
VOL. E101-A NO. 3
MARCH 2018

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.

IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.3 MARCH 2018
553

PAPER
Implementing 128-Bit Secure MPKC Signatures

Ming-Shing CHEN†a), Wen-Ding LI††b), Bo-Yuan PENG††c), Bo-Yin YANG††d), Nonmembers,
and Chen-Mou CHENG†e), Member

SUMMARY Multivariate Public Key Cryptosystems (MPKCs) are of-
ten touted as future-proofing against Quantum Computers. In 2009, it was
shown that hardware advances do not favor just “traditional” alternatives
such as ECC and RSA, but also makes MPKCs faster and keeps them com-
petitive at 80-bit security when properly implemented. These techniques
became outdated due to emergence of new instruction sets and higher re-
quirements on security. In this paper, we review how MPKC signatures
changes from 2009 including new parameters (from a newer security level
at 128-bit), crypto-safe implementations, and the impact of new AVX2 and
AESNI instructions. We also present new techniques on evaluating mul-
tivariate polynomials, multiplications of large finite fields by additive Fast
Fourier Transforms, and constant time linear solvers.
key words: MPKC signatures, finite field arithmetic, SIMD, additive FFT

1. Introduction

1.1 The Requirements on Post-Quantum Security

Since Shor’s algorithm [1] was invented, it is clear that tra-
ditional public key cryptography (PKCs) based on discrete
logarithm and RSA assumptions are going to be solved in
polynomial time once large quantum computers are built.
PKCs that retain sufficient security levels when quantum
computers have arrived are said to be post-quantum. Such
cryptosystems are also sometimes called PostquantumCryp-
tosystems or PQCs. There are four or five main classes of
PQCs one of which comprise Multivariate public-key cryp-
tosystems (MPKCs) [2].

1.2 MPKCs and Its Security

MPKCs are PKCs whose public keys represent multivariate
polynomials over a finite field(GF) K = Fq:

P : w = (w1, . . . , wn) ∈ Kn

7→ z = (p1(w), . . . , pm(w)) ∈ Km .

Manuscript received July 4, 2017.
Manuscript revised November 15, 2017.
†The authors are with Department of Electrical Engineering,

National Taiwan University, Taiwan.
††The authors are with Institute of Information Science,

Academia Sinica, Taiwan.
a) E-mail: mschen@crypto.tw
b) E-mail: kvlxu3@gmail.com
c) E-mail: bypeng@crypto.tw
d) E-mail: by@crypto.tw
e) E-mail: doug@crypto.tw
DOI: 10.1587/transfun.E101.A.553

Polynomials p1, p2, . . . have (almost always) been quadratic.
In public-key cryptography, we can let P (0) = 0.

We need to discuss the security of MPKCs in order to
set the parameters needed for the required security level(s).
The public key of MPKCs is a set of multivariate quadratic
polynomials. One can break all MPKCs if one is able to
efficiently solveMQ problems.

1.2.1 ClassMQ(q, n,m) and theMQ Problem

For given q, n,m, the classMQ(q, n,m) consists of all sys-
tems of m quadratic polynomials in Fq with n variables. To
choose a random system S fromMQ(q, n,m), we write each
polynomial Pk (x) as

∑
1≤i≤ j≤n ai jk xi x j +

∑
1≤i≤n bik xi+ck ,

where every ai jk, bik, ck is chosen uniformly in Fq .
SolvingS(x) = b for anyMQ system S is then known as

the “multivariate quadratic” problem. It is an NP-complete
problem [3]. However, it is not easy to base a proof on
worst-case hardness. Often the premise used is the hereto
unchallenged average-case MQ hardness assumption [4],
[5]:

AssumptionMQ

Given any k and prime power q, for parameters n,m sat-
isfying m/n = c + o(1), no probabilistic algorithm in
subexponential(n)-time can solve S(x) = b with a non-
neglible probability ε > 0, if the systems S are drawn from
MQ(q, n,m), and a vector b = (b1, b2, . . . , bm) drawn from
S(Un), where Un is the uniform distribution over (Fq)n.

1.2.2 Hardness of GenericMQ

The complexity of solving a random instance out of
MQ(q, n,m) is estimated using Gröbner basis methods, of-
ten XL with sparse matrices [6], [7] or F5 [8], [9]. We will
assume that the best general algorithm is FXL, meaning we
fix (guesses) some number of variables randomly, and solve
the remaining system using XL with sparse matrices (also
known as “the hybrid approach”), and use prior estimates
[10].

We use the notation CFXL (n,m; q) for the complex-
ity of solving n variables from m equations over the field
Fq using FXL. We fixes (guesses) some number of vari-
able at random and then solve the remaining system us-
ing XL, so CFXL (n,m; q) = minj

(
q jCXL (n − j,m; q)

)
.

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers

554
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.3 MARCH 2018

Here CXL (n,m; q) is estimated using sparse matrices as
in [10]: If we set [u]s to mean the coefficient of the
term u in the series expansion of s, the operative degree
of XL is D0 = min{D : [tD] (1−tq)n (1−t2)m

(1−t)n+1 (1−t2q)m ≤ 0}. And

CXL (n,m; q) = 3
(
n
2

) (
[tD0]

(
(1−tq)n

(1−t)n+1

))2
.

1.2.3 Extended Isomorphism of Polynomials (EIP)

NoticeMPKCs cannot be randomMQ polynomials, because
the legitimate user would be equally unable to invert P.
Usually the public map of an MPKC have structure in the
“bipolar form”: P = T ◦ Q ◦ S where T and S are affine,

P : w ∈ Kn S
7→ x

Q
7→ y

T
7→ z ∈ Km.

The field K = Fq is often called the base field. The require-
ment for the quadratic central map Q is that it is easy to
“invert” Q but not P. That is, given y ∈ Km, it is easy to
compute x such that Q(x) = y . but finding a x such that
P (x) = y is hard. The structure is hidden away by S and
T . Given this, the MPKC may be attacked via what is called
structural attacks.

EIP and “Structural Attacks”

Given a class C of quadratic maps Kn→Km and a quadratic
map P : Kn→Km, an associated EIP instance means to find
S and T such that P = T ◦ Q ◦ S, where Q ∈ C. Defeating
a bipolar-form MPKC through solving an EIP is known as a
“structural” or Key-Recovery attack.

Note that solving an EIP problem is very ad hoc, de-
pending very much on what Q is like, and again we do not go
into the theoretical details but uses known EIP results in this
paper. In other words, we assume the EIP, w.r.t. the proposed
schemes, is hard unless new results on the specific forms of
EIP are proposed.

1.2.4 The Estimation of Security Level

Since there is no theoretical proof for the MPKCs based
on EIP problems, the security level of these MPKCs are
estimated by the complexities of known attacks on the chosen
parameters of specific schemes. The proposed parameters
were usually accompanied with the analysis of the known
attack. In this paper, we aim at the implementations of
MPKCs and adopt the proposed parameters in the literatures.

The proposed parameters were, however, in general es-
timated with classical security. In other words, the estimated
security level will decrease while estimating with quantum
computing.

1.2.5 Non-bipolarMQ and Proofs of Knowledge

There areMQ public-key schemes which are based only on
the security of hash functions and the MQ problem only,
such as [11] (and the older [12]). These are based on proofs
of knowledge rather than the traditional MQ paradigm. The

key steps of both the public and secret operations involves
only repeatedMQ evaluations. The cost is running time and
the length of the signature (many kilobytes).

1.3 The Implementation of MPKCs

1.3.1 Challenge in Cryptographic Implementations

In practice, a security system can be broken due to its im-
plementation instead of the cryptography, e.g., the cache-
timing attack to AES [13]. We would like reasonable im-
plementations which retain as much as possible side channel
resilience. This means that the secret data should be inde-
pendent of memory access and table indices. In other words,
time constancy is always a basic requirment when process-
ing secret data. We want such implementations for generic
32-bit architectures (many of today’s micro-controllers) and
for the diverse instruction set in mainstream CPUs.

MPKCs were usually advertised for speed, which still
needs to be reviewed according to today’s security require-
ments. In 2009MPKCswere shown [14] to be easily a match
for RSA and ECC at the 80-bit security level. It seems the
basic security requirements has shifted to 128-bit, which can
be seen from the call of new post-quantum cryptographic
schemes from NIST [15]. We have to see whether MPKC
signature schemes still remain viable in the age of 128-bit
security.

1.3.2 Revisiting the Implementations of MPKCs

We can partition implementation of MPKCs into smaller
components most of which are procedures in basic linear
algebra. The efficiency of MPKCs usually relies on the
implementations of these components:

• The evaluation of quadratic polynomials is a key com-
ponent in implementing multivariate cryptography and
had been studied in [11], [14], [16]. In general, these
works studied the most efficient instructions in the tar-
get platforms for evaluating using the minimum number
of instructions.

• Arithmetic in finite fields is a basic topic in computer
science and closely related to the implementation of
MPKCs for fields up to 512 bits and beyond. For
these large fields of characteristic 2, the polynomial-
multiplication instruction(PCLMULQDQ) is a perfect fit
for the requirements and had been used as primary
choice for building field multiplications, e.g., in [17].
To multiply on platforms without PCLMULQDQ, some
implementations build a multiplication from vector in-
structions using Karatsuba or similar algorithms, e.g,.,
in [14], [17]. In 2014, Bernstein and Chou [18] pre-
sented the multiplications by applying additive FFT
[19] and bit-slicing when implementing for generic
platforms without SIMD instruction sets. Motivated
by [18], we present a multiplication for general SIMD
platforms using a new additive FFT [20] in this paper.

CHEN et al.: IMPLEMENTING 128-BIT SECURE MPKC SIGNATURES
555

• The secret maps of some MPKCs are mainly root-
finding of high degree univariate polynomials using
Berlekamp’s algorithm [17]. Since the success of sign-
ing is dependent on the existence a root in someMPKCs,
we can parallelize the signing process with different
randomness for increasing the probability of a success-
ful signing. We achieve the parallelization of big GF
arithmetic using SIMD in this paper.

• Solving linear equations is also a key component in
some MPKC schemes [21]. In 2014 [18] demonstrated
a constant time Gauss eliminations for F2. We extend
the method to F16 and F31 in this paper. The key is
to remove branching on zero pivots and instead use
conditional moves.

Throughout this paper, we will revisit these key com-
ponents of MPKCs while taking into consideration side-
channel resilience and a 128-bit security level.

2. Backgrounds on MPKC Signatures

2.1 Recap of MPKC Signatures

An Multivariate Public Key Cryptosystem has a public map
P = T ◦ Q ◦ S where T and S are affine,

P : w ∈ Kn S
7→ MSw + cS := x

Q
7→ y

T
7→ MTy + cT := z ∈ Km .

The fieldK = Fq is often called the base field. The quadratic
central map Q (but not P) must by easy to “invert”. The
structure of Q is hidden away by S and T and the various
MPKCs are characterized by the struction of theirQ’s. When
evaluating the private map, the legitimate user inverts T , Q,
and S in that order.

It is almost universally accepted that it is difficult to de-
sign multivariate encryption schemes. Most such schemes
are either already been broken or have much larger sizes
than signature schemes. We enumerate the main MPKC
signatures considered secure today and modify their param-
eters for 128-bit security in this section. We will discuss the
implementation of these schemes in the later sections.

According to whether Q involves a mapping in a much
larger field L ⊃ K, the scheme is called “big” or “small” field
respectively. The size of L is usually somewhere between
264 and 2512 and multiplications in L are usually the time
consuming steps of the secret map in big field schemes.

2.1.1 Main Procedures of Typical MPKC Signatures

The MPKC signature system comprise three main proce-
dures: key generation, signing messages, and verifying sig-
natures. In key generation, the user randomly choose a secret
key which comprises invertible S, T , and Q. The coefficients
of public key P can be deduced using polynomial interpola-
tion of T ◦ Q ◦ S. We refer the reader to [22] for the details
of interpolation and other efficient key generation methods.

To sign a message, the signer first compute the hash
value of the message as the digest z ∈ Km. With the secret
key, the signer computes y = T−1(z), x = Q−1(y), and
w = S−1(x) ∈ Kn which is the signature of the message.
The details of Q−1 varies with specific schemes.

To verify a signature w ∈ Kn with a message, the
user evaluates the public polynomial P (w) = z and checks
whether the digest of the message is equal to z.

2.2 Rainbow/TTS

Rainbow [21] is the stereotypical “small field”MPKC,where
we work on the same field (F16, F31, or F256) throughout.
Although TTS [23] had been proposed earlier, it can be con-
sidered as Rainbow with a sparse Q in today’s terminology.
The definitive analysis of security for Rainbow/TTS and the
formulation of current instances can be found in the 2008
paper [23]. 80-bit secure parameters are chosen in [24].

2.2.1 The Central Map in Rainbow/TTS

Rainbow(Fq, v1, o1, . . . , ou) is characterized as follows as a
u-stage UOV [21], [23].

• The segment structure is given by a sequence 0 < v1 <
v2 < · · · < vu+1 = n. For l = 1, . . . , u + 1, set labels
for “vinegar” variables as Vl := {1, 2, . . . , vl } so that
|Vl | = vl and V1 ⊂ V2 ⊂ · · · ⊂ Vu+1 = V . Denote sets of
“oil” variables by ol := vl+1 − vl and Ol := Vl+1 \Vl for
l = 1 · · · u.

• The central map Q comprises m structurized quadratic
equations y = (yv1+1, . . . , yn) = (qv1+1(x), . . . , qn(x)),
where

yk = qk (x) =
vl∑
i=1

vl+1∑
j=i

α(k)
i j xi x j +

∑
i<vl+1

β(k)
i xi ,

for k ∈ Ol := {vl + 1, . . . ,vl+1}.
• Note that in every qk , where k ∈ Ol , there is no cross-
term xi x j where both i and j are in Ol . So given all the
yi with vl < i ≤ vl+1, and all the x j with j ≤ vl , we can
easily compute xvl+1, . . . , xvl+1 .

2.2.2 Signatures in Rainbow/TTS

To sign a message, the signer calculate the hash digest z of
message and inverts P with the secret key T , S, and Q by

z ∈ Km T−1

7−→ y
Q−1

7−→ x
S−1

7−→ w ∈ Kn ,

where w is the signature. The key step here is inverting
the central map Q. While inverting Q with given y, the
signer randomly guesses vinegar variables x̄ = (x1, . . . xv1)
and solve (xv1+1, . . . , xv1+o1) by

556
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.3 MARCH 2018

yv1+1 = ᾱ
(v1+1)
v1+1 xv1+1 + · · · ᾱ

(v1+1)
v1+o1 xv1+o1 + β̄

(v1+1)
V1

...

yv1+o1 = ᾱ
(v1+o1)
v1+1 xv1+1 + · · · ᾱ

(v1+o1)
v1+o1 xv1+o1 + β̄

(v1+o1)
V1

.

(1)

Here (β̄(v1+1)
V1

, . . . , β̄(v1+o1)
V1

) is an evaluation of secret-
quadratic equations with secret values x̄ and the matrix

ᾱ(k)
i · · · ᾱ(k)

i′

. . .

ᾱ(k′)
i ᾱ(k′)

i′

, where i, i′ and k, k ′ ∈ O1 ,

denoted by matVO(x̄), is evaluated as linear forms in x̄. All xi
where i ∈ Ol is solved with a linear solver and there are total
u linear systems to be solved. The signer may have to repeat
the process if any matVO(x̄) is a singular matrix. Hence, the
main computation cost of signing is solving linear equations
and computing thematricesmatVO(x̄) fromvinegar variables
x̄.

2.2.3 Parameters of Modern Rainbow/TTS

In current Rainbow/TTS, u is always 2, with parameters
(v, o, o), and at b-bit security qo & 2b (rank attacks [25]).
The number of variables and equations are (n,m) = (v +
2o, 2o). Against aRainbowwithm equations and n variables,
the most pertinent attacks are substituting n −m variables at
random and trying to solve for the remaining m variables
(“Direct Attack”), and a structural attack which involves
solving an associated quadratic system with n variables and
n+m−1 equations (“RainbowBand Separation”). Therefore
we require 2b . min(CFXL (m,m; q),CFXL (n,m+n−1; q))
[23].

Ding et al. [23], [26] suggest for 80-bit design se-
curity Rainbow/TTS with parameters (F24, 24, 20, 20) and
(F28, 18, 12, 12). We modify the parameters for modern se-
curity requirements in Table 1.

2.3 pFLASH

C∗-p or pFLASH [27] was a 2008 prefix modification of the
earlier SFLASH by Patarin [28].

2.3.1 The Central Map Q in pFLASH

pFLASH(K = Fq, n−π,m) is a large field scheme. We iden-
tify L= Fqn , a degree-n extension of the base field K = Fq ,

Table 1 Parameters of rainbow.
secucrity 128 bits 192 bits 256 bits
F16, v1, o1, o2 32,32,32 48,48,48 64,64,64
n→ m 96→ 64 144→ 96 192→ 128
F31, v1, o1, o2 28,28,28 53,40,40 74,56,56
n→ m 84→56 133→80 186→112
F256, v1, o1, o2 28,20,20 52,32,32 73,48,48
n→ m 68→40 116→64 169→96

with (Fq)n via an implicit bijective map φ : Kn → L. While
the elements of field L are represented as polynomials of de-
gree < n in Fq[y], φmaps an element x = (x1, . . . , xn) ∈ Kn

to the coefficients of the corresponding polynomial x
φ
7→ X =

x1 + x2 · y + · · ·+ xn · yn−1 ∈ L. It is clear that φ is a public
bijection. Thus we consider x ∈ Fnq . In this view, the central
map Q :

x ∈ Kn φ
7→ X ∈ L

Q
7−→ Y = Xqα+1 φ−1

7−→ y ,

which is quadratic in the components of x, because X 7→ Xqα

is linear in (the components of) x. We need gcd(qn −1, qα +
1) = 1, so there exists an h such that h · (qα + 1) = 1 + g ·
(qn − 1) and thus

Q−1 : Y 7→ Yh = X1+g ·(qn−1) = X . (2)

2.3.2 The Modifications

Two modifications in pFLASH improves the security. The
first special feature is that pFLASH is “prefixed” meaning
the first π (almost always = 1) components of the input
variables w are fixed to be zero. No coefficients relating
to them are released with the public key because they are
not needed. The other is a “minus” modification where last
a = n − m polynomials are not released, i.e., the original
affine map T : Fnq → Fnq is modified to T ′ : Fnq → Fmq by
removing last a = n − m dimensions of image space of T .
In other words, to generate the public key P ′ = T ′ ◦ Q ◦ S,
the user first computes P = T ◦ Q ◦ S with invertible S and
T , then remove all coefficients of the first variable (or more,
if π > 1), and the last n − m polynomials for the public key
P ′ ∈ MQ(n − π,m = n − a). The secret key still contains
the entirety of S and T .

2.3.3 The Signing Process

To sign, the user finds the (padded) hash value z∈ Fmq , pad it
randomly in the last n−m positions to form z′∈ Fnq , compute
y = T−1(z′), x = (φ−1 ◦ Q−1 ◦ φ)(y), and w = S−1(x).
By the modification of prefix, it is considered to be a valid
signature if and only if the first π component(s) of x are zero,
otherwise we repeat the process with different randomness.

The computational cost of pFLASH is mostly in raising
Y (with different randomness) to a power Yh = X which is
computed by repeatedly squaring, raising to a power of q,
and multiplying all in the big field. The multiplications are
by far the main computational bottleneck.

2.3.4 Parameters of pFLASH

We show the modified the parameters of pFLASH from [29]
in Table 2. The initial parameters are (F16,62 − 1,40) which
is designed for lightweight devices at the 80-bit security
in [29]. We include this parameter set in our implementations
because it is still topical.

CHEN et al.: IMPLEMENTING 128-BIT SECURE MPKC SIGNATURES
557

Table 2 Parameters of pFLASH over F16.
security 80 bits 128 bits 256 bits

(F16, n − π,m) 62-1,40 96-1,64 192-1,128
pub map: n−π → m 61→ 40 95→ 64 191→ 128

2.4 HFEv- and QUARTZ/GUI

HFEorHidden Field Equations [30] is also a “big-field” vari-
ant of MPKC. It was the most venerable of these schemes
(having been proposed two decades ago, in the last millen-
nium) and in slightly modified form became QUARTZ and
Gui [17], [31].

2.4.1 The Central Map of HFEv-

As in other big-field schemes, we identify L= Fq` , which
is a degree-` extension of the base field K= Fq , with
(Fq)` and a bijective map φ : K` → L. With a pre-
defined degree d, the central map of HFE(Fq` , d) is de-
fined: Y =

∑qi+q j ≤d
0≤i, j αi jXqi+q j

+
∑qi ≤d

0≤i βiXqi
+ γ, which

is quadratic in x and invertible via the Berlekamp algorithm
in asymptotic complexity O(d1.815 log q`) [32] with X and
Y as elements of Fq` . Solving HFE via public equations
directly is considered to be sub-exponential (O(`log d) for
q = 2, quasi-polynomial) [33].

To increase the security, wemay add v vinegar variables
and define HFEv(Fq` , d, v) as follows

Q(X, x̄) :=
qi+q j ≤d∑

0≤i, j
αi jXqi+q j

+

qi ≤d∑
0≤i

βi (x̄)Xqi

+ γ(x̄) ,

(3)

where x̄ = (x`+1, . . . , x`+v) ∈ Fvq are vinegar variables.
There are extra injections from (x`+1, . . . , x`+v) ∈ Kv into
Lv . βi (x̄) ∈ L and γ(x̄) ∈ L are linear and quadratic respec-
tively in x̄ (and thus in x).

Now we have a quadratic central map of x =

(x1, . . . , x`+v) to y. This is efficiently invertible by guess-
ing (x`+1, . . . , x`+v), substituting x̄, then solve the resulting
equation for x by Berlekamp algorithm. Finally, we can add
a minus variation just like in pFLASH, by releasing only
` − a of the equations. Now we have HFEv-(Fq` , d, v, a)
with n = ` + v , m = ` − a.

2.4.2 The Patarin Variation and QUARTZ/GUI

QUARTZ is HFEv-(F2103, 129, 4, 3) with (n,m) =

(107, 100), yet QUARTZ is a 128-bit signature and uses
SHA-1. The key is that in QUARTZ/GUI, the public map is
used k times and the result chained together as in Alg. 1–2.

Lastly, there is one important detail about the Patarin
variation. The central operation in the signing process of

Algorithm 1 Signature Generation Process of Gui
Require: Gui private key (S, F , T) message d, repetition factor k
Ensure: signature σ ∈ F(`−a)+k (a+v)

2
1: h← SHA-256(d)
2: S0 ← 0 = 0`−a (Si are ` − a bits, Xi are a + v bits).
3: for i = 1 to k do
4: Di ← first ` − a bits of h
5: (Si, Xi) ← HFEv−−1 (Di ⊕ Si−1)
6: h← SHA-256(h)
7: end for
8: σ ← (Sk | |Xk | | . . . | |X1)
9: return σ

Algorithm 2 Signature Verification Process of Gui
Require: Gui public key P, message d, repetition factor k, signature σ ∈
F(`−a)+k (a+v)

2
Ensure: TRUE or FALSE
1: h← SHA-256(d)
2: (Sk, Xk, . . . , X1) ← σ (Si are ` − a bits, Xi a + v bits).
3: for i = 1 to k do
4: Di ← first ` − a bits of h
5: h← SHA-256(h)
6: end for
7: for i = k − 1 to 0 do
8: Si ← P (Si+1 | |Xi+1) ⊕ Di+1
9: end for
10: if S0 = 0 then
11: return TRUE
12: else
13: return FALSE
14: end if

HFEv- is the Berlekamp algorithm, which about e−1 of
the time returns “no solution” where e = 2.71828 . . . is
Napier’s constant. In QUARTZ/GUI when we start by tak-
ing gcd(Xq` −X,Q(X, x̄)) the result isn’t degree one (exactly
one solution), we forego the rest of the process and restart
from picking new padding. In QUARTZ this opens the pos-
sibility of there being no solutions. Since a + v in GUI
is fairly large, the possibility of there being no solutions is
negligible.

2.4.3 The Parameters of GUI

The main results about the security of HFEv- (and hence
QUARTZ/GUI) is that the effective rank for MinRank [34]
is r +a+ v , where r = (blogd

q −1c+1) is the rank of the HFE
polynomial. An upper bound for the degeneration degree of
a Gröbner Basis attack against HFEv- systems is given by
[35]

dreg ≤

{ (q−1) ·(r−1+a+v)
2 + 2 q even and r + a odd

(q−1) ·(r+a+v)
2 + 2 otherwise

and we need to evaluate the complexity of the F5 algorithm
[8] at this degree to be at least 2b for b-bit design security.

Parameters for our 128-bit HFEv- variants are given in
Table 3. Note that these are both for 256 bit hashes and
signatures, repeated 3 times a la QUARTZ/GUI.

558
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.3 MARCH 2018

Table 3 Parameters of 128-bit secure GUI (256-bit signatures and
hashes).

parameter F2 F4

(Fq` , d, v, a, k) (F2240 ,9,16,16,3) (F4120 ,17,8,8,2)
n→ m 256→ 224 128→ 112

2.5 Comments on Multivariate HFE

Instead of an univariate polynomial with high degree in the
central map, there were variants of HFE which using smaller
multivariate quadratic systems over big field in the central
map, known as mHFE. The idea was first appeared in [36]
and later Chen et al. [14] proposed parameters for 80-bit se-
curity over odd characteristic fields. This unmodified mHFE
turned out to be weak. It was broken by Bettal et al. [37]
by the generalized Kipnis-Shamir attack[34] with MinRank
property and Hashimoto [38] by a diagonalization approach.
Petzoldt et al. [39] proposed the HmFEv for improving the
security by the vinegar modification. However, Hashimoto
[40] has a rank attack from the public polynomials ofHmFEv.

A thorough security analysis is clearly required for ar-
ranging new parameters or modifications on this variant of
MPKCs.

2.6 Implementation Tools: Useful SIMD Instructions

Advanced Vector Extensions 2 (AVX2) instruction set is In-
tel’s new SIMD(single instruction multiple data) instruction
set in mainstream processors for manipulating integer com-
mands. In the SIMD instruction set, one register can be
treated as a group of 8-bit, 16-bit, 32-bit, or 64-bit data and
the instruction effects paralleled on multiple data. The size
of group is dependent on the size of the machine register. In
contrast to previous 128-bit xmm registers in SSE instruction
sets, the size of registers in AVX2 extends to 256-bit ymm
registers, which affords us 32-way parallelism for 8-bit data.

Beside the common SIMD for arithmetic, logic, or data
manupulations, there are some key instructions heavily used
in ourMQ implementations:

PSHUFB in SSE takes a source considered as a lookup table
of 16 bytes, (x0, x1, . . . , x15), and does a simultaneous
lookup using the other operand register (y0, y1, . . . ,
y15) as 16 indices, where the result at position i is
xyi mod 16 except negative indices result in 0. The AVX2
instruction VPSHUFB performs PSHUFB 2 times in one
instruction.

VPMADDUBSW requires two vectors of 32 8-bit numbers
(x0, . . . , x31) and (y0, . . . , y31) and then computes vec-
tor of 16 16-bit words (x0 y0 + x1 y1, x2 y2 + x3 y3, . . . ,
x30 y30 + x31 y31). This instruction is very useful for
implementing efficient arithmetic in small prime field.

PMULHRSW performs themultiplication of 16-bit binary fixed
point fractions, rounded and signed. This instruction
is useful for taking the remainder of 16-bit integers
modulo a small prime.

PCLMULQDQ performs the multiplication of two polynomials
of degree 63 over F2(F2[x]) and result in a degree 127
polynomials over F2.

Note that PCLMULQDQ is part of AES instruction set (AES-
NI) and is absent inmany Intel Core-i3 processors. The other
three instructions are available in all Intel-compatible proces-
sors manufactured today since a few years ago. Most larger
ARMs have a corresponding vector instruction to PSHUFB
called TBL. 64-bit ARM has a corresponding instruction to
PCLMULQDQ, but 32-bit ARMs don’t, and some small 32-bit
ARM microprocessors don’t have vector instructions at all.

3. Evaluating of Quadratics and the Public Map

The evaluation ofMQ is an important component in MPKC
signatures and corresponds to the verification of signature or
the public map directly. We don’t require constant-time eval-
uations in the public map since the computation is publicly
executable. The evaluation of MQ also appears in the se-
cret map of someMPKC-signature schemes, e.g., generating
Eq. (1) in Rainbow. In this case time constancy is required
when evaluatingMQ.

In this section, we review arithmetic in various GFs
underlying theMQ equations and followed by the evaluation
of MQ with respect constant-time and non-constant-time
cases.

3.1 GF Arithmetic in a Small Field

A Finite field, or Galois Field (GF), is an algebraic struc-
ture, a field containing a finite number of elements. It plays
an important role in the areas of math and computer sci-
ence. To perform the arithmetic in GF, the rule of thumb is
always to choose an equivalent native instruction if it is sup-
ported on the platform. However, there are few GFs where
multiplications correspond to native hardware instructions
in mainstream CPUs, so the efficient software implementa-
tion of GF arithmetic is a topic of great interest in computer
engineering.

3.1.1 Small Prime Field such as F31

Hardware parallel add and multiply instructions (mostly
VPMADDUBSW, see previous section) are used. However an-
other key to efficient F31 arithmetic is handling reductions
modulo 31. Since 31 = 25 − 1, we can do a lazy (instead
of full) reduction for F31 by shifting 5 bits right and adding.
The aforementioned VPMULHRSW helps carrying out Barrett
reduction. Having said that, in general we need to avoid
reductions as much as possible and keep the operations as
packed as possible.

3.1.2 F2 and F4

F2 is probable the only GF with full HW support, which the
multiplications and additions correspond to AND and XOR

CHEN et al.: IMPLEMENTING 128-BIT SECURE MPKC SIGNATURES
559

respectively. However, there are usually 32-bit or larger
machine words in today’s CPUs instead of one “bit” for F2,
the main issue in implementing systems over F2 is to utilize
the full width of the machine word. In the case of F4, we
believe that the best way to multiply is usually to use bit
operations. For this, the 2-bits in one F4 is often stored
in separate registers, or “bitsliced”. A multiplication in F4
including reduction costs 4 AND and 3 XOR.

3.1.3 The Case of F16

Using VPSHUFB/TBL for multiplication tables is the general
strategy of multiplications in F16. To multiply a bunch of
a ∈ F16 stored in a SIMD register with a scalar b ∈ F16, we
load the table of results of multiplication with b and do one
(V)PSHUFB to get a · b. However, the table address is a side-
channel leakage which reveals the value of b to a cache-time
attack [13].

When time-constancy is needed, the straightforward
method is to use again VPSHUFB, but for logarithm and ex-
ponential tables, and store in log-form if warranted. That is,
we compute a · b = exp(logg a+ logg b), and due to the char-
acteristic of (V)PSHUFB, setting log 0 = −42 is sufficient
to make this operation time-constant even if we multiply
three elements. We shall see a different method below when
working on an constant-timeMQ evaluation for F16.

3.1.4 The Case of F256

The GF of 256 elements occupies exact one byte in storage
and have been extensively studied, e.g. [14], [41], since it is
the basic building elements of numerous applications in the
area of cryptography. Multiplications in F256 can be imple-
mented as 2 table lookup instructions in the mainstream Intel
SIMD instruction set. However, this is not time-constant.

For time-constant multiplications, we adopt the tower
field representation of F256 which formulating an element
in F256 as degree-1 polynomial over F16. The sequence of
tower fields from which we build F256 is the following:

F4 := F2[e1]/(e2
1 + e1 + 1),

F16 := F4[e2]/(e2
2 + e2 + e1),

F256 := F16[e3]/(e2
3 + e3 + e2e1) .

In the rest of this paper, we adopt the following correspon-
dence: our basis is (1, e1, e2, e1e2, e3, e1e3, e2e3, e1e2e3).
The element encoded as 0x2 is e1, 0x4 is e2, 0x8 is e1e2,
0x10 is e3 etc., and numbers up to 0xff are their combi-
nations, for example 0x1d = e3 + e1e2 + e2 + 1. In this
representation, we can build constant-time multiplications
over F256 from the techniques of F16. A time-constant F256
multiplication costs about 3 F16 multplications (the Karat-
suba method) plus one extra table lookup in reduction.

3.2 The Evaluation ofMQ

Note on Lack of Special Structures inMQ

For the evaluation of quadratic equations (which is the pub-
lic map of MPKCs), there is no real method to reduce the
required computations since we expect to be evaluating a set
of random-looking equations unless special patterns were
designed into the equations (which only happens in unusual
variant schemes which does not concern us here). Since
the amount of required computations is the same across all
platforms, the main focus in evaluating MQ is to reduce
the required number of cycles via choosing the correct in-
struction sequences over various platforms to achieve the
required computations. Most of the time, this equates to
using the fewest instructions.

3.2.1 Matrix-Vector and Scalar-Vector Product

Usually a multivariate quadratic system P is stored as a
column-major matrix with the columns being all monomi-
als up to degree 2 and the rows being the equations. The
evaluation of P can roughly be divided in two parts: the
generation of all monomials, and computation of the re-
sulting polynomials for known monomials. Generating the
quadratic monomials given the variables requires n · (n+1)/2
multiplications. The second part requires m · (n + n · n+1

2)
multiplications to multiply the coefficients of P with the
quadratic monomials and almost exactly the same number
additions to accumulate results. The second part is clearly
more computationally intensive.

The computation proceeds by accumulating the product
of a column vector with a prepared monomial as showed in
Fig. 1. This is exactly a matrix-vector production. So we can
thus keep all results in the registers in this representation.

The computational complexity of evaluation is clearly
proportional to the number of monomials multiplied with
coefficients of polynomials. In general this is equal to the
number of coefficients which is 1

2 n · (n + 3) · m multiplica-
tion in total. We cannot optimize the computations by the
value according to the computed monomials (zero) if they
are secret data.

There are 2 alternative methods for dealing with
quadratic terms. First is to generate all quadratic monomials
and then multiply them to all coefficients. To generate all

y1

y2

y3

.

.

.

=

c11

c21

c31

.

.

.

· x1 +

c12

c22

c32

.

.

.

· x2 + . . .

Fig. 1 An example of parallel evaluation of polynomials. The results
x1 · (c11, c21, c31, . . .), x2 · (c12, c22, c32, . . .), etc. are accumulated to
(y1, y2, y3, . . .).

560
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.3 MARCH 2018

Table 4 Benchmarks on evaluations of quadratic polynomials on Intel
XEON E3-1245 v3 @ 3.40GHz with AVX2 instruction set, in CPU cycles.

system size const. time general
k byte k cycles k cycles

F2, n = 256,m = 256 1020 92.8 51.5
F4, n = 128,m = 128 258 32.3 25.6
F16, n = 64,m = 64 65 9.6 9.1
F31, n = 64,m = 64 130 a 8.7 8.7
F256, n = 64,m = 64 130 16.2 15.6
a Each element over F31 is stored in one byte.

monomials, we arrange the variables in registers and follow
by multiplying them by each variable. We need to shift the
results to pack them together. This requires careful handling
and is not always straightforward.

The second method generates the quadratic terms
through multiplications by variables (twice). In a degree-
reverse-lex order for the monomials of polynomial, the
quadratic terms is ordered as c11x1x1 + (c12x1 + c22x2)x2 +
(c13x1 + c23x2 + c33x3)x3 + · · · . One can accumulate all the
linear terms in one parentheses and follows with a multipli-
cation with second variable. There are n · m extra multipli-
cations caused by this method. One can choose the method
of calculation of quadratic terms with the value of n and
m for a lower cost of computation, except when doing the
constant-term evaluation of MQ in F16 (see below) where
one has to choose the second method.

3.2.2 Optimization from the Viewpoint of Streaming Data

The evaluation of P is actually depending on how fast one
can accumulate all data of P. No matter what instructions
we choose to perform the calculations, the inevitable fact is
the we have to load all data of P. The optimization process
is how to minimize the number of cycles (usually meaning
instructions) between 2 load instructions of coefficients ofP.
We discuss the various cases of evaluation ofMQ according
to the underlying GF. The results of our implementations are
reported in Table 4.

3.2.3 MQ over F2 and F4

The main operations in the innermost loop should contain
only the accumulation between load instruction of polyno-
mials since AND and XOR are native HW instructions for
arithmetic in these fields. We have to prepare the input data
to achieve this. For vertical evaluation ofMQ, we broadcast
every F2 variable to the full SIMD register and store them
according to the index of the variable. While accumulating
the results, we can load the variables by their corresponding
positions and it takes only one AND and one XOR instruction.
In the Table 4, we can see the effect of non-constant accel-
eration came from skipping some coefficients of equations
from multiplying 0.

3.2.4 MQ over F16 and F256

For truly public-key operations, the multiplications over F16

w · 0x0
w · 0x1

.

.

.

w · 0xf

7−→

w1 · 0x0

w1 · 0x1

.

.

.

w1 · 0xf

,

w2 · 0x0

w2 · 0x1

.

.

.

w2 · 0xf

, . . .

w15 · 0x0

w15 · 0x1

.

.

.

w15 · 0xf

Fig. 2 Generating multab for w = (w1, w2, . . . w16). After w · 0x0, w ·
0x1, . . . ,w ·0xf are calculated, each row stores the results ofmultiplications
and the columns are the multab corresponding to w1, w2, . . . , w15. The
multab of w1, w2, . . . ,w15 can be generated by collecting data in columns.

can be done by simply (1) loading the multiplication ta-
bles(multab) by the value of the multiplier and (2) per-
forming a VPSHUFB for 32 results simultaneously. The mul-
tiplications over F256 can also be performed with the same
technique via 2 VPSHUFB instructions since one lookup deals
4 bits. Other tricks are multiplying by two F16 elements to
a vector of F16 elements with one VPSHUFB since VPSHUFB
can actually be seen as 2 independent PSHUFB instructions.
This method of multiplication can easily transform to time-
constant version by replacing multab to log/exp tables as in
Sect. 3.1.3.

However, since the log/exp strategy costs many opera-
tions on addition, reduction of sum, and looking up in the
exponential table, we should try to use a multab strategy in
evaluatingMQ (since it costs only one VPSHUFB), in order
to increase efficiency, even under the constant-time require-
ment.

Constant-Time Evaluation ofMQ over F16

We have to avoid loading multab according to a secret in-
dex for preventing cache-time attack. To this, we “gener-
ate” the desired multab instead of “load” by secret value.
More precisely, suppose we are evaluating P with a vector
w = (w1, w2, . . . , wn) ∈ Fn16, we can have a time-constant
evaluation if we already have the multab of w, which is
(w1 · 0x0, . . . , w1 · 0xf), . . . , (wn · 0x0, . . . , wn · 0xf), in the
registers†.

In other words, we transform the memory access in-
dexed by a secret value to sequential access by the index of
variables to prevent revealing of side-channel information.

We show the generation of multab for elements of w
in Fig. 2. To generate the desired multab on-the-fly using
the 16x16 multab for F16, we first multiply w by 0x0, then
0x1, then the rest of the elements of F16. Now we have 16
registers in which are the products of w and all 16 elements
of F16. By collecting the first bytes, second bytes ... etc. of
these, we get our desired new multab.

A further matrix-transposition-like operation is needed
to generate the desired multab, since the initial byte from

†Note that here and in the following, if there is a natural basis
(b0 = 1, b1, . . .) in a binary field Fq , for convenience we represent
bj as 2j . So b1 is 2, 1 + b1 as 3, . . . , 1 + b1 + b2 + b3 is 0xF for
elements of F16, and continuing for larger fields; this is analogous
to how the AES field representation of F28 is called 0x11B because
its irreducible polynomial is x8 + x4 + x3 + x + 1.

CHEN et al.: IMPLEMENTING 128-BIT SECURE MPKC SIGNATURES
561

each register forms our first new table, corresponding to w1,
the second byte from each register is the table of multipli-
cation by w2, etc. The obvious way to do this is by shuffle
instructions, but this matrix transposition operation is ac-
tually very fast on newer Intel processors simply by moving
bytes into memory, due to some hardware-related scatter-
gather magic in the L1 Cache. One desired table cost 16
PSHUFB to generate and we can generate 16 or 32 tables
simultaneously according to SIMD environment. The amor-
tized cost for generating one multab is 1 PSHUFB plus some
data movements.

As a result, the constant-time evaluation of MQ over
F16 or F256 is then only slightly lower than the non-constant
time version since the extra cost is low, with only n tables
to be generated before the evaluation begin. In Table 4, we
can see only about 5% difference between constant-time and
general evaluations.

3.2.5 MQ over F31

Thematrix-like coefficients ofP are stored as 8-bit values be-
cause we heavily rely on the AVX2 instruction VPMADDUBSW.
In one instruction, this computes two 8-bit SIMDmultiplica-
tions and a 16-bit SIMD addition(see Sec. 2.6). This requires
a slight variation on the representation ofP described above:
we put coefficients in a column major matrix with each 16-
bit element corresponding to two adjacent monomials. All
these operations are time-constant.

Because VPMADDUBSW takes both a signed and an un-
signed operand, one of the matrix and the monomial vector
must be stored as signed bytes and one as unsigned bytes.
Since 64 ·31 ·15 = 29760 < 215, we can handle two YMM reg-
ister full of monomials before performing reductions on each
individual accumulator. This is different from [14] because
they were still using SSE2 and PMADDWD, which produces a
32-bit result and makes the bookkeeping easier.

Field elements during computation are expressed as
signed 16-bit values. If m = 64, we require 1024 bits of
storage for each vector, precisely fitting four 256-bit SIMD
(YMM) registers. If m = 32, two registers.

To efficiently compute all polynomials for a given set of
monomials, we keep all required data in registers and try to
avoid register spilling throughout the computation, as much
as possible.

4. Main Components in the Secret Map

In this section, we discuss the key components in various
MPKC signatures.

4.1 Solving Linear Equations

Solving linear equations (1) takes up much of the time in the
signing process of Rainbow/TTS as seen in Sect. 2.2.2. In
[14] this was done using Wiedemann over F31 and reported
to be faster than Gauss Elimination due to not needing to as
many reductions modulo 31. However, since there are no

Table 5 Benchmarks on solving linear systems with Gauss elimination
on Intel XEON E3-1245 v3 @ 3.40GHz, in CPU cycles.

system plain elimination constant version
F16, 32 × 32 6,610 9,539
F31, 28 × 28 7,889 10,227
F256, 20 × 20 4,702 9,901

Table 6 The field representations for PCLMULQDQ implementations.
F2384 := F2[x]/x384 + x8 + x7 + x6 + x4 + x3 + x2 + x + 1
F2256 := F2[x]/x256 + x10 + x5 + x2 + 1
F2240 := F2[x]/x240 + x8 + x5 + x3 + 1
F2128 := F2[x]/x128 + x7 + x2 + x + 1
F2120 := F2[x]/x120 + x4 + x3 + x + 1

reduction issues for the binary GF arithmetic (see Sect. 3.1)
and the asymptotic complexity is actually lower for Gauss
Eliminations, we decided to implement the constant-time
solver with a simpler Gauss Elimination in this paper.

We use constant-time Gauss Elimination in the signing
process of Rainbow. Constant-time Gauss Elimination orig-
inally presented in [42] for F2 matrices and we extend the
method to other GFs. The problem of eliminations is that the
pivot may be zero and one has to swap rows with zero pivots
with other rows, which reveals side-channel information. To
test pivots against zero and switch rows in constant time, we
can use the current pivot as a predicate for conditional moves
and switch with every possible row which can possibly con-
tain non-zero leading terms. This constant-time Gaussian
elimination is slower as reported in Table 5, but is still an
O(n3) operation.

4.2 GF Arithmetic – Large Fields

The arithmetic over big GFs is the most important compo-
nent in big-field MPKCs. In this section, we discuss the
multiplication over F2n which is almost equivalent to the
multiplication in F2[x]. We divide our discussion into to
two parts by the existence of PCLMULQDQ in the platform.

4.2.1 Platforms with PCLMULQDQ

In the platform with PCLMULQDQ, the obvious thing to do is
use the monomial representation over F2 to implement F2k .
When it comes to fields of sizes of cryptographic interest,
choosing the representation for the fastest operations depends
very much on the underlying hardware for implementation.
We show the representations in this paper for PCLMULQDQ in
Table 6.

The multiplication in big GFs are implemented as poly-
nomial multiplication in F2[x] and followed by a reduction,
i.e., taking the remainder modulo the polynomial defining
the field extension. For the details of multiplying with
PCLMULQDQ, the data is split in 64-bit limbs. In general
we are working on the polynomial multiplication of 2 to 6
limbs. The multiplication in F2[x] was accomplished by
recursive 2- or 3-way Karatsuba’s multiplication. For reduc-
ing the results of polynomial multiplication to its original

562
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.3 MARCH 2018

length, this operation is also accomplished by PCLMULQDQ.
We choose the generating polynomial of field with low-
degree second term so the polynomials for reduction won’t
exceed x63. For example of F2240 , we modified the polyno-
mial of x240 + x8 + x5 + x3 + 1 to x256 + x24 + x21 + x19 + x16

so the polynomial x24 + x21 + x19 + x16 fit into 64-bit range.
The reduction is performed by reducing partial polynomial
with degree over x384, x320, x256, and x240 iteratively.

4.2.2 Big GF Multiplications without PCLMULQDQ

For processors with SIMD table lookup instructions but
without PCLMULQDQ– most Core-i3 CPUs don’t have this
instruction, and most ARMv7 with Neon also fits this de-
scription, we build the desired big GF from F256[x] (poly-
nomials over F256). The arithmetic of F256 is described in
Sect. 3.1.4.

For general 32-bit platforms, such as the ARM Cortex
M series, or other ARMs without Neon, the base field F256
is built by bit-slicing, i.e., storing the 8 bits of F256 across
8 registers. Starting out with F2[x], the multiplications over
F256 is built as three rounds of Karatsuba multiplications,
which is the lowest bit operations count for F256 in [18].

(1) The Constructions of GF and its Multiplication

The F2k in this paper can also be extended from F256. Here
are the field extensions we used in this work:

F264 := F2568 := F256[x]/(x8 + x3 + x + 0x10)

F2128 := F25616 := F256[x]/(x16 + x5 + x3 + 0x10)

F2256 := F25632 := F256[x]/(x32 + 0x10 · x3 + x + 1) .

The multiplication of these GF comprise the polyno-
mial multiplications in F256[x] and a reduction (modulo the
irreducible polynomial defining the field). Since the reduc-
tion is performed by some multiplication with constant over
F256, it can be easily accomplished with the SIMD method
described in Sect. 3.1.4. We discuss the polynomial multi-
plication in F256[x] in the following sections.

(2) FFT Polynomial Multiplications over F256

It is well known that polynomial multiplications can be ac-
complished by FFT algorithm [43]. To multiply two degree-
(n − 1) polynomials a(x), b(x) ∈ F256[x] with FFT algo-
rithm, one can

1. (FFT) evaluate a(x) and b(x) at 2n points by a FFT
algorithm,

2. (pointMul) multiply the evaluated values pairwise to-
gether, and

3. (ivsFFT) interpolate back into a polynomial of degree
≤ 2n − 1 by the inverse FFT algorithm.

However, it was not easy to build a suitable FFT for GF of
characteristic two(F2k), since there is not always an applica-
ble w ∈ F2k such that wm = 1 for a large range of m. In

Fig. 3 The forward basis conversion, 16 coefficients.

2014, Bernstein and Chou [18] showed the additive† FFT
[19] provides an efficient polynomial multiplications in the
circumstance of F2k .

For better efficiency, we implement a variation of the
Gao-Mateer additive FFT, which is a generalization of Gao-
Mateer FFT proposed by Lin, Chung, and Han (LCH) [20],
in this paper. Using the LCH’s additive FFT, we first
carry out a sequence of additions for converting the poly-
nomial to a polynomial basis, presented by Cantor [44],
in Θ(n log n log log n) operations (see Fig. 3) and follow up
with a Θ(n log n) butterfly network much like the standard
FFT (in Fig. 5). We call the first stage of additions “basis
conversion” which corresponds to “bit reversal” exchanges
between the coefficients in regular Decimation-in-Time and
in-place FFT.

Note that the butterfly network in the forward transform
typically splits into two smaller butterfly networks, fed with
the same input but with different offsets and multipliers, just
like multiplicative FFT’s. Furthermore, we discover that
when using a tower construction in the additive FFT, all the
multipliers in the butterflies have regular and simple forms.
There are only some small†† constants in the multipliers
and the calculation in a butterfly can be accomplished with
less instructions for multiplying these constants. It turns out
the general(constant-time) multiplications in F256 are only
performed in the pairwise multiplications (step (2)). Details
of the additive FFT can be found in [18]–[20].

(3) Truncated Additive Fourier Transform

Formultiplying polynomials containing terms is not power of
two, we can also use a truncated FFT [45], [46] for omitting
some computations. These previous research focused on the

†Following the terminology of Gao-Mateer, “additive” FFT
means the evaluation points are not a multiplicative subgroup gen-
erated by w = e2πi/2k but in a vector space comprising GF or its
subset.
††Small here means that the encoding of the element as a hex-

adecimal number is small.

CHEN et al.: IMPLEMENTING 128-BIT SECURE MPKC SIGNATURES
563

Fig. 4 The forward/inverse butterfly units.

Fig. 5 Forward butterfly network for degree-7 polynomials in F256[x].

remaining evaluated points which becomes straightforward
in the LCH FFT since the butterfly network is quiet regular
(see Fig. 6).

We simply omit the calculation related to higher degree
in the ivsFFT since we can expect the zero values after
ivsFFT from the degree of input polynomials. If a portion
of the coefficients is zero in the polynomial, then

• it is easy to simplify the FFT by omitting the zero
in higher degree of inputs and the outputs related to
“larger” evaluated points;

• also easy to simplify (cf. Fig. 3) the basis conversion
stage, which only involves adding from higher degree
to lower degree coefficients, both going forwards and
backwards;

• and not very obvious but still true that the inverse but-
terflies can be simplified, knowing that a portion (in
Figs. 6–8 exactly one quarter) of the polynomial coeffi-
cients are zero.

This turns out to be the case due to the multipliers in the final
butterfly stages of the ivsFFT being particularly simple.

We extend the method in Fig. 8 to polynomials of 96
terms for implementing F2384 which is represented as

F2384 := F256[x]/x48 + x3 + 0x10 · x2 + 0x4 · x + 1 .

The details of truncated ivsFFT are similar to Fig. 8 since we
omit exactly one quarter of original ivsFFT results in both
case. Aside from completely omitting the computations of
the last-quarter coefficients, we still have to specialize the
last two layers of butterflies. (Since there are no interaction
between fourth-quarter coefficients and others before last two
layers of butterflies, only two layers have to be specialized.)

Fig. 6 Inverse butterfly network for degree-7 polynomials in F256[x].

Fig. 7 Same inverse butterfly network with two known zeroes.

Fig. 8 Inverse butterfly network for degree-5 polynomials in F256[x].

(4) Alternative Method for Multiplications in F2384

For field whose size is not equal or just below a power
of two, we can also choose to extend from different base
fields besides truncated FFT. For example, we may use
the polynomial multiplication of F2563 [x] to implement the
F2384 := F(2563)16 :

F224 := F2563 := F256[x]/x3 + 0x2

F2384 := F(224)16 = F224 [x]/x16 + 0x2x3 + x + 0x10 .

We would then use a Karatsuba algorithm with 3 terms
in the pointMul stage for multiplications in F2563 , which
cost 6 multiplications over F256 for one multiplication over
F224 . Note that the multiplications in this stage is constant-
time multiplications(see Sect. 3.1.4) which cost higher than
general multiplications in FFT and ivsFFT stages. In both
representation, the hight of FFT are 96 over F256. There are
log 32 = 5 layers butterflies in F224 FFT but dlog 96e = 7
layers in F256. The detailed cost of these 2 representations
can be found in Table 7. Although the count of multipli-
cations for degree-15 F224 [x] is less than degree-48 F256[x]
in Table 7, the implementation of F256[x] multiplications is

564
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.3 MARCH 2018

Table 7 Cost of polynomial multiplications for degree-15 F224 [x] and
degree-48 F256[x], in number of multiplications over F256.

32 terms F224 96 terms F256

FFT 98 · 3 450
pointMul a 32 · 6 96
ivsFFT 49 · 3 241

total 633 787
a The cost of constant-time multiplication in
pointMul is actually higher the multiplica-
tions in FFT and ivsFFT.

Table 8 Benchmarks on multiplications of big GFs on Intel(R) Xeon(R)
CPU E3-1245 v3 @ 3.40GHz, in CPU cycles.

F2128 F2256 F2384

PCLMULQDQ 25 44 76
FFT, SSE 1,462/16 3,679/16 6,582/16
FFT, Bit-slicea 12,232/32 31,249/32 50,827/32
School book, SSE 519 1,080 2,087
a Use 32-bit registers.

actually 6% faster than F224 [x] in our experiment.
Although the multiplications cost similarly for these

different representations, the difference in arithmetic are
also effected by the construction of GF and discussed in
Sect. 4.2.3.

(5) Benchmarks on GF Multiplications

We shows the benchmarks of our implementations on GF
multiplications over various instruction set in Table 8. Be-
sides PCLMULQDQ, all GFs are represented as F256[x] and
implemented in the SIMD style which many copies of GF
multiplications are performed simultaneously. The multipli-
cations over F256 are implemented with SSE instructions as
in Sect. 3.1. We also use bit-slice implementations as in [18]
for platforms without SIMD instructions. For comparing the
effect of FFT-related multiplications, we also list the results
for F25616 implemented by school-book multiplications.

The results show PCLMULQDQ outperform all other im-
plementations. For example, in the case of F2384 , the amor-
tized cost of SSE-FFT implementations are 5.4 times slower
than PCLMULQDQ version. The results also showed there was
a huge gap between FFT and school book implementations.

4.2.3 Power of Big GFs

In the signing process of pFLASH, we have to raise an ele-
ment X in the bigGF to a high power h in Eq. (2). The raising
process occurs even in calculation the multiplicative inverse
by little-Fermat’s law like process for time constancy. It is
traditionally done by a square-and-multiply process. Since
the power is not a secret value in these scenarios, what we
concerns here is only the issue of efficiency.

We generate the pattern of power by a divide-and-
conquer process. For example, if we want to raise a ∈ F2128

to a0xFFFF†. we sequentially generate a0x3, a0xF, a0xFF, and
†Note the hexadecimal number here is simply for conveniently

reading the number in binary, not for representing elements in GFs.

a0xFFFF by few squares and one multiplication.
The other method to accelerate the process is to bunch

some squares into a linear map. This process is linked to the
field representation. For example, if we construct F2128 :=
F2[x]/x128+x7+x2+x+1, all “raising to the 2j-th powers” are
linearmaps (in the vector spaceF128

2). Assumingwe know16
squares takes more time than a linear map by experimentally,
we would implement raising to the 216-th power with a linear
map instead of squaring 16 times. Alternatively, if we build
the field as F2128 := F256[x]/x16+x5+x3+0x10, only raising
to the 256j-th powers can be linear maps (in the vector space
F16

256). We express raising to any given power by as a sequence
of squares, multiplies and linearmaps interleaved, depending
on benchmarking results.

4.2.4 Conversion between Field Representations

We require amethod of changing field representations for the
compatibility between different field representations. The
change of field representation is simply done as multiplying
a pre-defined matrix by the data treated as a vector. The
matrix product can be computed by the famous method of
four Russians [47]. However, while multiplying by secret
values, this requires a constant-time multiplication which is
often done with conditional move instruction. In this work,
we broadcast single bit to full register and followed by AND
and XOR for accumulation when working in SSE or AVX
instruction set.

4.2.5 Finding Unique Root for Inverting HFE

Berlekamp’s algorithm for inverting the HFE central equa-
tion is simplified from [48, Algo. 14.15] as in [17]. We sim-
plify the HFE central polynomial to Q(Y) = Y d +

∑d−1
i=0 aiY i

where ai ∈ F2n here. The central equation is Q(Y) = X ∈
F2n and the inverting is a root finding process for polynomial
Q(Y) − X ∈ F2n [Y]. It’s first step is to calculate the GCD of
Q(Y) − X and the field polynomial for all degree-1 factors
of Q(Y) − X :

gcd(Q(Y) − X,Y 2n

− Y)

= gcd(Q(Y) − X,
∏

i∈F2n ,i,0
(Y − i))

=
∏

i:Q(i)=X

(Y − i) .

The number of roots for Q(Y) − X = 0 is the degree of
this GCD. Since QUARTZ/GUI require a unique root by
design, we only perform the initial GCD step of Berlekamp’s
algorithm while signing.

The main computation of the GCD can be seen as a
division of the field polynomial by the central polynomial,
i.e., computing Y 2n

− Y mod (Q(Y) − X) with the initial
conditionY d mod (Q(Y)−X) ≡

∑d−1
i=0 aiY i−X . The actual

operations is to raise the polynomial Y to Y 2n in the polyno-
mial ringF2n [Y]/(Q(Y)−X) by repeating squaring. Observe
the computation which raises Y d to the second power:

CHEN et al.: IMPLEMENTING 128-BIT SECURE MPKC SIGNATURES
565

(Y d mod (Q(Y) − X))2 mod (Q(Y) − X)

≡ (
∑
i<d

aiY i)2 − X2 mod (Q(Y) − X)

≡

d−1∑
i=1

a2
i Y

2i + (a0 + X)2 mod (Q(Y) − X) .

The computation can be accomplished with d squares of ai
and (d − 1) · d multiplications for multiplying a2

i by d-terms
polynomials Y 2i mod (Q(Y) − X) while the polynomials
Y 2i mod (Q(Y) − X) have already been calculated. Y 2i

mod (Q(Y) − X) can be prepared by repeatedly multiplying
initial condition Y d mod (Q(Y) − X) by Y . For example,
Y d+1 mod (Q(Y) − X) ≡ Y · (

∑d−2
i=0 aiY i − X) + ad−1 · (Y d

mod (Q(Y) − X)).
The number of required multiplications are O(2 · d2)

for Y 2i tables and O(n · d: squ + n · d2: mul) for raising Y d

to Y 2n mod (Q(Y) − X) from [17].

5. The Implementations and Benchmarks

In this section, we give comparisons of benchmarks among
various signing schemes, including different MPKCs and
some widely used schemes (though not post-quantum ones).
Almost all the schemes in the comparisons are parametered
at a 128-bit security level, besides the RSA-2048 is in the
112-bit security level. Table 9 lists the specific parameters
for all schemes under comparisons.

5.1 The Benchmarks

We list the results of benchmarking in Tab. 10. Our imple-
mentations of MPKCs† were tested in the following environ-
ment:

• CPU: Intel XEON E3-1245 v3 (Haswell) @ 3.40GHz,
turbo boost disabled.

• memory: 32 GB ECC.
• OS: ubutnu 1604, Linux version 4.4.0-78-generic.
• gcc: 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1 16.04.4).

All other benchmarks are tested under the same Intel Haswell
architecture. We focused on optimizing the signing and veri-
fying processeswhich are themost commonly used functions
in signature systems.

The results show all MPKCs are indeed very efficient
for verifying signatures(public map) in general. For generat-
ing signatures, we can observe the Rainbow over F256 are the
most efficient among all schemes in comparisons. All small
fieldMPKCs(Rainbows) are comparable with Ed25519 [49],
whch is the most efficient pre-quantum signature in our com-
parisons. Although MPKCs over big field are slower than
small field schemes, they are still comparable with com-
monly used RSAs at similar security level.

†The software for MPKC experiments can be downloaded from
https://github.com/fast-crypto-lab/mpkc-128bit.

Table 9 Specific parameters for 128-bit MPKCs and other signing
schemes.

schemes pk. sk. dig. sig.
kbyte kbyte bit bit

Rainbow(16,32,32,32) 145.5 100.2 256 384
Rainbow(31,28,28,28) 236.5 156.9 256 448
Rainbow(256,28,20,20) 94.3 62.9 320 544
PFLASH(16,96-1,64) 142.5 9.1 256 384
GUI(2,240,9,16,16,3) 899.5 21.2 256 320
GUI(4,120,17,8,8,2) 225.8 9.6 256 288
MQDSS-31-64 a 0.072 0.064 256 320 k
ECDSA(NIST P256) 0.064 0.096 256 512
Ed25519 0.032 0.064 256 512
RSA-2048 b 0.256 2.048 2048 2048
RSA-3072 0.384 3.072 3072 3072
a [11]
b 112-bit security.

Table 10 Benchmarks of 128-bit MPKCs on Intel Haswell architecture.
schemes gen-key() sign() verify()

M cycles k cycles k cycles
Rainbow(16,32,32,32) 1,359.7 68.1 22.8
Rainbow(31,28,28,28) 93.4 77.4 70.8
Rainbow(256,28,20,20) 328.9 47.8 18.3
PFLASH(16,96-1,64) 78.8 226.0 22.6
GUI(2,240,9,16,16,3) 484.2 4,445.4 197.6
GUI(4,120,17,8,8,2) 213.2 7,992.8 342.5
MQDSS-31-64 a 1.827 8,510.6 5,752.6
ECDSA(NIST P256) b 0.286 377.1 901.5
Ed25519 b 0.066 61.0 185.1
RSA-2048 b 233.7 5,240.2 66.4
RSA-3072 b 844.4 15,400.9 119.3
a MQDSS [11] is benchmarked on Intel Core i7-4770K
(Haswell) at 3.5GHz.

b [50] benchmarked ECC and RSA on Intel Xeon E3-1275 v3
(Haswell) at 3.5GHz.

Table 11 Benchmarks of 128-bit big-field MPKCs on SSE instruction
sets.

schemes gen-key() sign() verify()
M cycles k cycles k cycles

PFLASH(16,96-1,64) 3,264 763.4 29.9
GUI(2,240,9,16,16,3) 2,095 67,797.9 198.3
GUI(4,120,17,8,8,2) 406 133,157.9 346.4

5.2 Alternative Implementations for Big-Field MPKCs

For big-field MPKCs in the platforms without PCLMULQDQ,
we show the benchmarks of our implementation in Table 11.
The biggest difference between Tab. 10 and Table 11 is in the
signing process. The arithmetic over big fields are accom-
plished by additive FFT, described in Sect. 4.2.2, in Table 11.
The other restriction is that we have only 128-bit registers
in SSE platforms in Table 11 but 256-bit AVX registers in
Table 10.

5.3 Comparison with Prior 80-bit Implementations

We show the efficiency of our crypto-safe implementation by
comparingwith previous 80-bit implementations ofMPKCs.

566
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.3 MARCH 2018

Table 12 Parameters for typical 80-bit MPKCs.
schemes pk. sk. dig. sig.

kbyte kbyte bit bit
Rainbow(31,24,20,20) 83.8 59.6 192 320
Rainbow(256,18,12,12) [14] 22.2 17.4 192 336
PFLASH(16,62-1,40) [29] 39.0 4.9 160 224
GUI(2,96,5,6,6,3) [17] 61.6 3.1 256 126

Table 13 Benchmarks of 80-bit MPKCs on Intel Haswell architecture.
schemes inst. sign() verify()

set k cycles k cycles
Rainbow(31,24,20,20) a SSE 77.3 46.4
Rainbow(31,24,20,20) AVX2 85.5 8.9
Rainbow(256,18,12,12) a SSE 14.0 10.6
Rainbow(256,18,12,12) AVX2 23.9 9.0
PFLASH(16,74-1,52) a,b 1081.8 193.3
PFLASH(16,62-1,40) AVX2 453.3 20.3
GUI(2,96,5,6,6,3) [17] AVX2 238 62
a Benchmarks are collected from [50] on Intel Xeon E3-
1275 v3 (Haswell) at 3.5GHz.

b The parameter is slightly larger.

The main differences between the two implementations are
the underlying instruction sets and the time-constancy of
signing process.

The parameters for some typical 80-bit MPKCs as well
as their origins are listed in Table 12. Table 13 shows the
results of our implementations in comparison with previous
results. Comparative benchmarks are taken from [50] with
the same Intel Haswell architecture. We use results from
[17] directly for 80-bit GUI since the underlying techniques
are the same.

The comparison shows that the two factors affect the
running time in different directions. We expect the AVX2
instruction set and PCLMULQDQ improve the efficiency. The
effect shows in the improvement of all verification time and
the signing process of pFLASH, which mainly effected by
the PCLMULQDQ instruction. The constant-time implemen-
tation in signing process, however, decreases the efficiency.
The signing time of Rainbows are slower than prior imple-
mentations, due to constant-time Gaussian elimination.

6. Concluding Remarks

We have analyzed the main components ofMPKC signatures
including evaluatingMQ equations, multiplications over big
finite fields, and solving linear equations. We present tech-
niques for implementing these main components in x86 plat-
forms using AVX2 instructions with side-channel resilience.

Beside reviewing MPKC signatures at 128-bit security
level, we demonstrate the following techniques for imple-
menting underlying components of signatures.

1. We use SIMD table lookup and log/exp tables for pre-
venting cache-time attacks.

2. For the private evaluation ofMQ over F16 and F256, we
generate instead of load the multiplication table with
the value of multiplier and thus obtain a constant-time
evaluation ofMQ nearly as fast as a public evaluation.

3. We demonstrate how to evaluate multiplications in F2m

where m is not a power of two, for example F2384 , us-
ing FFT techniques. The main ideas include building a
tower field from an unusual base such as 224, or a trun-
cated FFT algorithm. The FFT techniques accelerates
the multiplications in big GF for the platforms with-
out instructions to multiply large binary polynomials
(PCLMULQDQ).

4. We demonstrate side-channel resilient elimination over
F16 and F31 for solving systems of linear equations.

From the benchmarks, we conclude that MPKC signatures
remain competitive speedwise under crypto-safe require-
ments in current mainstream instruction sets.

6.1 Effect of Quantum Computers onMQ Signatures

Since we discuss MPKC as post-quantum, we must consider
various quantum-assisted attacks and see if they become
practical.

6.1.1 Direct Grover Attack

A direct quantum computer attack using Grover’s algorithm
[51] is considered in [52]. The summary of this attack is
that a system ofMQ equations with n-bits of inputs can be
solved in 2 n

2 +1n3 quantum operating steps (“gates”).
If we assume that a quantum step (“gate”) can run at

the speed as a CPU cycle (a very very aggressive assump-
tion about quantum computers), solving a quadratic system
with 210 bits of input and output takes an equivalent of
2 210

2 +1 · 2103 &2128 cycles. Thus this attack against all three
of our schemes (each with more than 210 equations and
variables) remain impractical.

6.1.2 Grover-Assisted FXL

Both direct attacks and key-recovery attacks of Rainbow can
be assisted by Grover’s algorithm. When we take into ac-
count Grover’s algorithm, we would have C ′FXL (n,m; q) =
minj

(
q j/2CXL (n − j,m; q)

)
. As an example, directly at-

tacking 64 equations in as many variables using Grover-
assisted FXL takes 2120 quantum gates. The Rainbow
Band Separation attack with Grover against Rainbow(16;
32,32,32) takes 2139 quantum gates. Such attacks also uses
exponentiallymany quantum bits. As suchC ′FXL is of course
smaller than CFXL pre-quantum, but does not pose a practi-
cal threat to any of our schemes.

6.1.3 Grover-Assisted Rank Attacks

Specifically against Rainbow there is the “High Rank
Attack” which takes qou n3 multiplications [25]. With
Grover this decreases to qou/2n3 multiplications while us-
ing n2ou lg q quantum bits. As an example, against Rain-
bow(16; 32,32,32) this quantum-assisted rank attack would
take 284 quantum gates while using 221 quantum bits. This

CHEN et al.: IMPLEMENTING 128-BIT SECURE MPKC SIGNATURES
567

would still remain impractical a significant period after quan-
tum computers capable of breaking today’s RSA and ECC
crypto becomes available. (In the NIST call for proposals
[15], if we choose the maximum value for the parameter
MAXDEPTH, then the corresponding Security Level 1 has
a minimum quantum security with 274 quantum gates.)

Acknowledgements

We thank the anonymous reviewers for their valuable feed-
back on improving the quality of the manuscript.

References

[1] P.W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput.,
vol.26, no.5, pp.1484–1509, Oct. 1997.

[2] L. Chen, S. Jordan, Y. Liu, D. Moody, R. Peralta, R. Perlner, and
D. Smith-Tone, “Report on post-quantum cryptography,” https://
doi.org/10.6028/NIST.IR.8105, 2016.

[3] M.R. Garey and D.S. Johnson, Computers and Intractability — A
Guide to the Theory of NP-Completeness, W.H. Freeman and Com-
pany, 1979. ISBN 0-7167-1044-7 or 0-7167-1045-5.

[4] C. Berbain, H. Gilbert, and J. Patarin, “QUAD: A practical stream
cipher with provable security,” EUROCRYPT, ed. S. Vaudenay, Lec-
ture Notes in Computer Science, vol.4004, pp.109–128, Springer,
2006.

[5] F.H.M.Liu, C.J. Lu, andB.Y.Yang, “Secure PRNGs from specialized
polynomial maps over any GF(q),” in Buchmann and Ding [53],
pp.95–106.

[6] N.T. Courtois, A. Klimov, J. Patarin, and A. Shamir, “Effi-
cient algorithms for solving overdefined systems of multivari-
ate polynomial equations,” Advances in Cryptology — EURO-
CRYPT 2000, Lecture Notes in Computer Science, vol.1807,
pp.392–407, Bart Preneel, ed., Springer, 2000. Extended Version:
http://www.minrank.org/xlfull.pdf

[7] B.Y. Yang, O.C.H. Chen, D.J. Bernstein, and J.M. Chen, “Analysis
of QUAD,” FSE, ed. A. Biryukov, Lecture Notes in Computer Science,
vol.4593, pp.290–307, Springer, 2007.

[8] J.C. Faugère, “A new efficient algorithm for computing Gröbner
bases without reduction to zero (F5),” International Symposium on
Symbolic and Algebraic Computation — ISSAC 2002, pp.75–83,
ACM Press, July 2002.

[9] M. Bardet, J.C. Faugère, B. Salvy, and B.Y. Yang, “Asymptotic
expansion of the degree of regularity for semi-regular systems of
equations,” MEGA 2005, ed. P. Gianni, Sardinia, Italy, 2005.

[10] B.Y. Yang, J.M. Chen, and N. Courtois, “On asymptotic security
estimates in XL and Gröbner bases-related algebraic cryptanalysis,”
ICICS 2004, Lecture Notes in Computer Science, vol.3269, pp.401–
413, Springer, Oct. 2004.

[11] M. Chen, A. Hülsing, J. Rijneveld, S. Samardjiska, and P. Schwabe,
“From 5-pass MQ -based identification to MQ -based signatures,”
Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Infor-
mation Security, Hanoi, Vietnam, Dec. 2016, Proceedings, Part II,
ed. J.H. Cheon and T. Takagi, Lecture Notes in Computer Science,
vol.10032, pp.135–165, 2016.

[12] K. Sakumoto, T. Shirai, and H. Hiwatari, “Public-key identification
schemes based on multivariate quadratic polynomials,” CRYPTO,
ed. P. Rogaway, Lecture Notes in Computer Science, vol.6841,
pp.706–723, Springer, 2011.

[13] J. Bonneau and I. Mironov, “Cache-collision timing attacks against
AES,” Cryptographic Hardware and Embedded Systems - CHES
2006, 8th International Workshop, Yokohama, Japan, Oct. 2006,

Proceedings, ed. L. Goubin and M. Matsui, Lecture Notes in Com-
puter Science, vol.4249, pp.201–215, Springer, 2006.

[14] A.I.T. Chen, M.S. Chen, T.R. Chen, C.M. Cheng, J. Ding, E.L.H.
Kuo, F.Y.S. Lee, and B.Y. Yang, “SSE implementation of multivari-
ate PKCs on modern x86 CPUs,” CHES, ed. C. Clavier and K. Gaj,
Lecture Notes in Computer Science, vol.5747, pp.33–48, Springer,
2009.

[15] National Institute of Standards and Technology, “Submission re-
quirements and evaluation criteria for the post-quantumcryptography
standardization process,” 2016. http://csrc.nist.gov/groups/ST/post-
quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf

[16] C. Berbain, O. Billet, and H. Gilbert, “Efficient implementations
of multivariate quadratic systems,” Selected Areas in Cryptography,
ed. E. Biham and A.M. Youssef, Lecture Notes in Computer Science,
vol.4356, pp.174–187, Springer, 2007.

[17] A. Petzoldt, M. Chen, B. Yang, C. Tao, and J. Ding, “Design prin-
ciples for HFEv- based multivariate signature schemes,” Advances
in Cryptology - ASIACRYPT 2015 - 21st International Conference
on the Theory and Application of Cryptology and Information Se-
curity, Auckland, New Zealand, Nov.–Dec. 2015, Proceedings, Part
I, ed. T. Iwata and J.H. Cheon, Lecture Notes in Computer Science,
vol.9452, pp.311–334, Springer, 2015.

[18] D.J. Bernstein and T. Chou, “Faster binary-field multiplication and
faster binary-field macs,” Selected Areas in Cryptography - SAC
2014 - 21st International Conference, Montreal, QC, Canada, Aug.
2014, Revised Selected Papers, ed. A. Joux and A.M. Youssef, Lec-
ture Notes in Computer Science, vol.8781, pp.92–111, Springer,
2014.

[19] S. Gao and T.D. Mateer, “Additive fast fourier transforms over finite
fields,” IEEE Trans. Inf. Theory, vol.56, no.12, pp.6265–6272, 2010.

[20] S. Lin, W. Chung, and Y.S. Han, “Novel polynomial basis and its
application to reed-solomon erasure codes,” 55th IEEEAnnual Sym-
posium on Foundations of Computer Science, FOCS 2014, pp.316–
325, IEEE Computer Society, Philadelphia, PA, USA, Oct. 2014.

[21] J. Ding and D. Schmidt, “Rainbow, a new multivariable polynomial
signature scheme,” Conference on Applied Cryptography and Net-
work Security — ACNS 2005, Lecture Notes in Computer Science,
vol.3531, pp.164–175, Springer, 2005.

[22] C. Wolf, “Efficient public key generation for HFE and variations,”
CryptographicAlgorithms and their Uses - 2004, InternationalWork-
shop, Gold Coast, Australia, July 2004, Proceedings, ed. E. Dawson
and W. Klemm, pp.78–93, Queensland University of Technology,
2004.

[23] J. Ding, B.Y. Yang, C.H.O. Chen, M.S. Chen, and C.M. Cheng,
“New differential-algebraic attacks and reparametrization of rain-
bow,” Applied Cryptography and Network Security, Lecture Notes
in Computer Science, vol.5037, pp.242–257, Springer, 2008. cf.
http://eprint.iacr.org/2008/108

[24] A. Petzoldt, S. Bulygin, and J. Buchmann, “Selecting parameters for
the rainbow signature scheme,” PQCrypto, ed. N. Sendrier, Lecture
Notes in Computer Science, vol.6061, pp.218–240, Springer, 2010.

[25] B.Y. Yang and J.M. Chen, “Building secure tame-like multivariate
public-key cryptosystems: The new TTS,” ACISP 2005, Lecture
Notes in Computer Science, vol.3574, pp.518–531, Springer, July
2005.

[26] A.I.T. Chen, C.H.O. Chen, M.S. Chen, C.M. Cheng, and B.Y. Yang,
“Practical-sized instances of multivariate PKCs: Rainbow, TTS, and
`IC-derivatives,” in Buchmann and Ding [53], pp.95–108.

[27] J. Ding, V. Dubois, B.Y. Yang, C.H.O. Chen, and C.M. Cheng,
“Could SFLASH be repaired?,” ICALP (2), ed. L. Aceto,
I. Damgard, L.A. Goldberg, M.M. Halldórsson, A. Ingólfsdóttir,
and I. Walukiewicz, Lecture Notes in Computer Science, vol.5126,
pp.691–701, Springer, 2008. E-Print 2007/366.

[28] J. Patarin, N. Courtois, and L. Goubin, “Flash, a fast multivariate sig-
nature algorithm,” Progress in cryptology, CT-RSA, ed. C. Naccache,
LNCS, vol.2020, pp.298–307, Springer, 2001.

[29] M.S. Chen, D. Smith-Tone, and B.Y. Yang, “pFLASH - secure

http://dx.doi.org/10.1137/s0097539795293172
http://dx.doi.org/10.1137/s0097539795293172
http://dx.doi.org/10.1137/s0097539795293172
https://doi.org/10.6028/NIST.IR.8105
https://doi.org/10.6028/NIST.IR.8105
https://doi.org/10.6028/NIST.IR.8105
http://dx.doi.org/10.1007/11761679_8
http://dx.doi.org/10.1007/11761679_8
http://dx.doi.org/10.1007/11761679_8
http://dx.doi.org/10.1007/11761679_8
http://www.minrank.org/xlfull.pdf
http://www.minrank.org/xlfull.pdf
http://www.minrank.org/xlfull.pdf
http://www.minrank.org/xlfull.pdf
http://www.minrank.org/xlfull.pdf
http://www.minrank.org/xlfull.pdf
http://dx.doi.org/10.1007/978-3-540-74619-5_19
http://dx.doi.org/10.1007/978-3-540-74619-5_19
http://dx.doi.org/10.1007/978-3-540-74619-5_19
http://dx.doi.org/10.1145/780506.780516
http://dx.doi.org/10.1145/780506.780516
http://dx.doi.org/10.1145/780506.780516
http://dx.doi.org/10.1145/780506.780516
http://dx.doi.org/10.1007/978-3-540-30191-2_31
http://dx.doi.org/10.1007/978-3-540-30191-2_31
http://dx.doi.org/10.1007/978-3-540-30191-2_31
http://dx.doi.org/10.1007/978-3-540-30191-2_31
http://dx.doi.org/10.1007/978-3-662-53890-6_5
http://dx.doi.org/10.1007/978-3-662-53890-6_5
http://dx.doi.org/10.1007/978-3-662-53890-6_5
http://dx.doi.org/10.1007/978-3-662-53890-6_5
http://dx.doi.org/10.1007/978-3-662-53890-6_5
http://dx.doi.org/10.1007/978-3-662-53890-6_5
http://dx.doi.org/10.1007/978-3-662-53890-6_5
http://dx.doi.org/10.1007/978-3-642-22792-9_40
http://dx.doi.org/10.1007/978-3-642-22792-9_40
http://dx.doi.org/10.1007/978-3-642-22792-9_40
http://dx.doi.org/10.1007/978-3-642-22792-9_40
http://dx.doi.org/10.1007/11894063_16
http://dx.doi.org/10.1007/11894063_16
http://dx.doi.org/10.1007/11894063_16
http://dx.doi.org/10.1007/11894063_16
http://dx.doi.org/10.1007/11894063_16
http://dx.doi.org/10.1007/978-3-642-04138-9_3
http://dx.doi.org/10.1007/978-3-642-04138-9_3
http://dx.doi.org/10.1007/978-3-642-04138-9_3
http://dx.doi.org/10.1007/978-3-642-04138-9_3
http://dx.doi.org/10.1007/978-3-642-04138-9_3
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://dx.doi.org/10.1007/978-3-540-74462-7_13
http://dx.doi.org/10.1007/978-3-540-74462-7_13
http://dx.doi.org/10.1007/978-3-540-74462-7_13
http://dx.doi.org/10.1007/978-3-540-74462-7_13
http://dx.doi.org/10.1007/978-3-662-48797-6_14
http://dx.doi.org/10.1007/978-3-662-48797-6_14
http://dx.doi.org/10.1007/978-3-662-48797-6_14
http://dx.doi.org/10.1007/978-3-662-48797-6_14
http://dx.doi.org/10.1007/978-3-662-48797-6_14
http://dx.doi.org/10.1007/978-3-662-48797-6_14
http://dx.doi.org/10.1007/978-3-662-48797-6_14
http://dx.doi.org/10.1007/978-3-319-13051-4_6
http://dx.doi.org/10.1007/978-3-319-13051-4_6
http://dx.doi.org/10.1007/978-3-319-13051-4_6
http://dx.doi.org/10.1007/978-3-319-13051-4_6
http://dx.doi.org/10.1007/978-3-319-13051-4_6
http://dx.doi.org/10.1007/978-3-319-13051-4_6
http://dx.doi.org/10.1109/tit.2010.2079016
http://dx.doi.org/10.1109/tit.2010.2079016
http://dx.doi.org/10.1109/focs.2014.41
http://dx.doi.org/10.1109/focs.2014.41
http://dx.doi.org/10.1109/focs.2014.41
http://dx.doi.org/10.1109/focs.2014.41
http://dx.doi.org/10.1007/11496137_12
http://dx.doi.org/10.1007/11496137_12
http://dx.doi.org/10.1007/11496137_12
http://dx.doi.org/10.1007/11496137_12
http://eprint.iacr.org/2008/108
http://eprint.iacr.org/2008/108
http://eprint.iacr.org/2008/108
http://eprint.iacr.org/2008/108
http://eprint.iacr.org/2008/108
http://dx.doi.org/10.1007/978-3-642-12929-2_16
http://dx.doi.org/10.1007/978-3-642-12929-2_16
http://dx.doi.org/10.1007/978-3-642-12929-2_16
http://dx.doi.org/10.1007/11506157_43
http://dx.doi.org/10.1007/11506157_43
http://dx.doi.org/10.1007/11506157_43
http://dx.doi.org/10.1007/11506157_43
http://dx.doi.org/10.1007/978-3-540-88403-3_7
http://dx.doi.org/10.1007/978-3-540-88403-3_7
http://dx.doi.org/10.1007/978-3-540-88403-3_7
http://dx.doi.org/10.1007/978-3-540-70583-3_56
http://dx.doi.org/10.1007/978-3-540-70583-3_56
http://dx.doi.org/10.1007/978-3-540-70583-3_56
http://dx.doi.org/10.1007/978-3-540-70583-3_56
http://dx.doi.org/10.1007/978-3-540-70583-3_56
http://dx.doi.org/10.1007/3-540-45353-9_22
http://dx.doi.org/10.1007/3-540-45353-9_22
http://dx.doi.org/10.1007/3-540-45353-9_22
http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session3-smith-tone-paper.pdf

568
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.3 MARCH 2018

asymmetric signatures on smart cards.” http://csrc.nist.gov/groups/
ST/lwc-workshop2015/papers/session3-smith-tone-paper.pdf, 2015.
NIST Lightweight Cryptography Workshop 2015.

[30] J. Patarin, “Hidden Field Equations (HFE) and Isomorphisms of
Polynomials (IP): two new families of asymmetric algorithms,” Ad-
vances in Cryptology—EUROCRYPT 1996, Lecture Notes in Com-
puter Science, vol.1070, pp.33–48, Ueli Maurer, ed., Springer, 1996.
Extended Version: http://www.minrank.org/hfe.pdf

[31] J. Patarin, N. Courtois, and L. Goubin, “QUARTZ, 128-bit long dig-
ital signatures http://www.minrank.org/quartz/,” Progress in cryp-
tology, CT-RSA, ed. C. Naccache, LNCS, vol.2020, pp.282–297,
Springer, 2001.

[32] E.Kaltofen andV. Shoup, “Subquadratic-time factoring of polynomi-
als over finite fields,” Math. Comput., vol.67, no.223, pp.1179–1197,
1998.

[33] L. Granboulan, A. Joux, and J. Stern, “Inverting HFE is quasipolyno-
mial,” CRYPTO, ed. C. Dwork, Lecture Notes in Computer Science,
vol.4117, pp.345–356, Springer, 2006.

[34] A. Kipnis and A. Shamir, “Cryptanalysis of the HFE public key
cryptosystem,” Advances in Cryptology — CRYPTO 1999, Lecture
Notes in Computer Science, vol.1666, pp.19–30, Michael Wiener,
ed., Springer, 1999. http://www.minrank.org/hfesubreg.ps or http://
citeseer.nj.nec.com/kipnis99cryptanalysis.html

[35] J. Ding and B.Y. Yang, “Degree of regularity for hfev and HFEv-
,” PQCrypto, ed. P. Gaborit, Lecture Notes in Computer Science,
vol.7932, pp.52–66, Springer, 2013.

[36] O. Billet, J. Patarin, and Y. Seurin, “Analysis of intermediate field
systems,” talk at the First International Conference on Symbolic
Computation and Cryptography (SCC 2008), Beijing, 2008.

[37] L. Bettale, J. Faugère, and L. Perret, “Cryptanalysis of HFE, multi-
HFE and variants for odd and even characteristic,” Des. Codes Cryp-
tography, vol.69, no.1, pp.1–52, 2013.

[38] Y. Hashimoto, “Key recovery attacks on multivariate public key
cryptosystems derived from quadratic forms over an extension field,”
IEICE Trans. Fundamentals, vol.E100-A, no.1, pp.18–25, Jan. 2017.

[39] A. Petzoldt, M. Chen, J. Ding, and B. Yang, “HMFEv - an efficient
multivariate signature scheme,” Post-Quantum Cryptography - 8th
International Workshop, PQCrypto 2017, Utrecht, The Netherlands,
June 2017, Proceedings, ed. T. Lange and T. Takagi, Lecture Notes
in Computer Science, vol.10346, pp.205–223, Springer, 2017.

[40] Y. Hashimoto, “On the security of HMFEv,” Cryptology ePrint
Archive, Report 2017/689, 2017.

[41] M.S. Chen, C.M. Cheng, and B.Y. Yang, “RAIDq: A software-
friendly, multiple-parity raid,” USENIX HotStorage, 2013.

[42] D.J. Bernstein, T. Chou, and P. Schwabe, “Mcbits: fast constant-
time code-based cryptography,” Cryptographic Hardware and Em-
bedded Systems – CHES 2013, ed. G. Bertoni and J.S. Coron, Lec-
ture Notes in Computer Science, Springer-Verlag Berlin Heidelberg,
2013. Document ID: e801a97c500b3ac879d77bcecf054ce5, http://
cryptojedi.org/papers/#mcbits

[43] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed., The MIT Press, 2009.

[44] D.G. Cantor, “On arithmetical algorithms over finite fields,” J. Comb.
Theory Ser. A, vol.50, no.2, pp.285–300, March 1989.

[45] T.D. Mateer, “Truncated fast fourier transform algorithms,” 2011
Digital Signal Processing and Signal Processing Education Meeting
(DSP/SPE), pp.78–83, Jan. 2011.

[46] D. Harvey, “A cache-friendly truncated FFT,” Theoretical Computer
Science, vol.410, no.27, pp.2649–2658, 2009.

[47] A.V. Aho and J.E. Hopcroft, The Design and Analysis of Computer
Algorithms, 1st ed., Addison-Wesley Longman Publishing, Boston,
MA, USA, 1974.

[48] J.v.z. Gathen and J. Gerhard, Modern Computer Algebra, 3rd ed.,
Cambridge University Press, New York, NY, USA, 2013.

[49] D.J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.Y. Yang, “High-
speed high-security signatures,” CHES, ed. B. Preneel and T. Takagi,
LectureNotes in Computer Science, vol.6917, pp.124–142, Springer,

2011.
[50] D.J. Bernstein and T. Lange, “eBACS: Ecrypt benchmarking of cryp-

tographic systems,” http://bench.cr.yp.to, July 2016. Accessed May
10, 2017.

[51] L.K. Grover, “A fast quantum mechanical algorithm for database
search,” STOC, ed. G.L. Miller, pp.212–219, ACM, 1996.

[52] B. Westerbaan and P. Schwabe, “Solving binary MQ with grover’s
algorithm,” Security, Privacy, and Advanced Cryptography En-
gineering, ed. C. Carlet, A. Hasan, and V. Saraswat, Lec-
ture Notes in Computer Science, Springer-Verlag Berlin Heidel-
berg, 2016. Document ID: 40eb0e1841618b99ae343ffa073d6c1e,
http://cryptojedi.org/papers/#mqgrover

[53] J. Buchmann and J. Ding, eds., Post-Quantum Cryptography, Second
InternationalWorkshop, PQCrypto 2008, Cincinnati, OH, USA, Oct.
2008, Proceedings, Lecture Notes in Computer Science, vol.5299,
Springer, 2008.

Ming-Shing Chen is a PhD student in Elec-
trical Engineering, National Taiwan University,
Taiwan.

Wen-Ding Li recieved his BS and MS
Degree in Electrical Engineering from National
Taiwan University. He is now a research assis-
tant at Institue of Information Science, Academia
Sinica, Taiwan.

Bo-Yuan Peng recieved his BS Degree
in Electrical Engineering from National Taiwan
University. He is now a research assistant at In-
stitue of Information Science, Academia Sinica,
Taiwan.

http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session3-smith-tone-paper.pdf
http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session3-smith-tone-paper.pdf
http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session3-smith-tone-paper.pdf
http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session3-smith-tone-paper.pdf
http://www.minrank.org/hfe.pdf
http://www.minrank.org/hfe.pdf
http://www.minrank.org/hfe.pdf
http://www.minrank.org/hfe.pdf
http://www.minrank.org/hfe.pdf
https://doi.org/10.1007/3-540-45353-9_21
https://doi.org/10.1007/3-540-45353-9_21
https://doi.org/10.1007/3-540-45353-9_21
https://doi.org/10.1007/3-540-45353-9_21
http://dx.doi.org/10.1090/s0025-5718-98-00944-2
http://dx.doi.org/10.1090/s0025-5718-98-00944-2
http://dx.doi.org/10.1090/s0025-5718-98-00944-2
http://dx.doi.org/10.1007/11818175_20
http://dx.doi.org/10.1007/11818175_20
http://dx.doi.org/10.1007/11818175_20
http://citeseer.nj.nec.com/kipnis99cryptanalysis.html
http://citeseer.nj.nec.com/kipnis99cryptanalysis.html
http://citeseer.nj.nec.com/kipnis99cryptanalysis.html
http://citeseer.nj.nec.com/kipnis99cryptanalysis.html
http://citeseer.nj.nec.com/kipnis99cryptanalysis.html
http://dx.doi.org/10.1007/978-3-642-38616-9_4
http://dx.doi.org/10.1007/978-3-642-38616-9_4
http://dx.doi.org/10.1007/978-3-642-38616-9_4
http://dx.doi.org/10.1007/s10623-012-9617-2
http://dx.doi.org/10.1007/s10623-012-9617-2
http://dx.doi.org/10.1007/s10623-012-9617-2
http://dx.doi.org/10.1587/transfun.e100.a.18
http://dx.doi.org/10.1587/transfun.e100.a.18
http://dx.doi.org/10.1587/transfun.e100.a.18
http://dx.doi.org/10.1007/978-3-319-59879-6_12
http://dx.doi.org/10.1007/978-3-319-59879-6_12
http://dx.doi.org/10.1007/978-3-319-59879-6_12
http://dx.doi.org/10.1007/978-3-319-59879-6_12
http://dx.doi.org/10.1007/978-3-319-59879-6_12
https://eprint.iacr.org/2017/689
https://eprint.iacr.org/2017/689
http://cryptojedi.org/papers/#mcbits
http://cryptojedi.org/papers/#mcbits
http://cryptojedi.org/papers/#mcbits
http://cryptojedi.org/papers/#mcbits
http://cryptojedi.org/papers/#mcbits
http://cryptojedi.org/papers/#mcbits
http://dx.doi.org/10.1016/0097-3165(89)90020-4
http://dx.doi.org/10.1016/0097-3165(89)90020-4
http://dx.doi.org/10.1109/dsp-spe.2011.5739190
http://dx.doi.org/10.1109/dsp-spe.2011.5739190
http://dx.doi.org/10.1109/dsp-spe.2011.5739190
http://dx.doi.org/10.1016/j.tcs.2009.03.014
http://dx.doi.org/10.1016/j.tcs.2009.03.014
http://dx.doi.org/10.1017/cbo9781139856065
http://dx.doi.org/10.1017/cbo9781139856065
http://dx.doi.org/10.1007/978-3-642-23951-9_9
http://dx.doi.org/10.1007/978-3-642-23951-9_9
http://dx.doi.org/10.1007/978-3-642-23951-9_9
http://dx.doi.org/10.1007/978-3-642-23951-9_9
http://bench.cr.yp.to
http://bench.cr.yp.to
http://bench.cr.yp.to
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1145/237814.237866
http://cryptojedi.org/papers/#mqgrover
http://cryptojedi.org/papers/#mqgrover
http://cryptojedi.org/papers/#mqgrover
http://cryptojedi.org/papers/#mqgrover
http://cryptojedi.org/papers/#mqgrover
http://cryptojedi.org/papers/#mqgrover
https://link.springer.com/conference/pqcrypto
https://link.springer.com/conference/pqcrypto
https://link.springer.com/conference/pqcrypto
https://link.springer.com/conference/pqcrypto

CHEN et al.: IMPLEMENTING 128-BIT SECURE MPKC SIGNATURES
569

Bo-Yin Yang received his PhD in Math-
ematics from Massachusetts Institute of Tech-
nology in 1991. After teaching mathematics
at Tamkang University in Taiwan, he started
working with cryptography in 2002. Eventually
moved to the Institute of Information Science at
Academia Sinica in 2006. Bo-Yin is known for
his work on efficient crypto implementations, al-
gebraic cryptanalysis, and post-quantum public-
key cryptography.

Chen-Mou Cheng received his BS and MS
in Electrical Engineering from National Taiwan
University in 1996 and 1998, respectively, and
his PhD in Computer Science fromHarvard Uni-
versity in 2007. He joined the Department of
Electrical Engineering of National Taiwan Uni-
versity in 2007, where he is currently an asso-
ciate professor. His main research area is in
cryptographic hardware and embedded systems
(CHES), aswell as electronic system-level (ESL)
design. Currently, his main research activities

focus on the design and analysis of efficient algorithms to solve several im-
portant problems arising from cryptology, as well as the development and
implementation of these algorithms onmassively parallel computers. These
problems include solving systems of polynomial equations over finite fields,
integer factorization, elliptic-curve discrete logarithm, and lattice reduction.

