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Abstract. Solving multivariate polynomial systems over finite fields is
an important problem in cryptography. For random F2 low-degree sys-
tems with equally many variables and equations, enumeration is more
efficient than advanced solvers for all practical problem sizes. Whether
there are others remained an open problem.
We here study and propose an exhaustive-search algorithm for low de-
grees systems over F3 which is suitable for parallelization. We imple-
mented it on Graphic Processing Units (GPUs) and commodity CPUs.
Its optimizations and differences from the F2 case are also analyzed.
We can solve 30+ quadratic equations in 30 variables on an NVIDIA
GeForce GTX 980 Ti in 14 minutes; a cubic system takes 36 minutes.
This well outperforms existing solvers. Using these results, we compare
Gröbner Bases vs. enumeration for polynomial systems over small fields
as the sizes go up.

Keywords: multivariate polynomial, algebraic cryptanalysis, exhaus-
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1 Introduction

If one can solve large systems of polynomial equations, one can break all cryp-
tosystems. This general approach is often called algebraic cryptanalysis [9]. Un-
fortunately, solving such systems are not easy. Indeed, not only is this an NP-hard
problem [14], the following problem is conjectured to be probabilistically hard
[3]:

Problem MQpq;n,mq: Solve p1pxq “ p2pxq “ ¨ ¨ ¨ “ pmpxq “ 0, where each pi
is a quadratic in x “ px1, . . . , xnq. All coefficients and variables are in Fq.

To be exact, the QUAD stream cipher [3] can be proved secure for certain param-
eters under the assumption that: “If we randomly generate the n2pn ` 1q coeffi-
cients in a set of 2n quadratic equations in n bit-variables to generate instances in
MQp2;n, 2nq, the probability for any algorithm A to terminate within time polypnq
with a solution would be less than any given fixed ε ą 0 as nÑ8.” To date, no one
has seriously challenged this statement. Multivariate Public-Key Cryptosystems
(MPKCs) [10][17][18], where the public map is a multivariate quadratic map.
also require MQ to be hard. However, MPKCs have built-in trapdoors, so many
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effective known attacks are structural attacks solving the instance of extended
Isomorphism of Polynomials. Of course, in practice MQ complexity still needs
to be evaluated for every MPKC, as an upper bound of security.

Since Buchberger [8], Gröbner-basis techniques have been the most prominent
tool for solving systems of equations. For over a decade, the standard benchmark
of cryptographic system-solving has been the Gröbner-basis algorithm F4[11],
more precisely the variant that is commercially available in the computer algebra
MAGMA [16]. A more advanced (but not publicly available) algorithm[12] F5

was the first to break the first HFE challenge in 2002 [13]. The properties of
algebraic solvers such as F4 and XL has been studied in detail [20][1][2]

In 2010, Bouillaguet et al showed that exhaustive search algorithms can be
made extremely efficient, practically faster than existing techniques for solving
generic systems over F2 using commodity computers and graphics cards and even
reconfigurable computing [7]. Especially for random systems over F2, it seems
as if enumeration represent the best solution for most cases of cryptographical
interest [21]. An open source software library [5] is available for use with SAGE.
The leaders board of the Fukuoka MQ Challenge series I and IV (dealing with
F2 systems) are dominated by enumerative solutions.

Since 2010, there seemed to have been folklore among cryptographers that
similar results might hold for enumerative solutions of systems over F3 and
possibly even larger fields, just as it does over F2. However, there is no publication
on record to that effect.

1.1 Our Contribution

We provide a comparative study of enumerative solutions vs. Gröbner basis
methods in small fields other than F2. Of course, F3 is very ill-suited for com-
puters it takes two bits to represent a ternary digit (“trit”) but this is a handicap
both for Gröbner basis methods and for enumeration. We can restate the end of
the above section as the following open question:

Do enumerative methods hold a similar advantage over Gröbner-basis
techniques for other small fields and how well does that enumeration do
in practice for F3 (and F4, F5 . . . )?

Our answer is that Brute Force or Enumeration can achieve nearly as much
for F3 as it did for F2, although the set-up phase and book-keeping issues are
messier. For quadratic systems, each test vector only takes on average two paral-
lelized additions in F3 (which the same as F2). The enumerative approach is also
extensible to higher degrees for F3 just as for F2, although when enumerating
for a degree-d system, each test vector would take more than d adds in F3.

Our algorithm has been implemented with several optimizations on CPU and
GPU using SSE2 intrinsics and the CUDA framework respectively. Although
there is still room for improvement (e.g., no provision to use multiple GPUs
simultaneously), it outruns all existing Gröbner solvers to which we have access.
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Today, we can solve 30+ quadratic equations in 30 variables with one NVIDIA
GeForce GTX 980 Ti graphics card in 14 minutes. A cubic system under the oth-
erwise the same conditions takes 26 minutes. Using MAGMA-2.21-9 on a 4-GHz
core of the AMD FX-8350, FF4 (i.e., guess an optimal number of variables before
running the F4 solver, the hybrid approach [20][4]) would take 150 core-days to
solve 30 quadratic equations in as many F3-variables. This is the best Gröbner-
basis solvers commercially available today.

2 Preliminaries

2.1 Notational Conventions

In this paper, we enumerate over the finite-dimensional vector space (F3)n, and
use the base-3 or ternary numerals. Analogous to a bit, a ternary digit is a trit.

We use Cβ1,β2,...,βk to stand for the coefficient of the monomial xβ1
xβ2

¨ ¨ ¨xβk
of a polynomial f , and use C for the constant term. Because we know that any
xαβ where α ě 1 can be reduced to xγβ where γ P t1, 2u, γ “ α mod 2, so the
restrictions on the indices βi can be formulated as follows for 1 ď i ď k ´ 2:

1. 0 ď β1 ď β2 ď ¨ ¨ ¨ ď βk ă n, and
2. βi`1 ‰ βi`2 if βi “ βi`1.

In addition, we use ‘ to denote trit-wise addition of vectors in Fn3 , which
means that each corresponding pairs of trits is added together pmod 3q without
carry. In a similar way, trit-wise subtraction is denoted by a. We also use Ï

(resp. Î) to denote ternary right-shift (resp. left-shift) operation. Since 3 “ 0,
we also have 2 “ ´1 and occasionally subtracting the same variable is achieved
by adding the same variable twice.

2.2 Representation used for Ternary Arithmetic

Each trit must be represented by 2 bits. In our implementation, we represent 0
as 00, 1 as 10 and 2 as 11. This representation has the advantage that it is easy
to check whether a trit is equal to zero just by checking its most significant bit
(MSB). Suppose we have elements x, y, z P F3 with their 2-bit representations
being bits px0, x1q, py0, y1q, pz0, z1q, where the MSB is indexed as 1 and the LSB
as 0. Formulas corresponding to basic operations in F3 are:

– z “ x` y Ø z1 “ px1 ‘ y1q _ px0 ‘ y1 ‘ y0q, z0 “ px1 ‘ y0q ^ px0 ‘ y1q.
– z “ xy Ø z1 “ px1 ^ y1q, z0 “ px1 ^ y0q _ px0 ^ y1q.

2.3 Ternary Gray Code

A k-trit ternary Gray code, sometimes called a p3, kq-Gray Code[15] is a Hamil-
tonian path in Fk3 , or a sequence of all 3k possible k-trit sequence such that two
successive values differ in only one trit. Ternary gray codes are not unique, but
the example given in Wikipedia[19] seems as much of a standard as any other.
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Definition 1 (Standard k-trit Ternary Gray Code). Express all integers
in r0; 3k ´ 1s as k-trit ternary numerals, then

TERNARYGRAYCODEpxq :“ xa px Ï 1q.

The is analogous to that of the standard Gray Code and may be in fact proved to
be a valid ternary Gray Code in a similar manner[15]. Table 1 in the Appendix
shows part of a standard 4-trit ternary Gray code along with their corresponding
indices in ternary. For example, if x “ 012, then px Ï 1q “ 001, and therefore
TERNARYGRAYCODEpxq “ 012 a 001 “ 011, which can be also found in
Table 1. The bi columns in that table, is the analogue of the “the i-th rightmost
non-zero bit position” of the binary case. We can capture their meaning in the
following definition. Let x be written in ternary, as an index of a ternary Gray
code.

Definition 2 (Position of the i-th difference vector). The notation b1pxq
is defined the index of the least significant nonzero trit of x as a ternary number,
and ´1 if x “ 0. For i ą 1 we can then define recursively bipxq :“ bi´1px´3b0pxqq.

We can see as a corollary that if the Hamming weight of x, defined as the sum as
an integer of all trits in the ternary expansion of x is equal to h, then bjpxq “ ´1
for h ă j.

Warning: One should note that in Definition 2, when one of the trits in x is
two, the corresponding index occurs twice in the b sequence. Therefore, while
bipxq is the analogue of “the position of the i-th rightmost non-zero bit” in the
binary case,, for our (ternary) case Definition 2 is not “the position of the i-th
rightmost non-zero trit”. If we want to think of bi that way, we must split each
trit further into its two-bit form and consider bi as the i-th rightmost bit in that
expansion. In the same example used above, b1p5q “ 0, b2p5q “ 0, b3p5q “ 1 and
b4p5q “ ´1 because 510 “ p012q3.

Lemma 1. Let ei be the unit vector in the i-th direction (3i as an integer), then

TERNARYGRAYCODEpx` 1q “ TERNARYGRAYCODEpxq‘ eb1px`1q.

Definition 3 (Partial Derivative). Let f be a scalar- or vector-valued poly-
nomials over (F3)n. Then we define: Bf

Bi pxq “ fpx ‘ eiq ´ fpxq. Thus for any
vector x, we have:

fpx‘ eiq “ fpxq `
Bf

Bi
pxq . (1)

For our convenience, TERNARYGRAYCODEpxq is denoted by gx in the follow-
ing pages. So Lemma 1 can be re-written as

fpgxq “ fpgx´1q `
Bf

Bb1pxq
pgx´1q.

We will build on this result in our paper to construct a better exhaustive search
algorithm.
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3 Known Techniques for Enumerations

3.1 Näıve Evaluation

The simplest way to perform an enumeration algorithm is to evaluate the poly-
nomial f over pF3q

n. For every integer 0 ď i ă 3n, we can form a vector of trits
from its ternary expansion zero-padded to n trits, and term that xi, the vector
formed by integer i. So numeration means we check whether fpxiq is equal to
zero or not for i “ 0, 1, . . . , 3n ´ 1. The process of näıve evaluation is shown in
Fig. 1.

1 SolÐ ∅;
2 for i “ 0 to 3n ´ 1 do
3 δ Ð fpxiq;
4 if δ “ 0 then
5 SolÐ Sol Y txiu;
6 end

7 end
8 return Sol;

Fig. 1. Pseudocode of Näıve Evaluation

3.2 Basic Ternary Gray Code Enumeration

According to the proposition 1, we compute fpgiq by updating fpgi´1q with their
difference Bf

Bb1piq
pgi´1q. Therefore, this indicates that searching the candidate

vectors in the order of ternary Gray code requires less arithmetical operations
than the requirement in näıve evaluation. The pseudocode is shown in Fig. 2.

3.3 Generalized Ternary Gray Code Enumeration

From the last section, we have known that while any two successive values differ
in only one trit, the evaluations can be accelerated. In this section, we intro-
duce a new algorithm, which we call generalized ternary Gray code enumeration
(GTGCE). This method is the extension of section 3.2. It not only keeps the
advantage as mentioned above but also makes use of the recursive technique.

First of all, let us consider a special situation in proposition 1. If Bf
Bi pxq and

Bf
Bi px ‘ ejq are known differences, the equation B

2f
BiBj pxq “

Bf
Bi px ‘ ejq ´

Bf
Bi pxq

can be derived by the definition. Similarly, the ternary Gray code form can be

represented as Bf
Bi pgkq “

Bf
Bi pgk´1q `

B
2f

Bb1pxkqBb2pxkq
pgk´1q. In summary, we can

extend the proposition to any higher degree.
Now we are going to illustrate the algorithm. The pseudocode of GTGCE

is shown in Fig. 3. At the beginning, some variables need to be initialized (line
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1 SolÐ ∅;
2 δ Ð C;
3 for i “ 0 to 3n ´ 1 do
4 β1 Ð b1piq;
5 if β1 ě 0 then

6 δ Ð δ ` Bf
Bβ1piq

pgi´1q;

7 end
8 if δ “ 0 then
9 SolÐ Sol Y tgiu;

10 end

11 end
12 return Sol;

Fig. 2. Pseudocode of Basic Ternary Gray Code Enumeration

1-5). δ, which is also used in Fig. 2, stores fpgiq and δβ1,...,βk store all kinds

of differences B
kf

Bβ1pxq¨¨¨Bβkpxq
pgq. Further, we need to notice that addition in the

subscript of g is trit-wise operation. For example, given β1 “ 2, β2 “ 4, we can
derive p32 ´ 1q ‘ p34 ´ 1q “ 0022 ‘ 2222 “ 2211, and then g2211 equals 2020.
Therefore, the following equations can be derived.

δ2,4 “
B2f

B2B4
p2020q

“
Bf

B2
p12020q ´

Bf

B2
p2020q

“ pfp12120q ´ fp12020qq ´ pfp2120q ´ fp2020qq

“ C2,4 `C2,2,4 `C2,4,4 ´C1,2,4 ´C2,3,4 . (2)

Initialization of δβ1,...,βk is listed in Table 2 and Table 3 (see Appendix).
These differences will always stay up-to-date (correct) because their values will
be updated every round in the for loop. After initialization, the process will
enter exhaustive search stage. The stage can be divided into three steps roughly.

The first step (line 7-8) is finding corresponding indices of the differences
(where the non-zero trits are, 2’s counting twice) in the ternary index i. If the
degree of a polynomial system is d, we only need to record d least significant
nonzero bits at most.

The second step (line 9-11) is updating the variable differences and the result
according to the indices determined in the first step. In Fig. 2, the formula
δ` “ Bf

Bβ1pxiq
pgi´1q updates the result. However, the value of Bf

Bβ1pxiq
pgi´1q must

be updated with the second order difference prior to being used. In short, we add
one higher-order difference into a lower-order one to get its new value, recursively.
These actions are clarified by the following expression (with α ě 3):

δ` “ pδβ1` “ pδβ1,β2` “ pδβ1,β2,β3` “ ¨ ¨ ¨ qqq . (3)
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These recursive in-place prefix-sum operations do not halt until we meet a
terminal condition, which means a difference that need not be updated. More-
over, we sometimes need to add more than one higher-order difference in an
update. That is, having to add several δβ1,...,βj to δβ1,...,βj´1

is possible. If this
happens in a terminal step (meaning, for a degree-d system, we are using one or
more order-d differences), we would always precompute the sum of all involved
differences to get a new difference constant δ˚β1,...,βj

, and in such case only one
addition is needed. However, when d ą 2, sometimes this situation happens
in the middle of the recursive process in Eq. 2, and we cannot precompute so
easily because every δβ1,...,βj must be updated individually before a dependent
lower-order difference can be updated. In short, the process of updating depend
on indices we find in the first step. The relation between these is illustrated in
Table 4 and Table 5 (see Appendix), and we illustrate their correctness with
Table 1.

Now we are going to introduce the terminal conditions of the recursion. Note

that a difference δβ1,...,βd will be initialized to B
df

Bβ1pxq¨¨¨Bβdpxq
pgq, and its value

is equal to or some multiple of the monomial coefficient Cβ1,...,βd. It depends
on βi. If every βi is different, the multiplier is 1; for every pair of βi “ βi`1

(which means that a trit is 2), the multiplier will be doubled; thus with ` equal
pairs of indices, the multiple is equal to 2`. Since these differences are always
constants, the multiplier values need no updates. So, there are two ways we stop
the recursive updating:

1. α “ d, and we have reached the highest degree difference, which is constant.
2. δβ1,...,βα appears for the first time and we use its known initial value.

The last step (line 12-14) is checking whether the new result is equal to zero or
not. If the condition is satisfied, we add the corresponding ternary Gray code to
the group which contains all legal solutions. Of course, an actual run starts with
a script which enumerate through the indices and compute the corresponding
bi’s and generate the actual C program with no unnecessary branches or table
lookups. A main difference with F2 is the possibility of having to add several
differences to update one lower order difference, causing the number of additions
per candidate to be greater than d on average for a degree-d system when d ą 2.

4 Variants and Analysis

4.1 Partial Evaluation

Now we understand how various exhaustive search solvers work, it is easy to see
that they are suitable for parallelization. So we will divide an input system into
multiple subsystems to be solved simultaneously.

Partial evaluation is an obvious method for splitting the problem. The main
idea is to substitute all possible values for s variables. Therefore, we can use s
to control the number of subsystems. It generates 3s subsystems each with n´ s
variables.
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1 SolÐ ∅;
2 δ Ð C;
3 foreach coefficient Cβ1,...,βk of f do

4 δβ1,...,βk Ð
Bkf

Bβ1p3
β1`¨¨¨`3βk q¨¨¨Bβkp3

β1`¨¨¨`3βk q
pg
p3β1´1q‘¨¨¨‘p3βk´1qq;

(see Table 2, Table 3)
5 end
6 for i “ 0 to 3n ´ 1 do
7 αÐ min(HammingWeight(i),d);
8 β1, . . . , βα Ð b1,...,αpiq;
9 for j “ α to 1 do

10 δβ1,...,βj´1 Ð δβ1,...,βj´1 ` δβ1,...,βj (see Table 4, Table 5)

11 end
12 if δ “ 0 then
13 SolÐ Sol Y tgiu;
14 end

15 end
16 return Sol;

Fig. 3. Pseudocode of Generalized Ternary Gray Code Enumeration

We illustrate with an example as below. Consider a system with d “ 2, n “ 4,
and choose s “ 2. Hence there are 4 variables, which are x0, x1, x2 and x3 in the
input system, and x2 and x3 will be substituted to find 9 subsystem individually
with only variables x0 and x1. After reorganizing the coefficients, we can obtain
the following expression:

C0,0x
2
0 `C1,1x

2
1 `C0,1x0x1 ` pC0,2x2 `C0,3x3 `C0qx0 ` pC1,2x2`

C1,3x3 `C1qx1 ` pC2,2x
2
2 `C3,3x

2
3 `C2,3x2x3 `C2x2 `C3x3 `Cq .

It is easy to see that coefficients of the highest degree still retains their original
values. The new constant is C2,2x

2
2 ` C3,3x

2
3 ` C2,3x2x3 ` C2x2 ` C3x3 ` C;

the new coefficient of x0 is C0,2x2 ` C0,3x3 ` C0 and the new coefficient of
x1 is C1,2x2 ` C1,3x3 ` C1. We may substitute x2 and x3 with their different
possible values (0,1 or 2) for each subsystem so that 9 subsystems will be derived.
Since there may be many substituted variables, we can use the same Generalized
Ternary Gray Code enumeration technique.

4.2 Early-abort Strategy

In contrast with partial evaluation, an early-abort strategy focuses on equations.
Each candidate vector is first checked against a fixed portion of the equations.
Only if the candidate passes that test do we check whether it satisfies the re-
maining equations.

This method is like a filter, which removes impossible vectors early. We call
the first part ”enumeration phase”, and call the second part ”check phase”.
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Suppose a system has n variables and m equations. There are total 3n candidate
vectors which need to be evaluated. Then we check only the first k equations in
enumeration phase. On average only 1

3k
vectors will pass the filter so that the

number of possible vectors decreases obviously.

5 Implementations on GPU

5.1 Overview

We start with an input system with n variables and m equations and we compute
all differences which will be used in the enumeration. We then divide the system
into numerous subsystems by guessing s variables, with each subsystem going
to one thread on the GPU. The differences for 3s subsystems may not be all
the same due to the substitutions. Every thread will only test the first 32 equa-
tions with GTGCE and return at most one candidate vector which satisfies all
equations during in enumeration phase. All possible solutions are then checked
against the other equations. If more than one vector is found in a thread, we will
need to perform GTGCE again on the CPU during the check phase because we
can only return one, as in the details below.

We test 32 equations simultaneously in the enumeration phase since that is
the width of a GPU register. The two bits in the 2-bit representation of each of
the 32 trit-results are split into two registers to take full advantage of bit-slicing.
Addition (and occasional subtraction) uses only bitwise AND, OR and XOR
with no carries.

5.2 Unrolling

When we update the result of fpgiq, accumulating is a necessary procedure.
However, another thing which is almost as important as that is finding indices,
and it occupies a lot of time in this stage. For this reason, unrolling is an intuitive
method for decreasing the overhead.

We illustrate the method with Table. 6. It is a scheme of unrolling with
unroll factor 27. Suppose the system is cubic, so we only need to consider three
bk. Recall that bkpiq represents the index of the k-th least significant nonzero
bit in ternary index i. These columns indicate some bk are fixed even if we do
not know the values of higher trits. For example, b1p˚ ¨ ¨ ¨ ˚ 012q is a constant.
Further, we can determine unknown items only if all bk in the first index, which
is p˚ ¨ ¨ ¨ ˚ 000q, are evaluated. The reason is that every series of higher trits is
equal in the same scheme, thus we use these bk’s repeatedly in the other indices.
For example, b1p˚ ¨ ¨ ¨ ˚ 001q “ b0p˚ ¨ ¨ ¨ ˚ 000q.

Let us formulate the description above. We consider any scheme of unrolling
with unroll factor 3u, and the first index is i. The other indices in the same
scheme can be defined as i1 “ i` k, where 0 ă k ă 3u. Hence the indices of the
HammingWeight(k) least significant nonzero bits in i1 are constants. These values
can be computed before enumeration phase. In contrast, there are still some bjpi

1q
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which can not be known beforehand (HammingWeightpkq ă d). However, these
indices can be determined by bjpi

1q “ bj´hpiq, where h “ HammingWeightpkq
and j ą h.

Table 6. A Scheme of Unrolling with Unroll Factor 27

index b4 b3 b2 b1 index b4 b3 b2 b1 index b4 b3 b2 b1
˚ ¨ ¨ ¨ ˚ 000 β4 β3 β2 β1 ˚ ¨ ¨ ¨ ˚ 100 β3 β2 β1 2 ˚ ¨ ¨ ¨ ˚ 200 β2 β1 2 2

˚ ¨ ¨ ¨ ˚ 001 β3 β2 β1 0 ˚ ¨ ¨ ¨ ˚ 101 β2 β1 2 0 ˚ ¨ ¨ ¨ ˚ 201 β1 2 2 0

˚ ¨ ¨ ¨ ˚ 002 β2 β1 0 0 ˚ ¨ ¨ ¨ ˚ 102 β1 2 0 0 ˚ ¨ ¨ ¨ ˚ 202 2 2 0 0

˚ ¨ ¨ ¨ ˚ 010 β3 β2 β1 1 ˚ ¨ ¨ ¨ ˚ 110 β2 β1 2 1 ˚ ¨ ¨ ¨ ˚ 210 β1 2 2 1

˚ ¨ ¨ ¨ ˚ 011 β2 β1 1 0 ˚ ¨ ¨ ¨ ˚ 111 β1 2 1 0 ˚ ¨ ¨ ¨ ˚ 211 2 2 1 0

˚ ¨ ¨ ¨ ˚ 012 β1 1 0 0 ˚ ¨ ¨ ¨ ˚ 112 2 1 0 0 ˚ ¨ ¨ ¨ ˚ 212 2 1 0 0

˚ ¨ ¨ ¨ ˚ 020 β2 β1 1 1 ˚ ¨ ¨ ¨ ˚ 120 β1 2 1 1 ˚ ¨ ¨ ¨ ˚ 220 2 2 1 1

˚ ¨ ¨ ¨ ˚ 021 β1 1 1 0 ˚ ¨ ¨ ¨ ˚ 121 2 1 1 0 ˚ ¨ ¨ ¨ ˚ 221 2 1 1 0

˚ ¨ ¨ ¨ ˚ 022 1 1 0 0 ˚ ¨ ¨ ¨ ˚ 122 1 1 0 0 ˚ ¨ ¨ ¨ ˚ 222 1 1 0 0

5.3 Returning

Let us recap the pseudocode in Fig. 3. When a candidate vector satisfies all
equations in enumeration phase it is added into a set of candidate solutions. Nev-
ertheless there are some problems even with this simple approach. One problem
is the limitation of memory, we may need to keep too many candidates. Another
problem is synchronization on GPU. Every thread performs individually and
finds their respective solutions. Integrating all of the solutions into an appropri-
ate form is a complicated mission.

We use a similar techniques as in [6] to avoid branching or collecting too many
solutions. Each thread has two variables: count the total number of possible
vectors and sol the last candidate vector found. Since the thread keeps only one
possible result. We also only care about count in three states: 0, 1 or 2+ (2
solutions are too many!). Since sol by design takes less than 32 bits, we simply
assign the most significant trit (MST) of sol to 1 if count “ 2`, and only returns
we check whether more than one vector is founded or not by MST in CPU. Note
that sol is always less than 32-bit, so changing the highest trit does not affect
the correctness of the solution.

By the way, each of the threads does not calculate the result of fp0, . . . , 0q in
enumeration phase. It will be checked individually in CPU. Therefore, that sol
equals zero represents no legal solution rather than an all zero solution.

5.4 Re-enumeration

After executions of enumeration phase, the candidate vectors which pass the
first 32 equations will be tested for the rest of input equations in check phase.
According to the previous section, we know that the number of solutions can be
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determined by the value of MST. If it exists only one, we evaluate the equations
over this vector; if there are more than one, we will execute GTGCE with the
first 32 equations again on CPU, which we call re-enumeration. sol can be used
in this stage as well. Since enumeration is performed in ternary Gray code order
and sol is the last legal solution, re-enumeration can terminate early if the order
of vector we are processing is larger than the order of sol. In addition, if any
possible solution is found, it will be checked for the other equations immediately.
The reason is that the cost of branches on CPU is less than GPU.

However, re-enumeration will spend a lot of time so that we do not want
to encounter this situation. To avoid re-enumeration, we control the number of
variables in every thread. That is to say, we determine variable s in section 4.1
to make each of the threads finds only one solution at most.

6 Implementations on CPU

6.1 Overview

The input system has n variables and m equations and all differences are com-
puted initially. Next, the system is divided into various subsystems. This is
“partial evaluation” similar to what we execute on GPU. At this point every
thread processes the first 32 equations on GPU. On a CPU, each subsystem will
have only 16 equations tested at a time so that a register can hold and therefore
process information from more systems at the same time.

Another difference between CPU and GPU is the checking phase after enu-
meration. A possible solution is sent to the check queue immediately. The reason
is that a CPU is comparatively much more efficient at branching and threading.
It is because branches are so costly on a GPU, that there is no checking phase
until all work on GPU is finished.

6.2 Batched Enumeration

In enumeration phase on CPU, we take advantage of the 128-bit XMM regis-
ters, and we make each of the subsystems process the first 16 equations. That
is, all differences are only 16-bit. In this way, we can execute 8 subsystems si-
multaneously. Since the type of value is int128, accumulating can be done by
the intrinsics mm and si128, mm or si128 and mm xor si128. However, that
a result is equal to zero does not represent a legal solution owing to 8 solutions
in a register. We use some SSE2 intrinsics to solve this problem similar to [6].

The method is shown in Fig. 4. The intrinsic mm cmpeq epi16 compares the
8 unsigned 16-bit blocks in res x1 and the 8 unsigned 16-bit blocks in zero, which
is a 128-bit all-zero variable, for equality. res x1 represents the higher bit in a
trit. If two corresponding blocks are equal in two variables, the same position of
the block in Mask will be assigned to 0xFFFF, and 0x0000 otherwise. Next, the
intrinsic mm movemask epi8 creates a 16-bit mask from the most significant
bits of the 16 unsigned 8-bit blocks in Mask; hence that mask is not equal to
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zero represents at least one solution exists. Because a 16-bit block is all-zero in
res, it makes a bit in mask equals 1. Any candidate vector found is sent to the
check queue to have the rest of equations tested. Note that we check every bit
in mask as more than one bit may be set, which means that more than one
subsystem is satisfied.

7 Empirical Results and Discussion

We tabulate all results in the appendix. We can see that we can solve a 30-
variable, 30-equation system over F3 on a GeForce GTX980 Ti in 14 minutes.
The same run on an AMD FX-8350 core (4 GHz) takes 32 hours. For 20 variables
and 20 equations, the GPU takes 0.21 seconds, and the CPU takes 1.2 seconds.

We tested MAGMA-2.21 on the same CPU with guessing (FF4 or Hybrid
Approach) for the same systems and tabulate the results in the appendix. Not
all runs are complete, as in some cases we only ran sufficiently many subsystems
to ensure that the run with the correct guess and a run with an incorrect guess
takes comparable amounts of time. From these data we may extrapolate where
the Gröbner bases method will catch up to enumeration on the same CPU.
Going by just the endpoints, we expect that FF4 to catch up to enumeration at
58 equations and variables (292 complexity) and if we use the regression line, the
crossover point would be 60 equations and variables (295 complexity).

There are a number of caveats to this comparison. While MAGMA has well-
optimized linear algebra and uses semi-sparse operations where possible, it is not
specifically tuned for F3, and we expect that a tuned solver would do better. In
the other direction, Gröbner basis methods takes a huge penalty once the state
becomes larger. Also, GPUs can be used effectively in enumeration, speeding it
up by a factor of two orders of magnitude on a per-dollar basis. We can also
expect that an FPGA implementation similar to [7] would speed enumeration
up by another order of magnitude. Factoring in everything, it is likely that
for a generic quadratic system with as many equations as variables over F3,
enumeration will be better than algebraic solvers for all tractable problem sizes.
If we repeat the same computation for F4, we can estimate the crossover point
to be close to 40 equations and variables, or 280 complexity level (close to the
limit of researchers’ resources). Finally, for F5 we estimate that the crossover
point would be as low as 260 complexity, well within reach of academics.

One big difference from the F2 case: We extrapolate that FF4 will catch up
to enumeration on the same CPU at n “ 30, m “ 60. After taking into consider-
ation special hardware, we estimate algebraic solvers to match enumeration for
the m{n “ 2 overdetermined generic case in F3 around the 264 (40 trits) level.
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Appendix

1 Mask x1 = mm cmpeq epi16(res x1, zero);
2 mask = mm movemask epi8(Mask x1);
3 if(mask) check(mask, idx, x1, x0);

Fig. 6. A Few Lines of SSE2 Intrinsics in CPU Implementations
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Table 2. Initialization of differences with degree = 2

first order

difference constraint initialization

δ0 C0 + C0,0

δi 0 ă i Ci - Ci-1,i + Ci,i

second order

δi,i - Ci,i

δi,j i ă j Ci,j

Table 3. Initialization of differences with degree = 3

first order

difference constraint initialization

δ0 C0 + C0,0

δi 0 ă i Ci - Ci-1,i + Ci,i + Ci´1,i´1,i - Ci´1,i,i

second order

difference constraint initialization

δ0,0 - C0,0

δ0,1 C0,1 - C0,0,1 + C0,1,1

δ0,j 1 ă j C0,j + C0,0,j - C0,j-1,j + C0,j,j

δi,i 0 ă i - Ci,i - Ci-1,i,i

δi,i+1 0 ă i Ci,i+1 - Ci-1,i,i+1 - Ci,i,i+1 + Ci,i+1,i+1

δi,i+t 0 ă i & 1 ă t Ci,i+t - Ci-1,i,i+t + Ci,i,i+t + Ci,i+t,i+t - Ci,i+t-1,i+t

third order

difference constraint initialization

δi,i,k i ă k - Ci,i,k

δi,j,j i ă j - Ci,j,j

δi,j,k i ă j & j ă k Ci,j,k
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