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摘要

在密碼學的領域裡，如何在有限體裡面解多變量方程組是一個很重要的問題。

我們已經知道在F2裡且低維度的系統下，當變數與方程式的數量一樣多時，列舉

演算法比現存的任何演算法都還要有效率，當然，我們只考慮實際可能的問題大

小。然而我們卻不知道對於其他有限體是否也有一樣的結果。

因此，在此研究中我們對於在F3裡維度較低的系統提出了適合平行化的窮舉搜

尋演算法，這個演算法不僅可以透過SSE2指令集使的在CPU達到平行化的效果，

也可以經由CUDA實作在顯示晶片上。它的優化技巧以及與F2演算法的差異我們

也會詳加分析。

我們的實作在使用了nVidia顯示卡時，解維度2、變數30且方程式30+的多變量

系統問題只需要14分鐘；此外，解維度3的系統可以在36分鐘內完成。這些表現也

都超越了所有現存的演算法，同時根據這些結果我們可以進一步的比較隨著有限

體的大小增加，Gröbner基底與列舉演算法之間的關係。

關鍵字:多變量方程式、代數分析、窮舉搜尋、平行化、顯示晶片。



Abstract

Solving multivariate polynomial systems over �nite �elds is an important problem

in cryptography. For random F2 low-degree systems with equally many variables

and equations, enumeration is more e�cient than advanced solvers for all practical

problem sizes. Whether there are others remained an open problem.

We here study and propose an exhaustive-search algorithm for low-degree sys-

tems over F3 which is suitable for parallelization. We implemented it on Graphic

Processing Units (GPUs) and commodity CPUs. Its optimizations and di�erences

from the F2 case are also analyzed.

We can solve 30+ quadratic equations in 30 variables on an NVIDIA GeForce

GTX 980 Ti in 14 minutes; a cubic system takes 36 minutes. This well outperforms

existing solvers. Using these results, we compare Gröbner Bases vs. enumeration for

polynomial systems over small �elds as the sizes go up.

Keywords: multivariate polynomial, algebraic cryptanalysis, exhaustive search,

parallelization, Graphic Processing Units (GPUs)
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Chapter 1

Introduction

1.1 Motivation

If one can solve large systems of polynomial equations, one can break all cryptosys-

tems. This general approach is often called algebraic cryptanalysis [9]. Unfortu-

nately, solving such systems is not easy. Indeed, not only is this an NP-complete

problem [14], the following problem is conjectured to be probabilistically hard [3]:

Problem MQpq;n,mq: Solve p1pxq � p2pxq � � � � � pmpxq � 0, where each pi is a

quadratic in x � px1, . . . , xnq. All coe�cients and variables are in Fq.

To be exact, the QUAD stream cipher [3] can be proved secure for certain parameters

under the assumption that: �If we randomly generate the n2pn � 1q coe�cients in a

set of 2n quadratic equations in n-bit variables to generate instances inMQp2;n, 2nq,

the probability for any algorithm A to terminate within time polypnq with a solution

would be less than any given �xed ε ¡ 0 as n Ñ 8.� To date, no one has seri-

ously challenged this statement. Multivariate Public-Key Cryptosystems (MPKCs)

[10][17][18], where the public map is a multivariate quadratic map. also requireMQ

to be hard. However, MPKCs have built-in trapdoors, so many e�ective known

attacks are structural attacks solving the instance of extended Isomorphism of Poly-

nomials. Of course, in practiceMQ complexity still needs to be evaluated for every
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MPKC, as an upper bound of security.

Since Buchberger [8], Gröbner basis techniques have been the most prominent

tool for solving systems of equations. For over a decade, the standard benchmark

of cryptographic system-solving has been the Gröbner basis algorithm F4[11], more

precisely the variant that is commercially available in the computer algebra MAGMA

[16]. A more advanced (but not publicly available) algorithm[12] F5 was the �rst to

break the �rst HFE challenge in 2002 [13]. The properties of algebraic solvers such

as F4 and XL has been studied in detail [20][1][2]

In 2010, Bouillaguet et al showed that exhaustive search algorithms can be made

extremely e�cient, practically faster than existing techniques for solving generic sys-

tems over F2 using commodity computers and graphics cards and even recon�gurable

computing [7]. Especially for random systems over F2, it seems as if enumeration

represents the best solution for most cases of cryptographical interest [21]. An open

source software library [5] is available for use with SAGE. The leaders board of the

Fukuoka MQ Challenge series I and IV (dealing with F2 systems) are dominated by

enumerative solutions.

Since 2010, there seemed to have been folklore among cryptographers that similar

results might hold for enumerative solutions of systems over F3 and possibly even

larger �elds, just as it does over F2. However, there is no publication on record to

that e�ect.

1.2 Our Contribution

We provide a comparative study of enumerative solutions vs. Gröbner basis methods

in small �elds other than F2. Of course, F3 is very ill-suited for computers as it takes

two bits to represent a ternary digit (�trit�) but this is a handicap both for Gröbner

basis methods and for enumeration. We can restate the end of the above section as

the following open question:
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Do enumerative methods hold a similar advantage over Gröbner basis

techniques for other small �elds and how well does that enumeration do

in practice for F3 (and F4, F5 . . . )?

Our answer is that Brute Force or Enumeration can achieve nearly as much for F3

as it did for F2, although the set-up phase and book-keeping issues are messier. For

quadratic systems, each test vector only takes on average two parallelized additions

in F3 (which is the same as F2). The enumerative approach is also extensible to

higher degrees for F3 just as for F2, although when enumerating for a degree-d

system, each test vector would take more than d adds in F3.

Our algorithm has been implemented with several optimizations on CPU and

GPU using SSE2 intrinsics and the CUDA framework respectively. Although there is

still room for improvement (e.g., no provision to use multiple GPUs simultaneously),

it outruns all existing Gröbner solvers to which we have access.

Today, we can solve 30+ quadratic equations in 30 variables with one NVIDIA

GeForce GTX 980 Ti graphics card in 14 minutes. A cubic system under the other-

wise the same conditions takes 26 minutes. Using MAGMA-2.21-9 on a 4-GHz core

of the AMD FX-8350, FF4 (i.e., guess an optimal number of variables before run-

ning the F4 solver, the hybrid approach [20][4]) would take 150 core-days to solve 30

quadratic equations in as many F3-variables. This is the best Gröbner basis solvers

commercially available today.

By the way, although we only illustrate all our methods and the problem with

F3, the formulas and the experiment results about F5 are shown in the paper as well.

However we will not introduce this part too much since the main idea is similar to

that in F3.
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Chapter 2

Preliminaries

2.1 Notational Conventions

In this paper, we enumerate over the �nite-dimensional vector space (F3)
n, and use

the base-3 or ternary numerals. Analogous to a bit, a ternary digit is a trit.

We use Cβ1,β2,...,βk to stand for the coe�cient of the monomial xβ1xβ2 � � � xβk of

a polynomial f , and use C for the constant term. Because we know that any xαβ

where α ¥ 1 can be reduced to xγβ where γ P t1, 2u, γ � α mod 2, so the restrictions

on the indices βi can be formulated as follows for 1 ¤ i ¤ k � 2:

1. 0 ¤ β1 ¤ β2 ¤ � � � ¤ βk   n, and

2. βi�1 � βi�2 if βi � βi�1.

In addition, we use ` to denote trit-wise addition of vectors in Fn3 , which means

that each corresponding pairs of trits is added together pmod 3q without carry. In

a similar way, trit-wise subtraction is denoted by a. We also use Ï (resp. Î) to

denote ternary right-shift (resp. left-shift) operation. Since 3 � 0, we also have

2 � �1 and occasionally subtracting the same variable is achieved by adding the

same variable twice.
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F5 Version

Now consider the �nite-dimensional vector space (F5)
n. It is a numeral system

with �ve as the base. We use the base-5 or quinary numerals to perform a quinary

system. For a variable, the highest degree is four in F5, so any xαβ where α ¥ 1

can be reduced to xγβ where γ P t1, 2, 3, 4u, γ � α mod 4. The restrictions are also

modi�ed as follows (1 ¤ i ¤ k � 4):

1. 0 ¤ β1 ¤ β2 ¤ � � � ¤ βk   n, and

2. βi�3 � βi�4 if βi � βi�3.

2.2 Representation used for Ternary Arithmetic

Each trit must be represented by 2 bits. In our implementation, we represent 0

as 00, 1 as 10 and 2 as 11. This representation has the advantage that it is easy

to check whether a trit is equal to zero just by checking its most signi�cant bit

(MSB). Suppose we have elements x, y, z P F3 with their 2-bit representations being

bits px0, x1q, py0, y1q, pz0, z1q, where the MSB is indexed as 1 and the LSB as 0.

Formulas corresponding to basic operations in F3 are:

• z � x� y Ø z1 � px1 ` y1q _ px0 ` y1 ` y0q, z0 � px1 ` y0q ^ px0 ` y1q.

• z � xy Ø z1 � px1 ^ y1q, z0 � px1 ^ y0q _ px0 ^ y1q.

F5 Version

Of course, a quinary digit, which we call a quint, is represented by 3 bits. We

want to make less and less operations be required and keep the advantage which is

mentioned above, hence we represent 0 as 000, 1 as 100, 2 as 101, 3 as 111 and 4 as

110. Formulas about addition and multiplication in F5 are:
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• z � x� y Ø

$''''''''''''''&
''''''''''''''%

z2 � px2 ` y2q _ px0 ` y0q _ px2 ` x1 ` y1q.

z1 �
��
px1 ^ y0q _ px0 ^ y1q _ px2 ` y2q

�

^
�
px1 ^ y1q _ x0 _ y0

�	
_
�
px2 ` y2q ^ px1 ` y1q

�
.

z0 �
�
px2 ` x1 ` y1q ^

�
px0 ^ y0q _ px2 ` y2q

�	

_
�
px2 ` y2q ^ px0 ` y0q

�
.

• z � xy Ø

$''''''&
''''''%

z2 � px2 ^ y2q.

z1 � px2 ^ y2q ^
�
px0 ^ y0q ` px1 ` y1q

�
.

z0 � px2 ^ y2q ^ px0 ` y0q.

Besides, we list other useful formulas in Table 7.1 as well (see Appendix). For

example, multiplying a constant number 4 is one of those. If an action is to subtract

a variable, we can add the same variable four times due to 4 � �1 in F5. Further, a

variable multiplied by 4 needs only one bit operation, thus the total number of bit

operations the action needs is equal to addition1s number plus one.

2.3 Ternary Gray Code

A k-trit ternary Gray code, sometimes called a p3, kq-Gray Code[15] is a Hamiltonian

path in Fk3, or a sequence of all 3k possible k-trit sequence such that two successive

values di�er in only one trit. Ternary gray codes are not unique, but the example

given in Wikipedia[19] seems as much of a standard as any other.

De�nition 1 (Standard k-trit Ternary Gray Code). Express all integers in r0; 3k�1s

as k-trit ternary numerals, then

TERNARYGRAYCODEpxq :� xa px Ï 1q.

The is analogous to that of the standard Gray Code and may be in fact proved
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to be a valid ternary Gray Code in a similar manner[15]. Table 2.1 shows part of a

standard 4-trit ternary Gray code along with their corresponding indices in ternary,

and we also show the quinary version in Table 7.2 (see Appendix). For example,

if x � 012, then px Ï 1q � 001, and therefore TERNARYGRAYCODEpxq �

012 a 001 � 011, which can be also found in Table 2.1. The bi columns in that

table, is the analogue of the �the i-th rightmost non-zero bit position� of the binary

case. We can capture their meaning in the following de�nition. Let x be written in

ternary, as an index of a ternary Gray code.

De�nition 2 (Position of the i-th di�erence vector). The notation b1pxq is de�ned

the index of the least signi�cant nonzero trit of x as a ternary number, and �1 if

x � 0. For i ¡ 1 we can then de�ne recursively bipxq :� bi�1px� 3b1pxqq.

We can see as a corollary that if the Hamming weight of x, de�ned as the sum

as an integer of all trits in the ternary expansion of x is equal to h, then bjpxq � �1

for h   j.

Warning: One should note that in De�nition 2, when one of the trits in x is two,

the corresponding index occurs twice in the b sequence. Therefore, while bipxq is the

analogue of �the position of the i-th rightmost non-zero bit� in the binary case� for

our (ternary) case De�nition 2 is not �the position of the i-th rightmost non-zero

trit�. If we want to think of bi that way, we must split each trit further into its

two-bit form and consider bi as the i-th rightmost bit in that expansion. In the

same example used above, b1p5q � 0, b2p5q � 0, b3p5q � 1 and b4p5q � �1 because

510 � p012q3.

Lemma 1. Let ei be the unit vector in the i-th direction (3i as an integer), then

TERNARYGRAYCODEpx� 1q � TERNARYGRAYCODEpxq` eb1px�1q.

De�nition 3 (Partial Derivative). Let f be a scalar- or vector-valued polynomials

7



over (F3)
n. Then we de�ne: Bf

Bxi
pvq � fpv ` eiq � fpvq. Thus for any vector v, we

have:

fpv ` eiq � fpvq �
Bf

Bxi
pvq . (2.1)

For our convenience, TERNARYGRAYCODEpvq is denoted by gv in the follow-

ing pages. So Lemma 1 can be re-written as

fpgvq � fpgv�1q �
Bf

Bxb1pvq
pgv�1q.

We will build on this result in our paper to construct a better exhaustive search

algorithm.
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Chapter 3

Known Techniques for Enumerations

3.1 Naïve Evaluation

The simplest way to perform an enumeration algorithm is to evaluate the polynomial

f over pF3q
n. For every integer 0 ¤ i   3n, we can form a vector of trits from its

ternary expansion zero-padded to n trits, and term that vi, the vector formed by

integer i. So numeration means we check whether fpviq is equal to zero or not for

i � 0, 1, . . . , 3n � 1. The process of naïve evaluation is shown in Figure 3.1.

While we analyze the process of this algorithm, we can know that the advantage

of this scheme is its storage used. It only needs to store the coe�cients of the

equations, and this only depends on the number of monomial terms. Now the

problem is how to calculate it. We believe that the most complex thing is dealing

with those terms which contain repeated variables. Luckily, we have known that a

variable appears two times at most. Therefore, monomials are classi�ed according

to the number of pairs of repeated variables. We calculate those terms where every

variable is di�erent and then calculate the terms which contain only one pair of the

same variable, and so on. In this way, the number of monomials can be obtained by

the following formula (n is the number of variables and d represents the degree of a
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polynomial):

NMonomialpn, dq �
ḑ

i�0

t i
2
u¸

j�0

�
n

j


�
n� j

i� 2j



. (3.1)

In contrast, the signi�cant disadvantage is that it needs a lot of time to evaluate

fpviq. We can use the required number of bit operations to perform how long the

algorithm needs. First, if there aremmonomial terms, pm�1q additions are required

and every addition has six operations. Second, if there is a degree-d monomial

where d ¡ 1, pd � 1q multiplication are required and every multiplication has four

operations. Thus the expected bit operations of each evaluation would be:

NAdditionpn, dq �
ḑ

i�0

t i
2
u¸

j�0

�
n

j


�
n� j

i� 2j



� 1 (3.2)

NMultiplicationpn, dq �
ḑ

i�1

t i
2
u¸

j�0

pi� 1q

�
n

j


�
n� j

i� 2j



(3.3)

NBit_Na:ıvepn, dq � 6NAdditionpn, dq � 4NMultiplicationpn, dq

�
ḑ

i�1

t i
2
u¸

j�0

p4i� 2q

�
n

j


�
n� j

i� 2j



. (3.4)

In summary, when we know how long evaluating fpviq needs, we can know that

the whole enumeration will take
�
3nNBit_Na:ıvepn, dq

�
bit operations as well. Fur-

ther, if a polynomial system has m equations, the total number of operations is�
m3nNBit_Na:ıvepn, dq

�
. In other words, it would require Opm3ndndq bit operations.

1 Sol Ð ∅;
2 for i � 0 to 3n � 1 do
3 δ Ð fpviq;
4 if δ � 0 then
5 Sol Ð Sol Y tviu;
6 end

7 end

8 return Sol;

Figure 3.1: Pseudocode of Naïve Evaluation
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3.2 Basic Ternary Gray Code Enumeration

According to the lemma 1, we compute fpgiq by updating fpgi�1q with their dif-

ference Bf
Bxb1pviq

pgi�1q. Therefore, this indicates that searching the candidate vectors

in the order of ternary Gray code requires less arithmetical operations than the

requirement in naïve evaluation. The pseudocode is shown in Figure 3.2.

In the similar way, we can estimate its storage and required time of the algorithm.

It is almost the same in the storage side except that there are two new variables.

Since we always derive next result by updating the last one, the value of fpviq is

kept in δ, and β1 is a necessary factor in computing di�erences.

However, this algorithm has better performance than naïve evaluation in the

time side. The reason is that we calculate a degree-pd � 1q polynomial instead of

degree-d. Because two successive ternary Gray code di�er in only one trit, we can

know that fpgiq and fpgi�1q have di�erent coe�cients in monomial terms which

contain the variable xi, where gi � gi�1 ` ei, and ignore the others; hence we can

treat their di�erence as a new polynomial. We show an example to illustrate how

to calculate it. For a 3 variables px0, x1, x2q and degree-2 polynomial, the standard

representation would be:

C0,0x
2
0�C1,1x

2
1�C2,2x

2
2�C0,1x0x1�C0,2x0x2�C1,2x1x2�C0x0�C1x1�C2x2�C .

Suppose two ternary Gray code di�er in x1, thus we only concern about the

terms C1,1x
2
1, C0,1x0x1, C1,2x1x2 and C1x1 because all of the others are eliminated

with their same coe�cients. In order to explain the main idea easily, the order of

di�erence is changed as below.

pC0,1x0 �C1,2x2 �C1qx1 � pC1,1qx
2
1 .

According to the exponential value, the monomials are divided into two groups.

12



Then we can treat the coe�cient of x1 as a 2 variables px0, x2q and degree-1 poly-

nomial and the coe�cient of x21 as a 2 variables px0, x2q and degree-0 polynomial.

Furthermore, updating δ needs one addition, so the expected bit operations of each

evaluation would be:

NBit_BTGCEpn, dq � NBit_Na:ıvepn� 1, d� 1q �NBit_Na:ıvepn� 1, d� 2q � 1 . (3.5)

We know the �rst term is usually much more than the second term, thus this

implies that we can ignore those so that NBit_BTGCEpn, dq � NBit_Na:ıvepn � 1, d �

1q. Consider a m equations polynomial system, the whole number of operations is�
m3nNBit_Na:ıvepn� 1, d� 1q

�
, and it can be represented as Opm3ndnd�1q.

1 Sol Ð ∅;
2 δ Ð C;
3 for i � 0 to 3n � 1 do
4 β1 Ð b1piq;
5 if β1 ¥ 0 then

6 δ Ð δ � Bf
Bxβ1pviq

pgi�1q;

7 end

8 if δ � 0 then
9 Sol Ð Sol Y tgiu;
10 end

11 end

12 return Sol;

Figure 3.2: Pseudocode of Basic Ternary Gray Code Enumeration

3.3 Generalized Ternary Gray Code Enumeration

From the last section, we have known that while any two successive values di�er in

only one trit, the evaluations can be accelerated. In this section, we introduce a new

algorithm, which we call generalized ternary Gray code enumeration (GTGCE).

This method is the extension of section 3.2. It not only keeps the advantage as

mentioned above but also makes use of the recursive technique.
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First of all, let us consider a special situation in lemma 1. If Bf
Bxi
pvq and Bf

Bxi
pv`ejq

are known di�erences, the equation B2f
BxiBxj

pvq � Bf
Bxi
pv ` ejq �

Bf
Bxi
pvq can be derived

by the de�nition. Similarly, the ternary Gray code form can be represented as

Bf
Bxb1pvkq

pgkq �
Bf

Bxb1pvkq
pgk�1q �

B2f
Bxb1pvkqBxb2pvkq

pgk�1q. In summary, we can extend the

lemma to any higher degree.

Now we are going to illustrate the algorithm. The pseudocode of GTGCE is

shown in Figure 3.3. At the beginning, some variables need to be initialized (line

1-5). δ, which is also used in Figure 3.2, stores fpgiq and δβ1,...,βk store all kinds

of di�erences Bkf
Bxβ1pvq���Bxβkpvq

pgq. Further, we need to notice that addition in the

subscript of g is trit-wise operation. For example, given β1 � 2, β2 � 4, we can

derive p32 � 1q ` p34 � 1q � 0022 ` 2222 � 2211, and then g2211 equals 2020.

Therefore, the following equations can be derived.

δ2,4 �
B2f

Bx2Bx4
p2020q

�
Bf

Bx2
p12020q �

Bf

Bx2
p2020q

� pfp12120q � fp12020qq � pfp2120q � fp2020qq

� C2,4 �C2,2,4 �C2,4,4 �C1,2,4 �C2,3,4 . (3.6)

Initialization of δβ1,...,βk is listed in Table 3.1 and Table 3.2. These di�erences will

always stay up-to-date (correct) because their values will be updated every round

in the for loop. After initialization, the process will enter exhaustive search stage.

The stage can be divided into three steps roughly.

Table 3.1: Initialization of di�erences with degree = 2 in F3

�rst order
di�erence constraint initialization

δ0 C0 + C0,0

δi 0   i Ci - Ci-1,i + Ci,i

second order
δi,i - Ci,i

δi,j i   j Ci,j
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Table 3.2: Initialization of di�erences with degree = 3 in F3

�rst order
di�erence constraint initialization

δ0 C0 + C0,0

δi 0   i Ci - Ci-1,i + Ci,i + Ci�1,i�1,i - Ci�1,i,i

second order
di�erence constraint initialization

δ0,0 - C0,0

δ0,1 C0,1 - C0,0,1 + C0,1,1

δ0,j 1   j C0,j + C0,0,j - C0,j-1,j + C0,j,j

δi,i 0   i - Ci,i - Ci-1,i,i

δi,i+1 0   i Ci,i+1 - Ci-1,i,i+1 - Ci,i,i+1 + Ci,i+1,i+1

δi,i+t 0   i & 1   t Ci,i+t - Ci-1,i,i+t + Ci,i,i+t + Ci,i+t,i+t - Ci,i+t-1,i+t

third order
di�erence constraint initialization
δi,i,k i   k - Ci,i,k

δi,j,j i   j - Ci,j,j

δi,j,k i   j & j   k Ci,j,k

The �rst step (line 7-8) is �nding corresponding indices of the di�erences (where

the non-zero trits are, 2's counting twice) in the ternary index i. If the degree of

a polynomial system is d, we only need to record d least signi�cant nonzero bits at

most.

The second step (line 9-11) is updating the variable di�erences and the result

according to the indices determined in the �rst step. In Figure 3.2, the formula

δ� � Bf
Bxβ1pviq

pgi�1q updates the result. However, the value of Bf
Bxβ1pviq

pgi�1q must be

updated with the second order di�erence prior to being used. In short, we add one

higher-order di�erence into a lower-order one to get its new value, recursively. These

actions are clari�ed by the following expression (with α ¥ 3):

δ� � pδβ1� � pδβ1,β2� � pδβ1,β2,β3� � � � � qqq . (3.7)

These recursive in-place pre�x-sum operations do not halt until we meet a ter-

minal condition, which means a di�erence that need not be updated. Moreover, we

sometimes need to add more than one higher-order di�erence in an update. That is,
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having to add several δβ1,...,βj to δβ1,...,βj�1
is possible. If this happens in a terminal

step (meaning, for a degree-d system, we are using one or more order-d di�erences),

we would always precompute the sum of all involved di�erences to get a new di�er-

ence constant δ�β1,...,βj , and in such case only one addition is needed. However, when

d ¡ 2, sometimes this situation happens in the middle of the recursive process in

Eq. 2, and we cannot precompute so easily because every δβ1,...,βj must be updated

individually before a dependent lower-order di�erence can be updated. In short, the

process of updating depend on indices we �nd in the �rst step. The relation between

these is illustrated in Table 3.3 and Table 3.4, and we illustrate their correctness

with Table 2.1.

Now we are going to introduce the terminal conditions of the recursion. Note

that a di�erence δβ1,...,βd will be initialized to Bdf
Bxβ1pvq���Bxβdpvq

pgq, and its value is equal

to or some multiple of the monomial coe�cient Cβ1,...,βd. It depends on βi. If every

βi is di�erent, the multiplier is 1; for every pair of βi � βi�1 (which means that

a trit is 2), the multiplier will be doubled; thus with ` equal pairs of indices, the

multiple is equal to 2`. Since these di�erences are always constants, the multiplier

values need no updates. So, there are two ways we stop the recursive updating:

1. α � d, and we have reached the highest degree di�erence, which is constant.

2. δβ1,...,βα appears for the �rst time and we use its known initial value.

The last step (line 12-14) is checking whether the new result is equal to zero or

not. If the condition is satis�ed, we add the corresponding ternary Gray code to

the group which contains all legal solutions. Of course, an actual run starts with

a script which enumerate through the indices and compute the corresponding bi's

and generate the actual C program with no unnecessary branches or table lookups.

A main di�erence with F2 is the possibility of having to add several di�erences to

update one lower-order di�erence, causing the number of additions per candidate to

be greater than d on average for a degree-d system when d ¡ 2.
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1 Sol Ð ∅;
2 δ Ð C;
3 foreach coe�cient Cβ1,...,βk of f do

4 δβ1,...,βk Ð
Bkf

Bx
β1p3

β1�����3βk q
���Bx

βkp3
β1�����3βk q

pgp3β1�1q`���`p3βk�1qq;

(see Table 3.1, Table 3.2)
5 end

6 for i � 0 to 3n � 1 do
7 αÐ min(HammingWeight(i),d);
8 β1, . . . , βα Ð b1,...,αpiq;
9 for j � α to 1 do
10 δβ1,...,βj�1

Ð δβ1,...,βj�1
� δβ1,...,βj (see Table 3.3, Table 3.4)

11 end

12 if δ � 0 then
13 Sol Ð Sol Y tgiu;
14 end

15 end

16 return Sol;

Figure 3.3: Pseudocode of Generalized Ternary Gray Code Enumeration

Finally, we also analyze the performance of this method. In BTGCE, β1 is used

to determine the di�erence; however, we need to calculate the order-k di�erences

in GTGCE where 1 ¤ k ¤ d, thus there are d registers required for pβ1, � � � , βdq.

Since the main idea of this algorithm is updating the previous result to get the next

one, we need to store every initial value of di�erences as well, and it equals to the

number of monomial terms.

On the other hand, there is an obvious improvement in its execution time. While

we observe the updating step (line 10), we can �nd that no calculating is needed.

Each initial value of di�erences has been computed in the initial step, hence only

additions which are used to update variables remains in the for loop. Now the

problem is how to compute the number. From Table 2.1, we �nd that there are

three order-2 di�erences at most to update a order-1 di�erence in the quadratic

system. Similarly, if we list more actions in the cubic system, we also �nd that

there are four order-3 di�erences at most to update a variable. Therefore, while

we consider the worst case, every order-k di�erence needs pk � 2q order-pk � 1q
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di�erences. In general, the number of di�erences is equal to the number of additions

required. However, we have known more order-d di�erences can be precomputed as

mentioned above so that the number of additions in order-d equals to in order-pd�1q.

Thus the expected bit operations of each evaluation would be:

NBit_GTGCEpdq � 6NAdd_GTGCEpdq �

$''&
''%
6p1q, if d � 1

6p1
2

°d
i�2 i !�

d !
2
q, otherwise.

(3.8)

In brief, the value of pi � 1q ! is always much more than i !, hence the equation

can be simpli�ed to NBit_GTGCEpdq � 6d ! except d � 1 and then the total number

of operations with m equations is
�
m3nNBit_GTGCEpdq

�
. The time complexity of

GTGCE would be Opm3nd !q. We know that this is usually much less than the

previous two methods in practical cases.

F5 Version

We do not show the algorithms about F5 because the scheme of algorithms are similar

to those in F3 except some formulas. Therefore, the formulas of initialization and

updating in F5 are listed in the Appendix.
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Chapter 4

Variants and Analysis

4.1 Partial Evaluation

Now we understand how various exhaustive search solvers work, it is easy to see that

they are suitable for parallelization. So we will divide an input system into multiple

subsystems to be solved simultaneously.

Partial evaluation is an obvious method for splitting the problem. The main idea

is to substitute all possible values for s variables. Therefore, we can use s to control

the number of subsystems. It generates 3s subsystems each with n� s variables.

We illustrate with an example as below. Consider a system with d � 2, n � 4,

and choose s � 2. Hence there are 4 variables, which are x0, x1, x2 and x3 in the

input system, and x2 and x3 will be substituted to �nd 9 subsystem individually

with only variables x0 and x1. After reorganizing the coe�cients, we can obtain the

following expression:

C0,0x
2
0 �C1,1x

2
1 �C0,1x0x1 � pC0,2x2 �C0,3x3 �C0qx0 � pC1,2x2�

C1,3x3 �C1qx1 � pC2,2x
2
2 �C3,3x

2
3 �C2,3x2x3 �C2x2 �C3x3 �Cq .

It is easy to see that coe�cients of the highest degree still retains their original

values. The new constant is C2,2x
2
2�C3,3x

2
3�C2,3x2x3�C2x2�C3x3�C; the new
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coe�cient of x0 is C0,2x2 � C0,3x3 � C0 and the new coe�cient of x1 is C1,2x2 �

C1,3x3 �C1. We may substitute x2 and x3 with their di�erent possible values (0,1

or 2) for each subsystem so that 9 subsystems will be derived. Since there may be

many substituted variables, we can use the same Generalized Ternary Gray Code

enumeration technique.

4.2 Early-abort Strategy

In contrast with partial evaluation, an early-abort strategy focuses on equations.

Each candidate vector is �rst checked against a �xed portion of the equations. Only

if the candidate passes that test do we check whether it satis�es the remaining

equations.

This method is like a �lter, which removes impossible vectors early. We call the

�rst part "enumeration phase", and call the second part "check phase". Suppose a

system has n variables and m equations. There are total 3n candidate vectors which

need to be evaluated. Then we check only the �rst k equations in enumeration

phase. On average only 1
3k

vectors will pass the �lter so that the number of possible

vectors decreases obviously.
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Chapter 5

Implementations

5.1 On GPU

5.1.1 Overview

We start with an input system with n variables and m equations and we compute

all di�erences which will be used in the enumeration. We then divide the system

into numerous subsystems by guessing s variables, with each subsystem going to

one thread on the GPU. The di�erences for 3s subsystems may not be all the same

due to the substitutions. Every thread will only test the �rst 32 equations with

GTGCE and return at most one candidate vector which satis�es all equations during

in enumeration phase. All possible solutions are then checked against the other

equations. If more than one vector is found in a thread, we will need to perform

GTGCE again on the CPU during the check phase because we can only return one,

as in the details below.

We test 32 equations simultaneously in the enumeration phase since that is the

width of a GPU register. The two bits in the 2-bit representation of each of the 32

trit-results are split into two registers to take full advantage of bit-slicing. Addition

(and occasional subtraction) uses only bitwise AND, OR and XOR with no carries.
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5.1.2 Unrolling

When we update the result of fpgiq, accumulating is a necessary procedure. However,

another thing which is almost as important as that is �nding indices, and it occupies

a lot of time in this stage. For this reason, unrolling is an intuitive method for

decreasing the overhead.

We illustrate the method with Table 5.6. It is a scheme of unrolling with unroll

factor 27. Suppose the system is cubic, so we only need to consider three bk. Recall

that bkpiq represents the index of the k-th least signi�cant nonzero bit in ternary

index i. These columns indicate some bk are �xed even if we do not know the values

of higher trits. For example, b1p� � � � � 012q is a constant. Further, we can determine

unknown items only if all bk in the �rst index, which is p� � � � � 000q, are evaluated.

The reason is that every series of higher trits is equal in the same scheme, thus we use

these bk's repeatedly in the other indices. For example, b1p� � � ��001q � b0p� � � ��000q.

Let us formulate the description above. We consider any scheme of unrolling with

unroll factor 3u, and the �rst index is i. The other indices in the same scheme can be

de�ned as i1 � i�k, where 0   k   3u. Hence the indices of the HammingWeight(k)

least signi�cant nonzero bits in i1 are constants. These values can be computed before

enumeration phase. In contrast, there are still some bjpi
1q which can not be known

beforehand (HammingWeightpkq   d). However, these indices can be determined

by bjpi
1q � bj�hpiq, where h � HammingWeightpkq and j ¡ h.

Table 5.6: A Scheme of Unrolling with Unroll Factor 27

index b4 b3 b2 b1 index b4 b3 b2 b1 index b4 b3 b2 b1
� � � � � 000 β4 β3 β2 β1 � � � � � 100 β3 β2 β1 2 � � � � � 200 β2 β1 2 2
� � � � � 001 β3 β2 β1 0 � � � � � 101 β2 β1 2 0 � � � � � 201 β1 2 2 0
� � � � � 002 β2 β1 0 0 � � � � � 102 β1 2 0 0 � � � � � 202 2 2 0 0
� � � � � 010 β3 β2 β1 1 � � � � � 110 β2 β1 2 1 � � � � � 210 β1 2 2 1
� � � � � 011 β2 β1 1 0 � � � � � 111 β1 2 1 0 � � � � � 211 2 2 1 0
� � � � � 012 β1 1 0 0 � � � � � 112 2 1 0 0 � � � � � 212 2 1 0 0
� � � � � 020 β2 β1 1 1 � � � � � 120 β1 2 1 1 � � � � � 220 2 2 1 1
� � � � � 021 β1 1 1 0 � � � � � 121 2 1 1 0 � � � � � 221 2 1 1 0
� � � � � 022 1 1 0 0 � � � � � 122 1 1 0 0 � � � � � 222 1 1 0 0
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5.1.3 Returning

Let us recap the pseudocode in Figure 3.3. When a candidate vector satis�es all

equations in enumeration phase it is added into a set of candidate solutions. Nev-

ertheless there are some problems even with this simple approach. One problem

is the limitation of memory, we may need to keep too many candidates. Another

problem is synchronization on GPU. Every thread performs individually and �nds

their respective solutions. Integrating all of the solutions into an appropriate form

is a complicated mission.

We use a similar techniques as in [6] to avoid branching or collecting too many

solutions. Each thread has two variables: count the total number of possible vectors

and sol the last candidate vector found. Since the thread keeps only one possible

result. We also only care about count in three states: 0, 1 or 2+ (2 solutions are

too many!). Since sol by design takes less than 32 bits, we simply assign the most

signi�cant trit (MST) of sol to 1 if count � 2�, and only returns we check whether

more than one vector is founded or not by MST in CPU. Note that sol is always

less than 32-bit, so changing the highest trit does not a�ect the correctness of the

solution.

By the way, each of the threads does not calculate the result of fp0, . . . , 0q in

enumeration phase. It will be checked individually in CPU. Therefore, that sol

equals zero represents no legal solution rather than an all zero solution.

5.1.4 Re-enumeration

After executions of enumeration phase, the candidate vectors which pass the �rst 32

equations will be tested for the rest of input equations in check phase. According to

the previous section, we know that the number of solutions can be determined by

the value of MST. If it exists only one, we evaluate the equations over this vector;

if there are more than one, we will execute GTGCE with the �rst 32 equations

again on CPU, which we call re-enumeration. sol can be used in this stage as well.
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Since enumeration is performed in ternary Gray code order and sol is the last legal

solution, re-enumeration can terminate early if the order of vector we are processing

is larger than the order of sol. In addition, if any possible solution is found, it will be

checked for the other equations immediately. The reason is that the cost of branches

on CPU is less than GPU.

However, re-enumeration will spend a lot of time so that we do not want to en-

counter this situation. To avoid re-enumeration, we control the number of variables

in every thread. That is to say, we determine variable s in section 4.1 to make each

of the threads �nds only one solution at most.

5.2 On CPU

5.2.1 Overview

The input system has n variables and m equations and all di�erences are computed

initially. Next, the system is divided into various subsystems. This is �partial evalu-

ation� similar to what we execute on GPU. At this point every thread processes the

�rst 32 equations on GPU. On a CPU, each subsystem will have only 16 equations

tested at a time so that a register can hold and therefore process information from

more systems at the same time.

Another di�erence between CPU and GPU is the checking phase after enumer-

ation. A possible solution is sent to the check queue immediately. The reason is

that a CPU is comparatively much more e�cient at branching and threading. It is

because branches are so costly on a GPU, that there is no checking phase until all

work on GPU is �nished.

5.2.2 Batched Enumeration

In enumeration phase on CPU, we take advantage of the 128-bit XMM registers,

and we make each of the subsystems process the �rst 16 equations. That is, all
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di�erences are only 16-bit. In this way, we can execute 8 subsystems simultaneously.

Since the type of value is __int128, accumulating can be done by the intrinsics

_mm_and_si128, _mm_or_si128 and _mm_xor_si128. However, that a result

is equal to zero does not represent a legal solution owing to 8 solutions in a register.

We use some SSE2 intrinsics to solve this problem similar to [6].

The method is shown in Figure 5.1. The intrinsic _mm_cmpeq_epi16 compares

the 8 unsigned 16-bit blocks in res_x1 and the 8 unsigned 16-bit blocks in zero,

which is a 128-bit all-zero variable, for equality. res_x1 represents the higher bit

in a trit. If two corresponding blocks are equal in two variables, the same position

of the block in Mask will be assigned to 0xFFFF, and 0x0000 otherwise. Next, the

intrinsic _mm_movemask_epi8 creates a 16-bit mask from the most signi�cant

bits of the 16 unsigned 8-bit blocks in Mask; hence that mask is not equal to zero

represents at least one solution exists. Because a 16-bit block is all-zero in res, it

makes a bit in mask equals 1. Any candidate vector found is sent to the check queue

to have the rest of equations tested. Note that we check every bit in mask as more

than one bit may be set, which means that more than one subsystem is satis�ed.

1 Mask_x1 = _mm_cmpeq_epi16(res_x1, zero);
2 mask = _mm_movemask_epi8(Mask_x1);
3 if(mask) check(mask, idx, x1, x0);

Figure 5.1: A Few Lines of SSE2 Intrinsics in CPU Implementations
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Chapter 6

Empirical Results and Discussion

We tabulate all results in the appendix. We can see that we can solve a 30-variable,

30-equation system over F3 on a GeForce GTX980 Ti in 14 minutes. The same

run on an AMD FX-8350 core (4 GHz) takes 32 hours. For 20 variables and 20

equations, the GPU takes 0.21 seconds, and the CPU takes 1.2 seconds.

We tested MAGMA-2.21 on the same CPU with guessing (FF4 or Hybrid Ap-

proach) for the same systems and tabulate the results in the appendix. Not all runs

are complete, as in some cases we only ran su�ciently many subsystems to ensure

that the run with the correct guess and a run with an incorrect guess takes com-

parable amounts of time. From these data we may extrapolate where the Gröbner

bases method will catch up to enumeration on the same CPU. Going by just the

endpoints, we expect that FF4 to catch up to enumeration at 58 equations and vari-

ables (292 complexity) and if we use the regression line, the crossover point would be

60 equations and variables (295 complexity).

There are a number of caveats to this comparison. While MAGMA has well-

optimized linear algebra and uses semi-sparse operations where possible, it is not

speci�cally tuned for F3, and we expect that a tuned solver would do better. In the

other direction, Gröbner basis methods takes a huge penalty once the state becomes

larger. Also, GPUs can be used e�ectively in enumeration, speeding it up by a
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factor of two orders of magnitude on a per-dollar basis. We can also expect that

an FPGA implementation similar to [7] would speed enumeration up by another

order of magnitude. Factoring in everything, it is likely that for a generic quadratic

system with as many equations as variables over F3, enumeration will be better than

algebraic solvers for all tractable problem sizes. If we repeat the same computation

for F4, we can estimate the crossover point to be close to 40 equations and variables,

or 280 complexity level (close to the limit of researchers' resources). Finally, for F5

we estimate that the crossover point would be as low as 260 complexity, well within

reach of academics.

One big di�erence from the F2 case: We extrapolate that FF4 will catch up to

enumeration on the same CPU at n � 30, m � 60. After taking into consideration

special hardware, we estimate algebraic solvers to match enumeration for the m{n �

2 overdetermined generic case in F3 around the 264 (40 trits) level.

Table 6.1: Enumeration Performance on GPU in F3(nVidia GeForce GTX 980 Ti)

quadratic system cubic system
equations variables guesses unroll time(sec.) equations variables guesses unroll time(sec.)

20 20 9 5 0.21 20 20 8 4 0.31
22 22 9 5 0.34 22 22 9 4 0.71
24 24 11 5 1.27 24 24 9 4 3.19
26 26 11 5 8.75 26 26 10 4 26.34
28 28 12 5 86.72 28 28 11 4 237.98
30 30 13 5 788.83 30 30 11 4 2143.35

Table 6.2: Enumeration Performance on 1 CPU core in F3(AMD FX-8350 4GHz)

quadratic system cubic system
equations variables guesses unroll time(sec.) equations variables guesses unroll time(sec.)

20 20 8 5 1.20 20 20 8 5 1.80
22 22 8 5 8.40 22 22 8 5 17.40
24 24 8 5 76.80 24 24 8 5 159.60
26 26 8 5 691.20 26 26 8 5 1426.80
28 28 8 5 6241.80 28 28 8 5 12804.60
30 30 8 5 56140.80 30 30 8 5 115560.60
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Figure 6.1: Comprehensive Results in F3

Table 6.3: Enumeration Performance on GPU in F5(nVidia GeForce GTX 980 Ti)

quadratic system cubic system
equations variables guesses unroll time(sec.) equations variables guesses unroll time(sec.)

14 14 6 3 0.37 14 14 6 2 0.62
15 15 7 3 0.72 15 15 6 2 1.57
16 16 7 3 2.19 16 16 7 2 5.08
17 17 8 3 8.84 17 17 7 2 22.53
18 18 8 3 47.28 18 18 7 2 119.85
19 19 9 3 246.52 19 19 8 2 600.06
20 20 9 3 1249.83 20 20 8 2 3014.25

Table 6.4: Enumeration Performance on 1 CPU core in F5(AMD FX-8350 4GHz)

quadratic system cubic system
equations variables guesses unroll time(sec.) equations variables guesses unroll time(sec.)

14 14 5 3 5.42 14 14 5 3 17.96
15 15 5 3 27.05 15 15 5 3 89.40
16 16 5 3 135.21 16 16 5 3 447.51
17 17 5 3 678.35 17 17 5 3 2225.90
18 18 5 3 3375.85 18 18 5 3 11217.34
19 19 5 3 17174.18 19 19 5 3 56001.30
20 20 5 3 87865.88 20 20 5 3 278696.14
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Figure 6.2: Comprehensive Results in F5

Table 6.5: Performance Results of Quadratic System in MAGMA

Testing platform: AMD FX(tm)-8350 Eight-Core @ 4 GHz

F3 F4 F5

equ. var. gue. time(sec.) equ. var. gue. time(sec.) equ. var. gue. time(sec.)

18 18 8 190.27 16 16 5 111.62 14 14 5 59.38

19 19 8 452.71 17 17 5 316.42 15 15 5 153.13

20 20 9 1180.98 18 18 6 937.98 16 16 5 684.38

21 21 10 2893.40 19 19 7 2768.90 17 17 5 2059.38

22 22 11 6908.73 20 20 8 7143.42 18 18 5 7281.25

23 23 12 20726.20 21 21 8 22937.60 19 19 6 27500.00

24 24 12 52612.66 22 22 8 64225.28 20 20 7 88984.38

25 25 12 121699.99 23 23 8 174325.76 21 21 7 290546.88

26 26 12 291761.11 24 24 9 495452.16 22 22 8 1066015.63

27 27 13 829047.96

28 28 14 2008846.98

29 29 14 5213436.21

30 30 15 13186645.53

40 20 0 83.60 40 20 0 24.96 40 20 0 89.48

42 21 0 200.72 42 21 0 54.09 42 21 0 230.16

44 22 0 471.91 44 22 0 119.51 44 22 0 517.67

46 23 0 971.35 46 23 0 272.08 46 23 0 1141.19

48 24 0 2857.02 48 24 0 2028.01 48 24 0 3174.25

50 25 0 7277.18 50 25 0 4873.02 50 25 0 8332.86
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Chapter 7

Appendix

Table 7.1: Formulas in F5

z � 2x z � 3x z � 4x z � x2 z � x3

z2 x2 x2 x2 x2 x2
z1 x1 ` x0 x2 ` x1 ` x0 x2 ` x1 x0 x1 ` x0
z0 x2 ` x0 x2 ` x0 x0 0 x0
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Table 7.3: Initialization of di�erences with degree = 2 in F5

�rst order
di�erence constraint initialization

δ0 C0 + C0,0

δi 0   i Ci - Ci-1,i + Ci,i

second order
δi,i 2Ci,i

δi,j i   j Ci,j

Table 7.4: Initialization of di�erences with degree = 3 in F5

�rst order
di�erence constraint initialization

δ0 C0 + C0,0 + C0,0,0

δi 0   i Ci - Ci-1,i + Ci,i + Ci�1,i�1,i - Ci�1,i,i + Ci,i,i

second order
di�erence constraint initialization

δ0,0 2C0,0 + C0,0,0

δ0,1 C0,1 - C0,0,1 + C0,1,1

δ0,j 1   j C0,j + C0,0,j - C0,j-1,j + C0,j,j

δi,i 0   i 2Ci,i + Ci-1,i,i + Ci,i,i

δi,i+1 0   i Ci,i+1 - Ci-1,i,i+1 - Ci,i,i+1 + Ci,i+1,i+1

δi,i+t 0   i & 1   t Ci,i+t - Ci-1,i,i+t + Ci,i,i+t + Ci,i+t,i+t - Ci,i+t-1,i+t

third order
di�erence constraint initialization
δi,i,i Ci,i,i

δi,i,k i   k 2Ci,i,k

δi,j,j i   j 2Ci,j,j

δi,j,k i   j & j   k Ci,j,k
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