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ABSTRACT

Correct implementations of cryptographic primitives are essential
for modern security. These implementations often contain arith-
metic operations involving non-linear computations that are infa-
mously hard to verify. We present LLvM2CRYPTOLINE, an automated
formal verification tool for arithmetic operations in cryptographic
C programs. LLvM2CRYPTOLINE successfully verifies 51 arithmetic C
programs from industrial cryptographic libraries OpenSSL, wolfSSL
and NaCl. Most of the programs are verified fully automatically and
efficiently. A screencast that showcases LLvM2CRYPTOLINE can be
found at https://youtu.be/QXuSmja45VA. Source code is available
at https://github.com/fmlab-iis/llvm2cryptoline.

CCS CONCEPTS

« Software and its engineering — Formal software verifica-
tion.
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1 INTRODUCTION

Cryptographic primitives are building blocks of modern computer
security. They are usually confronted with the most severe ad-
versarial environments compared to other programs, making their
correctness notably important. Modern cryptography relies on com-
plicated mathematics, and furthermore, should be implemented on
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real-world hardware architectures. Take the curve Curve25519 [1]
used in Elliptic Curve Cryptography (ECC) [12, 15] as an example.
It is defined over the finite field Z,2s5_;9. Hence even computing
the sum of two field elements consists of two operations, that is,
addition and modulo. Thousands of field arithmetic operations are
required during key generation, for instance, in OpenSSH. Note
that a field element in Z,255_14 is representable by at least 255 bits.
However, no computers can directly perform 255-bit arithmetic
operations. Typical implementations in 64-bit architectures em-
ploy four 64-bit or five 51-bit numbers to represent a field element.
Arithmetic over the finite field is implemented on such representa-
tions and highly optimized for efficiency. The complexity from both
mathematics and implementation makes it difficult to conclude the
functional correctness of these cryptographic programs. Bugs are
found by formal techniques even for these basic, exhaustively tested
field operations [14, 21]. Formal guarantees are thus necessary.

Cryptographic primitives are generally implemented in low-level
languages like C. Numerous promising tools are available for for-
mally verifying C programs (e.g., [2, 3, 6, 8, 9, 13, 19, 20]), many of
which are built on abstraction and/or SMT solving. Our previous
work has shown that these general-purpose C verification tools
are not very suitable for cryptographic programs, since bit-precise
analysis of non-linear computations is required when verifying
the arithmetic in cryptographic programs [14]. Dedicated verifica-
tion techniques are demanded. CRYPTOLINE is a domain-specific
language equipped with a tool for modeling and verifying crypto-
graphic assembly programs [7, 17]. We proposed in [14] to verify
cryptographic C programs via translating their intermediate repre-
sentations (IRs) extracted from the Clang compiler into CRYPTOLINE
programs, and then verifying them using the CRYPTOLINE tool. We
have empirically identified a core subset LLvMCRYPTO of LLVM IR
for cryptographic programs and modeled programs representable
by LLvMCryPTO with the CRYPTOLINE language.

In this paper, we present a verification tool LLvM2CRYPTOLINE
for cryptographic C programs, which extends and realizes the ap-
proach proposed in [14]. Specifically, the approach in [14] models
IR programs with the untyped CRYPTOLINE language [17], where
all variables and constants are unsigned and of the same bit-width.
In this work, we instead model IR programs with the typed CRYpPTO-
LinE language [7], where both signed and unsigned representations
as well as different bit-widths are available. It allows to verify cryp-
tographic C programs with not only unsigned types but signed
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Figure 1: Architecture and Workflow of LLvM2CRYPTOLINE

types, hence improving the applicability of our approach. Secondly,
we enlarge the subset LLVMCRYPTO to support more data types (e.g.,
arrays and structures) and more instructions (e.g., signed extension
and type casting), further broadening the applicability. On the other
hand, the approach in [14] requires users to write specifications
in the generated CRYPTOLINE programs, that is, to specify what
properties should be satisfied by the CRYPTOLINE program, thus
the IR program and the target C program. This compels users to
learn the CrYPTOLINE language and to understand the translation
from LLVvMCRYPTO to CRYPTOLINE. In this work, we design and
implement a specification language that enables users to write spec-
ifications directly at the LLVM IR level. It offers better usability
and is more friendly for beginners. Last but not least, manual in-
tervention and annotations in generated CRYPTOLINE programs
are sometimes needed due to the limitations of the CRYPTOLINE
tool. We develop heuristics in LLvM2CRYPTOLINE to reduce human
efforts, hence further improving usability.

For evaluation, we have successfully employed LLvM2CRYPTOLINE
to verify 51 C implementations for arithmetic operations. They
come from cryptographic primitives in OpenSSL [18], wolfSSL [5]
and NaCl [4]. 13 of them are not supported by the approach in [14].
LLVM2CRYPTOLINE verifies 29 out of 51 functions fully automati-
cally, and verifies most of them within merely 1 minute.

We summarize our contributions as follows:

e We present LLVvM2CRYPTOLINE, an automated cryptographic
C verification tool that supports both signed and unsigned
types, and allows specifications at the LLVM IR level.

e We verify with LLvM2CrYPTOLINE 51 arithmetic C programs
from industrial libraries OpenSSL, wolfSSL and NaCl.

2 THE LLVM2CRYPTOLINE TOOL

The architecture and workflow of LLvM2CRYPTOLINE are depicted
in Figure 1. LLvM2CRYPTOLINE accepts as inputs a specification and
an LLVM IR program, which is extracted from the target C pro-
gram compiled by the Clang compiler. It then automatically outputs
whether the expected specification is satisfied by the given IR pro-
gram (“OK”), thus by the target C program, or unknown (“FAILED”).
The core of LLvM2CRYPTOLINE is the module Translator. It models
LLVM IR instructions with typed CRYPTOLINE instructions, trans-
lating the input IR program and specification to a CRYPTOLINE
program with specification that can be handled by the CrypTO-
LINE tool. LLvM2CRYPTOLINE then invokes CRYPTOLINE to solve
the generated CRYPTOLINE problem. It answers “OK” if CRYPTOLINE
successfully verifies the problem. Otherwise, “FAILED” is returned
indicating that whether the specification holds or not is unknown.
In this case, human intervention is needed. Users can add extra
hints about the target program by augmenting the IR program with
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annotations. Or experienced users can ask LLvM2CRYPTOLINE to
output the generated CRYPTOLINE problem and inspect it directly.
The module Translator moreover includes three important sub-
modules SpecParser, PtrHandler and Heuristics. SpecParser parses
the input specification written in our specification language (Sec-
tion 2.2). PtrHandler analyzes pointers and memory accesses in the
IR program, and models them using the CRYPTOLINE language that
does not support these features (Section 2.3). Heuristics applies
heuristic rules to improve the automation of LLvM2CRYPTOLINE
(Section 2.4). That is, it reduces the burden on users of writing
annotations or investigating the CRYPTOLINE problem.

2.1 LLvMCRYPTO

LLVM IR is so general that programs in many languages can be
represented through dedicated compiler frontends. We have identi-
fied in [14] a core subset called LLvMCRryPTO for cryptographic C
programs. In this work, we further enrich LLVMCRYPTO to support
more cryptographic programs. The LLvMCRYPTO implemented in
LLVM2CRYPTOLINE supports data types including integers, vectors,
pointers, arrays and structures. The pointer type is restricted to only
point to integers, vectors, arrays, structures, as well as the point-
ers to these types (i.e. double pointers). LLvMCRrYPTO allows arith-
metic operations addition (add), subtraction (sub) and multiplication
(mul); as well as bitwise operations left-shift (shl), logical right-shift
(1shr), arithmetic right-shift (ashr), bitwise AND (and), OR (or) and
exclusive-OR (xor). The vector versions of these operations are
also defined. It moreover provides instructions insertelement and
extractelement to manipulate vectors. For memory- and pointer-
related operations, the instructions getelementptr, alloca, load,
and store are supported, where getelementptr performs pointer
arithmetic. Lastly, to accommodate C programs with signed types,
conversion operations like truncation (trunc), zero extension (zext),
sign extension (sext) and type casting (bitcast) are included. Note
that there are no control-flow instructions such as branching in
LLVMCRYPTO, because such instructions are avoided in typical cryp-
tographic programs for side-channel attack prevention [16].

One may notice that LLvM2CRYPTOLINE in fact verifies the cor-
rectness of IR programs instead of C programs. The benefits of
this design decision are threefold. Firstly, IR code is simpler and
more structured than C code, making the analysis more manageable.
Secondly, IR code is closer to the actual executable than C code.
Verifying IR code instead of C code excludes the compiler frontend
from the trusted computing base, providing stronger guarantees on
the correctness of cryptographic programs. Thirdly, LLVM IR is
language-independent. Working at the IR level grants our approach
the extendability to verify cryptographic programs written in other
languages that can be compiled to LLVM IR (e.g., Rust and Swift).



LLVM2CRYPTOLINE: Verifying Arithmetic in Cryptographic C Programs

Width ::

Const ::

u= oo | =2 =-1]0]1]2] -

1]2]---
Num@ Width

Num

Varz=x|ylz|x" |y |z" |-

Atom == Var | Const
Expr := Atom | Expr+ Expr | Expr — Expr | Expr = Expr

APred ::= true | Expr = Expr | Expr = Expr mod Expr | APred A APred

RPred ::= true | Expr = Expr | Expr <, Expr | Expr <, Expr
| Expr <s Expr | Expr <s Expr | RPred A RPred
Cond ::= APred && RPred Spec == { Cond } { Cond }

Figure 2: LLvM2CRYPTOLINE Specification Language

2.2 Specification Language

We design and implement a specification language to describe func-
tional correctness properties that target programs should satisfy.
The syntax is shown in Figure 2. Atoms (Atom) are either variables
(Var) or constants (Const) with bit-widths (Width). An expression
(Expr) is an atom, or the sum, difference, product of expressions.
Two kinds of predicates are defined. An algebraic predicate (APred)
is a conjunction of equations or modulo equations. It characterizes
algebraic properties of the target program. On the other hand, a
range predicate (RPred) is a conjunction of signed or unsigned com-
parisons, describing range properties. A condition (Cond) is divided
into an algebraic part and a range part. Finally, a specification (Spec)
consists of a precondition and a postcondition. A specification is satis-
fied by a program, if the program always ends in a state conforming
to the postcondition whenever it starts from a state meeting the pre-
condition [10]. LLvM2CRYPTOLINE automatically checks whether
the input IR program satisfies the input specification.

It is stipulated that the variables specified in the precondition
must be the parameters of the target function. Take the following
(simplified) IR function from Curve25519 in OpenSSL as an example:

void @fe51_add(i64x %h, i64x %f, i64* %g)

The variables in the precondition must be h, f, or g. Typical im-
plementations of arithmetic operations in cryptography represent
mathematical elements as arrays. h, f and g here are arrays of size 5
representing field elements in Z,255_;4. The resulting field element
of function fe51_add is stored in h. Our specification language al-
lows C-like notation to access elements in arrays. h[0] denotes the
0Oth element in h. For postconditions, variables must be the func-
tion’s parameters, with or without prime symbols (*). The prime
symbol is reserved for the final (or output) value of a variable after
executing the function. So h’[0] denotes the value of element h[e]
when fe51_add returns. Correspondingly, a variable without the
prime stands for its initial value before executing the function.
Additionally, syntactic sugar is also available in our specifica-
tion language, which is not formally detailed in Figure 2 for clar-
ity. For example, the field element in Z,255_;¢ represented by h is
h[o] #251%0 4t hr17 % 251¥1 ... 4 h[4] % 251%4 That is, each element
in h denotes a 51-bit segment (or called limb) of the field element. It
can be written as 1limbs 51 [ h[01, h[1], h[2]1,h[3], h[4] ] for short,
or even limbs 51 h[@. .4]. Similarly, if one wants to specify a range
property that each element f[i] <y 2% for 0 < i < 4, the short-
hand f[e..4] <y 2°! can be used. Given n predicates pi’s, a useful
alternative to p1 A p2 A -+ A ppisand [p1,p2,- -, Pnl-
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Recall that users can provide extra knowledge about the target
program as hints to aid the verification by attaching LLVM IR
annotations. They are restricted to be of the form “assert Atom =
Atom”. The variables showing in the assertion must be variables of
the target program. LLvM2CRYPTOLINE will first check whether the
equation holds or not. If it holds, it is then utilized as an extra lemma
to verify the postcondition. Otherwise, “FAILED” is returned.

2.3 Translation to CRYPTOLINE

The translation from specifications in our language to CrRYPTO-
LINE specifications is almost straightforward. The main difficulty
of translating LLVM IR programs to CRYPTOLINE programs lies in
the modeling of pointers and memory, which are not supported in
the CrYPTOLINE language. We proposed in [14] to model memory
with the notion of symbolic memory addresses, representing mem-
ory cells symbolically. Values of pointers thus can be evaluated by
symbolic execution [11]. Then the obtained symbolic values are
modeled by CRYPTOLINE variables. The translation from IR pro-
grams to untyped CRYPTOLINE programs has been detailed in [14].
And the translation to typed CRYPTOLINE is very similar. We do not
repeat ourselves here. Instead, we only highlight some differences.

The typed CRYPTOLINE language permits variables of different
bit-widths in one program. When 64-bit and 128-bit variables coex-
ist in the IR program, LLVvM2CRYPTOLINE does not need to mimic a
128-bit instruction via several 64-bit instructions as in [14]. Instead,
it models 128-bit IR instructions directly with 128-bit CRYPTOLINE
instructions. This change reduces the sizes of generated CrypTO-
LINE programs, as we can see in Section 3, hence improving verifi-
cation efficiency. Another advantage introduced by typed CrypTO-
LINE is revealed for the IR instructions trunc and zext. While their
source and destination types are restricted to be 64-bit or 128-bit
in [14], such restrictions are not necessary in LLvM2CRYPTOLINE.
These two instructions, as well as the new supported instruction
sext, are modeled by the type casting instruction cast in typed
CRYPTOLINE. It is also worth mentioning that LLvM2CRYPTOLINE
supports the translation of double pointers. Based on the obser-
vation that double pointers found in cryptographic programs are
only used by load or store with no pointer arithmetic, the pointer
analysis using pointer tables [14] is extended in LLVvM2CRYPTOLINE
with a structure called pointer-to-pointer table, which maps each
double pointer to the pointer it points to, keeping track of concrete
values of all double pointers during translation.

2.4 Heuristics

The CrRYPTOLINE verification tool reduces a verification problem
into an algebraic problem and a range problem, then invokes an
algebraic engine (computer algebra system) and a range engine
(SMT solver) to solve them respectively [7, 17]. Due to the reduction
algorithm and distinct reasoning abilities of two engines, users
are sometimes required to add annotations via the CRYPTOLINE
instructions assert and assume to make the verification succeed.
The common annotations attached in CRYPTOLINE programs are:

assert true && e; = e; assume e; = ez && true;

The assertion asks CRYPTOLINE to check the validity of e; = e

using the range engine. If it succeeds, e; = ey is passed to the
algebraic engine as a lemma by the assumption; Otherwise, the
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verification fails. The annotations attached to the input IR program
for LLvM2CRYPTOLINE (Figure 1) are in fact translated into such
pairs of assert and assume.

We design and implement heuristics to insert annotations into
generated CRYPTOLINE programs automatically, minimizing efforts
from users. Besides the heuristics in [14], we implement new heuris-
tics in LLvM2CRYPTOLINE. Particularly, we develop a structure called
derivation tree to generalize the and-after-1shr heuristic in [14]. Bit-
wise operations are common in cryptographic programs. However,
algebraic engines are not good at analyzing bitwise operations. For
instance, the following pattern is used in Curve25519 in OpenSSL:

and 164 %a Ox7FFFFFFFFFFFF
1shr i64 %a 51

%X

%y

The first 64-bit instruction and assigns x with the low 51 bits of a.
The second one right-shifts a by 51 bits, hence y equals the high
13 bits of a. They together perform a bit-vector splitting. After
translation, the following CRYPTOLINE snippet is generated:

and x a 0x7FFFFFFFFFFFF;

The first CRYPTOLINE instruction and does the same thing as the IR
instruction and. The IR instruction 1shr is modeled by the CrypTO-
LINE instruction uspl, which splits a at the position 51, assigning
the high 13 bits to y and low 51 bits to tmp. By analysis, we know
x = tmp. The algebraic engine needs this crucial fact, but cannot
deduce it. Annotations are thus required to ask the range engine
for help. Note that both x and tmp are segments derived from a.
Derivation trees are constructed to track derivation relations in-
troduced by bitwise operations. Our heuristics identify equality or
concatenation relations between variables by analyzing these trees.

uspl y tmp a 51;

3 EVALUATION

LLVM2CRYPTOLINE successfully verifies 51 C implementations of
arithmetic operations in cryptographic primitives. They are from
three libraries: OpenSSL 3.0.5, wolfSSL 5.5.3 and NaCl 20110221.
The experimental results are demonstrated in Table 1. All verifi-
cation tasks are performed on an Ubuntu 20.04.3 laptop with a
2-core 3.19 GHz CPU and 8 GB RAM, except for the complicated
ones (marked with “*”) on a Linux server with a 28-core 2.60 GHz
CPU and 220 GB RAM. Singular 4.1.1 and Boolector 3.2.2 are set
as engines for CRYPTOLINE. All verified functions are divided into
two categories. “auto” indicates that those functions are verified
fully automatically, without human intervention. “tuned” means
that human efforts are needed. Column T shows the individual
verification time. For the “tuned” category, column L gives the
sizes of extracted IR programs. Columns L¢y compare the sizes of
generated CRYPTOLINE programs from LLvM2CRYPTOLINE (“ours”)
and the approach in [14], respectively. Columns Mod are the num-
bers of manual modifications required to verify the functions by
LLvM2CRYPTOLINE (“ours”), the work in [14], and LLvM2CRYPTOLINE
without heuristics (“vanilla”), respectively. Note that the functions
from wolfSSL and NaCl are not supported by [14].

The results demonstrate that the verification of 29 (56.9%) func-
tions is fully automatic. Most (90.2%~46/51) of the functions can
be verified with a common laptop within 1 minute. We also see
that LLvM2CRYPTOLINE generates significantly smaller CrypTO-
LINE programs than [14], thanks to the typed CRYPTOLINE lan-
guage. As for necessary human efforts, it is easy to observe that

Ruiling Chen, Jiaxiang Liu, Xiaomu Shi, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang
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Table 1: Experimental Results

[ Mod [

. Lcr
Function Lir | [14] [ ours [vanilla] [14] [ ours | Te
OpenSSL ecp_nistp224.c
felem_diff, felem_diff 128_64, felem_mul, felem_scalar,
auto (7) felem_square, felem_sum, widefelem_diff <871
felem_mul_reduce 98 293 138 36 46 2 21.43
tuned felem_neg 43 | 105 73 21 13 4 0.59
) felem_reduce 64 160 103 36 19 2 1.08
felem_square_reduce 81 242 137 36 46 10 13.87
widefelem_scalar 31 83 28 2 4 1 2.37
OpenSSL ecp_nistp256.c
felem_diff, felem_scalar, felem_small_sum, felem_sum,
auto (6) <3.54
smallfelem_mul, smallfelem_neg
tuned felem_shrink 65 146 134 53 42 37 1.33
3) felem_small_mul 71 135 135 54 45 38 8.12
smallfelem_square 74 | 217 | 114 10 5 5 0.88
OpenSSL ecp_nistp521.c
felem_diff64, felem_diff128, felem_neg, felem_sumé4,
auto (10) felem_mul, felem_scalar, felem_scalar64, felem_scalar128, < 54.08
felem_square, felem_diff 128 64
tuned (1) felem_reduce [138] 278 [ 266 | 77 | 54 [ 38 | 259
OpenSSL curve25519.c
auto (2) fe51_add, fe51_sub <0.18
fe51_mul 122 | 350 156 29 16 4 4.51
tuned fe51_mul121666 57 120 84 19 8 8 0.95
4) feSl_sq 92 256 125 19 14 4 1.85
x25519_scalar_mult? 567 | 1262 | 673 131 132 37 281"
wolfSSL fe_operations.c
auto (3) fe_add, fe_sub, fe_neg <0.96
fe_mul 366 - 443 80 50 10928*
tuned fe_mul121666 119 - 191 80 50 84.40
(4) fe_sq 245 - 321 80 50 169001*
fe_sq2 255 - 331 80 50 253613*
NaCl curve25519.c
auto (1) fsum 0.17
fdifference_backwards? | 77 - 134 53 - 53 1.09
tuned fmul 111 - 149 20 2 10.34
) fscalar_product 52 - 73 18 2 0.99
fsquare 79 - 119 18 2 5.78
fmonty® 63 - 78 18 18 | 26.00

90nly the Montgomery Ladderstep part is verified.
Range verification is disabled due to a bug exposed in [7].

LLVM2CRYPTOLINE requires less human intervention than the work
in [14]. Comparing “ours” with “vanilla” shows that our heuristics
substantially reduce the needed manual modifications.

4 CONCLUSION

This paper presents LLvM2CRYPTOLINE, a cryptographic C verifi-
cation tool that reduces C verification problems to CRYPTOLINE
verification problems. It successfully verifies various arithmetic im-
plementations in real-world cryptographic libraries, illustrating its
applicability, usability and efficiency. Its high degree of automation
makes verification as simple as the push of a button in most cases.

ACKNOWLEDGMENTS

This work is supported by Shenzhen Science and Technology Inno-
vation Commission (JCYJ20210324094202008), the National Natural
Science Foundation of China (62002228, 61836005), the Natural
Science Foundation of Guangdong Province (2022A1515011458,
2022A1515010880), the National Science and Technology Coun-
cil (NSTC110-2221-E-001-008-MY3, NSTC111-2221-E-001-014-MY3,
NSTC111-2634-F-002-019), the Sinica Investigator Award AS-IA-
109-M01, the Data Safety and Talent Cultivation Project AS-KPQ-
109-DSTCP and the Intel Fast Verified Postquantum Software Project.



LLVM2CRYPTOLINE: Verifying Arithmetic in Cryptographic C Programs

REFERENCES

[1] Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed Records. In

[7

8

[

=

Public Key Cryptography - PKC 2006, 9th International Conference on Theory
and Practice of Public-Key Cryptography, New York, NY, USA, April 24-26, 2006,
Proceedings (Lecture Notes in Computer Science, Vol. 3958), Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin (Eds.). Springer, 207-228. https://doi.
org/10.1007/11745853_14

Dirk Beyer and M. Erkan Keremoglu. 2011. CPAchecker: A Tool for Configurable
Software Verification. In Computer Aided Verification - 23rd International Confer-
ence, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings (Lecture Notes
in Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.).
Springer, 184-190. https://doi.org/10.1007/978-3-642-22110-1_16

Marek Chalupa, Vincent Mihalkovic, Anna Rechtackova, Lukas Zaoral, and Jan
Strejcek. 2022. Symbiotic 9: String Analysis and Backward Symbolic Execution
with Loop Folding - (Competition Contribution). In Tools and Algorithms for the
Construction and Analysis of Systems - 28th International Conference, TACAS 2022,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part II (Lecture Notes
in Computer Science, Vol. 13244), Dana Fisman and Grigore Rosu (Eds.). Springer,
462-467. https://doi.org/10.1007/978-3-030-99527-0_32

The NaCl Developers. 2011. NaCl: Networking and Cryptography library. https:
//macl.cr.yp.to/.

The wolfSSL Developers. 2023. The wolfSSL Library. https://github.com/wolfSSL/
wolfssl.

Daniel Dietsch, Matthias Heizmann, Dominik Klumpp, Frank Schiissele, and
Andreas Podelski. 2023. Ultimate Taipan and Race Detection in Ultimate - (Com-
petition Contribution). In Tools and Algorithms for the Construction and Analysis
of Systems - 29th International Conference, TACAS 2023, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS 2022, Paris,
France, April 22-27, 2023, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 13994), Sriram Sankaranarayanan and Natasha Sharygina (Eds.). Springer,
582-587. https://doi.org/10.1007/978-3-031-30820-8_40

Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi, Ming-Hsien Tsai, Bow-Yaw Wang, and
Bo-Yin Yang. 2019. Signed Cryptographic Program Verification with Typed
CryptoLine. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, November 11-15, 2019, Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM,
1591-1606. https://doi.org/10.1145/3319535.3354199

Mikhail Y. R. Gadelha, Felipe R. Monteiro, Lucas C. Cordeiro, and Denis A. Nicole.
2019. ESBMC v6.0: Verifying C Programs Using k-Induction and Invariant Infer-
ence - (Competition Contribution). In Tools and Algorithms for the Construction
and Analysis of Systems - 25 Years of TACAS: TOOLympics, Held as Part of ETAPS
2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part III (Lecture Notes
in Computer Science, Vol. 11429), Dirk Beyer, Marieke Huisman, Fabrice Kordon,
and Bernhard Steffen (Eds.). Springer, 209-213. https://doi.org/10.1007/978-3-
030-17502-3_15

Matthias Heizmann, Max Barth, Daniel Dietsch, Leonard Fichtner, Jochen
Hoenicke, Dominik Klumpp, Mehdi Naouar, Tanja Schindler, Frank Schiissele,
and Andreas Podelski. 2023. Ultimate Automizer and the CommuHash Normal
Form - (Competition Contribution). In Tools and Algorithms for the Construction
and Analysis of Systems - 29th International Conference, TACAS 2023, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Paris, France, April 22-27, 2023, Proceedings, Part II (Lecture Notes in Computer
Science, Vol. 13994), Sriram Sankaranarayanan and Natasha Sharygina (Eds.).
Springer, 577-581. https://doi.org/10.1007/978-3-031-30820-8_39

2171

(10]
(11]

[12

[13]

[14]

[17

[18

[19

[20

[21]

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

C. A.R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (1969), 576-580. https://doi.org/10.1145/363235.363259

James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19,7 (1976), 385-394. https://doi.org/10.1145/360248.360252

Neal Koblitz. 1987. Elliptic curve cryptosystems. Mathematics of computation 48,
177 (1987), 203-209.

Daniel Kroening and Michael Tautschnig. 2014. CBMC - C Bounded Model
Checker - (Competition Contribution). In Tools and Algorithms for the Construction
and Analysis of Systems - 20th International Conference, TACAS 2014, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014. Proceedings (Lecture Notes in Computer
Science, Vol. 8413), Erika Abraham and Klaus Havelund (Eds.). Springer, 389-391.
https://doi.org/10.1007/978-3-642-54862-8_26

Jiaxiang Liu, Xiaomu Shi, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang.
2019. Verifying Arithmetic in Cryptographic C Programs. In 34th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2019, San Diego,
CA, USA, November 11-15, 2019. IEEE, 552-564. https://doi.org/10.1109/ASE.2019.
00058

Victor S. Miller. 1985. Use of Elliptic Curves in Cryptography. In Advances in
Cryptology - CRYPTO °85, Santa Barbara, California, USA, August 18-22, 1985,
Proceedings (Lecture Notes in Computer Science, Vol. 218), Hugh C. Williams (Ed.).
Springer, 417-426. https://doi.org/10.1007/3-540-39799-X_31

David Molnar, Matt Piotrowski, David Schultz, and David A. Wagner. 2005. The
Program Counter Security Model: Automatic Detection and Removal of Control-
Flow Side Channel Attacks. In Information Security and Cryptology - ICISC 2005,
8th International Conference, Seoul, Korea, December 1-2, 2005, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 3935), Dongho Won and Seungjoo
Kim (Eds.). Springer, 156-168. https://doi.org/10.1007/11734727_14

Andy Polyakov, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. 2018. Ver-
ifying Arithmetic Assembly Programs in Cryptographic Primitives (Invited
Talk). In 29th International Conference on Concurrency Theory, CONCUR 2018,
September 4-7, 2018, Beijing, China (LIPIcs, Vol. 118), Sven Schewe and Lijun
Zhang (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 4:1-4:16.
https://doi.org/10.4230/LIPIcs. CONCUR.2018.4

The OpenSSL Project. 2023. The OpenSSL Library. https://github.com/openssl/
openssl.

Zvonimir Rakamaric and Michael Emmi. 2014. SMACK: Decoupling Source
Language Details from Verifier Implementations. In Computer Aided Verification
- 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (Lecture Notes in
Computer Science, Vol. 8559), Armin Biere and Roderick Bloem (Eds.). Springer,
106-113. https://doi.org/10.1007/978-3-319-08867-9_7

Cedric Richter and Heike Wehrheim. 2019. PeSCo: Predicting Sequential Com-
binations of Verifiers - (Competition Contribution). In Tools and Algorithms for
the Construction and Analysis of Systems - 25 Years of TACAS: TOOLympics, Held
as Part of ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part
III (Lecture Notes in Computer Science, Vol. 11429), Dirk Beyer, Marieke Huis-
man, Fabrice Kordon, and Bernhard Steffen (Eds.). Springer, 229-233. https:
//doi.org/10.1007/978-3-030-17502-3_19

Ming-Hsien Tsai, Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi, Bow-Yaw Wang, and Bo-Yin
Yang. 2023. Certified Verification for Algebraic Abstraction. In Computer Aided
Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023,
Proceedings, Part III (Lecture Notes in Computer Science, Vol. 13966), Constantin
Enea and Akash Lal (Eds.). Springer, 329-349. https://doi.org/10.1007/978-3-031-
37709-9_16

Received 2023-05-11; accepted 2023-07-20


https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-030-99527-0_32
https://nacl.cr.yp.to/
https://nacl.cr.yp.to/
https://github.com/wolfSSL/wolfssl
https://github.com/wolfSSL/wolfssl
https://doi.org/10.1007/978-3-031-30820-8_40
https://doi.org/10.1145/3319535.3354199
https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/978-3-031-30820-8_39
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1109/ASE.2019.00058
https://doi.org/10.1109/ASE.2019.00058
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/11734727_14
https://doi.org/10.4230/LIPIcs.CONCUR.2018.4
https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-031-37709-9_16
https://doi.org/10.1007/978-3-031-37709-9_16

	Abstract
	1 Introduction
	2 The llvm2CryptoLine tool
	2.1 llvmCrypto
	2.2 Specification Language
	2.3 Translation to CryptoLine
	2.4 Heuristics

	3 Evaluation
	4 Conclusion
	Acknowledgments
	References

