs for the remaining n(k) − 1 users. The simulator
S chooses r̄ ∈R QRN , and sets r = r̄e, g = (ry)e.The simulation of this case is
almost identical to that in event E1, in the next we mainly describe the different
part.

1. Send(Πs
i,j ,m) : S maintains an initially empty list Slist with entries of the

form (α, β, IDi, IDj ,K).
– if Πs

i,j is the test session, then S sets α′ = (ry)fSA where f ∈R Z�N/4�
and gcd(f, e) = 1. Thereby, S defines implicitly H2(x′, SA) = df
(mod φ(N)/4) where x′ ∈R {0, 1}k. Obviously, the simulator cannot
respond to H2(x′, SA).

– else the simulation is similar to that in event E1.
2. H2(x, SIDi

): If IDi = IDA and x = x′, then S aborts; otherwise simulates a
random oracle in the usual way.

3. H(σ, α, β, IDi, IDj): S maintains an initially empty list H list with entries of
the form (σ, α, β, IDi, IDj , h).

– if (σ, α, β, IDi, IDj) is in the form (σ, α′, β, IDA, IDB) where β is cho-

sen by the adversary, the right σ should be σ =
(

βe

y2

)2df

. In order to

verify the correctness of σ, S can check σe ?=
(

βe

y2

)2f

. In which case,

the simulator stops and is successful by outputting
(

y4f
)d = β2f

σ . Since
gcd(4f, e) = 1, using lemma 1 the simulator can obtain x = yd.

– else the simulation is the same to event E1.
4. Test(Πs

i,j): If Πs
i,j is not the test session, S aborts; otherwise responds faith-

fully.

The simulation of other queries for the simulator is similar to that in
event E1.
Analysis of Event M ∧ E3. The simulation of S for the adversary is perfect
except with negligible probability. During the simulation, if the adversary queries
(x′, SA) to H2(), then S fails. However, in this event, event E1 doesn’t occur
which implies for every honest user, before issuing H2(∗, SIDi

) query, the adver-
sary learns the static private key SIDi

. While, x′ is only used in the test session,
hence the adversary can only know it via performing EphemeralKeyReveal
to the test session. So, if M queries (x′, SA) to H2(), then it must learn the

An Identity-Based Diffie-Hellman Protocol over RSA Group 419

ephemeral and static private key of user A at the same time which is against the
freshness of the test session. Thus, the abortion in Step2 won’t happen. Under
event E3, except with negligible probability, S is successful as described in Step3
and the abortion does not occur in Step4. If event M ∧ E3 happens, then the
success probability of S is

Pr[S] ≥ 2
n(k)2s(k)

Pr[M ∧ E3] (3)

5.4 Overall Analysis

Combining the Eqs. (1), (2) and (3), the success probability of S is

Pr[S] ≥ max{ 1
n(k)

Pr[M ∧ E1],
2

s(k)2h3(k)
Pr[M ∧ E2],

2
n(k)2s(k)

Pr[M ∧ E3]}
(4)

Thereby if M occurs with non-negligible probability, then one of the three
events(M ∧ E1,M ∧ E2,M ∧ E3) must happen with non-negligible probabil-
ity. Thus from the Eq. (4) the success probability of S is non-negligible. Since
all the simulations are polynomially bounded, therefore S is a polynomial-time
algorithm that can solve the RSA problem or CDH problem over QRN with non-
negligible probability, which contradicts the assumed security of RSA problem
or CDH problem with composite modulus.

6 Conclusion

In this paper, by binding the static private key with the ephemeral secret key,
we propose an improved version of mOT protocol named mOT+. Compared with
mOT, mOT+ not only is secure both in CK model and eCK model, but also can
resist the leakage of ephemeral key. Moreover, mOT+ also meets PFS against
active adversary just asmOT.Additionally, we provide a simple and intuitive proof
in the eCK model. In a word, our improved version inherits all the advantages of
the original one and at the same time gets rid of the flaws of it.

Acknowledgments. The authors would like to thank the anonymous referees for their
helpful comments. This work is supported by the National Natural Science Founda-
tion of China (Nos. 61309016,61379150,61201220), Post-doctoral Science Foundation of
China (No. 2014M562493), Post-doctoral Science Foundation of Shanxi Province and
Key Scientific and Technological Project of Henan Province (No. 122102210126) and
the National Cryptology Development Project of China (No. MMJJ201201005).

References

1. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

420 B. Tian et al.

2. Krawczyk, H.: HMQV: a high-performance secure diffie-hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005)

3. Law, L., et al.: An efficient protocol for authenticated key agreement. Des. Codes
Crypt. 28(2), 119–134 (2003)

4. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

5. Chen, L., Kudla, C.: Identity based authenticated key agreement protocols from
pairings. In: Proceedings of the 16th IEEE Computer Security Foundations Work-
shop, pp. 219–233. IEEE (2003)

6. McCullagh, N., Barreto, P.S.L.M.: A new two-party identity-based authenticated
key agreement. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 262–274.
Springer, Heidelberg (2005)

7. Smart, N.P.: Identity-based authenticated key agreement protocol based on Weil
pairing. Electron. Lett. 38(13), 630–632 (2002)

8. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS-IV. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000)

9. Okamoto, E., Tanaka, K.: Key distribution system based on identi cation informa-
tion. IEEE J. Sel. Areas Commun. 7(4), 481–485 (1989)

10. Mambo, M., Shizuya, H.: A note on the complexity of breaking Okamoto- Tanaka
ID-based key exchange scheme. IEICE Trans. Fundam. Electron. Commun. Com-
put. Sci. 82(1), 77–80 (1999)

11. Seungjoo, K.I.M., et al.: On the security of the Okamoto-Tanaka ID-Based Key
Exchange scheme against Active attacks. IEICE Trans. Fundam. Electron. Com-
mun. Comput. Sci. 84(1), 231–238 (2001)

12. Gennaro, R., Krawczyk, H., Rabin, T.: Okamoto-Tanaka revisited: fully authenti-
cated Diffie-Hellman with minimal overhead. In: Yung, M., Zhou, J. (eds.) ACNS
2010. LNCS, vol. 6123, pp. 309–328. Springer, Heidelberg (2010)

13. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001)

14. Menezes, A., Ustaoglu, B.: Security arguments for the UM key agreement protocol
in the NIST SP 800–56A standard. In: Proceedings of the 2008 ACM Symposium on
Information, Computer and Communications Security, pp. 261–270. ACM (2008)

15. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

16. Huang, H., Cao, Z.: An ID-based authenticated key exchange protocol based on
bilinear Diffe-Hellman problem. In: Proceedings of the 4th International Sympo-
sium on Information, Computer, and Communications Security, pp. 333–342. ACM
(2009)

17. Shmuely, Z.: Composite Diffie-Hellman public-key generating systems are hard
to break. Technical report 356. Computer Science Department, Technion, Israel
(1985)

18. Shamir, A.: On the generation of cryptographically strong pseudorandom
sequences. ACM Trans. Comput. Syst. (TOCS) 1(1), 38–44 (1983)

19. De Santis, A., et al.: How to share a function securely. In: Proceedings of the
Twenty- Sixth Annual ACM Symposium on Theory of Computing, pp. 522–533.
ACM (1994)

An Identity-Based Diffie-Hellman Protocol over RSA Group 421

20. Goldreich, O., Rosen, V.: On the security of modular exponentiation with appli-
cation to the construction of pseudorandom generators. J. Crypt. 16(2), 71–93
(2003)

21. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

22. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a
prime order subgroup. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 249–263. Springer, Heidelberg (1997)

23. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg
(2009)

24. Coron, J.-S., May, A.: Deterministic polynomial-time equivalence of computing the
RSA secret key and factoring. J. Crypt. 20(1), 39–50 (2007)

Secure (M + 1)st-Price Auction
with Automatic Tie-Break

Takashi Nishide1(B), Mitsugu Iwamoto2, Atsushi Iwasaki2, and Kazuo Ohta2

1 University of Tsukuba, Tsukuba, Japan
nishide@risk.tsukuba.ac.jp

2 The University of Electro-Communications, Chofu, Japan

Abstract. In auction theory, little attention has been paid to a situation
where the tie-break occurs because most of auction properties are not
affected by the way the tie-break is processed. Meanwhile, in secure auc-
tions where private information should remain hidden, the information
of the tie can unnecessarily reveal something that should remain hidden.
Nevertheless, in most of existing secure auctions, ties are handled outside
the auctions, and all the winning candidates or only the non-tied par-
tial bidders are identified in the case of ties, assuming that a subsequent
additional selection (or auction) to finalize the winners is held publicly.
However, for instance, in the case of the (M + 1)st-price auction, the
tied bidders in the (M + 1)st-price need to be identified for such a selec-
tion, which implies that their bids (unnecessary private information) are
revealed. Hence it is desirable that secure auctions reveal neither the
existence of ties nor the losing tied bidders.

To overcome these shortcomings, we propose a secure (M + 1)st-
price auction protocol with automatic tie-breaks and no leakage of the
tie information by improving the bit-slice auction circuit without increas-
ing much overhead.

Keywords: (M + 1)st-Price auction · Multiparty computation ·
Tie-break

1 Introduction

1.1 Background

The research on secure sealed-bid auctions focuses on enhancing privacy protec-
tion for electronic auction in the network environment. That is, in the secure
sealed-bid auctions, only the winning bid and identities of the winning bidders
are obtained, and other unnecessary private information such as the bids of los-
ing (and sometimes winning) bidders and the existence of ties should not be
revealed. As one of the important applications of secure multiparty computation
(MPC), there is a long line of research in this area (e.g., [FR96,NPS99,Sak00,
Kik01,AS02,LAN02,KO02,JS02,SY03,BS05,Bra06,NS10,MMO11])1. With the
1 Another line of research addresses a secure double auction [BDJ+06,BCD+09] where

many sellers and bidders participate and a market clearing price is determined based
on the supply and demand in the market.

c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 422–436, 2015.
DOI: 10.1007/978-3-319-27998-5 27

Secure (M + 1)st-Price Auction with Automatic Tie-Break 423

privacy-enhancing mechanism, the bidders may have more incentive to partici-
pate in the electronic auction.

In this work, we deal with (M +1)st-price sealed-bid auctions where M units
of a single item are auctioned, and we assume all the participants obtain the
outcome of the auction2 (i.e., the winning bid and identities of the winning bid-
ders). Ideally it is desirable that exactly M winning bidders should be identified
even when tie situations occur.

Meanwhile in most of existing secure auction protocols, tie situations are
not handled automatically, and for example it is assumed that no tie situation
occurs, or all the winning candidates are identified and a subsequent tie-breaking
selection (or auction) to finalize the winners is held outside the cryptographic
protocols. However, if the price range is not large, we will not be able to assume
easily that no tie situation occurs. Also if all the winning candidates are identified
and a subsequent additional selection (or auction) is held publicly in the case
of first/second-price auctions, it means that several winning candidates become
the losing bidders although their bids were already revealed. Furthermore in the
case of the (M + 1)st-price auction, the tied bidders in the (M + 1)st-price need
to be identified for such a selection, thus revealing their bids. Hence the bidders
may prefer the secure auctions with automatic tie-breaks revealing neither the
existence of ties nor the losing tied bidders. Also the sellers will prefer the secure
auctions that identify exactly M winning bidders to several of existing protocols
[Kik01,AS02,MMO11] that can identify only less than M winning bidders in the
case of ties. Thus, it will be worthwhile to construct secure sealed-bid auction
protocols with automatic tie-breaks.

1.2 Our Approach and Contribution

We propose an (M +1)st-price auction protocol where we deal with tie situations
in a more privacy-enhancing way with an automatic tie-break.

For automatic tie-breaks, we have two options: (1) random secret priority
order among bidders and (2) public priority order among bidders. With the ran-
dom secret priority order, tied bidders are selected at random without revealing
the priority order among the bidders, while, with the public priority order, tied
bidders are selected based on the publicly known priority order. With a public
priority order, private information can sometimes be leaked3, and the public pri-
ority order can be realized with the random secret priority order, so we focus on
supporting the random secret priority order in secure auctions. We note that as
Vickrey auctions [Vic61], our proposed protocol satisfies incentive compatibility
in terms of auction theory as shown in [My81,MR89], that is, truthful bidding
is still an optimal strategy even with automatic tie-breaks in our protocol.
2 In [Bra06], this is called public outcome setting as opposed to private outcome setting

where losing bidders can know neither the winning bid nor winning bidders.
3 For example, suppose we have a list of bids (5, 2, 3, 4, 4) where the i-th bid belongs

to the bidder Bi, and Bi has a higher priority than Bj when i < j and M = 2. Then
the winning (M + 1)st-price is 4 and the winning bidders are B1, B4. In this case,
B4 can know the bid of B5 is 4.

424 T. Nishide et al.

To this end, we have two possibilities. One possibility is (1) to adapt (the
modified variants of) multiparty sorting protocols to secure auction protocols
with automatic tie-breaks. As discussed in Sect. 1.3, however, several of existing
implemented sorting protocols assume the honest majority setting for efficiency,
and incur larger communication complexity in the dishonest majority setting
in terms of the number of bids, and this may become a bottleneck for large-
scale auctions. The dishonest majority setting is preferable and may be required
in several situations including the case where the bidders perform the secure
auction protocol by themselves (as discussed in [Bra06]). The other possibility
is (2) to adapt existing secure auction protocols. In this work, we choose this
approach and use the bit-slice auction circuit [KO02,MMO11] as a starting point
because it can be performed efficiently also in the dishonest majority setting and
a bid is represented as a binary number. Thus, our approach can lead to the
less communication complexity, as opposed to a kind of unary representation of
the bid used in secure auctions such as [Kik01,AS02,SY03,Bra06] (i.e., O(2�)
communication complexity where � is the bit length of a bid).

In the bit-slice circuit, the winning price and bidders are identified by han-
dling three secret vectors to maintain the states of all the bidders without com-
paring the bids directly. Thus, building on the bit-slice circuit [KO02,MMO11],
we improve the (M + 1)st-price auction of [MMO11] such that exactly M win-
ning bidders are identified by breaking ties automatically at random without
revealing the information of the tie (e.g., priority order, the existence of the tie,
tied bidders, etc.). For that, we add the random secret bits4 to the LSBs of bids
such that the random secret priority order among bidders is determined. How-
ever, just adding the random secret bits does not suffice because part of these
random bits are leaked as the output result in the bit-slice circuit [MMO11].
This is not a problem in [MMO11] where automatic tie-breaks are not handled,
but in our case, it can lead to leaking part of the random priority order and
information of the tie (see AppendixA for details). Therefore, to solve this and
avoid the leakage, we hide more intermediate results in evaluating the bit-slice
circuit, and modify the way to handle the three secret vectors used in [MMO11]
to maintain the states of all the bidders such that the computation can proceed
even with the hidden intermediate results. Our adaptation can be done with-
out increasing much overhead, and is comparable to other secure (M +1)st-price
auctions based on the sorting protocols [WLG+10,Zh11,HKI+12,HIC+14] with
automatic tie-breaks (see Table 2).

1.3 Related Works

1.3.1 Auction Protocols
We summarize the comparison between existing auction protocols and this

work in Table 1 in terms of functionality. The auction protocols of [NPS99,JS02,
Bra06,KSS09] deal with tie situations5.

4 If we want to use the public priority order among bidders, these bits can be public.
5 Actually only the protocol of [Bra06] deals with tie situations explicitly.

Secure (M + 1)st-Price Auction with Automatic Tie-Break 425

Table 1. Comparison between this work and major existing auction protocols in terms
of functionality.

Protocol Auction type Automatic tie-break Notes

[NPS99]
[JS02]

Any Yes Yao’s garbled circuit supporting
tie-break needed. Limited to the
case of secure 2-party computation.

[KO02] 1st No More than one winners revealed in the
case of tie.

[MMO10] 2nd No

[LAN02] (M + 1) No More than M winners revealed in the
case of tie. Bid statistics revealed
to auction authority.

[Kik01]
[AS02]
[MMO11]

(M + 1) No Only less than M winners may be
identified in the case of tie. No
winner is identified in worst case
where more than M winners
specify same highest bid.

[SY03] GVAa No All tie situations identified in the case
of tie.

[Bra06] 1st Partially yes Tie-break possible only in private
outcome setting.

2nd Tie-break based only on public
priority order.

(M + 1) No More than M winners revealed in the
case of tie.

[DGK08] 1st No Online auction based on secure
two-party comparison. More than
one winners revealed in the case of
tie.

[KSS09] 1st Partially yes Auction based on improved Yao’s
garbled circuit computing
minimum value and its index.
Tie-break based only on public
priority order.

[NS10] 1st No More than one winners revealed in the
case of tie.

This work (M + 1) Yes Exactly M winners identified in the
case of tie with both public and
random secret priority order among
bidders.

aGeneralized Vickrey auction
Combinatorial clock proxy auction

426 T. Nishide et al.

In [NPS99,JS02]6, a general auction protocol based on the Yao’s garbled
circuit [Yao82] was proposed, and it requires two entities, the auction issuer and
the auctioneer that are not supposed to collude. The auction issuer generates a
garbled circuit and the auctioneer executes the circuit after receiving the private
bids from the bidders and the aucton issuer by using proxy oblivious transfer.
The computation is limited to the two-party case and the general auction circuit
with a tie-break based on the random secret priority order could be large and
inefficient in practice. The protocol of [KSS09] follows the approach of [NPS99,
JS02], but it handles only the first-price auction with the tie-break based on the
pubic priority order.

In [Bra06], the first-price, second-price, and (M + 1)st-price auctions were
proposed based on threshold ElGamal encryption with a dishonest majority. The
protocols in [Bra06] can support two settings: public outcome setting (as most
of existing works including this work) and private outcome setting. However, in
the public outcome setting of [Bra06], all the winning candidates are revealed
without an automatic tie-break. In the private outcome setting of [Bra06], tie
situations are handled partially, that is, automatic tie-breaks can work only for
first/second-price auctions and only the tie-break based on the pubic priority
order among bidders is supported.

1.3.2 Sorting Protocols
Besides secure auction protocols, there are secure multiparty sorting protocols
such as [WLG+10,Zh11,HKI+12,HIC+14], part of which can be used to realize
secure (M + 1)st-price auctions with the random secret priority order for the
tie-break.

We show the performance comparison in Table 2. Here we assume that we add
random secret bits to bids to realize automatic tie-breaks in sorting protocols
as we do for the bit-slice circuit. Also we analyze the performance in terms of
both honest and dishonest majority settings. We note that actually it is not
necessary to sort all the bids in the context of auctions, so we use simplified
sorting protocols if possible for a fair comparison.

The protocols of [HKI+12,HIC+14] are quite efficient in the honest majority
setting, assuming n (the number of parties executing MPC) is small, but they
depend on the resharing based shuffle protocol7 [LWZ11] that cannot generalize
to the dishonest majority setting. Therefore, if the dishonest majority setting
is required, we need to use the shuffle based on permutation matrices [LWZ11],
thus leading to the inefficient quadratic complexity in the number of bidders k
as [Zh11] in terms of communication complexity. Also the protocol of [WLG+10]
can be efficient as our protocol, but it is probabilistic (with a small error rate),
and it supports only the two-party setting. We note that in the context of the
6 [JS02] improved [NPS99] by replacing proxy oblivious transfer in [NPS99] with ver-

ifiable proxy oblivious transfer.
7 One resharing corresponds to one permutation, and the complexity of one reshar-

ing corresponds to that of one multiplication. Resharing is repeated such that an
adversary cannot know the whole permutation.

Secure (M + 1)st-Price Auction with Automatic Tie-Break 427

Table 2. Performance comparison between this work and sorting protocols to realize
secure (M + 1)st-price auction with random priority order for tie-break.

Protocola Round Complexity Communication

Complexity

(#multiplication)

Notes

Selection networkb

[WLG+10]

O
(
log2 k

)
O
(
COM ·k log2(M +1)

)
Based on garbled

circuit Limited to

2-party case

Oblivious keyword sort

[Zh11]

O
(
1
)

O
(
COM · k2

)
Honest & dishonest

majorityd

Modified quicksortc &

shuffle [HKI+12]

O
(

2n
√

n
+ log2

k
M

)
O
(

k 2n
√

n
+ COM · k

)
w/ honest majority

O
(

n + log2
k
M

)
O
(

nk2 + COM · k
)

w/ dishonest majority

Radix sort & shuffle

[HIC+14]

O
(

2n
√

n
(� + log2 k)

)
O
(

2n
√

n
k(� + log2 k)2

)
w/ honest majority

O
(

n(� + log2 k)
)

O
(

nk2(� + log2 k)2
)

w/ dishonest majority

This work O
(

� + log2 k
)

O
(

k(� + log2 k)
)

Honest & dishonest

majorityd

aWe also assume we add random secret bits to bids to realize automatic tie-breaks in sorting

protocols.
bA variant of sorting network to identify M largest elements
cSorting all the bids is not required, so we can use the simplified quicksort, but we need to use

full protocols for other protocols because of their internal structures.
dThis means the protocol can work with both honest and dishonest majority

k: #bid(der)s

p: MPC is executed mod p

�: bit length of bid, i.e., bid < 2�

n: #parties executing MPC

M : M units of a single item are auctioned

COM:communication complexity of comparison protocol, typically O(|p|) multiplications (with

O(1) round). We need to assume � + O(log2 k) < |p| for automatic tie-breaks to work.

(M + 1)st-price auction, we need a set of M winners rather than a sorted list of
M winners in the end, so actually we will need to adapt the sorting protocols
by using shuffle protocols though we ignore such additional necessary processing
here.

2 Preliminaries

2.1 Basic Computation Model and Notations

We assume that MPC is performed in the arithmetic black box (ABB) model
formalized by [DN03] to abstract away the details of MPC implementations by
following a gate evaluation technique. MPC we use in this work can be realized
by the techniques such as the BGW protocol [BGW88], threshold homomorphic
encryption [DN03], mix-and-match protocol [JJ00] in the honest majority set-
ting, and SPDZ [DPSZ12] in the dishonest majority setting, and the security
follows from these underlying MPC protocols with the simulation-based proof.
We use the notation [[a]] to denote a secret handled in the ABB model. The addi-
tion and multiplication of secrets are written as, e.g., [[ab + c]] ← [[a]] · [[b]] + [[c]].

428 T. Nishide et al.

We can assume that the addition is essentially for free and the multiplication
is costly because it needs communication. If c is a public constant and a is a
secret, computing [[ca]] ← c · [[a]] and [[c + a]] ← c + [[a]] is for free. We also use
∑

, for example, like
∑3

i=1[[ai]] to denote [[a1]] + [[a2]] + [[a3]]. By a secret vector
[[�v]], we mean that each element of the vector �v is a secret (e.g., if �v = (x, y, z),
[[�v]] = ([[x]], [[y]], [[z]])). We also use the notation like [[t]] · [[�v]] meaning that each
element of �v is multiplied by t.

Because the multiplication is a dominant factor of the complexity, we mea-
sure the round complexity of a protocol by the number of rounds of parallel
invocations of the multiplication and we also measure the communication com-
plexity by the number of invocations of the multiplication. The round complexity
relates to the time required for a protocol to be completed and the communica-
tion complexity relates to the amount of data communicated during a protocol
run. For simplicity, we assume that the reveal of one secret [[a]] is measured as
one invocation of the multiplication8.

We will evaluate the round complexity of a protocol by performing the mul-
tiplication in parallel as much as possible.

We describe our protocols in the so-called “honest-but-curious” model, but
standard techniques such as [Ped91,DN03] will be applicable to make our pro-
tocols robust.

2.2 Auction Model

We assume there are k bidders (denoted by B1, . . . , Bk in this work) in the
(M + 1)st-price auction and M < k9 because otherwise every bidder can win
with any bid. The bidders submit the private bids, and the computation of
auction is performed in the ABB model, and typically this means that a set of
servers P1, . . . , Pn receive the secret inputs from B1, . . . , Bk and perform MPC
instead of the bidders (as in the client-server model in [DI05])10.

Also we assume the auction outcome (i.e., the winning bid and identities of
the winning bidders) becomes public to the seller and all the bidders after the
computation is finished.

We denote the plaintext space for the ABB model by Zp where p is public
and will be either a prime or an RSA modulus.

In the protocol based on the bit-slice circuit, each bid is represented as a
binary number and each bidder submits each shared (or encrypted) bit of the
bid as in [KO02,MMO10,MMO11]11.

8 In [BGW88], we note that one round for the reveal can sometimes be ignored if
[[ra]] is revealed after the multiplication [[r]] · [[a]] with another secret [[r]] because the
multiplication and the reveal of ra can be done simultaneously as in [BF01].

9 We assume k and M are public information.
10 Of course MPC can also be performed by the bidders themselves.
11 We assume the maximum bit length of a bid is public information.

Secure (M + 1)st-Price Auction with Automatic Tie-Break 429

2.3 Arithmetic Black Box Techniques

RandVal: We can generate a random secret value [[r]] such that r ∈ Zp
12. We

assume that the complexity for this is almost the same as the complexity of
1 invocation of the multiplication as in [DFK+06]13. We note that all the
necessary random value generation can be done in advance to reduce the
round complexity.

RandBit: We can generate a random bit [[a]] such that a ∈ {0, 1}. The total
complexity is 2 rounds and 3 invocations ([DFK+06])14.

Evaluating Polynomial in Constant Rounds: We can evaluate a polyno-
mial with a secret in constant rounds by using an unbounded fan-in multipli-
cation and the inversion protocol [BB89]. That is, given [[A]]15 and a public
gt(x) =

∑t
i=0 αix

i mod p, we can compute [[gt(A)]] with 3 rounds (including
2 rounds for random value generation) and 7t invocations [NO07].

3 (M + 1)st-Price Sealed-Bid Auction with Automatic
Tie-Break

We propose a protocol for (M + 1)st-price sealed-bid auction where M units of
a single item are auctioned and each of M winning bidders with M highest bids
wins one unit16 of the item by paying the uniform (M +1)st-price. This protocol
computes only the (M + 1)st-price (i.e., the highest losing bid) and exactly
M winning bidders by breaking ties automatically and hiding the existence of
ties, while the protocols such as [AS02,Kik01,MMO11] may compute only less
than M winning bidders when there are ties, and the protocol of [Bra06] may
reveal more than M winning candidates and the number of the tied bids in the
(M + 1)st-price without breaking ties automatically (see Table 1).

To deal with the ties more appropriately with automatic selection, the secret
priority order among the bidders is determined at random such that even if
there are more than M winning candidates, only M winners are identified based
on the priority order without revealing the priority order. For example, if we
have a sorted list of bids (7, 7, 6, 5, 5, 5, 3) including ties and M = 4, our protocol
computes the auction outcome such that the (M +1)st-price is 5 and the winning
bidders include the bidders with bids 7, 6 and one of the tied bidders with bid 5
selected according to the priority order by following auction theory [Kri09].

12 p is usually large, so we can assume r is a non-zero value. If not, we can use the
efficient technique to generate random invertible (i.e., non-zero) value from [BB89].

13 In the setting of [BGW88], we have possibilities to realize less expensive RandVal
such as non-interactive pseudo-random secret sharing [CDI05] and improved Rand-
Val based on the use of hyper-invertible matrices [BTH08].

14 In the setting of [DN03,JJ00], this can be computed as a = ⊕n
i=1bi where ⊕ is XOR

and bi ∈R {0, 1} is generated by Pi.
15 We require that A is not a zero for this technique to work.
16 That is, we assume bidders with unit-demand.

430 T. Nishide et al.

3.1 (M + 1)st-Price Bit-Slice Auction Circuit

The (M + 1)st-price auction circuit of [MMO11] extends the first/second-price
bit-slice auctions of [KO02], and is originally based on homomorphic encryp-
tion and the mix-and-match technique, and each bid is represented as a binary
number and encrypted bit by bit.

Informal Description. First we give an informal description of how the (M +
1)st-price bit-slice auction circuit [MMO11] works because our protocol is based
on it.

Now let’s assume that there are 4 bidders B1, B2, B3, B4 (i.e., k = 4) and the
bit length of prices, �, is 5 and M = 2.

(1) [Bidding:] Each bidder Bi submits the bit representation �vi of the bid as
follows:
�v1 = (v1,1, v1,2, . . . , v1,5) = (0, 0, 1, 1, 0) when the B1’s bid is 6
�v2 = (v2,1, v2,2, . . . , v2,5) = (0, 0, 1, 0, 0) when the B2’s bid is 4,
�v3 = (v3,1, v3,2, . . . , v3,5) = (0, 0, 1, 0, 1) when the B3’s bid is 5, and
�v4 = (v4,1, v4,2, . . . , v4,5) = (0, 1, 0, 1, 0) when the B4’s bid is 10.

(2) Next, we identify the M winning bidders and the (M + 1)st-price. We can
assume the (M+1)st-price has the bit representation (m1,m2, . . . ,m�) where
mi ∈ {0, 1} and m� is the least significant bit.
(i) [Definition of �ai] To do so, we consider the vectors �ai such that

⎛

⎜

⎜

⎜

⎜

⎝

�v1

�v2

�v3

�v4

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

t�a1 t�a2 t�a3 t�a4 t�a5

⎞

⎟

⎟

⎟

⎟

⎠

where t�ai means the transpose of �ai.
We use the notation as �ai = (�ai[1],�ai[2], . . . ,�ai[k]).

(ii) We also handle 3 kinds of secret vectors �c = (c1, . . . , ck), �w =
(w1, . . . , wk), �s = (s1, . . . , sk) corresponding to “candidates”, “winners”,
and “survivors” respectively. Initially �c is set to (1, 1, 1, 1) (meaning that
all the bidders are still the candidates for the winners) and �w is set to
(0, 0, 0, 0) (meaning that no bidders are finalized to be the winners) here
and �s is used to store the intermediate temporary results.

(iii) [Updating vectors �c, �w,�s] Each time we process �ai from i = 1 to �, we
update �c, �w,�s as follows. First we compute �s ← (c1 ·�ai[1], . . . , ck ·�ai[k]),
that is, several (possibly zero) survivors are selected from the candidates
based on the bids.
(Case 1):If

∑k
i=1(wi + si) ≤ M , then the survivors can be added to the

winners, so �c, �w are updated as follows:

�c ← �c − �s

�w ← �w + �s.

Secure (M + 1)st-Price Auction with Automatic Tie-Break 431

That is, the current survivors are finalized to be the winners and moved
from the candidates to the winners. For the (M +1)st-price, publicly we
set mi = 0.
(Case 2): If

∑k
i=1(wi + si) > M , we can see that the further selection of

the survivors need to be done, so �c, �w are updated as follows:

�c ← �s

�w ← �w (i.e., remains the same).

That is, only the current survivors can be the candidates for the subse-
quent processing. For the (M + 1)st-price, publicly we set mi = 1.
Here we note that the result of whether or not

∑k
i=1(wi +si) ≤ M holds

can be made public because it is related to the (public) (M + 1)st-price,
and we can use ZeroIfLeq(M,

∑k
i=1(wi + si)) to compute this, which

returns 0 if
∑k

i=1(wi +si) ≤ M , and a non-zero random value otherwise.
The detail of ZeroIfLeq(M, ·) is given later.

ZeroIfLeq(M, ·) We consider how to check whether [[a]] satisfies 0 ≤ a ≤ M and
publish its result. To check this condition, we define a polynomial gM+1(x) =
∏M+1

i=1 (x − i) mod p, generate a random secret [[r]], and compute and publish
rgM+1(a + 1) by using the technique of Sect. 2.3. Here we use a + 1 instead of
a to make sure that a + 1 is not a zero. If rgM+1(a + 1) is a zero, it means
that 0 ≤ a ≤ M , and if rgM+1(a + 1) is a non-zero, it means that M + 1 ≤ a.
We can realize [[ZeroIfLeq(M,a)]] by [[rgM+1(a + 1)]] with fresh random r. The
complexity for computing gM+1(a + 1) is 3 rounds and 7(M + 1) invocations.
Therefore, the total complexity for computing rgM+1(a + 1) is 4 rounds and
7(M + 1) + 3 invocations17.

3.2 (M + 1)st-Price Bit-Slice Auction with Automatic Tie-Break

As already mentioned in [MMO11], the protocol of Sect. 3.1 cannot handle the
tie situation appropriately. We propose how to adapt the (M + 1)st-price bit-
slice auction circuit so that it can support the automatic tie-breaks. To do so, we
(1) add random secret bits to the LSBs of the bids that determine the (secret)
random priority order among bidders and (2) change how to deal with the secret
vectors �c, �w,�s to hide the information of the tie.

Informal Description. First we compute and add secret O(log2 k) random bits
to the LSBs of each bid by using RandBit in Sect. 2.3, and these bits determine
the priority order among bidders. The processing of the non-random secret bits
of the bids is done in the same way as the original protocol, but for the processing
of the added random bits, we need to change how to deal with vectors �c, �w,�s to
hide the random bits and the information of the tie.
17 We note that if M is small, gM+1(x) can be evaluated in log2(M + 1) rounds with

M + 1 multiplications.

432 T. Nishide et al.

As described in Sect. 3.1, we have Case 1 and Case 2 where �c, �w are updated
based on the result of

∑k
i=1(wi + si) ≤ M . In our protocol, we need a

trick to merge Case 1 and Case 2 into one step in order to hide which case
happened unlike [MMO11]18, and to merge two cases we use the technique
IsLeq(M,

∑k
i=1(wi + si)) (see also Step 3 in Fig. 1), the detail of which is given

later. With this technique, we can also hide the number of the tied bidders in
the (M + 1)st-price and the number of the tied bidders to be selected as the
winner in our protocol.

The formal description of our protocol is given in Fig. 1.

IsLeq(M, ·) to Check the Range of a Secret Privately. We consider how to
check whether [[a]] satisfies 0 ≤ a ≤ M or M +1 ≤ a ≤ k without revealing which
case holds. To check this condition, we construct a polynomial fk,M (x) mod p
such that fk,M (x) = 1 for 1 ≤ x ≤ M +1 and fk,M (x) = 0 for M +2 ≤ x ≤ k+1
by using Lagrange interpolation. Then we compute [[fk,M (a + 1)]] by using the
technique of Sect. 2.3. Here we use a + 1 instead of a to make sure that a + 1 is
not a zero. We can realize [[IsLeq(M,a)]] by [[fk,M (a + 1)]]. The total complexity
is 3 rounds and 7k invocations.

Correctness. This follows immediately from the bit-slice auction circuit
[MMO11] in which the bids are scanned from the most significant bits such that
all the M winning bidders are stored in �w if there are no ties, and as described
in Fig. 1, our adaptation for breaking ties does not affect how to compute the
auction outcome.

Privacy. Besides the auction outcome, the intermediate values revealed in the
protocol are the results of ZeroIfLeq(·) that are used to determine each i-th bit
mi of the (M +1)st-price. These results are 0 if mi is 0 and the uniformly random
values otherwise, so these can be simulated easily with the output, (M + 1)st-
price in the simulation-based proof.

Remark 1. In the case of the second-price auction such as [KO02,MMO10],
there is a trivial way to break ties. That is, after identifying the winning can-
didates privately, we can check whether each bidder is a winner one by one in
the random priority order until we find the first winner. However, this technique
does not generalize to the case where M > 1, and the round complexity is O(k),
so it may be disadvantageous when there are many bidders.
Remark 2. If the priority order is determined and public in advance19, we note
that the public log2 k bits can be added to the LSBs of each bid according to
the public priority order. That is, the random secret bits ([[vi,�+1]], . . . , [[vi,�+L]])

18 In [MMO11], the result of this conditional branch is related to the public (M +1)st-
price, so it does not need to be hidden. In contrast, in our protocol, the result and
the random bits are related to the secret priority of the bidder whose bid is the
(M + 1)st-price, which was used to break the tie when necessary. Therefore, they
need to be hidden to avoid the leakage of the information of the tie.

19 For example, the priority order can be determined based on the order in which the
bidders sign up for the auction as mentioned in [Bra06].

Secure (M + 1)st-Price Auction with Automatic Tie-Break 433

for each bid in Fig. 1 are replaced with the public bits where L = log2 k, and the
protocol is executed in the same way.

Acknowledgments. This work was partially supported by JSPS KAKENHI Grant
Number 26330151, Kurata Grant from The Kurata Memorial Hitachi Science and Tech-
nology Foundation, and the Telecommunications Advancement Foundation.

A Leakage of Tie Information

We describe why the leakage of the tie information can lead to unnecessary
private information leakage in terms of MPC for auctions.

In our protocol as shown in Sect. 3.2, random secret bits are added to each
bid as least significant bits (LSBs). For example, let’s assume here that the
random LSBs are 4-bit and that we obtained the (M + 1)st-price 87&(1111)
at the end of the execution of our protocol. Here 87&(1111) means that the
(M +1)st-price was 87 dollars and (1111) were the 4-bit random LSBs added to
the (M + 1)st-price. The whole 87&(1111) is obtained in public if we just use
the auction protocol of [MMO11].

At this point, the bids of the winners could also be 87&(1111), but the
probability that the added LSBs were (1111) also for all other winning bidders
is low, so we can partially guess that the bids of the winners were > 87 although
ideally we should be able to guess only that the bids of the winners were ≥
87 in terms of MPC for auctions (i.e., the tie information led to unnecessary
information leakage). The similar discussion also applies when the LSBs are
large (and the LSBs (1111) are an extreme example).

Also similarly when the (M +1)st-price was 87&(0000), we can guess the bids
of the losing bidders except the losing bidder who specified the (M + 1)st-price
were < 87 although ideally we should be able to guess only that the bids were
≤ 87 in terms of MPC for auctions.

If only the (M +1)st-price 87 is obtained, we can avoid the above unnecessary
information leakage. Although this leakage is not catastrophic, it is desirable to
eliminate this if we can do so with small overhead, and that will be what ideal
MPC for auctions is supposed to realize.

In our protocol, we solve the above leakage problem by adding random secret
LSBs and also hiding the LSBs when the (M + 1)st-price is obtained in public.

B Generating Random Bits for Tie-Break

Another possible way, by assuming we use homomorphic encryption and the
mix-and-match technique as in [MMO11], is to permute a list of encryptions of
(0, 1, . . . , k − 2, k − 1) by a mix protocol [JJ00] where each element in the list is
in the bit representation and encrypted bit by bit. Then we can append those
randomly permuted encrypted log2 k bits to each bid that is also encrypted bit
by bit in [MMO11] to realize an automatic tie-break at random.

434 T. Nishide et al.

Fig. 1. Proposed (M + 1)st-price bit-slice auction with automatic tie-break

Secure (M + 1)st-Price Auction with Automatic Tie-Break 435

References

[AS02] Abe, M., Suzuki, K.: M+1-st price auction using homomorphic encryption.
In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 115–
124. Springer, Heidelberg (2002)

[BB89] Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a
constant number of rounds of interaction. In: Proceedings of the ACM
Symposium on Principles of Distributed Computing, pp. 201–209 (1989)

[BTH08] Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear com-
munication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 213–230. Springer, Heidelberg (2008)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorem for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of
the 20th Annual ACM Symposium on Theory of Computing (STOC), pp.
1–10 (1988)

[BCD+09] Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen,
T., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J.,
Schwartzbach, M., Toft, T.: Secure multiparty computation goes live. In:
Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343.
Springer, Heidelberg (2009)

[BDJ+06] Bogetoft, P., Damg̊ard, I.B., Jakobsen, T., Nielsen, K., Pagter, J.I., Toft, T.:
A practical implementation of secure auctions based on multiparty integer
computation. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol.
4107, pp. 142–147. Springer, Heidelberg (2006)

[BF01] Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. J. ACM
48(4), 702–722 (2001)

[Bra06] Brandt, F.: How to obtain full privacy in auctions. Int. J. Inf. Sec. 5(4),
201–216 (2006)

[BS05] Brandt, F., Sandholm, T.W.: Efficient privacy-preserving protocols for
multi-unit auctions. In: S. Patrick, A., Yung, M. (eds.) FC 2005. LNCS,
vol. 3570, pp. 298–312. Springer, Heidelberg (2005)

[CDI05] Cramer, R., Damg̊ard, I.B., Ishai, Y.: Share conversion, pseudorandom
secret-sharing and applications to secure computation. In: Kilian, J. (ed.)
TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

[DFK+06] Damg̊ard, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally
secure constant-rounds multi-party computation for equality, comparison,
bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

[DGK08] Damg̊ard, I., Geisler, M., Krøigaard, M.: Homomorphic encryption and
secure comparison. Int. J. Appl. Crypt. 1(1), 22–31 (2008)

[DI05] Damg̊ard, I.B., Ishai, Y.: Constant-round multiparty computation using a
black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005)

[DN03] Damg̊ard, I.B., Nielsen, J.B.: Universally composable efficient multiparty
computation from threshold homomorphic encryption. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012)

436 T. Nishide et al.

[FR96] Franklin, M.K., Reiter, M.K.: The design and implementation of a secure
auction service. IEEE Trans. Software Eng. 22(5), 302–312 (1996)

[HKI+12] Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically
efficient multi-party sorting protocols from comparison sort algorithms. In:
Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp.
202–216. Springer, Heidelberg (2013)

[HIC+14] Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort:
an efficient sorting algorithm for practical secure multi-party computation.
Cryptology ePrint Archive 2014/121 (2014)

[JJ00] Jakobsson, M., Juels, A.: Mix and match: secure function evaluation via
ciphertexts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976,
pp. 162–177. Springer, Heidelberg (2000)

[JS02] Juels, A., Szydlo, M.: A two-server, sealed-bid auction protocol. In: Blaze,
M. (ed.) FC 2002. LNCS, vol. 2357, pp. 72–86. Springer, Heidelberg (2002)

[Kik01] Kikuchi, H.: (M+1)st-price auction protocol. In: Syverson, P.F. (ed.) FC
2001. LNCS, vol. 2339, pp. 341–353. Springer, Heidelberg (2002)

[KSS09] Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit
building blocks and applications to auctions and computing minima. In:
Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888,
pp. 1–20. Springer, Heidelberg (2009)

[Kri09] Krishna, V.: Auction Theory, 2nd edn. Academic Press, San Diego (2009)
[KO02] Kurosawa, K., Ogata, W.: Bit-slice auction circuit. In: Gollmann, D., Kar-

joth, G., Waidner, M. (eds.) ESORICS 2002. LNCS, vol. 2502, pp. 24–38.
Springer, Heidelberg (2002)

[LWZ11] Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database
manipulation. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol.
7001, pp. 262–277. Springer, Heidelberg (2011)

[LAN02] Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without thresh-
old trust. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101.
Springer, Heidelberg (2002)

[MR89] Maskin, E., Riley, J.: Optimal multi-unit auctions. In: The Economics of
Missing Markets, Information, and Games, pp. 312–335. Oxford University
Press (1989)

[MMO10] Mitsunaga, T., Manabe, Y., Okamoto, T.: Efficient secure auction protocols
based on the Boneh-Goh-Nissim encryption. In: Echizen, I., Kunihiro, N.,
Sasaki, R. (eds.) IWSEC 2010. LNCS, vol. 6434, pp. 149–163. Springer,
Heidelberg (2010)

[MMO11] Mistunaga, T., Manabe, Y., Okamoto, T.: A secure M + 1st price auc-
tion protocol based on bit slice circuits. In: Iwata, T., Nishigaki, M. (eds.)
IWSEC 2011. LNCS, vol. 7038, pp. 51–64. Springer, Heidelberg (2011)

[My81] Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73
(1981)

[NPS99] Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mech-
anism design. In: ACM Conference on Electronic Commerce, pp. 129–139
(1999)

[NO07] Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and
comparison without bit-decomposition protocol. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg
(2007)

Secure (M + 1)st-Price Auction with Automatic Tie-Break 437

[NS10] Nojoumian, M., Stinson, D.R.: Unconditionally secure first-price auction
protocols using a multicomponent commitment scheme. In: Soriano, M.,
Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 266–280.
Springer, Heidelberg (2010)

[Ped91] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable
secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 129–140. Springer, Heidelberg (1992)

[Sak00] Sako, K.: An auction protocol which hides bids of losers. In: Imai, H., Zheng,
Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 422–432. Springer, Heidelberg
(2000)

[SY03] Suzuki, K., Yokoo, M.: Secure generalized vickrey auction using homomor-
phic encryption. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp.
239–249. Springer, Heidelberg (2003)

[Vic61] Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders.
J. Finance 16(1), 8–37 (1961)

[WLG+10] Wang, G., Luo, T., Goodrich, M.T., Du, W., Zhu, Z.: Bureaucratic proto-
cols for secure two-party sorting, selection, and permuting. In: ASIACCS,
pp. 226–237. ACM (2010)

[Yao82] Yao, A.: Protocols for secure computations. In: Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science (FOCS), pp. 160–
164 (1982)

[Zh11] Zhang, B.: Generic constant-round oblivious sorting algorithm for MPC. In:
Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 240–256.
Springer, Heidelberg (2011)

Author Index

Anada, Hiroaki 1
August, Moritz 151

Błaśkiewicz, Przemysław 228

Chen, Jiun-Ming 374
Cheng, Chen-Mou 374

Ding, Dan 51

Fan, Guangjun 168, 346
Fang, Zheran 259
Feng, Dengguo 168, 346

Guo, Hua 127
Guo, Tao 294

Han, Weili 259
Han, Zhen 201
Hell, Martin 243
Hong, Jiaqi 90
Hong, Wei-Chih 374
Hosseinzadeh, Shohreh 15
Hu, ChangZhen 137
Huang, Jie 294
Huang, Xuezhen 201
Huang, Yun-Ju 374
Hyrynsalmi, Sami 15

Iwamoto, Mitsugu 422
Iwasaki, Atsushi 422

Karlsson, Linus 243
Kawamoto, Junpei 1
Klonowski, Marek 228
Kuchta, Veronika 70
Kutyłowski, Mirosław 228

Lang, Bo 36
Laurén, Samuel 15
Leppänen, Ville 15
Li, Chao 36
Li, Dandan 278

Li, Hongda 213
Li, Liangze 310
Li, Peili 90
Li, Yanzhao 328
Li, ZhiQiang 137
Li, Zhoujun 127
Liu, Jiqiang 201
Liu, Xin 394

Ma, Chuangui 407
Ma, Fangchao 127
Mäkelä, Jari-Matti 15
Manulis, Mark 70
Martin, Andrew 184
Meng, Dan 328
Mirosavljevic, Jelena 243

Nishide, Takashi 422

Ohta, Kazuo 422

Peng, Weiwei 259

Rauti, Sampsa 15
Ren, HongYu 137
Ruan, Anbang 184

Sakurai, Kouichi 1
Sigl, Georg 151
Smeets, Ben 243
Song, Chenggen 394
Syga, Piotr 228

Tang, Fei 213
Tian, Baoping 407
Tu, Bibo 328

Wang, Jinmiao 36
Wang, Li 213
Wang, Wei 259
Weggenmann, Benjamin 151
Wei, Fushan 407
Weiß, Michael 151

Weng, Jian 1
Wu, Hongfeng 310

Xia, Chunhe 127
Xu, Haixia 90
Xu, Maochao 105
Xu, Shouhuai 105
Xue, JingFeng 137

Yan, Yalong 394
Yang, Bo-Yin 374
Yang, Liguang 278
You, Ruibang 328

Zhai, Gaoshou 294
Zhan, Zhenxin 105
Zhang, Fan 310
Zhang, Hailong 168, 346
Zhang, Jiaqi 364
Zhang, Wenying 364
Zhang, Xinyi 259
Zhang, Yan 137
Zheng, Xiangqian 364
Zhou, Yongbin 168, 346
Zhu, Guizhen 51
Zhu, Min 328
Zhu, Yan 278

440 Author Index

Keyword Index

ðM þ 1Þst-Price auction 422

Access control 201
Access control spaces 294
ad hoc network 228
AES 151
Amortized 90
Analysis method 294
Android security 259
Anonymity 201
APK 259
Attack model 36

Beeping model 228
Block cipher 364

Cache timing 151
Certifiable migration key 243
Cloud computing 36
Cloud storage 127, 278
Colored Petri-nets 294
Composite modulus 407
Computation outsourcing 36
Conjunctive search 394
Constrained device 228
Cyber attack sweep-time 105
Cyber-physical system (CPS) 151
Cybersecurity data analytics 105
Cybersecurity posture 105

Darknet 105
Data encryption 328
Data lifetime 328
Data security 201
Decentralized system 1
Description 259
Diffie-Hellman 407

Elliptic curve 1, 310
Embedded systems 151
Encryption 278

F4 algorithm 374
Finite state automata 137
FSMDiff algorithm 137
Functional signatures 213

Gröbner basis 374
Group law 310

id-eCK model 407
Identity management 1
Indistinguishability obfuscation 213
Information flows 294
Inhomogeneous markov chain 51
Interesting points 168

Jacobi quartic curve 310

Key hierarchy 278
Key scheduling weakness 364
Key-exposure protection 127
KP-ABE 36

Lagrange polynomial 394
Language-set 137
Lattice-based cryptography 51
Linear analysis 364

Malware 259
Memory attack 328
Microkernel 151
Migration 243
Miller function 310
Mobile device 228
Multiparty computation 422

Network blackhole 105
Network telescope 105
NLP 259
Non-falsifiable assumptions 213

OS security 328

Pairing based encryption 394
Partial order 278
Piccolo 364
Power analysis attacks 168, 346
Pre-computation 90
Priori knowledge 346
Privacy 201
Proxy re-encryption 36
Public auditing 127
Public key cryptography 407
Public Key Encryption with Keywords

Search 394
Public key infrastructure 1
Public verification 90

RSA 1

Secure storage 243
Security 278
Security policies configuration 294
SELinux 294
Sensitive data leakage 328

Shared data 127
Shortest vector problem 51
Side-channel attacks 168, 346
Simulated annealing 51
Software behavior model 137
Strong ergodicity 51
Structural analysis 137

Tate pairing 310
Template attacks 168, 346
Tie-break 422
Time series data 105
Time-memory trade-off 374
TPM 243
Traitor tracing 278
Trusted computing 243
Trusted execution environment 151

User revocation 127

Verifiable computation 90
Virtualization 151
Visible light communication 228

442 Keyword Index

	Preface
	Organization
	Contents
	Identity-Embedding Method for Decentralized Public-Key Infrastructure
	1 Introduction
	1.1 Previous Work
	1.2 Our Contributions
	1.3 Organization of This Paper

	2 Preliminaries
	2.1 Embedding Technique into a Modulus of RSA Encryption
	2.2 The CDH and the Gap-CDH Problems and Assumptions
	2.3 Key Encapsulation Mechanism [10, 1]
	2.4 Adaptive Chosen Ciphertext Attack on One-Wayness of KEM

	3 Our Generic Description of Embedding Method and Decentralized PKI
	3.1 Components and Procedures of Our Generic Decentralized PKI

	4 Instantiation
	4.1 Components and Procedures of Our Decentralized PKI: Instantiation.
	4.2 Attack and Security in Our Instantiation
	4.3 Discussion

	5 Conclusions
	References

	Diversification of System Calls in Linux Binaries
	1 Introduction
	1.1 Our Goal
	1.2 Contributions and Structure of the Paper

	2 An Overview of Our API Diversification Scheme and Threat Scenarios
	2.1 Our API Diversification Scheme
	2.2 Threat Scenarios

	3 Linux Layer Structure and ELF Binary Files
	3.1 Linux Layer Structure
	3.2 Structure of ELF Files

	4 On Coding of System Calls in ELF Files
	5 Experimental Study on the Presence of System Calls in Linux Binaries
	5.1 Settings of Studied Linux Environments
	5.2 Distribution of System Calls in Binaries
	5.3 A Closer Look at Diversification of System Calls in Libc

	6 Methods for System Call Diversification
	6.1 Our Tool and Recognizing the System Calls
	6.2 Challenges
	6.3 Methods to Improve System Call Diversification

	7 Related Work
	7.1 Related Technologies
	7.2 Related Research

	8 Conclusions
	References

	Outsourced KP-ABE with Enhanced Security
	1 Introduction
	2 Related Work
	3 Background
	3.1 Bilinear Maps
	3.2 DBDH Assumption
	3.3 Access Structure

	4 New Models for KP-ABE with Outsourcing
	4.1 Security Analysis of Existing Schemes
	4.2 Model of KP-ABE with Outsourcing
	4.3 Enhanced Security Model

	5 O-KP-ABE Scheme
	5.1 Access Trees
	5.2 Construction of O-KP-ABE
	5.3 Proof of Security Under SE-CPA

	6 Analysis and Discussions
	6.1 Analysis
	6.2 Discussions

	7 Conclusion
	References

	A Simulated Annealing Algorithm for SVP Challenge Through y-Sparse Representations of Short Lattice Vectors
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 Korkin-Zolotarev Basis and Blockwise Korkin-Zolotarev Basis
	2.3 y-Sparse Representations of Short Lattice Vectors: Lattice Vectors from Another Point of View

	3 Simulated Annealing: A Novel Algorithm for the Shortest Vector Problem
	3.1 Motivations: The Annealing Process from Condensed Matter Physics
	3.2 Overview
	3.3 Simulated Annealing
	3.4 Perturbation: The Generation Mechanism

	4 Convergence Proof of the Simulated Annealing Algorithm
	4.1 Mathematical Model: An Inhomogeneous Markov Chain
	4.2 Convergence Proof

	5 A Practical Simulated Annealing Algorithm: Worst-Case Time Complexity
	6 Experimental Results
	7 Conclusion
	8 Future Work
	References

	Rerandomizable Threshold Blind Signatures
	1 Introduction
	2 Building Blocks and Hardness Assumptions
	3 Threshold Blind Signatures
	4 TBS Construction in the Standard Model
	4.1 Our TBS Scheme
	4.2 Security Analysis

	5 Applications
	6 Conclusion
	A Blind Signature Scheme by Okamoto [51]
	B Proof of Theorem 2 (Blindness)
	References

	Verifiable Computation of Large Polynomials
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Multilinear Maps
	2.2 Pseudorandom Function
	2.3 Computational Assumptions
	2.4 Basic Model

	3 Multi-labeled Program
	4 Our Protocol
	4.1 PRF with Amortized Closed-Form Efficiency
	4.2 Construction

	5 Conclusion
	References

	A Characterization of Cybersecurity Posture from Network Telescope Data
	1 Introduction
	2 Representation of Data and Definition of Cybersecurity Posture
	3 Statistical Preliminaries
	4 Characteristics of Sweep-Time
	5 A Phenomenon Exhibited by Attacking IP Addresses
	6 Inferring Global Cyber Security Posture from Smaller Monitors
	7 Limitations of the Study
	8 Conclusion
	A Characterization of the Dominance and Periodicity Phenomenon Exhibited by Attackers
	B Further Characterizations on the Inference Errors of Small Telescopes
	References

	Key-Exposure Protection in Public Auditing with User Revocation in Cloud Storage
	1 Introduction
	2 Preliminaries
	3 Construction of the New Public Auditing Mechanism
	3.1 Scheme Details
	3.2 Security Analysis of the Public Auditing Mechanism

	4 Efficiency Analysis and Comparison
	5 Conclusion
	References

	Software Behavior Model Measuring Approach of Combining Structural Analysis and Language Set
	Abstract
	1 Introduction
	2 The Research Object and Predefine
	3 Structure Comparison Algorithm of Software Behavior Model
	3.1 The FSMDiff Algorithm
	3.2 Computing Precision and Recall
	3.3 Thinking of Structured Analysis Results

	4 To Solve the Language Set of Software Behavior Model
	4.1 The Introduction of Language Set
	4.2 Assign Weights for the Local Elements of FSA
	4.2.1 Assign Weights for State Nodes
	4.2.2 Assign Weights for Transition
	4.2.3 Discussion of the Ways to Assign Weights

	5 Measuring Approach of Combining Structural Analysis and Language Set
	5.1 Predefine to the Analysis Result of Language Set
	5.2 Predefine to the Result of Structural Analysis
	5.3 The Extended Precision and Recall

	6 Experiments and Data Analysis
	6.1 Experiment Object
	6.2 Experiment Content
	6.3 Experiment Data and Analysis

	7 Conclusion
	Acknowledgment
	References

	On Cache Timing Attacks Considering Multi-core Aspects in Virtualized Embedded Systems
	1 Introduction
	2 Background and Related Work
	3 Attack Scenario and System Architecture
	4 Scheduling in PikeOS
	5 Discrete-Time Countermeasure
	6 Evaluation
	6.1 Identifying and Tuning of Attack Parameters
	6.2 Single Core vs. Quad Core
	6.3 Comparison to Fiasco Setup
	6.4 Evaluation of the Countermeasure

	7 Conclusion
	References

	How to Choose Interesting Points for Template Attacks More Effectively?
	1 Introduction
	1.1 Motivations
	1.2 Contributions
	1.3 Related Work
	1.4 Organization of This Paper

	2 Preliminaries
	2.1 Basic Mathematical Concepts
	2.2 Template Attacks

	3 Our New Approach to Choose Interesting Points for Template Attacks
	4 Experimental Evaluations
	4.1 Group 1
	4.2 Group 2

	5 Conclusion
	References

	NeuronVisor: Defining a Fine-Grained Cloud Root-of-Trust
	1 Introduction
	2 NeuronVisor Framework
	3 Neuron Web Model
	3.1 Direct Trust
	3.2 Neuron Kernel
	3.3 Neuron Connections
	3.4 Discussions and Extensions

	4 Evaluations
	4.1 Security Analysis
	4.2 Simulations
	4.3 Implementation

	5 Related Work
	6 Conclusion
	References

	A Privacy-Aware Access Model on Anonymized Data
	1 Introduction
	2 Related Work
	3 Access Model for Anonymized Data
	3.1 Attribute Selection
	3.2 Three Anonymity Modes
	3.3 Access of Users
	3.4 Data Maintenance
	3.5 Joint Attack

	4 Conclusion
	References

	Functional Signatures from Indistinguishability Obfuscation
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of the Paper

	2 Preliminaries
	2.1 Indistinguishability Obufscation
	2.2 Puncturable PRFs

	3 Functional Signatures
	3.1 Definition

	4 Construction
	5 Conclusion
	A Signature Schemes
	B The Proof of Theorem??
	References

	Lightweight Protocol for Trusted Spontaneous Communication
	1 Introduction
	2 Communication Model
	2.1 Discussion of Model Properties
	2.2 Adversary Model

	3 Protocol Description
	4 Protocol Analysis
	5 Related Work
	6 Final Remarks
	References

	Using TPM Secure Storage in Trusted High Availability Systems
	1 Introduction
	2 Overview of TPM 1.2 and TPM 2.0
	2.1 Overview of TPM 1.2 and Certifiable Migration Keys
	2.2 Limitations of CMKs
	2.3 Overview of TPM 2.0 and Duplication
	2.4 Platform Configuration Registers

	3 Scenario and Threat Model
	3.1 Threat Model

	4 Requirements
	5 Proposed System Design
	5.1 TTP Generated Ke
	5.2 HAS Manufacturer Generated Ke
	5.3 Customer Generated Ke
	5.4 HAS Initialization

	6 Security Analysis and Comparison of Properties for Ke Generation
	7 Unified API
	7.1 Generation and Migration of Kp
	7.2 Generation of Ke
	7.3 CU Failure

	8 Related Work
	9 Conclusions
	References

	APP Vetting Based on the Consistency of Description and APK
	1 Introduction
	2 Background Knowledge
	2.1 Android System
	2.2 Text Sanitization
	2.3 Explicit Relatedness Analysis (ESA)

	3 Problem Definition
	4 System Design
	4.1 Framework
	4.2 Data Setup
	4.3 Classification Model

	5 Evaluation
	5.1 Prototype Implementation
	5.2 Experiment Setup
	5.3 Our Findings

	6 Discussion
	6.1 Weaknesses

	7 Related Work
	8 Conclusion and Future Work
	References

	Traitor Tracing Based on Partially-Ordered Hierarchical Encryption
	1 Introduction
	2 Background and Definition
	3 PHE Scheme for Access Control
	3.1 Proposed PHE Scheme
	3.2 Further Discussion

	4 PHE Scheme for Traitor Tracing
	4.1 Single-Key Tracing
	4.2 Hierarchical Tracing

	5 Security Analysis
	6 Related Work
	7 Conclusion and Future Work
	References

	SCIATool: A Tool for Analyzing SELinux Policies Based on Access Control Spaces, Information Flows and CPNs
	Abstract
	1 Introduction
	2 Methodology
	2.1 SELinux Policies Configuration
	2.2 Typical SELinux Policies Analysis Methods
	2.3 Main Idea About an Integrated Analysis Method Based on Access Control Spaces, Information Flows and Colored Petri-Nets

	3 Prototype Design and Implementation
	3.1 Architecture Design
	3.2 Main Problems and Solutions About Integration
	3.3 Prototype Implementation

	4 Test Results and Discussion
	4.1 Test Results and Analysis
	4.2 Related Work and Discussion

	5 Conclusions
	Acknowledgements
	References

	Faster Pairing Computation on Jacobi Quartic Curves with High-Degree Twists
	1 Introduction
	2 Preliminaries
	2.1 Tate Pairing
	2.2 The Jacobi Quartic Curves

	3 Geometric Interpretation of the Group Law over Ja,d
	4 Miller Function over Ja,d
	4.1 The Construction of Miller Function
	4.2 The Equation of P1,P2,O with P1=P2
	4.3 The Equation of P1,P2,O with P1=P2
	4.4 The Equation of P3,O,O
	4.5 The Explicit Formula of Miller Function

	5 Tate Pairing Computation on Ja,d Using Projective Coordinates
	5.1 Tate Paring Computation on Ja,d With Even Embedding Degrees
	5.2 Tate Pairing on Ja,d with quartic or sextic twists

	6 Conclusion and Example
	A Examples with j=1728
	B Examples with j=0
	References

	DATAEvictor: To Reduce the Leakage of Sensitive Data Targeting Multiple Memory Copies and Data Lifetimes
	Abstract
	1 Introduction
	2 Approach Overview
	2.1 Motivation
	2.2 Thread Model

	3 Design and Implementation
	3.1 System Architecture
	3.2 Initiating the Private Process
	3.3 Clearing the User-Space
	3.4 Sanitizing the Kernel Stack
	3.5 Flushing the Page Cache
	3.6 Tracking the Kernel Level Buffers and Clearing Slab Objects
	3.7 Encrypting Swap-Space and Puring the Pages by PFRA
	3.8 Discussion

	4 Evaluation
	4.1 Security Analysis
	4.2 Performance Evaluation

	5 Limitations and Future Work
	6 Related Work
	7 Conclusion
	References

	Template Attacks Based on Priori Knowledge
	1 Introduction
	1.1 Motivations
	1.2 Contributions
	1.3 Related Work
	1.4 Organization of This Paper

	2 Preliminaries
	2.1 Classical Template Attacks
	2.2 Reduced Template Attacks
	2.3 Bayes Estimation

	3 Using Priori Knowledge to Improve Template Attacks
	4 Experimental Evaluations
	4.1 How to Get the Priori Knowledge
	4.2 Simulated Experiments
	4.3 Practical Experiments

	5 Conclusion and Future Work
	References

	Some Observations on the Lightweight Block Cipher Piccolo-80
	1 Introduction
	2 Description of Piccolo
	2.1 Notations
	2.2 Data Processing Part
	2.3 The Inverse Function of F

	3 The Linear Approximation Representation of the Round Function
	4 The Linear Cryptanlysis of Two Rounds Piccolo
	4.1 The Algebraic Representation of Internal States
	4.2 The Attack

	5 A Weakness of the Key Schedule
	6 Concluding Remarks and Proposals
	References

	A Memory Efficient Variant of an Implementation of the F4 Algorithm for Computing Gröbner Bases
	1 Introduction
	2 Background
	2.1 Preliminary Definitions
	2.2 Gröbner Basis
	2.3 Buchberger Algorithm
	2.4 F4 Algorithm

	3 Memory Control of F4 Algorithm
	3.1 New Pair Selection Function
	3.2 S-Polynomial Reduction Step Modifications
	3.3 Reduction of G
	3.4 Correctness of YAGS

	4 Experiment Results
	4.1 General Systems
	4.2 Katsura

	5 Conclusions
	References

	Efficient Public Key Encryption with Field-Free Conjunctive Keywords Search
	1 Introduction
	1.1 Our Contributions
	1.2 Organization

	2 Preliminaries
	2.1 Bilinear Maps
	2.2 Complexity Assumptions

	3 Lagrange Polynomial
	4 Public Key Encryption with Field-Free Conjunctive Keyword Search Scheme
	4.1 Model
	4.2 Security Definition

	5 Our Construction
	5.1 Security

	6 Performance Analysis and Comparisons
	7 Conclusion
	References

	mOT+: An Efficient and Secure Identity-Based Diffie-Hellman Protocol over RSA Group
	1 Introduction
	2 Preliminaries
	3 A Review of id-eCK Model
	4 mOT+ Protocol
	4.1 Protocol Description
	4.2 Some Arguments
	4.3 Comparison

	5 Security Proof in the id-eCK Model
	5.1 Event E1
	5.2 Event E2
	5.3 Event E3
	5.4 Overall Analysis

	6 Conclusion
	References

	Secure (M+1)st-Price Auction with Automatic Tie-Break
	1 Introduction
	1.1 Background
	1.2 Our Approach and Contribution
	1.3 Related Works

	2 Preliminaries
	2.1 Basic Computation Model and Notations
	2.2 Auction Model
	2.3 Arithmetic Black Box Techniques

	3 (M+1)st-Price Sealed-Bid Auction with Automatic Tie-Break
	3.1 (M+1)st-Price Bit-Slice Auction Circuit
	3.2 (M+1)st-Price Bit-Slice Auction with Automatic Tie-Break

	A Leakage of Tie Information
	B Generating Random Bits for Tie-Break
	References

	Author Index
	Keyword Index

