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Abstract

Solving multivariate polynomial systems over finite fields is an important problem
in cryptography. For random [y low-degree systems with equally many variables
and equations, enumeration is more efficient than advanced solvers for all practical
problem sizes. Whether there are others remained an open problem.

We here study and propose an exhaustive-search algorithm for low-degree sys-
tems over I3 which is suitable for parallelization. We implemented it on Graphic
Processing Units (GPUs) and commodity CPUs. Its optimizations and differences
from the Fy case are also analyzed.

We can solve 30+ quadratic equations in 30 variables on an NVIDIA GeForce
GTX 980 Ti in 14 minutes; a cubic system takes 36 minutes. This well outperforms
existing solvers. Using these results, we compare Grébner Bases vs. enumeration for

polynomial systems over small fields as the sizes go up.

Keywords: multivariate polynomial, algebraic cryptanalysis, exhaustive search,

parallelization, Graphic Processing Units (GPUs)
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Chapter 1

Introduction

1.1 Motivation

If one can solve large systems of polynomial equations, one can break all cryptosys-
tems. This general approach is often called algebraic cryptanalysis [9]. Unfortu-
nately, solving such systems is not easy. Indeed, not only is this an NP-complete

problem [14], the following problem is conjectured to be probabilistically hard [3]:

Problem MQ(q;n,m): Solve p1(x) = pa(x) = - -+ = pp(x) = 0, where each p; is a

quadratic in x = (z1,...,x,). All coefficients and variables are in F,.

To be exact, the QUAD stream cipher [3] can be proved secure for certain parameters
under the assumption that: “If we randomly generate the n?(n + 1) coefficients in a
set of 2n quadratic equations in n-bit variables to generate instances in MQ(2;n,2n),
the probability for any algorithm A to terminate within time poly(n) with a solution
would be less than any given fixed ¢ > 0 as n — 0. To date, no one has seri-
ously challenged this statement. Multivariate Public-Key Cryptosystems (MPKCs)
[10][17][18], where the public map is a multivariate quadratic map. also require MQ
to be hard. However, MPKCs have built-in trapdoors, so many effective known
attacks are structural attacks solving the instance of extended Isomorphism of Poly-

nomials. Of course, in practice M) complexity still needs to be evaluated for every



MPKC, as an upper bound of security.

Since Buchberger [8], Grobner basis techniques have been the most prominent
tool for solving systems of equations. For over a decade, the standard benchmark
of cryptographic system-solving has been the Grobner basis algorithm Fy[11], more
precisely the variant that is commercially available in the computer algebra MAGMA
[16]. A more advanced (but not publicly available) algorithm[12| F5 was the first to
break the first HFE challenge in 2002 [13]. The properties of algebraic solvers such
as F4 and XL has been studied in detail [20][1][2]

In 2010, Bouillaguet et al showed that exhaustive search algorithms can be made
extremely efficient, practically faster than existing techniques for solving generic sys-
tems over [Fy using commodity computers and graphics cards and even reconfigurable
computing [7]. Especially for random systems over Fy, it seems as if enumeration
represents the best solution for most cases of cryptographical interest [21]. An open
source software library [5] is available for use with SAGE. The leaders board of the
Fukuoka MQ Challenge series I and IV (dealing with [y systems) are dominated by
enumerative solutions.

Since 2010, there seemed to have been folklore among cryptographers that similar
results might hold for enumerative solutions of systems over F3 and possibly even
larger fields, just as it does over Fo. However, there is no publication on record to

that effect.

1.2 Owur Contribution

We provide a comparative study of enumerative solutions vs. Grobner basis methods
in small fields other than Fy. Of course, 3 is very ill-suited for computers as it takes
two bits to represent a ternary digit (“trit”) but this is a handicap both for Grébner
basis methods and for enumeration. We can restate the end of the above section as

the following open question:



Do enumerative methods hold a similar advantage over Grobner basis
techniques for other small fields and how well does that enumeration do

in practice for F3 (and Fy, F5 ...)7

Our answer is that Brute Force or Enumeration can achieve nearly as much for F3
as it did for Fy, although the set-up phase and book-keeping issues are messier. For
quadratic systems, each test vector only takes on average two parallelized additions
in F3 (which is the same as Fy). The enumerative approach is also extensible to
higher degrees for 3 just as for Fy, although when enumerating for a degree-d
system, each test vector would take more than d adds in Fj.

Our algorithm has been implemented with several optimizations on CPU and
GPU using SSE2 intrinsics and the CUDA framework respectively. Although there is
still room for improvement (e.g., no provision to use multiple GPUs simultaneously),
it outruns all existing Grobner solvers to which we have access.

Today, we can solve 30+ quadratic equations in 30 variables with one NVIDIA
GeForce GTX 980 Ti graphics card in 14 minutes. A cubic system under the other-
wise the same conditions takes 26 minutes. Using MAGMA-2.21-9 on a 4-GHz core
of the AMD FX-8350, FF, (i.e., guess an optimal number of variables before run-
ning the Fy solver, the hybrid approach [20]|4]) would take 150 core-days to solve 30
quadratic equations in as many [F3-variables. This is the best Grobner basis solvers
commercially available today.

By the way, although we only illustrate all our methods and the problem with
[F5, the formulas and the experiment results about F5 are shown in the paper as well.
However we will not introduce this part too much since the main idea is similar to

that in Fg.



Chapter 2

Preliminaries

2.1 Notational Conventions

In this paper, we enumerate over the finite-dimensional vector space (F3)", and use
the base-3 or ternary numerals. Analogous to a bit, a ternary digit is a trit.

We use Cg, 3,5, to stand for the coefficient of the monomial g g, - -- x5, of

k
a polynomial f, and use C for the constant term. Because we know that any zj
where a > 1 can be reduced to v} where v € {1,2}, v = a mod 2, so the restrictions

on the indices §; can be formulated as follows for 1 < < k — 2:
1.0 G <P <+ < B <n,and

2. Bit1 # Biv2 if Bi = Bit1.

In addition, we use [ to denote trit-wise addition of vectors in F%, which means
that each corresponding pairs of trits is added together (mod 3) without carry. In
a similar way, trit-wise subtraction is denoted by H. We also use 3 (resp. <) to
denote ternary right-shift (resp. left-shift) operation. Since 3 = 0, we also have
2 = —1 and occasionally subtracting the same variable is achieved by adding the

same variable twice.



F5 Version

Now consider the finite-dimensional vector space (F5)". It is a numeral system
with five as the base. We use the base-5 or quinary numerals to perform a quinary
system. For a variable, the highest degree is four in Fs5, so any zj§ where a@ > 1
can be reduced to zj; where v € {1,2,3,4}, v = a mod 4. The restrictions are also

modified as follows (1 < i < k —4):
1. O<51<52<<Bk<n,and

2. Bits # Biya if Bi = Bigs.

2.2 Representation used for Ternary Arithmetic

Each trit must be represented by 2 bits. In our implementation, we represent 0
as 00, 1 as 10 and 2 as 11. This representation has the advantage that it is easy
to check whether a trit is equal to zero just by checking its most significant bit
(MSB). Suppose we have elements z,y, z € F3 with their 2-bit representations being
bits (zo, 1), (Yo,¥1), (20,21), where the MSB is indexed as 1 and the LSB as 0.

Formulas corresponding to basic operations in F3 are:
ez=x+tyon=@1@y) Vv @@y DY) 20 = (1@ y0) A (2o ® 1)

o z=xy < 21 = (11 AY1), 20 = (T1 AYo) v (To A Y1)

F5 Version

Of course, a quinary digit, which we call a quint, is represented by 3 bits. We
want to make less and less operations be required and keep the advantage which is
mentioned above, hence we represent 0 as 000, 1 as 100, 2 as 101, 3 as 111 and 4 as

110. Formulas about addition and multiplication in F5 are:



Zo= (x2@ya) VvV (o B yo) v (x2 @1 DY1).

2z = (((% AYo) v (x0 A Y1) v (22 DYya))

o 2 =x+y < < A ((3:1 A Y1) V$0vyo)> \ ((@@Z/z) A (wl@yl))-

Zp = ((Iz Br1 DY) A ((xo A o) V (2 ®y2)))

v ((z2 @ y2) A (1o D w0))-

-

Z9 = (CL’Q AN yz)

¢ =Y Nz = (x3AY)A ((xo/\yo)@(x1@y1))~

20= (T2 AYa) A (oD yo)-

Besides, we list other useful formulas in Table 7.1 as well (see Appendix). For
example, multiplying a constant number 4 is one of those. If an action is to subtract
a variable, we can add the same variable four times due to 4 = —1 in [F5. Further, a
variable multiplied by 4 needs only one bit operation, thus the total number of bit

operations the action needs is equal to addition’s number plus one.

2.3 Ternary Gray Code

A k-trit ternary Gray code, sometimes called a (3, k)-Gray Code|15] is a Hamiltonian
path in F% or a sequence of all 3* possible k-trit sequence such that two successive
values differ in only one trit. Ternary gray codes are not unique, but the example

given in Wikipedia[19] seems as much of a standard as any other.

Definition 1 (Standard k-trit Ternary Gray Code). Ezpress all integers in [0; 3% —1]

as k-trit ternary numerals, then
TERNARYGRAYCODE(z) ==z & (x > 1).

The is analogous to that of the standard Gray Code and may be in fact proved



to be a valid ternary Gray Code in a similar manner|15]. Table 2.1 shows part of a
standard 4-trit ternary Gray code along with their corresponding indices in ternary,
and we also show the quinary version in Table 7.2 (see Appendix). For example,
if z = 012, then (z » 1) = 001, and therefore TERNARYGRAYCODE(z) =
01235001 = 011, which can be also found in Table 2.1. The b; columns in that
table, is the analogue of the “the i-th rightmost non-zero bit position” of the binary
case. We can capture their meaning in the following definition. Let x be written in

ternary, as an index of a ternary Gray code.

Definition 2 (Position of the i-th difference vector). The notation bi(x) is defined
the index of the least significant nonzero trit of x as a ternary number, and —1 if

x=0. Fori>1 we can then define recursively b;(z) := b;_;(z — 3"®)),

We can see as a corollary that if the Hamming weight of x, defined as the sum
as an integer of all trits in the ternary expansion of x is equal to h, then b;(x) = —1

for h < j.

Warning: One should note that in Definition 2, when one of the trits in x is two,
the corresponding index occurs twice in the b sequence. Therefore, while b;(x) is the
analogue of “the position of the i-th rightmost non-zero bit” in the binary case, for
our (ternary) case Definition 2 is not “the position of the i-th rightmost non-zero
trit”. If we want to think of b; that way, we must split each trit further into its
two-bit form and consider b; as the i-th rightmost bit in that expansion. In the
same example used above, b1 (5) = 0,b2(5) = 0,b3(5) = 1 and by(5) = —1 because
510 = (012)3.

Lemma 1. Let e; be the unit vector in the i-th direction (3' as an integer), then

TERNARYGRAYCODE(x + 1) = TERNARYGRAYCODE(x) F ey (241).

Definition 3 (Partial Derivative). Let f be a scalar- or vector-valued polynomials

7



over (F3)". Then we define: g—f(v) = f(vAHe;) — f(v). Thus for any vector v, we

T

have:
of
6%

floBe) = flv) + - (v) . (2.1)

For our convenience, TERNARYGRAYCODE(v) is denoted by g, in the follow-

ing pages. So Lemma 1 can be re-written as

f(gv) = f(gv—l) + (gvfl)'

51’[,1(1})
We will build on this result in our paper to construct a better exhaustive search

algorithm.
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Chapter 3

Known Techniques for Enumerations

3.1 Naive Evaluation

The simplest way to perform an enumeration algorithm is to evaluate the polynomial
f over (F3)™. For every integer 0 < ¢ < 3", we can form a vector of trits from its
ternary expansion zero-padded to n trits, and term that v;, the vector formed by
integer i. So numeration means we check whether f(v;) is equal to zero or not for
i=0,1,...,3" — 1. The process of naive evaluation is shown in Figure 3.1.

While we analyze the process of this algorithm, we can know that the advantage
of this scheme is its storage used. It only needs to store the coefficients of the
equations, and this only depends on the number of monomial terms. Now the
problem is how to calculate it. We believe that the most complex thing is dealing
with those terms which contain repeated variables. Luckily, we have known that a
variable appears two times at most. Therefore, monomials are classified according
to the number of pairs of repeated variables. We calculate those terms where every
variable is different and then calculate the terms which contain only one pair of the
same variable, and so on. In this way, the number of monomials can be obtained by

the following formula (n is the number of variables and d represents the degree of a

10



polynomial):
a 3] n\ (-
N onomia 7d = . . . . 3.1
M 1(n, d) ;};(]) (Z—Qj) (3.1)

In contrast, the significant disadvantage is that it needs a lot of time to evaluate
f(v;). We can use the required number of bit operations to perform how long the
algorithm needs. First, if there are m monomial terms, (m—1) additions are required
and every addition has six operations. Second, if there is a degree-d monomial
where d > 1, (d — 1) multiplication are required and every multiplication has four

operations. Thus the expected bit operations of each evaluation would be:

’L

N addition (1, d) Zd] 3 ( )( _Q‘D —1 (3.2)

i=0 j=0

d .
n JE—
NMultzplzcatzon n, d Z Z 1 — 1 ( ) (Z . 2:]7) (33)

NBit_Na'z've (na d) = 6NAddition (n, d) + 4NMultiplication (Tl, d)
d 13l n—j
= (4i + 2) . 3.4
2 2+9(G) () 2

In summary, when we know how long evaluating f(v;) needs, we can know that
the whole enumeration will take [B”N Bit_ Nagve(n,d)] bit operations as well. Fur-
ther, if a polynomial system has m equations, the total number of operations is

[mS”N Bit Naive(1, d)] In other words, it would require O(m3"dn?) bit operations.

1 Sol «— o,
2 fori=0to 3" —1do
0« f(vi);
if § =0 then

| Sol — Sol U {v;};
end

[=~BL B N

7 end
8 return Sol;

Figure 3.1: Pseudocode of Naive Evaluation

11



3.2 Basic Ternary Gray Code Enumeration

According to the lemma 1, we compute f(g;) by updating f(g; 1) with their dif-
ference %(gi_l). Therefore, this indicates that searching the candidate vectors
in the order of ternary Gray code requires less arithmetical operations than the
requirement in naive evaluation. The pseudocode is shown in Figure 3.2.

In the similar way, we can estimate its storage and required time of the algorithm.
It is almost the same in the storage side except that there are two new variables.
Since we always derive next result by updating the last one, the value of f(v;) is
kept in 9, and f; is a necessary factor in computing differences.

However, this algorithm has better performance than naive evaluation in the
time side. The reason is that we calculate a degree-(d — 1) polynomial instead of
degree-d. Because two successive ternary Gray code differ in only one trit, we can
know that f(g;) and f(g;—1) have different coeflicients in monomial terms which
contain the variable x;, where g; = ¢g; 1 B e;, and ignore the others; hence we can
treat their difference as a new polynomial. We show an example to illustrate how
to calculate it. For a 3 variables (xq, x1, x2) and degree-2 polynomial, the standard

representation would be:
Co,gxg + Cl,lx% + 02721'3 + C071$0$1 + CO,Q.TO{L'Q + 01721'1.1'2 + Co.CEO + CliL'l + CQIQ + C.

Suppose two ternary Gray code differ in z;, thus we only concern about the
terms Cl,le, Co, 12071, Ci w172 and Cyx;y because all of the others are eliminated
with their same coefficients. In order to explain the main idea easily, the order of

difference is changed as below.
(C071$0 + CLQZCQ + Cl)xl + (0171).77% .

According to the exponential value, the monomials are divided into two groups.

12



Then we can treat the coefficient of z; as a 2 variables (z¢, x2) and degree-1 poly-
nomial and the coefficient of 7 as a 2 variables (zg, T9) and degree-0 polynomial.
Furthermore, updating 6 needs one addition, so the expected bit operations of each

evaluation would be:
Npit_prece(n,d) = Npi_Nawe(n —1,d — 1) + Npit_Nawwe(n —1,d —2) + 1. (3.5)

We know the first term is usually much more than the second term, thus this
implies that we can ignore those so that Npi prace(n,d) = Npit nawe(n —1,d —
1). Consider a m equations polynomial system, the whole number of operations is

[m3”NBit7Nagve(n —1,d— 1)]7 and it can be represented as O(m3"dn?1).

1 Sol — o;

06— C;
for:=0to 3" —1do
Br < bi(7);

if 51 = 0 then

of .
‘ 00+ 073, (v;) (8i1);

(=N, SRS VR V]

end

if 6 =0 then

9 | Sol — Sol U {g};
10 end

x® =

11 end
12 return Sol;

Figure 3.2: Pseudocode of Basic Ternary Gray Code Enumeration

3.3 Generalized Ternary Gray Code Enumeration

From the last section, we have known that while any two successive values differ in
only one trit, the evaluations can be accelerated. In this section, we introduce a new
algorithm, which we call generalized ternary Gray code enumeration (GTGCE).
This method is the extension of section 3.2. It not only keeps the advantage as

mentioned above but also makes use of the recursive technique.

13



First of all, let us consider a special situation in lemma 1. If %(v) and %(vej)

are known differences, the equation afjaj;j (v) = %(U e;) — g—i(v) can be derived

by the definition. Similarly, the ternary Gray code form can be represented as

o (gi) = =L (gp_1) + =L (g4_1). In summary, we can extend the

6zb1 (vg) awbl (vg) awbl (vk)ame(vk)

lemma to any higher degree.

Now we are going to illustrate the algorithm. The pseudocode of GTGCE is
shown in Figure 3.3. At the beginning, some variables need to be initialized (line
1-5). ¢, which is also used in Figure 3.2, stores f(g;) and g, . 5, store all kinds
of differences M—-Jéa:ﬂ,m(g)‘ Further, we need to notice that addition in the
subscript of ¢ is trit-wise operation. For example, given 3; = 2,8, = 4, we can

derive (32 — 1)@ (3" — 1) = 0022 {2222 = 2211, and then gss;; equals 2020.

Therefore, the following equations can be derived.

o f
= 202
024 83:28:154( 020)
of of
= —(12020) — —(202
8352( 020) 8352( 020)

= (f(12120) — f(12020)) — (f(2120) — f(2020))

=Co4+Co94+Cous—Ci24—Co34. (3.6)

Initialization of dg,, g, is listed in Table 3.1 and Table 3.2. These differences will
always stay up-to-date (correct) because their values will be updated every round
in the for loop. After initialization, the process will enter exhaustive search stage.

The stage can be divided into three steps roughly.

Table 3.1: Initialization of differences with degree = 2 in I3

first order
difference | constraint initialization
do Co + Cop
0; 0<i Ci-Ci,; +Cyy
second order
52‘,1' - Ci,i
i j i<j Ci,
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Table 3.2: Initialization of differences with degree — 3 in I3

first order
difference constraint initialization
do Co + Cop
0; 0<1 Ci-Cii+Cii +Ciyi1 - Gy
second order
difference constraint initialization
90,0 - Cop
0,1 Co,a - Coo1 + Coan
do,; 1<y Co,; + Coo, - Coj-15 + Coyj
5@@' 0<1 -Cii -Gy
04,1 0<i Ciiv1 - Ciriint - Ciiir1 + Cintin
i i+t O<t&l <t | G- Ciriine + Ciiine + Ciivrine = Ciineo1i0t
third order
difference constraint initialization
Oiisk i<k - Cii
Oijj _ |1<J - Cijj
5i,j,k 1 <j & j <k Cz’,j,k

The first step (line 7-8) is finding corresponding indices of the differences (where
the non-zero trits are, 2’s counting twice) in the ternary index ¢. If the degree of
a polynomial system is d, we only need to record d least significant nonzero bits at
most.

The second step (line 9-11) is updating the variable differences and the result
according to the indices determined in the first step. In Figure 3.2, the formula

(gi—1) updates the result. However, the value of —%—(g;_;) must be

o+ =
05y (v;)

of
05y (v;)

updated with the second order difference prior to being used. In short, we add one
higher-order difference into a lower-order one to get its new value, recursively. These

actions are clarified by the following expression (with a > 3):

o+ = (5ﬂ1+ = (551,52+ = (651752,B3+ = ))) . (37)

These recursive in-place prefix-sum operations do not halt until we meet a ter-
minal condition, which means a difference that need not be updated. Moreover, we

sometimes need to add more than one higher-order difference in an update. That is,
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having to add several dg, .. s, t0 dg, . g, , is possible. If this happens in a terminal
step (meaning, for a degree-d system, we are using one or more order-d differences),
we would always precompute the sum of all involved differences to get a new differ-
ence constant 05 5, and in such case only one addition is needed. However, when
d > 2, sometimes this situation happens in the middle of the recursive process in
Eq. 2, and we cannot precompute so easily because every dg, . 5 must be updated
individually before a dependent lower-order difference can be updated. In short, the
process of updating depend on indices we find in the first step. The relation between
these is illustrated in Table 3.3 and Table 3.4, and we illustrate their correctness
with Table 2.1.

Now we are going to introduce the terminal conditions of the recursion. Note

oty

— and its value is equal
0T (9), q

that a difference g1, g4 Will be initialized to
to or some multiple of the monomial coefficient Cg; 4. It depends on G;. If every
B; is different, the multiplier is 1; for every pair of §; = (;;1 (which means that
a trit is 2), the multiplier will be doubled; thus with ¢ equal pairs of indices, the

multiple is equal to 2¢. Since these differences are always constants, the multiplier

values need no updates. So, there are two ways we stop the recursive updating:
1. a = d, and we have reached the highest degree difference, which is constant.
2. 0p,,..p. appears for the first time and we use its known initial value.

The last step (line 12-14) is checking whether the new result is equal to zero or
not. If the condition is satisfied, we add the corresponding ternary Gray code to
the group which contains all legal solutions. Of course, an actual run starts with
a script which enumerate through the indices and compute the corresponding b;’s
and generate the actual C program with no unnecessary branches or table lookups.
A main difference with [y is the possibility of having to add several differences to
update one lower-order difference, causing the number of additions per candidate to

be greater than d on average for a degree-d system when d > 2.
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Sol «— &;
0 «— C;
foreach coefficient Cps, . s, of f do

ok f
0y, < 3

T3 (381 +...+3Bk)"'axgk(3ﬁ1 +t38K)
(see Table 3.1, Table 3.2)

end

for:=0to 3" —1do

a «— min(HammingWeight(7),d);

517 s 7504 A bl,...,a(i);

for j=ato1do

10 ‘ 551 77777 Bi—1 < 651 ----- Bi-1 t 551
11 end

12 if 6 =0 then

13 | Sol — Sol U {g;};

14 end

N VN

(g(sﬁl —1)@E--H(35k 71));

© o N O >

3, (see Table 3.3, Table 3.4)

-----

15 end
16 return Sol;

Figure 3.3: Pseudocode of Generalized Ternary Gray Code Enumeration

Finally, we also analyze the performance of this method. In BTGCE, f; is used
to determine the difference; however, we need to calculate the order-k differences
in GTGCE where 1 < k < d, thus there are d registers required for (5,--- , B4).
Since the main idea of this algorithm is updating the previous result to get the next
one, we need to store every initial value of differences as well, and it equals to the
number of monomial terms.

On the other hand, there is an obvious improvement in its execution time. While
we observe the updating step (line 10), we can find that no calculating is needed.
Each initial value of differences has been computed in the initial step, hence only
additions which are used to update variables remains in the for loop. Now the
problem is how to compute the number. From Table 2.1, we find that there are
three order-2 differences at most to update a order-1 difference in the quadratic
system. Similarly, if we list more actions in the cubic system, we also find that
there are four order-3 differences at most to update a variable. Therefore, while

we consider the worst case, every order-k difference needs (k + 2) order-(k + 1)
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differences. In general, the number of differences is equal to the number of additions
required. However, we have known more order-d differences can be precomputed as
mentioned above so that the number of additions in order-d equals to in order-(d—1).

Thus the expected bit operations of each evaluation would be:

6(1), ifd=1
Ngit_arace(d) = 6Nag_crace(d) = (3.8)

6(13¢ ,il+ 4, otherwise.

In brief, the value of (i + 1)! is always much more than i!, hence the equation
can be simplified to Npi qrace(d) = 6d! except d = 1 and then the total number
of operations with m equations is [mS"N BitiGTGCE(d)] The time complexity of

GTGCE would be O(m3"d!). We know that this is usually much less than the

previous two methods in practical cases.

F5 Version

We do not show the algorithms about F5 because the scheme of algorithms are similar
to those in F3 except some formulas. Therefore, the formulas of initialization and

updating in 5 are listed in the Appendix.

18



1> T UOYM S)SIXO [-R[NULIO]

A%f.ﬁs% + f.ﬁﬁt»@% + HTn v f: oY :
=+ VUT-g =y V2 VT-1Z-g —y V1Y
(g L T ) oy g wa + zm - % =+ WY >R I>TBL>0 | Y 4L 1
_ , L R S ;
(1T 4 T 4 Ty  THETHY = ) =y T: Py Zy Trg | PTG :sm R ) i S o
AT.@ T.S% + T.ﬁ.i% + T ‘0 v =+ T: EJ-@ =t 1 T-1'g-1 1= 1> 1+ 31 >0 1 [+? [
Au\{s + ssH 1 ‘1 VT-17-12 — ¢ % ¢ ., % =t % @ > O H+@ ﬂ+@ ?
_ 0 %lvu+.% VTSIt oy Y170 NH-NN-N%u+.&“H-.@m P - -
(170g 4 FTog 4 FT-F0g) =y F0g Y>131>0 4 vt
Abbom + FT0g - ) =+ Fog y>0n0>71| y I5 0
(V109 4 T'00g) =4 L0 L>1| ¢ r 0
- >0 4 0
¢-RINULIOJ _ i 0
¢-B[nuLIog [ [-R[nuLIO) JUIRIISUOD g @ Ig

€ ur wegsAg o1qny) ur Juryepd) JO Se[NUWLIO} :F°¢ 9[qe],

(Fro+ o+ ') =+ o [ [>1m1i>0 [ 1
A.E% + VT - ) =+ 0 >0 ¢ @
(Fog + 009) =4 0 ENINE

00 =4 0p 0 0

R[NULIOJ JUTRIISUOD g Ig

€ ur wo)sAg onrperpeng) ur suryepd() Jo SRNMUWIO} :¢°¢ d[(R],

19



Chapter 4

Variants and Analysis

4.1 Partial Evaluation

Now we understand how various exhaustive search solvers work, it is easy to see that
they are suitable for parallelization. So we will divide an input system into multiple
subsystems to be solved simultaneously.

Partial evaluation is an obvious method for splitting the problem. The main idea
is to substitute all possible values for s variables. Therefore, we can use s to control
the number of subsystems. It generates 3° subsystems each with n — s variables.

We illustrate with an example as below. Consider a system with d = 2,n = 4,
and choose s = 2. Hence there are 4 variables, which are xg, x1,x2 and x3 in the
input system, and zs and z3 will be substituted to find 9 subsystem individually
with only variables zy and x;. After reorganizing the coefficients, we can obtain the

following expression:

C(),Ul'g + Cl,lx% + 00711’01'1 + (C072$2 + Co’gfL'g + Co)xo + (01721’24‘

01?31'3 + Cl).’L’l + (CQQ%% + Cg;g%?; + 02731'2333 + CQ.I'Q + Cg$3 + C) .

It is easy to see that coefficients of the highest degree still retains their original

values. The new constant is Cg,gxg + 03733?% + Cy 31973 + Cozgy + Cs23 + C; the new
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coefficient of z¢ is Cp oz + Cozzz + Cp and the new coefficient of z; is C; 229 +
Ci373 + C;. We may substitute zo and x3 with their different possible values (0,1
or 2) for each subsystem so that 9 subsystems will be derived. Since there may be
many substituted variables, we can use the same Generalized Ternary Gray Code

enumeration technique.

4.2 Early-abort Strategy

In contrast with partial evaluation, an early-abort strategy focuses on equations.
Each candidate vector is first checked against a fixed portion of the equations. Only
if the candidate passes that test do we check whether it satisfies the remaining
equations.

This method is like a filter, which removes impossible vectors early. We call the
first part "enumeration phase", and call the second part "check phase". Suppose a
system has n variables and m equations. There are total 3" candidate vectors which
need to be evaluated. Then we check only the first k£ equations in enumeration
phase. On average only 3% vectors will pass the filter so that the number of possible

vectors decreases obviously.
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Chapter 5

Implementations

5.1 On GPU

5.1.1 Overview

We start with an input system with n variables and m equations and we compute
all differences which will be used in the enumeration. We then divide the system
into numerous subsystems by guessing s variables, with each subsystem going to
one thread on the GPU. The differences for 3° subsystems may not be all the same
due to the substitutions. Every thread will only test the first 32 equations with
GTGCE and return at most one candidate vector which satisfies all equations during
in enumeration phase. All possible solutions are then checked against the other
equations. If more than one vector is found in a thread, we will need to perform
GTGCE again on the CPU during the check phase because we can only return one,
as in the details below.

We test 32 equations simultaneously in the enumeration phase since that is the
width of a GPU register. The two bits in the 2-bit representation of each of the 32
trit-results are split into two registers to take full advantage of bit-slicing. Addition

(and occasional subtraction) uses only bitwise AND, OR and XOR with no carries.
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5.1.2 Unrolling

When we update the result of f(g;), accumulating is a necessary procedure. However,
another thing which is almost as important as that is finding indices, and it occupies
a lot of time in this stage. For this reason, unrolling is an intuitive method for
decreasing the overhead.

We illustrate the method with Table 5.6. It is a scheme of unrolling with unroll
factor 27. Suppose the system is cubic, so we only need to consider three by. Recall
that by(i) represents the index of the k-th least significant nonzero bit in ternary
index 7. These columns indicate some by, are fixed even if we do not know the values
of higher trits. For example, by(#---+012) is a constant. Further, we can determine
unknown items only if all by, in the first index, which is (x--- x 000), are evaluated.
The reason is that every series of higher trits is equal in the same scheme, thus we use
these by,’s repeatedly in the other indices. For example, by (- - -=001) = bg(= - - -+000).

Let us formulate the description above. We consider any scheme of unrolling with
unroll factor 3%, and the first index is ¢. The other indices in the same scheme can be
defined as i’ = i+ k, where 0 < k < 3“. Hence the indices of the HammingWeight (k)
least significant nonzero bits in i’ are constants. These values can be computed before
enumeration phase. In contrast, there are still some b;(i') which can not be known
beforehand (HammingWeight(k) < d). However, these indices can be determined
by b;(i") = bj_1 (i), where h = HammingWeight(k) and j > h.

Table 5.6: A Scheme of Unrolling with Unroll Factor 27

index by | bz | b2 | b1 index by | b3 | b2 | b1 index by | b3 | b2 | b1
%-0-%000 | By | B3 | B2 | B1 || #---%100 | B3 | B2 | B1 | 2 ¥-0-%200 | B2 | B1 | 2 | 2
# -0 % 001 53 62 61 0 - 101 BQ 61 2 0 s ek 201 Bl 2 2 0
#---%002 | B2 | B1 0 0 #---% 102 | [y 2 0 0 #eeox 202 2 2 0 0
#---%010 | B3 | B2 | B1 1 #---% 110 | B2 | B 2 1 #0210 | By 2 2 1
%% 011 | B2 | B1 1 0 #-x 111 | By 2 1 0 #e-w 211 2 2 1 0
%% 012 | [ 1 0 0 Heeew 112 2 1 0 0 #eew 212 2 1 0 0
®---%x020 | B2 | B1 1 1 *-.- %120 | S 2 1 1 #.x 220 2 2 1 1
®--x 021 | B 1 1 0 # ook 121 2 1 1 0 #eew 221 2 1 1 0
® .ok 022 1 1 0 0 # ook 122 1 1 0 0 % ow 222 1 1 0 0
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5.1.3 Returning

Let us recap the pseudocode in Figure 3.3. When a candidate vector satisfies all
equations in enumeration phase it is added into a set of candidate solutions. Nev-
ertheless there are some problems even with this simple approach. One problem
is the limitation of memory, we may need to keep too many candidates. Another
problem is synchronization on GPU. Every thread performs individually and finds
their respective solutions. Integrating all of the solutions into an appropriate form
is a complicated mission.

We use a similar techniques as in [6] to avoid branching or collecting too many
solutions. Each thread has two variables: count the total number of possible vectors
and sol the last candidate vector found. Since the thread keeps only one possible
result. We also only care about count in three states: 0, 1 or 2+ (2 solutions are
too many!). Since sol by design takes less than 32 bits, we simply assign the most
significant trit (MST) of sol to 1 if count = 2+, and only returns we check whether
more than one vector is founded or not by MST in CPU. Note that sol is always
less than 32-bit, so changing the highest trit does not affect the correctness of the
solution.

By the way, each of the threads does not calculate the result of f(0,...,0) in
enumeration phase. It will be checked individually in CPU. Therefore, that sol

equals zero represents no legal solution rather than an all zero solution.

5.1.4 Re-enumeration

After executions of enumeration phase, the candidate vectors which pass the first 32
equations will be tested for the rest of input equations in check phase. According to
the previous section, we know that the number of solutions can be determined by
the value of MST. If it exists only one, we evaluate the equations over this vector;
if there are more than one, we will execute GTGCE with the first 32 equations

again on CPU, which we call re-enumeration. sol can be used in this stage as well.
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Since enumeration is performed in ternary Gray code order and sol is the last legal
solution, re-enumeration can terminate early if the order of vector we are processing
is larger than the order of sol. In addition, if any possible solution is found, it will be
checked for the other equations immediately. The reason is that the cost of branches
on CPU is less than GPU.

However, re-enumeration will spend a lot of time so that we do not want to en-
counter this situation. To avoid re-enumeration, we control the number of variables
in every thread. That is to say, we determine variable s in section 4.1 to make each

of the threads finds only one solution at most.

5.2 On CPU

5.2.1 Overview

The input system has n variables and m equations and all differences are computed
initially. Next, the system is divided into various subsystems. This is “partial evalu-
ation” similar to what we execute on GPU. At this point every thread processes the
first 32 equations on GPU. On a CPU, each subsystem will have only 16 equations
tested at a time so that a register can hold and therefore process information from
more systems at the same time.

Another difference between CPU and GPU is the checking phase after enumer-
ation. A possible solution is sent to the check queue immediately. The reason is
that a CPU is comparatively much more efficient at branching and threading. It is
because branches are so costly on a GPU, that there is no checking phase until all

work on GPU is finished.

5.2.2 Batched Enumeration

In enumeration phase on CPU, we take advantage of the 128-bit XMM registers,

and we make each of the subsystems process the first 16 equations. That is, all
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differences are only 16-bit. In this way, we can execute 8 subsystems simultaneously.
Since the type of value is  int128, accumulating can be done by the intrinsics
~mm_and_sil28, mm_or sil28 and mm_xor sil28. However, that a result
is equal to zero does not represent a legal solution owing to 8 solutions in a register.
We use some SSE2 intrinsics to solve this problem similar to [6].

The method is shown in Figure 5.1. The intrinsic _mm_cmpeq_epil6 compares
the 8 unsigned 16-bit blocks in res x1 and the 8 unsigned 16-bit blocks in zero,
which is a 128-bit all-zero variable, for equality. res x1 represents the higher bit
in a trit. If two corresponding blocks are equal in two variables, the same position
of the block in Mask will be assigned to OxFFFF, and 0x0000 otherwise. Next, the
intrinsic _mm_ movemask epi8 creates a 16-bit mask from the most significant
bits of the 16 unsigned 8-bit blocks in Mask; hence that mask is not equal to zero
represents at least one solution exists. Because a 16-bit block is all-zero in res, it
makes a bit in mask equals 1. Any candidate vector found is sent to the check queue
to have the rest of equations tested. Note that we check every bit in mask as more

than one bit may be set, which means that more than one subsystem is satisfied.

1 Mask _x1 = mm_cmpeq_epil6(res zl1, zero);
2 mask = mm_movemask epi8(Mask x1);
3 if(mask) check(mask,idx, z1, z0);

Figure 5.1: A Few Lines of SSE2 Intrinsics in CPU Implementations
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Chapter 6

Empirical Results and Discussion

We tabulate all results in the appendix. We can see that we can solve a 30-variable,
30-equation system over F3 on a GeForce GTX980 Ti in 14 minutes. The same
run on an AMD FX-8350 core (4 GHz) takes 32 hours. For 20 variables and 20
equations, the GPU takes 0.21 seconds, and the CPU takes 1.2 seconds.

We tested MAGMA-2.21 on the same CPU with guessing (FF4 or Hybrid Ap-
proach) for the same systems and tabulate the results in the appendix. Not all runs
are complete, as in some cases we only ran sufficiently many subsystems to ensure
that the run with the correct guess and a run with an incorrect guess takes com-
parable amounts of time. From these data we may extrapolate where the Grobner
bases method will catch up to enumeration on the same CPU. Going by just the
endpoints, we expect that FF4 to catch up to enumeration at 58 equations and vari-
ables (2% complexity) and if we use the regression line, the crossover point would be
60 equations and variables (2% complezity).

There are a number of caveats to this comparison. While MAGMA has well-
optimized linear algebra and uses semi-sparse operations where possible, it is not
specifically tuned for 3, and we expect that a tuned solver would do better. In the
other direction, Grobner basis methods takes a huge penalty once the state becomes

larger. Also, GPUs can be used effectively in enumeration, speeding it up by a
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factor of two orders of magnitude on a per-dollar basis. We can also expect that
an FPGA implementation similar to [7] would speed enumeration up by another
order of magnitude. Factoring in everything, it is likely that for a generic quadratic
system with as many equations as variables over F3, enumeration will be better than
algebraic solvers for all tractable problem sizes. If we repeat the same computation
for IF4, we can estimate the crossover point to be close to 40 equations and variables,
or 2% complexity level (close to the limit of researchers’ resources). Finally, for F;

200 complexity, well within

we estimate that the crossover point would be as low as
reach of academics.

One big difference from the Fy case: We extrapolate that FF4 will catch up to
enumeration on the same CPU at n = 30, m = 60. After taking into consideration

special hardware, we estimate algebraic solvers to match enumeration for the m/n =

2 overdetermined generic case in F3 around the 2% (40 trits) level.

Table 6.1: Enumeration Performance on GPU in Fs(nVidia GeForce GTX 980 Ti)

quadratic system cubic system
equations | variables | guesses | unroll | time(sec.) || equations | variables | guesses | unroll | time(sec.)
20 20 9 5 0.21 20 20 8 4 0.31
22 22 9 5 0.34 22 22 9 4 0.71
24 24 11 5 1.27 24 24 9 4 3.19
26 26 11 5 8.75 26 26 10 4 26.34
28 28 12 5 86.72 28 28 11 4 237.98
30 30 13 5 788.83 30 30 11 4 2143.35

Table 6.2: Enumeration Performance on 1 CPU core in F3(AMD FX-8350 4GHz)

quadratic system cubic system
equations | variables | guesses | unroll | time(sec.) || equations | variables | guesses | unroll | time(sec.)
20 20 8 5 1.20 20 20 8 5 1.80
22 22 8 5 8.40 22 22 8 5 17.40
24 24 8 5 76.80 24 24 8 5 159.60
26 26 8 5 691.20 26 26 8 5 1426.80
28 28 8 5 6241.80 28 28 8 5 12804.60
30 30 8 5 56140.80 30 30 8 5 115560.60
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Figure 6.1: Comprehensive Results in [

Table 6.3: Enumeration Performance on GPU in Fj(nVidia GeForce GTX 980 Ti)

quadratic system cubic system
equations | variables | guesses | unroll | time(sec.) || equations | variables | guesses | unroll | time(sec.)
14 14 6 3 0.37 14 14 6 2 0.62
15 15 7 3 0.72 15 15 6 2 1.57
16 16 7 3 2.19 16 16 7 2 5.08
17 17 8 3 8.84 17 17 7 2 22.53
18 18 8 3 47.28 18 18 7 2 119.85
19 19 9 3 246.52 19 19 8 2 600.06
20 20 9 3 1249.83 20 20 8 2 3014.25

Table 6.4: Enumeration Performance on 1 CPU core in F5(AMD FX-8350 4GHz)

quadratic system cubic system
equations | variables | guesses | unroll | time(sec.) || equations | variables | guesses | unroll | time(sec.)
14 14 5 3 5.42 14 14 5 3 17.96
15 15 5 3 27.05 15 15 5 3 89.40
16 16 5 3 135.21 16 16 5 3 447.51
17 17 5 3 678.35 17 17 5 3 2225.90
18 18 5 3 3375.85 18 18 5 3 11217.34
19 19 5 3 17174.18 19 19 5 3 56001.30
20 20 5 3 87865.88 20 20 5 3 278696.14

29




10°

E T T I El

| |—= GPU-quadratic

10° | |+ GPU-cubic 4

— CPU-quadratic
Pg 104 - CPU-cubic -
S
o 107
= i ]
= L |
80 10? B e
g F .
= B ]
= 100
= i ]
10°F

1071 L L | | | | | | |

The Number of Variables

Figure 6.2: Comprehensive Results in [Fj

Table 6.5: Performance Results of Quadratic System in MAGMA

Testing platform: AMD FX(tm)-8350 Eight-Core @ 4 GHz

Fs Fy Fs5

equ. | var. | gue. time(sec.) || equ. | var. | gue. | time(sec.) || equ. | var. | gue. | time(sec.)
18 18 8 190.27 16 16 ) 111.62 14 14 5 59.38
19 19 8 452.71 17 17 5 316.42 15 15 5 153.13
20 20 9 1180.98 18 18 6 937.98 16 16 ) 684.38
21 | 21 10 2893.40 || 19 | 19 7 2768.90 || 17 | 17 5 2059.38
22 22 11 6908.73 20 20 8 7143.42 18 18 ) 7281.25
23 | 23 | 12 20726.20 || 21 | 21 8 22937.60 || 19 | 19 6 27500.00
24 24 12 52612.66 22 22 8 64225.28 20 20 7 88984.38
25 | 25 | 12 121699.99 | 23 | 23 8 | 174325.76 || 21 | 21 7 290546.88
26 26 12 291761.11 24 24 9 495452.16 22 22 8 1066015.63
27 | 27 | 13 829047.96
28 28 14 2008846.98
29 29 14 5213436.21
30 30 15 | 13186645.53
40 | 20 0 83.60 | 40 | 20 0 24.96 | 40 | 20 0 89.48
42 21 0 200.72 42 21 0 54.09 42 21 0 230.16
44 22 0 471.91 44 22 0 119.51 44 22 0 517.67
46 23 0 971.35 46 23 0 272.08 46 23 0 1141.19
48 24 0 2857.02 48 24 0 2028.01 48 24 0 3174.25
50 25 0 7277.18 50 25 0 4873.02 50 25 0 8332.86
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Chapter 7

Appendix

Table 7.1: Formulas in F5
z =2z z =3z z =4z 2= 2 =z’
2 ) X2 X2 X2 X2
21| T1@xy | 22Dx1 Do | 12D Zo 1 @ T
20 | w2 @ o o D o Zg 0 Zo
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Table 7.3: Initialization of differences with degree = 2 in [y

first order
difference | constraint initialization
do Co + Cop
0; 0<1 Ci-Cii+Cyy
second order
(Sm‘ 202,1
i j 1< C;;

Table 7.4: Initialization of differences with degree = 3 in Iy

first order
difference constraint initialization
do Co + Cop + Copp
d; 0<i Ci-Cilii+Cii +Ciqm1 - Cimqi + Gy
second order
difference constraint initialization
90,0 2Co0 + Co0,0
00,1 Co1-Coo1 +Coin
do,j 1<y Co,; *+ Coo, - Coj-15 + Coyy
dii 0<i 2C;; + Ci1,i + Gy
5i,z+1 0<z1 Ci,z’+1 - Cz’—l,z’,i+1 - Ci,i,z‘+1 + Ci,i+1,i+1
6i,z’+t O<t&l <t | Ciu-Ciriinet Ciiinr + Ciivtint - Ciinto1i0t
third order
difference constraint initialization
0iii Ciii
5“7]9 i<k QCi,i,kz
(51'7]‘7]‘ 7 <j QCZ‘JJ
5i,j,k 1 <j & j <k Ci,j,k
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