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Abstract. Gimli is a highly secure permutation with high performance
across a broad range of platforms. However, side-channel analysis poses
a threat to the Gimli without any masking protection. To resist side-
channel analysis, the current state of the art of Boolean masking in
software proposes an efficient scheme of bitwise logic operations. In prac-
tice, a software implementation of masked Gimli may leak information
due to pipeline registers and also due to other effects. To avoid unin-
tentional leakage, costly overheads are required, such as more random-
ness and higher-order share implementation. For our implementation,
we present two efficient optimal masked Gimli implementations for the
ARM Cortex-M4 on the STM32F407 Discovery(a common Cortex-M4
board) and evaluate their security using TVLA. In 3-shared scenarios,
our approach performs with high security with a t-statistic value bounded
by a threshold of 4.5 standard deviations, which implies that leakage
information cannot be detected. Furthermore, our results promise sig-
nificant performance improvement for the implementation on Cortex-M
processors, with a reduction of the amount of overhead for masking by
61% and 76% for 2 and 3 shared scenarios, respectively.

Keywords: Gimli · ARM Cortex-M4 · Threshold implementation ·
DPA

1 Introduction

In several emerging areas (e.g. sensor networks, healthcare, distributed control
systems, or the Internet of Things), highly resource-constrained devices are inter-
connected, typically communicating wirelessly with one another, and working in
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concert to accomplish some task. Because the majority of current cryptographic
algorithms were designed for desktop/server environments, many of these algo-
rithms do not fit into these devices.

Gimli [6], a high secure permutation with high performance across a broad
range of platforms, is suitable for use in constrained environments [20]. Ciphers
using the three operations + (add), ≪ (rotation) and XOR are usually called
ARX ciphers, and these include SPECK [5] and ChaCha20 [7]. All of Gimli,
SPECK, and ChaCha20, can be attacked by side-channel. Side-channel analy-
ses are physical attacks based on the exploitation of the information (typically
time, power consumption, or electromagnetic radiation), which can be measured
while the cryptographic algorithm is operating on the device. Differential power
analysis (DPA) [21] and Correlation Power Analysis (CPA) [11] based on power
consumption or electromagnetic radiation, have received significant attention
since it is very powerful and does not usually require detailed knowledge of the
target device to be successfully implemented.

In ARX ciphers, Addition without protection is vulnerable to DPA [21,31].
Furthermore, early work on masking for addition in software has a high-
performance overhead [18]. Gimli, replacing addition a+b with a similar bitwise
operation a⊕b⊕((c∧b) � 1) is suitable for implementing a DPA resistant cryp-
tographic algorithm. There are different papers discussing attack and resistance
of Gimli, such as [15,16]. However, there have not been many papers in the past
discussing Gimli’s resistance to SCA in optimized software implementations.

Threshold Implementation (TI) is a masking scheme based on secret sharing
and multi-party computation [23–25]. TI is fairly simple to apply to a wide range
of ciphers [17,18], and its implementation is not very error-prone if a known set
of requirements and best practices is followed. Though early works on masking
suggested using two-share TI to reduce the size of the sequential logic in hardware
implementations [12,28], however, it is vulnerable to implement two-share TI
for most microprocessors in practice. For example, Cortex-M3 and Cortex-M4
pipeline register leak information about Hamming distance between the current
operand value and the previous one [13]. Since these problems also appear in
most of the software implementation of Boolean masking, implementing a secure
masking algorithm is very challenging.

Therefore, how to make Gimli have good execution efficiency in Cortex-M3
and Cortex-M4, resist Side-Channel Attacks, and evaluate the protective effect,
all need to be considered.

1.1 Our Contributions

In this paper, we present an efficient and high-security level method for masked
Gimli without leakage due to pipeline registers in embedded software applica-
tions. We investigate how to implement the TI for the non-linear layer of Gimli,
finding possibilities to optimize the instruction count for ARM implementations.

First of all, we implement the Gimli for ARM Cortex-M3 and Cortex-M4
processors and optimize it on the assembly level by using ARM features such as
the flexible second operand and by minimizing the number of memory operations.
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Second, the Threshold Implementation of Gimli to resist Side-Channel
Attacks, two-share and three-share masking are presented, respectively. For two-
share masking, we construct masked non-linear layers of Gimli based on SecAND
and SecOR [10], which do not consume entropy and could utilize the flexible sec-
ond operand to reduce the cycle count. For three-share masking, we are inspired
by changing of the guard [14], which is a generic method to generate the thresh-
old implementation scheme.

Finally, we use the Test Vector Leakage Assessment (TVLA) method to evalu-
ate the t-test score of the threshold implementation on Cortex-M4. These inspec-
tion methods follow the ISO/IEC 17825 [1]. To reduce leakage due to pipeline
registers, we rearrange the parallel instruction of two-share TI. However, it is
hard to limit the t-value to a threshold of 4.5 standard deviations. This problem
could be more severe on other platforms. On the other hand, the statistical value
of our three-share TI is inside the ±4.5 [30] interval for every point in time.

As mentioned above, we qualify DPA-resistant software implementations and
prove that our three-share TI is uniform without additional randomness by the
reversible property of Gimli. The method of proof about uniformity can also
generate a high secure three-share TI of NORX family ciphers [3] because of
their similar structure. Furthermore, the three-share TI is a better choice in
the strictly secured scenarios, since it can prevent information leakage due to
the architecture of microprocessors. These different architectures are a trade-off
between performance and security to perform the full permutation.

2 Preliminaries

2.1 GIMLI

Gimli is a 384-bit permutation designed to achieve high security with high
performance across a broad range of platforms. In this paper, we focus on the
Gimli-Cipher, which performs Authenticated Encryption with Associated Data
(AEAD).

The GIMLI Permutation. The Gimli permutation applies a sequence of
rounds to a 384-bit state. We denote by W = {0, 1}32 the set of bit-strings
of length 32. We will refer to the elements of this set as words; The state is
represented as a 3 × 4 matrix of words W 3×4; the rows are named x, y, z; the
columns are enumerated by 0, 1, 2, 3; the round number is denoted by r. For
example, x8

1 denotes the second 32-bit word before the execution of round 8.
Finally, we use

– a ⊕ b to denote a bitwise exclusive or (XOR) of the values a and b,
– a ∧ b for a bitwise logical and of the values a and b,
– a ∨ b for a bitwise logical or of the values a and b,
– a ≪ k for a cyclic left shift of the value a by a shift distance of k, and
– a � k for a non-cyclic shift (i.e., a shift that is filling up with zero bits) of

the value a by a shift distance of k.
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Algorithm 1 describes how this state is permuted in 24 rounds: a non-linear
layer starts with round 24 and ends with round 1. During each round, the state
is first substituted and permuted (SP-Box). Every second round, the state is
mixed linearly (alternating between a “small” or “big” swap). Finally, in every
fourth round, a constant is added.

Algorithm 1: The Gimli permutation
input : s = (si,j) ∈ W 3×4

output: Gimli(s) = (si,j) ∈ W 3×4

for r = 24 down to 1 do
for j = 0 to 3 do

x ← s0,j ≪ 24 � SP-box
y ← s1,j ≪ 9
z ← s2,j
s2,j ← x ⊕ (z � 1) ⊕ ((y ∧ z) � 2)
s1,j ← y ⊕ x ⊕ ((x ∨ z) � 1)
s0,j ← z ⊕ y ⊕ ((x ∧ y) � 3)

end
if r mod 4 = 0 then

s0,0, s0,1, s0,2, s0,3 ← s0,1, s0,0, s0,3, s0,2 � Small-Swap
else if r mod 4 = 2 then

s0,0, s0,1, s0,2, s0,3 ← s0,2, s0,3, s0,0, s0,1 � Big-Swap
end
if r mod 4 = 0 then

s0,0 ← s0,0 ⊕ 0x9e377900 ⊕ r � Add constant
end

end
return (si,j)

2.2 Threshold Implementation

Threshold Implementation [25] (TI) is a special case of Boolean masking. Even in
the presence of glitches, it has been proven secure against first-order differential
power analysis for digital circuits. The advantages are that it does not need fresh
random values after every non-linear transformation, unlike traditional masking
methods.

Definition. TIs use shares with the following properties: correctness, incom-
pleteness, and uniformity:

Correctness states that applying the sub-functions to a valid shared input must
always yield a valid sharing of the correct output.
z =

⊕d
i=1 zi =

⊕d
i=1 fi(x, y, ...) = f(x,y, ...)
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Non-Completeness requires sub-functions fi of a shared function F to be
independent of at least one input share for first-order SCA resistance. That
is, a function F (x, y, ...) shall be split into sub-functions fi(xj �=i, yj �=i, ...).
This requirement was updated in [9] to require any d sub-functions to be
independent of at least one input share to achieve d-th order SCA resistance.
Non-completeness ensures that the final circuit is not affected by glitches.
Since glitches can only occur in sub-functions fi, and each sub-function has
insufficient knowledge to reconstruct a secret state (since it has no knowledge
of at least one share xi), no leakage can be caused by glitches.

Uniformity requires all intermediate states (shares) to be uniformly distributed.
Uniformity ensures that the mean leakages are state-independent, a key
requirement to thwart first-order DPA. To ensure uniformity in a circuit,
it suffices to ensure uniformity for the output share of each function, as well
as for the inputs of the circuit. This property is often the most difficult to
achieve and most costly in terms of hardware area.

2.3 The ARM Cortex-M Processors

The ARM Cortex-M4 is a 32-bit RISC processor based on the ARMv7E-M archi-
tecture, targeting low-cost and energy-efficient microcontrollers. It is equipped
with 13 general-purpose registers (GPRs, r0-r12), plus the link register (lr,
which holds the return address from a subroutine), the stack pointer (sp), and
the program counter (pc). The lr register can also be used as a GPR after its
content has been saved to the stack. Besides GPRs, most existing M4s also have
32 floating-point registers (“M4f”), as is the case for the cheap, widely available,
and popular STM32F407 Discovery board. Aside from performing floating-point
instructions, floating point registers can be used as a cache to store frequently
used constants or loop counters by using the vmov instruction that moves 32 bits
between general-purpose and floating-point registers in exactly 1 cycle.

A very helpful feature, called “flexible second operand”, can also save lots of
time. In most data-processing instructions, the second operand can be a register
shifted or rotated in the same instruction without causing extra latency. A shift
or rotation that operates on a flexible second operand can be the arithmetic
right shift (ASR), logical right or left shift (LSL and LSR), or rotation (ROR),
plus rotate right extended by one bit (RRX). For example, the instruction ADD
r0,r1,r2,LSL #3 can calculate r0 = r1 + (r2 � 3) in one clock cycle. As all
common instructions like EOR and AND support the flexible second operand, shifts
and rotates on registers can be had “for free” in many cases.

Since the functionalities we use for the implementation are also present in
the ARM Cortex-M3 processor (which is missing only what’s usually called DSP
instructions compared to the M4), our work can be extended there without too
much trouble, needing only to replace all caching in the floating point registers
with stack access operations (and possibly re-optimizing).
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3 Side-Channel Countermeasures

In this section, we provide three ways to avoid information leakage in Gimli
implementation. In Sect. 3.1 and Sect. 3.2, we discuss 2-share TI targeted for
software implementations since they require a register stage after some opera-
tions to achieve non-completeness. This is easier to accomplish on software than
highly parallel hardware implementations because each operation is stored to a
register anyway. Therefore, if none of the individual terms recombines 2 shares of
the same variable prior to the register write, and if each input share is indepen-
dently uniform, non-completeness is always fulfilled. On the other hand, 3-share
TI can be implemented on both platforms since it does not require overhead on
the register areas and additional time cycles in hardware implementations.

For all the methods below, the first step is to apply random masking to all
of the twelve 32-bit states. In an s-share scheme, we generate 12(s − 1) random
numbers and exclusive-or each state with s − 1 random numbers. For example,
in a 3-share scheme, state s0,0 will xor 2 random numbers R0 and R1. The
shared state will then be s0,0 = (s0,0 ⊕ R0 ⊕ R1, R0, R1). Though we perform
these three ways on Gimli implementation, these methods are not unique to
Gimli but are also implementable on other NORX family ciphers because of
their similar structure.

3.1 2-Share with ChaCha-8 Randomness

In this method, we recall that the classical Boolean masking schemes in AND/OR
gates simply put one random value in one share, and the other share is the value
we want to protect xor’ed with that random value, so that xor’ing the two shares
yields the sensitive intermediate and both shares are uniformly random. We use
the same idea on the SP-box in Gimli with 3 random numbers R0, R1, R2, and
the result is given in Eq. 1, where {x0, x1}, {x′

0, x
′
1} is the input, output shares

for x respectively. y and z are the same.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
0 = R0 ⊕ x0 ⊕ (z0 � 1) ⊕ ((y0 ∧ z0) � 2) ⊕ ((y0 ∧ z1) � 2) ⊕ ((y1 ∧ z0) � 2)

x′
1 = R0 ⊕ x1 ⊕ (z1 � 1) ⊕ ((y1 ∧ z1) � 2)

y′
0 = R1 ⊕ y0 ⊕ x0 ⊕ ((x0 ∨ z0) � 1) ⊕ ((¬x0 ∧ z1) � 1) ⊕ ((x1 ∧ ¬z0) � 1)

y′
1 = R1 ⊕ y1 ⊕ x1 ⊕ ((x1 ∧ z1) � 1)

z′
0 = R2 ⊕ z0 ⊕ y0 ⊕ ((x0 ∧ y0) � 3) ⊕ ((x0 ∧ y1) � 3) ⊕ ((x1 ∧ y0) � 3)

z′
1 = R2 ⊕ z1 ⊕ y1 ⊕ ((x1 ∧ y1) � 3)

(1)
The correctness of this equation can simply be checked by xor’ing the two

shares of each variable. For example:

x′ = x′
0 ⊕ x′

1

= (x0 ⊕ x1) ⊕ ((z0 ⊕ z1) � 1) ⊕ (((y0 ∧ z0) ⊕ (y0 ∧ z1) ⊕ (y1 ∧ z0) ⊕ (y1 ∧ z1)) � 2)

= x ⊕ (z � 1) ⊕ ((y ∧ z) � 2)
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If the subscript(s) of a term have 0, then we split that term into the first
share, the others are combined into the second share. Because in this way, we can
optimize the memory operations in assembly code more easily. 12 × 24 = 288
random numbers are required for the 24 rounds of Gimli. While STM32F4
devices feature a true random number generator, it takes approximately 60 to
70 clock cycles to generate one 32-bit random integer. Hence we implement
a ChaCha-8 pseudo-random number generator which reduces the clock cycle
count to around 25 to 30 per random number. We choose the ChaCha-8 pseudo-
random number generator because it is fast and currently considered to be 2256

bit security and highly unlikely to be less secure than Gimli’s design security
level [22], but of course, we can substitute any secure and fast stream cipher.

3.2 2-Share with Optimal Masking

In [10], a state-of-the-art masking mechanism was proposed. We can replace the
non-linear operations in Eq. 1 by the operations of 2-share Threshold implemen-
tation, according to Table 1.

Table 1. Expressions for different operations.

Operation Expression

SecAnd z1 = (x1 ∧ y1) ⊕ (x1 ⊕ ¬y2) z2 = (x2 ∧ y1) ⊕ (x2 ⊕ ¬y2)

SecOr z1 = (x1 ∧ y1) ⊕ (x1 ⊕ ¬y2) z2 = (x2 ∧ y1) ⊕ (x2 ⊕ ¬y2)

By eliminating the requirement of fresh randomness, it outperformed the
classical Boolean masking schemes on software platforms. Here we utilize their
result and construct a 2-share optimal masking of Gimli.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
0 = x0 ⊕ (z0 � 1) ⊕ (((y0 ∧ z0) ⊕ (¬y1 ∨ z0)) � 2)

x′
1 = x1 ⊕ (z1 � 1) ⊕ (((y0 ∧ z1) ⊕ (¬y1 ∨ z1)) � 2)

y′
0 = y0 ⊕ x0 ⊕ (((x0 ∧ z0) ⊕ (x0 ∨ z1)) � 1)
y′
1 = y1 ⊕ x1 ⊕ (((x1 ∨ z0) ⊕ (x1 ∧ z1)) � 1)
z′
0 = z0 ⊕ y0 ⊕ (((x0 ∧ y0) ⊕ (x0 ∨ ¬y1)) � 3)
z′
1 = z1 ⊕ y1 ⊕ (((x1 ∧ y0) ⊕ (x1 ∨ ¬y1)) � 3)

(2)

Notice that we only put the negation gate before y shares because ARM’s
flexible second operand only works on the second operand (the negated one)
in ORN instructions. Since the y shares must be shifted, they need to be used
as the second operands. Also, the method does require a register stage for the
operations of the AND and OR gates. For the application on hardware platforms,
this would be a big trade-off in terms of speed and area.

To prove that the modified function does not leak any information about
any sensitive variable, we notice that in the formula of x and y shares, the only
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shares that contain both subscripts are only in the AND and OR gates. Since
they don’t leak the information about y and z, respectively, the whole calculation
will not leak either since different shares are independent.

For the z shares, however, there is a chance that it might leak the informa-
tion about y because both shares are present in both parts. We can check this
very efficiently by performing a few bitwise operations on the truth tables and
computing the Hamming weight. For example, a non-constant function f leaks
information about function k if and only if

HW (k ∧ f)
HW (f)

�= HW (k ∧ ¬f)
HW (¬f)

,

where HW(g) denotes the Hamming weight of the truth table of function g [10].
To confirm the z shares, we may then set z′

0 as f and y as k and calculate
the Hamming weight for all variables indexed from 0 to 15 since the formula
shifts variables to the left at most 3. Therefore, we can prove that the function
of 2-share optimal masking does not leak information about the sensitive state.

3.3 3-Share Threshold Implementation

To resist-first order DPA in hardware security, at least t + 1 shares of masking
is required [9] for the TI method, where t is the degree of a function and is 2
for Gimli. We begin by constructing a threshold implementation of a 3-share
Gimli permutation.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
0 = x1 ⊕ (z1 � 1) ⊕ (((y1 ∧ z1) ⊕ (y1 ∧ z2) ⊕ (y2 ∧ z1)) � 2)

x′
1 = x2 ⊕ (z2 � 1) ⊕ (((y2 ∧ z2) ⊕ (y2 ∧ z0) ⊕ (y0 ∧ z2)) � 2)

x′
2 = x0 ⊕ (z0 � 1) ⊕ (((y0 ∧ z0) ⊕ (y0 ∧ z1) ⊕ (y1 ∧ z0)) � 2)

y′
0 = y1 ⊕ x1 ⊕ (((x1 ∧ z1) ⊕ (x1 ∧ ¬z2) ⊕ (¬x2 ∧ z1)) � 1)
y′
1 = y2 ⊕ x2 ⊕ (((x2 ∨ z2) ⊕ (¬x2 ∧ z0) ⊕ (x0 ∧ ¬z2)) � 1)
y′
2 = y0 ⊕ x0 ⊕ (((x0 ∧ z0) ⊕ (x0 ∧ z1) ⊕ (x1 ∧ z0)) � 1)
z′
0 = z1 ⊕ y1 ⊕ (((x1 ∧ y1) ⊕ (x1 ∧ y2) ⊕ (x2 ∧ y1)) � 3)
z′
1 = z2 ⊕ y2 ⊕ (((x2 ∧ y2) ⊕ (x2 ∧ y0) ⊕ (x0 ∧ y2)) � 3)
z′
2 = z0 ⊕ y0 ⊕ (((x0 ∧ y0) ⊕ (x0 ∧ y1) ⊕ (x1 ∧ y0)) � 3)

(3)

Theorem 1. Equation 3 constructs a threshold implementation of Gimli per-
mutation. That is, it meets the definition of Correctness, Non-Completeness
and Uniformity.

Proof. For Correctness, we need to make sure that (x′,y′, z′) =
(
⊕

x′
i,

⊕
y′
i,

⊕
z′
i). For instance, the y part can be proved:

⊕2
i=0 y

′
i = (x0⊕x1⊕

x2)⊕(y0⊕y1⊕y2)⊕((x0⊕x1⊕x2)∨(z0⊕z1⊕z2)) � 1) = x⊕y⊕((x∨z) � 1).
The x and z part is simple since it only contains an and gate.

For Non-Completeness, it can be seen that the computations of x′
0, y

′
0, z

′
0

do not involve components of x0, y0, z0, the ones of x′
1, y

′
1, z

′
1 do not involve
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components of x1, y1, z1 and the ones of x′
2, y

′
2, z

′
2 do not involve components of

x2, y2, z2.
For Uniformity, if the mapping of Eq. 3 is an invertible mapping from (x,

y, z) to (x’, y’, z’), it implies that if (x, y, z) is a uniform sharing, then (x’, y’,
z’) is an uniform sharing as well [8]. It is, therefore, sufficient to show that the
mapping of Eq. 3 is invertible. We will do that by giving a method to compute
(x, y, z) from (x’, y’, z’).

We do this by recovering (x,y, z) from 0-bit (rightmost) to 31-bit (leftmost)
with the output (x′,y′, z′). We denote the k-bit of x0, say, by x0,k. We rewrite
the first equation by switching the output term to the right hand side:

x1 = x′
0 ⊕ (z1 � 1) ⊕ (((y1 ∧ z1) ⊕ (y1 ∧ z2) ⊕ (y2 ∧ z1)) � 2)

Because the terms after x′
0 have been shifted, x1,0 can be derived from x′

0,0.
Then we rewrite the equations as:

y1 = y′
0 ⊕ x1 ⊕ (((x1 ∧ z1) ⊕ (x1 ∧ ¬z2) ⊕ (¬x2 ∧ z1)) � 1)

z1 = z′
0 ⊕ y1 ⊕ (((x1 ∧ y1) ⊕ (x1 ∧ y2) ⊕ ( x2 ∧ y1)) � 3)

To compute y1,0 and z1,0, the last term is also irrelevant. Since we already
knew x1,0, we simply calculate y1,0 = y′

0,0 ⊕x1,0. And then z1,0 = z′
0,0 ⊕y1,0. We

can use the same method to get the 0-bit of the other 6 shares.
Assume that ∀a ∈ {x, y, z}, i ∈ {0, 1, 2}, n < 0, ai,n = 0, with the bit 0 to

k − 1 of all shares known, bits k of (x,y, z) can be derived easily via:

x1,k = x′
0,k ⊕ z1,k−1 ⊕ ((y1,k−2 ∧ z1,k−2) ⊕ (y1,k−2 ∧ z2,k−2) ⊕ (y2,k−2 ∧ z1,k−2))

y1,k = y′
0,k ⊕ x1,k ⊕ ((x1,k−1 ∧ z1,k−1) ⊕ (x1,k−1 ∧ ¬z2,k−1) ⊕ (¬x2,k−1 ∧ z1,k−1))

z1,k = z′
0,k ⊕ y1,k ⊕ ((x1,k−3 ∧ y1,k−3) ⊕ (x1,k−3 ∧ y2,k−3) ⊕ (x2,k−3 ∧ y1,k−3))

This way, we can restore (x,y, z) from the output (x′,y′, z′). Thus all possible
inputs and outputs are mapped one-to-one to each other, which implies the
uniformity property.

4 Implementation Details

In this section, assembly level optimizations of original and masked Gimli for
ARM Cortex-M4 processors, aimed at both high-speed and compact code-size,
are presented.

4.1 Optimization on Original Gimli

We optimized the original Gimli in two ways: (1) we first deal with the non-
linear layer, namely the SP-box, of Gimli by exploiting the “flexible second
operand” feature; (2) we optimized the big/small swap steps by minimizing the
amount of memory operations.
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SP-box: In order to exploit the flexible second operand feature, we slightly mod-
ify the SP-box function. Instead of calculating the rotations of y-states with a
ROR instruction, we skip this and fix the missing rotations by rotating registers
when they are AND-ed or XOR-ed, using the flexible second operand. Without
using the flexible second operand, each round needs 15 operations. By not rotat-
ing the y-states beforehand and some rearrangement of the instructions, we can
reduce that to 10 instructions, which is 33% smaller.

Notice that with 12 state words loaded into registers, we have only 2 other
registers (here denoted a0, a1) available as scratch space.

Algorithm 2: Optimization on Original Gimli

input : States before the SP-box (x0, y0, z0)
output: States after the SP-box (x0, y0, z0)

1 ROR x0, #8
2 AND a0, z0, y0, ROR, #23
3 EOR a0, x0, a0, LSL, #2
4 ORR a1, x0, z0
5 EOR a1, x0, a1, LSL, #1
6 AND x0, x0, y0, ROR, #23
7 EOR x0, z0, x0, LSL, #3
8 EOR x0, x0, y0, ROR, #23
9 EOR z0, a1, z0, LSL, #1

10 EOR y0, a2, y0, ROR, #23

Swap: To avoid the penalty of using slow memory operations, we want to mini-
mize save and load instructions. Since the small and big swaps operate alterna-
tively, the states will return to their former places after 2 small and 2 big swaps.
With a total of 6 small and big swaps, this means that all states will return to
their original places after 24 rounds of Gimli permutation.

If we can keep track of where the states are before and after the swap, we can
simply continue to the next round with this order of registers without actually
swapping anything. For example, let r1-r12 be the content of the 12 state words.
The first non-linear layer is performed on (r1, r4, r7), (r2, r5, r8), (r3,
r6, r9), and (r4, r8, r12). After the first small swap, the next non-linear
layer should be performed on (r2, r4, r7), (r1, r5, r8), (r4, r6, r9), and
(r3, r8, r12). In this way, the linear layer can be simply omitted.

For software implementation, we modify the source code given in [19] by
changing the C implementation of Gimli permutation to assembly code because
that is the bottleneck of the performance. It is also where our three methods
differ. And the C implementation acts as a baseline to our optimization that we
compare to in the next section.
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4.2 Implementation Details of Masked Gimli

Based on the idea shown in Sects. 3.1 and 3.2, we develop Algorithm 3 (SecSP1),
a one round 2-share Gimli SP-box refreshed with given random numbers, and
Algorithm 4 (SecOptSP1), one round optimal masking of 2-share Gimli. s0 and
s1 are the 2 shares of one column in the state and Ri are random numbers
generated by ChaCha-8.

Notice that the optimization on the original Gimli can also be applied here
as well: every shift of the ys can be delayed and effectively performed using the
flexible second operand. We can actually count the number of operations used
in these expressions of a 2-share SP-box: 2(ROR) + 24(EOR) + 12(AND/ORR) = 38,
which is about 4 times that of the original version. But because of the overhead
of random number generation, the actual cost of Algorithm 3 is much higher.

Algorithm 3: 2-share SP-box (SecSP1)
input : s0 = (x0, y0, z0), s

1 = (x1, y1, z1), R0, R1, R2 ∈ {0, 1}32

output: (x′
0 ⊕ x′

1, y
′
0 ⊕ y′

1, z
′
0 ⊕ z′

1) = SP (x0 ⊕ x1, y0 ⊕ y1, z0 ⊕ z1)
1 (x0, x1) ← (x0 ≪ 24, x1 ≪ 24)
2 (s0, s1, s2, s3) ← (x0 ∧ z0, x0 ∧ ¬z1, x1 ∧ ¬z0, x1 ∨ z1)
3 (t0, t1) ← (R0 ⊕ s0 ⊕ s1 ⊕ s2, R0 ⊕ s3)
4 (u0, u1) ← (x0 ⊕ (t0 � 1), x1 ⊕ (t1 � 1))
5 (y′

0, y
′
1) ← (u0 ⊕ (y0 ≪ 9), u1 ⊕ (u1 ≪ 9))

6 (s0, s1, s2, s3) ← (z0 ∧ (y0 ≪ 9), z0 ∧ (y1 ≪ 9), z1 ∧ (y0 ≪ 9), z1 ∧ (y0 ≪ 9))
7 (t0, t1) ← (R1 ⊕ s0 ⊕ s1 ⊕ s2, R1 ⊕ s3)
8 (u0, u1) ← (x0 ⊕ (t0 � 2), x1 ⊕ (t1 � 2))
9 (z′

0, z
′
1) ← (u0 ⊕ (z0 � 1), u1 ⊕ (z1 � 1))

10 (s0, s1, s2, s3) ← (x0 ∧ (y0 ≪ 9), x0 ∧ (y1 ≪ 9), x1 ∧ (y0 ≪ 9), x1 ∧ (y0 ≪ 9))
11 (t0, t1) ← (R2 ⊕ s0 ⊕ s1 ⊕ s2, R2 ⊕ s3)
12 (u0, u1) ← (z0 ⊕ (t0 � 3), z1 ⊕ (t1 � 3))
13 (x′

0, x
′
1) ← (u0 ⊕ (y0 ≪ 9), u1 ⊕ (y1 ≪ 9))

We can count the operations on these expressions of the optimal 2-share
SP-box as well: 2(ROR) + 18(EOR) + 12(AND/ORR) = 32, which is about 3 times
the non-shared version without additional memory manipulation because of the
increased variables.

For further optimization, we notice that the linear layers (swap) happen
every two rounds, it means that during the consecutive rounds where no swap
happens in-between, the inputs to non-linear layers are the same three 32-bit
states. Therefore, we can apply SP-box twice to the states without loading and
saving to further reduce the number of memory instructions. Algorithm 5 shows
the process of this idea applied to 2-share optimal masking, where si,j represents
the 2 shares of 3 states (si, s4+j , s8+j) and SP2 is one round SP-box applied twice
in a row.
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Algorithm 4: Optimal 2-share SP-box (SecOptSP1)
input : s0 = (x0, y0, z0), s

1 = (x1, y1, z1)
output: (x′

0 ⊕ x′
1, y

′
0 ⊕ y′

1, z
′
0 ⊕ z′

1) = SP (x0 ⊕ x1, y0 ⊕ y1, z0 ⊕ z1)
1 (x0, x1) ← (x0 ≪ 24, x1 ≪ 24)
2 (s0, s1, s2, s3) ← (x0 ∧ z0, x0 ∨ z1, x1 ∨ z0, x1 ∧ z1)
3 (t0, t1) ← (s0 ⊕ s1, s2 ⊕ s3)
4 (u0, u1) ← (x0 ⊕ (t0 � 1), x1 ⊕ (t1 � 1))
5 (y′

0, y
′
1) ← (u0 ⊕ (y0 ≪ 9), u1 ⊕ (u1 ≪ 9))

6 (s0, s1, s2, s3) ← (z0 ∧ (y0 ≪ 9), z0 ∨ ¬(y1 ≪ 9), z1 ∧ (y0 ≪ 9), z1 ∨ ¬(y0 ≪ 9))
7 (t0, t1) ← (s0 ⊕ s1, s2 ⊕ s3)
8 (u0, u1) ← (x0 ⊕ (t0 � 2), x1 ⊕ (t1 � 2))
9 (z′

0, z
′
1) ← (u0 ⊕ (z0 � 1), u1 ⊕ (z1 � 1))

10 (s0, s1, s2, s3) ← (x0 ∧ (y0 ≪ 9), x0 ∨¬(y1 ≪ 9), x1 ∧ (y0 ≪ 9), x1 ∨¬(y0 ≪ 9))
11 (t0, t1) ← (s0 ⊕ s1, s2 ⊕ s3)
12 (u0, u1) ← (z0 ⊕ (t0 � 3), z1 ⊕ (t1 � 3))
13 (x′

0, x
′
1) ← (u0 ⊕ (y0 ≪ 9), u1 ⊕ (y1 ≪ 9))

Algorithm 5: 24 rounds of Gimli permutation
input : s0 = (s0i,j), s

1 = (s1i,j) ∈ W 3×4

output: Gimli(s0 ⊕ s1) = (s0i,j , s
1
i,j) ∈ W 3×4,2

s0,0, s1,1, s2,2, s3,3 ← SP1(s0,0), SP1(s1,1), SP1(s2,2), SP1(s3,3)
s01,0 ← s01,0 ⊕ 0x9e377900 ⊕ 24
s1,0, s0,1, s3,2, s2,3 ← SP2(s1,0), SP2(s0,1), SP2(s3,2), SP2(s2,3)
s3,0, s2,1, s1,2, s0,3 ← SP2(s3,0), SP2(s2,1), SP2(s1,2), SP2(s0,3)
s02,0 ← s02,0 ⊕ 0x9e377900 ⊕ 20
s2,0, s3,1, s0,2, s1,3 ← SP2(s2,0), SP2(s3,1), SP2(s0,2), SP2(s1,3)
s0,0, s1,1, s2,2, s3,3 ← SP2(s0,0), SP2(s1,1), SP2(s2,2), SP2(s3,3)
s01,0 ← s01,0 ⊕ 0x9e377900 ⊕ 16
s1,0, s0,1, s3,2, s2,3 ← SP2(s1,0), SP2(s0,1), SP2(s3,2), SP2(s2,3)
s3,0, s2,1, s1,2, s0,3 ← SP2(s3,0), SP2(s2,1), SP2(s1,2), SP2(s0,3)
s02,0 ← s02,0 ⊕ 0x9e377900 ⊕ 12
s2,0, s3,1, s0,2, s1,3 ← SP2(s2,0), SP2(s3,1), SP2(s0,2), SP2(s1,3)
s0,0, s1,1, s2,2, s3,3 ← SP2(s0,0), SP2(s1,1), SP2(s2,2), SP2(s3,3)
s01,0 ← s01,0 ⊕ 0x9e377900 ⊕ 8
s1,0, s0,1, s3,2, s2,3 ← SP2(s1,0), SP2(s0,1), SP2(s3,2), SP2(s2,3)
s3,0, s2,1, s1,2, s0,3 ← SP2(s3,0), SP2(s2,1), SP2(s1,2), SP2(s0,3)
s02,0 ← s02,0 ⊕ 0x9e377900 ⊕ 4
s2,0, s3,1, s0,2, s1,3 ← SP2(s2,0), SP2(s3,1), SP2(s0,2), SP2(s1,3)
s0,0, s1,1, s2,2, s3,3 ← SP1(s0,0), SP1(s1,1), SP1(s2,2), SP1(s3,3)
return (s0, s1)

The details for a 3-share threshold implementation are much the same
in Algorithm 6. The input is now 3 shared states (s0 = (x0, y0, z0), s1 =
(x1, y1, z1), s2 = (x2, y2, z2)) and the output is SP (x0 ⊕x1 ⊕x2, y0 ⊕y1 ⊕y2, z0 ⊕
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Algorithm 6: 3-share SP-box
input : s0 = (x0, y0, z0), s

1 = (x1, y1, z1), s
2 = (x2, y2, z2)

output: (x′
0 ⊕ x′

1 ⊕ x′
2, y

′
0 ⊕ y′

1 ⊕ y′
2, z

′
0 ⊕ z′

1 ⊕ z′
2) =

SP (x0 ⊕ x1 ⊕ x2, y0 ⊕ y1 ⊕ y2, z0 ⊕ z1 ⊕ z2)
1 (x0, x1, x2) ← (x0 ≪ 24, x1 ≪ 24, x2 ≪ 24)
2 y′

1 ← ((y2 ≪ 9) ⊕ x2 ⊕ (((x2 ∨ z2) ⊕ (¬x2 ∧ z0) ⊕ (x0 ∧ ¬z2)) � 1))
3 z′

1 ← (z2⊕(y2 ≪ 9)⊕(((x2∧(y2 ≪ 9))⊕(x2∧(y0 ≪ 9))⊕(x0∧(y2 ≪ 9))) � 3))
4 y′

2 ← ((y0 ≪ 9) ⊕ x0 ⊕ (((x0 ∧ z0) ⊕ (x0 ∧ z1) ⊕ (x1 ∧ z0)) � 1))
5 z′

2 ← (z0⊕(y0 ≪ 9)⊕(((x0∧(y0 ≪ 9))⊕(x0∧(y1 ≪ 9))⊕(x1∧(y0 ≪ 9))) � 3))
6 x′

2 ← (x0⊕(z0 � 1)⊕((((y0 ≪ 9)∧z0)⊕((y0 ≪ 9)∧z1)⊕((y1 ≪ 9)∧z0)) � 2))
7 x′

1 ← (x2⊕(z2 � 1)⊕((((y2 ≪ 9)∧z2)⊕((y2 ≪ 9)∧z0)⊕((y0 ≪ 9)∧z2)) � 2))
8 y′

0 ← ((y1 ≪ 9) ⊕ x1 ⊕ (((x1 ∧ z1) ⊕ (x1 ∧ ¬z2) ⊕ (¬x2 ∧ z1)) � 1))
9 z′

0 ← (z1⊕(y1 ≪ 9)⊕(((x1∧(y1 ≪ 9))⊕(x1∧(y2 ≪ 9))⊕(x2∧(y1 ≪ 9))) � 3))
10 x′

0 ← (x1⊕(z1 � 1)⊕((((y1 ≪ 9)∧z1)⊕((y1 ≪ 9)∧z2)⊕((y2 ≪ 9)∧z1)) � 2))

z1 ⊕ z2), where the SP box computes the result of Eq. 3. Then, we follow the
same procedure as in Algorithm 5 to construct the 24 rounds of 3-share Gimli.

The total number of operations for the 3-share threshold implementation is
3(ROR) + 36(EOR) + 27(AND/ORR) = 66, which is about 7 times the non-shared
version.

5 Experiments and Results

The software was cross-compiled using the GNU Compiler Collection for ARM
Embedded Processors version 9.2.1 with the options -mthumb -mcpu=cortex-m4
and tested on a STM32F407 discovery board. The length was measured by the
number of assembly code instructions, while the cycle count was measured using
the internal clock cycle counter. Note that the reported cycles include the over-
heads for calling/returning from the considered functions, while all input data
was assumed to be already word aligned.

5.1 Comparison of the Implementations

Table 2 provides a comparative overview of the implementation results. The
cycles are counted from the beginning of AEAD encryption of 1024 bytes asso-
ciated data and 1024 bytes plaintext, while the lengths are only counted by the
assembly code for 24 rounds of Gimli permutation. In Table 2, the original
method is pure C implementation [19] and the non-shared method represents
the assembly implementation in Sect. 4.1.

Our Gimli implementation is much quicker than the C implementation. Even
with 3-share protection, our result is comparable with the original unprotected
C implementation. The growth in cycles as the number of shares increases is
meeting our prediction as well. The cycle count of the 2-share with optimal
masking implementation is about 4 times that of non-masked, and that of the 3-
share TI implementation is about 7 times the ones of non-shared. These reference
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assembly codes can be found online1. On the other hand, according to Table 2,
a 2-share implementation with ChaCha-8 is slower than a 3-share Threshold
implementation. If a 2-share Threshold implementation cannot meet the required
security level, a 3-share Threshold implementation is a better choice compared
with the 2-share implementation with ChaCha-8.

We also tried implementing only by M3 instructions, and the results are
shown in Table 3. The main difference between M3 and M4 is the memory
manipulation instructions. Without the floating-point registers as the tempo-
rary memory, the cost of store and load instructions increases as the number of
shares increases.

Table 4 shows the performance of masked algorithms compared with the base-
line unmasked ones. The numbers are how much slower the masked version was
than the unmasked version. Our methods have a significant improvement on both
scenarios compared with [29], even accounting for the Cortex-M4 to Cortex-M3
difference.

Table 2. The results for Gimli-AEAD (1024 message bytes and 1024 ad bytes) under
benchmark clock (24MHz).

Methods Cycles Speed (cycles/byte) Length

Original 1037161 506.4 –

Non-shared 151551 74.0 987

2-share (chaha-8 randomness) 2213676 1080.9 336 (not unrolled)

2-share (optimal masking) 615383 300.5 4247

3-share (TI) 1159939 566.4 8378

5.2 Leakage Detection of Side-Channel Analysis

We adopt the test vector leakage assessment (TVLA) methodology to perform
leakage detection. All the experiments here are based on ChipWhisperer-Lite
Two-Part Version [26]. The program ChipWhisperer Capture [27] retrieves power
samples from the control board, storing power traces and input data.

To complete the DPA test at Security Level 4 of ISO/IEC 17825 [1], we
focus on the first permutation and capture two sets of l = 100000 power traces
corresponding to the selected plaintexts and randomly plaintexts and compute
the Welch’s t-test to identify the differentiating features between the trace sets.

Figure 1 shows the T-test of three different versions of our implementation.
Each picture can be separated into three parts by the black lines: 1. loading
key and plaintext and applying the random mask to the state; 2. the 24-round
Gimli permutation; and 3. recovering the state and return. To reduce leakage
introduced by pipeline registers, we rearranged the parallel instructions in 2-
share TI [13]. Figure 1c shows the t-test results where the parallel instructions
1 https://github.com/kuruwa2/pqm4/tree/master/gimli24v1-aead.

https://github.com/kuruwa2/pqm4/tree/master/gimli24v1-aead
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Table 3. The results for Gimli-AEAD (1024 message bytes and 1024 ad bytes) on M3
under benchmark clock (24MHz).

Methods Cycles Speed (cycles/byte) Length

Non-shared 151551 74.0 987

2-share (chaha-8 randomness) 2286875 1116.6 335 (not unrolled)

2-share (optimal masking) 615826 300.7 4250

3-share (TI) 1247448 609.1 8276

Table 4. The amount of overhead for masking.

Methods 2 shares 3 shares

Reference [29] 10.50 31.41

Ours 4.06 7.65

(a) Unprotected Gimli (b) 2-share without rearrangement

(c) 2-share (d) 3-share threshold implementation

Fig. 1. (a) T-test of unprotected Gimli (b) T-test of 2-share with optimal masking
Gimli without rearrangement (c) T-test of 2-share with optimal masking Gimli (d)
T-test of 3-share threshold implementation Gimli

are rearranged. However, 2-share TI still has some unintentional information
leakage. We suspect that there are some unexpected buffers producing uninten-
tional leakage in Cortex-M3 and -M4 [4]. On the other hand, We can see that the
t-statistic value of the 3-share masked Gimli permutation is inside the ±4.5 [30]
interval, corresponding to 99.999% confidence that a difference shown is not due
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Fig. 2. T-test of 3-share threshold implementation Gimli with l = 1000000 power
traces

to random chance. To detect the leakage of 3-share masked Gimli permutation,
we capture with l = 1,000,000 power traces and use TVLA to perform a leakage
assessment. Figure 2 shows the T-test of the first 12 round of 3-share Threshold
implementation with l = 1,000,000 power traces. We can see that the t-statistic
value is inside the ±4.5 interval. In addition, since the first and third parts con-
tain the public value, such as the ciphertext, it is normal that the t-statistic
value exceeds ±4.5 [2].

6 Conclusion

Our results significantly improve the performance of Gimli implementations on
Cortex-M3 and -M4 processors, especially NORX ciphers such as Gimli are pop-
ular for their simplicity in preventing timing attacks. Compared to the original
C implementation, the instruction count is reduced by 85%. In addition to this,
the overhead of masking is reduced by 61% and 76% for 2-shared and 3-shared,
respectively. Even if we rearranged the parallel instructions, the currently widely
used 2-shared, Gimli still exists for unintentional information leakage. Finally,
we have completed a 3-share Threshold Implementation and passed the safety
inspection of ISO/IEC 17825 Level 4.

References

1. ISO/IEC 17825:2016 information technology - security techniques - testing meth-
ods for the mitigation of non-invasive attack classes against cryptographic modules.
Standard, International Organization for Standardization, Geneva, CH (2016)

2. Abdulrahman, A., Chen, J.P., Chen, Y.J., Hwang, V., Kannwischer, M.J., Yang,
B.Y.: Multi-moduli NTTS for saber on cortex-m3 and cortex-m4. Cryptology
ePrint Archive, Report 2021/995 (2021). https://ia.cr/2021/995

https://ia.cr/2021/995


392 T.-H. Chang et al.

3. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX: parallel and scalable AEAD.
In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 19–36.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1 2

4. Barenghi, A., Pelosi, G.: Side-channel security of superscalar CPUs: evaluating the
impact of micro-architectural features. In: 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC), pp. 1–6 (2018)

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd
Annual Design Automation Conference, pp. 1–6 (2015)

6. Bernstein, D.J., et al.: Gimli: a cross-platform permutation. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 15

7. Bernstein, D.J., et al.: Chacha, a variant of salsa20. In: Workshop Record of SASC,
vol. 8, pp. 3–5 (2008)

8. Bilgin, B.: Threshold implementations as countermeasure against higher-order dif-
ferential power analysis (2015)

9. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 18

10. Biryukov, A., Dinu, D., Le Corre, Y., Udovenko, A.: Optimal first-order boolean
masking for embedded IoT devices. In: Eisenbarth, T., Teglia, Y. (eds.) CARDIS
2017. LNCS, vol. 10728, pp. 22–41. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-75208-2 2

11. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

12. Chen, C., Farmani, M., Eisenbarth, T.: A tale of two shares: why two-share thresh-
old implementation seems worthwhile—and why it is not. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 819–843. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 30
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