1

2

Algebraic Linear Analysis for Number Theoretic
Transform in Lattice-Based Cryptography

Anonymous Submission

Abstract. The topic of verifying postquantum cryptographic software has never been
more pressing than today between the new NIST postquantum cryptosystem standards
being finalized and various countries issuing directives to switch to postquantum or
at least hybrid cryptography in a decade. One critical issue in verifying lattice-based
cryptographic software is range-checking in the finite-field arithmetic assembly code
which occurs frequently in highly optimized cryptographic software. For the most
part these have been handled by Satisfiability Modulo Theory (SMT) but so far
they mostly are restricted to Montgomery arithmetic and 16-bit precision. We add
semi-automatic range-check reasoning capability to the CRYPTOLINE toolkit via the
Integer Set Library (wrapped via the python package islpy) which makes it easier
and faster in verifying more arithmetic crypto code, including Barrett and Plantard
finite-field arithmetic, and show experimentally that this is viable on production code.
Keywords: Integer Set Library - CryptoLine - Formal Verification - Assembly
Code

1 Introduction

1.1 Motivation

Due to the recent issuance of NIST’s new Postquantum Standards (FIPS-203-205) which are
much more complex than their pre-quantum brethren, the topic of verifying postquantum
cryptography, in particular lattice-based cryptography, has again come to the fore.

There have been already efforts to verify lattice-based cryptography. In particular, [8,24]
both verified lattice-based crypto programs in different ways. However, these are mostly
centered around KEMs and do not cover Dilithium and similar lattice-based Postquantum
digital signatures. There are no published articles verifying Dilithium in the literature.

One possible reason for this is that when verifying range properties in the context of
arithmetic cryptographic code involving multiplications, it seems that 16-bit multiplications
with 32-bit products can be handled moderately well using current SMT technology.
However, range checks for 32-bit multiplications with 64-bit products seem to be out of the
capabilities of SMT(SAT) solvers. Furthermore, most of the code verified seems to involve
Montgomery reductions and multiplications, which are easier to verify in an algebraic
manner. Far fewer discussions exist on Barrett multiplications (currently the state of
the art for ARM aarch64 code) and Plantard multiplications (state of the art for some
cryptosystem-platform combinations, most prominent being Kyber on ARM Cortex-M4).

We conclude that there surely would be interest in (a) verification of the core component
(NTT multiplications) of Dilithium, (b) verification for Barrett and Plantard multiplications,
and (c) range verification in 32-bit arithmetic involving mulmods.

1.2 Contributions

We introduce an adaptation of the ISL (Integer Set Library, wrapped in python) library
into the CRYPTOLINE toolkit. Such usage of an integral set reasoning tool is new as far as

2 Algebraic Linear Analysis for NTT Verifications

we can check, and it handles ranges arising from linear arithmetic relations extremely well.
This makes it useful to verify more lattice-based PQC implementations.

As mentioned above, most verification of postquantum arithmetic code restrict them-
selves to Montgomery mulmod arithmetic in 16 bits. Our ISL-based tool handles both
Plantard and Barrett multiplications easily and extends effortlessly to 32-bit arithmetic.

As a result of the new addenda to the CRYPTOLINE toolkit, we are able to verify
several optimized Kyber and Dilithium NTT/iNTT and platform combinations, which we
exhibit in Section 5. Both the Dilithium (i)NTT Barrett-based implementations and the
Kyber (i)NTT Plantard-based implementations had not been verified (in print). All these
are highly optimized current state-of-the-art implementations.

1.3 Related Work

There are many other current solutions for verifying cryptographic code that guarantees
range properties. Some use CoQ (Rocq) [1], and some EasyCrypt [2], such as in the
well-known Jasmin code for Kyber [8]. Still others rely on Satisfiability Modulo Theory
(SMT) solvers for range checking [18]. As far as we can determine, there are few if any
cases wherein non-Montgomery mulmods or 32-bit arithmetic underwent range checks.

A possible reason for this is that it is difficult for SMT (represented by SAT solvers) to
handle highly non-linear 32-bit operations (e.g., mulmods) and reason about ranges at the
same time. In our own experimentation, it proved possible to handle a limited amount of
16-bit Barrett (and Plantard) mulmods, and 32-bit Montgomery mulmods, but not 32-bit
Barrett mulmods. We conjecture that others may have run into the same problem.

There are many prior formal verifications [4-6, 10, 13, 28,29, 42] of cryptographic
programs, mostly in symmetric cryptography. Many of these use proof assistants that are
non-(semi-)automated. Most of these techniques are not applied in practice to arithmetic-
rich, highly optimized, cryptographic software dealing with Public-Key Cryptography.
Some methods do produce verified arithmetic cryptographic code but prescribe a way of
programming such as Fiat [16] and Jasmin with built-in proofs [8]. We rarely if at all see
verification methods that are carried out on hand-optimized code “in the wild”. Exceptions
are the CRYPTOLINE sequence of works started by [18,39] and [11] (work in progress, using
HOL Light [19]) which verify (existing) optimized assembly programs. As can be seen
below, we build onto CRYPTOLINE here.

2 Preliminaries

2.1 The Number Theoretic Transform

Kyber and Dilithium [27,31, 32,34] each builds a specific variant of the NTT (Number
Theoretic Transform) into the specifications for polynomial multiplications. It is therefore
vital to understand the mathematics behind NTT multiplications.
In the simplest form of NTTs, using the Cooley-Tukey (CT) formulation, we multiply
inF, [as]/(a:zk —1), for a prime field F, with a principal root ¢ of order 2* with CQk_l =—1.
The Chinese Remainder Theorem (CRT) applies to the quotient ring F, [z]/(z*" —\?) =
F,lz]/(x™ — A) x Fy[z]/{z™ + A) for the following ring isomorphism in one level of NTT:

Folz]/ (@™ = X%) = Fla]/{@" = X) x Fy[a]/{a" + X)

2n—1 n—1 n—1
Z a;rt — (Z(ai + Ny q)2t, Z(ai -)\an+i)xi>
i=0

=0 =0

n—1 1 n—1 1 n—1 n—1
i(Ci +c)x + Z ﬁ(q —)"t — (Z cix’, Z cgz,”)
i=0 i=0 i=0 i=0

%

Anonymous Submission to IACR TCHES 3

a; /\\@ a; + Nanti G *;g@ ci+ ¢

/

/ 1 /
An+i ai — Aan+i ¢ 5 (ci =)

A At
(a) Cooley—Tukey (CT) Butterfly (b) Gentleman—Sande (GS) Butterfly

Figure 1: Butterflies in NTT

A one-level isomorphism is computed by butterflies. The mapping from Fy[z]/(z?" — %)
to Fy[x]/{(z™ — A) x Fy[x]/{(z™ + A) computes a product and followed by addition and
subtraction. This is called a Cooley—Tukey (CT) butterfly (Figure la). Its inverse
mapping computes a sum and a difference, followed by multiplication. This is called a

Gentleman—Sande (GS) butterfly (Figure 1b). The constants A and A~! are called twiddles.

For a positive integer n = Zf 01 n;2¢ < 2% where n; € {0,1}, we may write brvy(n) =

Zf:_ol np_1-4:2°, the “length-k bit-reversal of n”, then apply the CRT repeatedly to get

Fyla]/(a® —1) = Flal/ (@ = 1) x Fyfa]/(2* " +1)
> Ffa)/(@® 7 = 1) x Fyle]/(@® " + 1) x Fyla]/@® ™ = (&7 x Fola]/(z® " + ¢
o Fyl2] % Fyl] « F,[x] y F,[z]

(22" — Cmb> (2272 — Clmb> (22" — C01mb> (22" — Cumb>

3 2f—1 2k_q

Fqla] Fqla] ~ Fqla]
H @ qurvk()> = H (227 = () == E) m

=0 =0

1

If k > ¢, we do not end at F,[z] modulo a linear polynomial (i.e., copies of F;) and we call
that an incomplete NTT. For Kyber and Dilithium, we started with F,[z]/(2?°¢ + 1), and
the “negacyclic” transform can be considered half of an NTT starting from F[z]/(z°'? —1).
So Kyber has an incomplete negacyclic NTT and Dilithium a complete negacyclic NTT.

Note that “twisting” f(z) = ap+ar1x+---+ L N ! via scaling variables
linearly with @ = cy gives ag + cary + -+ + ay* + - + ¢ Lan_1y™ !, or a; — ca,.
Twisting is also used for controlling the magmtude of coefﬁ(nents. Just before coefficients
potentially overflow, twisting eliminates that danger at little cost.

2.2 Lattice-Based Cryptography

We first describe the Crystals KEM and digital signature pair and then describe the main
types of arithmetic used. Note each uses an NTT that is constant across parameter sets.

2.2.1 Kyber

Kyber or ML-KEM [32,34] is a NIST standard lattice-based Key Encapsulation Mechanism
(KEM) based on the Module Learning With Errors (M-LWE) problem using an ¢ x
¢ matrix in the polynomial ring R, = F,[z]/(z™ + 1), with ¢ = 3329 and n = 256.
The Kyber KEM is Hofheinz—Ho6velmanns—Kiltz transformed [21] from a CPA-secure
Public-Key Encryption (PKE) described in [32,34]. Time-critical operations are one
(£ x £) x (¢ x 1) matrix-to-vector polynomial multiplication (MatrixVectoMul), plus zero,
one, or two MatrixVectorMul of ¢ x 1 inner products of polynomials (InnerProd) for
keygen, encapsulation, and decapsulation respectively. The specifications explicitly enforce

129

130

132

133

134

136

137

139

140

142

143

146

4 Algebraic Linear Analysis for NTT Verifications

all multiplications to be via (incomplete) NTTs. The public matrix A is sampled in
(incomplete) NTT domain by expanding a seed using SHAKE128 [30]. Kyber’s 7-level
127

. . . Flxl Fylx
incomplete negacyclic NTT is (9325 [Jr}1> o H @ = qurES](H8+i)>'
=0

2.2.2 Dilithium

Dilithium or ML-DSA [27,31] is a NIST standard digital signature scheme based on the
M-SIS (Module Small Integer Solutions) and M-LWE problems, using a k x £ matrix of
polynomials in the ring R, = Fy[z]/(2*% + 1) with ¢ = 223 — 213 + 1 = 8380417.

For a full description see [27,31]. The core operation of key generation, signature
generation, and signature verification is the (k x £) x (¢ x 1) matrix-to-vector polynomial
multiplications (MatrixVectorMul). In signature generation, this operation is executed
repeatedly in a rejection-sampling loop. Like Kyber, Dilithium builds an NTT into the

specification, in that A is sampled “in NTT domain” using SHAKE256 [30]. Dilithium’s
255

: : Folz] o Fy[z]
8-level complete negacyclic NTT is W 1) H) [z = Corve(i7250))
=

2.2.3 (Signed) Montgomery multiplication or Hensel division [35, 36]

This ingenious variant of Peter Montgomery’s method is initially due to Gregor Seiler as
follows: Given any X and a suitable power of two R, we compute ¢’ = ¢! mod R, and now
can compute X R~ mod ¢ by first computing ¢ = X¢’' mod R, then because R|(X — {q),
we have XR™! = (X —lq)R™ = X}, — [¢q]r, (mod q), where “high half” [e];, = |e/R].
This computation improves on a traditional Montgomery reduction in microarchitectures
with a “high-half” product, especially a high-half-product-with-accumulation: Further, with
b known, we can compute ab = [a- B]p —[¢-[a- B'];]n (mod ¢) with 2 x high+ 1 x low mults
using precomputed B = bR mod *¢, B’ = B¢’ mod *R. (Note: [ry]; = zy mod *R.)

2.2.4 Barrett multiplication [12]

Let [-] be a function from the reals to the integers such that |z — [z]| < 1, then we say
that [] is an integer approzimation and a mod I'1p is defined to be a — [a/b]b. When
[Jos [-]1 are integer approximations. We can compute a representative of ab mod ¢ via

ab— Lg=ab (mod q), where L= 7

1

The only question is whether the resulting range is useful, in particular, whether it falls
into the data width. [12] showed that

bR
a [[7]]0 a (bR mod [[']]Oq) + (a (bR mod [[']]Oq) (—g~1) mod HlR) q
ab— [|——| ¢= .
R R
1
a [[%H |al ‘mod“oq + ‘modHlR‘ q
This means |ab — || ———2 < , where ’mod[[']]X ‘ means

R 7 = R

1
the maximal |a mod [1x | for the integer approximation [-]. For uses of Barrett multi-
plication in instruction sets like the Neon, [z]o = [z]1 = 2|z/2] (“round to even”), and
here [12] showed that if |a| < R/2, then the result is between +q. When the result is
always within a signed word, we need not compute the higher half of either ab or Lq at all.

158

160

162

163

164

165

166

167

172

Anonymous Submission to IACR TCHES 5)

Since b = H%H is precomputed, we only need to compute one higher-half (aIA)) in addition
0

to the two lower-half products ab + L(—q), one of them with accumulation.

2.2.5 Signed Plantard reduction and multiplication (formulated as in [23])

Thomas Plantard’s reduction [33] was introduced into cryptographic NTTs in [9,22] and
provides the state-of-the-art signed 16-bit modular arithmetic on ARM Cortex-M4.

Let [[1, [J2, []3 be integer approximations, ¢, R > 1 be coprime integers, R be a factor
of R, and B be a positive integer. If for all integers z of absolute value < B, we have

24+ (2 (=¢7!) mod [R)q

_ ﬂz + (z-(—¢7') mod MlR) q— (24 (2 (—¢7') mod 'R mod [[]]QR) q)u
N R
3

then Plantard reduction computes a representative of zR~! mod q as
|:|:Z.(,q—l) EnOd |[]]1R:|:|) q

R
R/R

3

Usually R = R/R = 26, occasionally 2°%; [-]; = |-] (so mod[T: = mod®), []2 =[]
(so modl'l2 = standard mod), [-J3 = |- +], with r = %, or ag/(R/R) — usually for a
suitably a > 0 with 2ag < R/R (in [22], a = 8). For Plantard Multiplication z = ab with

a fixed b, we compute ab mod *q as the Plantard reduction of a - (bR mod jEq); in other
words, with a precomputed b = (bR mod *q) (—q_1 mod iR) mod *R compute

7 +
\‘abm(}{d RJquSq

[m 22 bit 16-31 of (((bit 16-31 of aé) . Sime) 0+ gq)

R/R as sint16:| '

Plantard multiplication is uniquely tight, and we get a canonical ab mod *q be-
tween +2 (if ¢ odd). However, it requires a higher-half multiplication in addition to a
middle word multiplication of a double-word and a single-word integer. This latter opera-
tion can be simulated by one higher-half and one lower-half multiplication.

2.3 Program Specifications

We will use the formalism in [17,20] to specify intended program behaviors. Let P be a
program, ¢ and 1 are predicates about program variables. A Hoare triple is of the form
{¢} P{¢}. Given a Hoare triple {¢}P{1}, the program P is expected to behave as follows.
Starting from any state where program variables satisfy the pre-condition ¢, the program
P must end in a state where program variables satisfy the post-condition . If this is
indeed the case, we say the triple {¢}P{v} is valid. Observe that a Hoare triple is valid if
the program satisfies the post-condition on all inputs satisfying the pre-condition.

Note that a program is correct only with respect to its specification in this formalism.
In this work, we establish the correctness of 6 assembly implementations of NTTs. Each
implementation will be a program. Pre- and post-conditions specify the isomorphisms
between input and output polynomials. Moreover, coefficient ranges are crucial to program
correctness. They appear in specifications of assembly implementations of NTTs as well.

185

187

188

189

190

191

209

210

212

6 Algebraic Linear Analysis for NTT Verifications

2.4 Integer Set Library

Many polytope libraries are available. Most of them however use native machine num-
bers and hence are of a fixed finite precision. Since cryptographic programs perform
multiprecision computations, typical polytope libraries are not useful. Among libraries
manipulating polytopes with exact integers, we have tested the Z3 SMT solver (Z3), the
Parma Polyhedra Library (PPL), and the Integer Set Library (IsL). ISL is found to be most
the efficient for the analysis of cryptographic programs.

Integer Set Library (ISL) is an open-sourced C library for manipulating relations over
exact integers bounded by linear constraints. It supports all standard set operations such
as intersection, union, projection, and emptiness check [40,41]. Among others, the library
has been used for program analysis such as loop optimization in GCC and LLVM.

In 1SL, a space defines the (named) dimension of an integer space. An ISL set is an
integer set in an ISL space. An ISL set is a union of basic sets. An ISL basic set in turn is a
conjunction of affine constraints over integers or a projection of a basic set. An ISL affine
constraint is of the form

co+c1D1+cDs+---¢,D,, >0

where ¢; € Z and D; are dimension names for all 4.
For instance, consider an ISL space with dimensions X and Y. Define the ISL basic set

bset = {(X,Y)| 7

Then bset represents the set {(X,Y)]|0 < X < 100 and X = 2Y'}. If the dimension Y is
projected out of bset, we obtain an ISL basic set comprising all even integers between 0
and 100. Although one can construct an ISL basic set for all even integers between 0 and
100 by these steps, ISL actually provides a function to convert a string to ISL basic sets.
The basic set of even integers between 0 and 100 can be obtained by the following string:

{ [X] : exists (Y : X =2Y and 1 <= X and X <= 99) }

In addition to set construction, it is easy to check emptiness of the set bset in ISLPY
by calling bset.is_empty().

3 Formal Verification with CryptoLine

3.1 CryptolLine Overview

CRYPTOLINE is an automatic formal verification toolkit for cryptographic programs. To
verify a cryptographic program with CRYPTOLINE, a formal program model is needed.
A program model specifies how the cryptographic program executes. Verifiers use the
CRYPTOLINE modeling language to construct such a program model. The CRYPTOLINE
language is based on assembly languages and thus most suitable for cryptographic assembly
programs. After a program model is constructed, verifiers specify what the cryptographic
program is intended to compute. For instance, it may compute the field multiplication
operation over a large finite field. Given a program model and its functional specification,
the CRYPTOLINE toolkit tries to prove the model conforms to the specification for all
inputs automatically. CRYPTOLINE may fail to finish in a reasonable time. Verifiers can
annotate the program model with lemmas as hints. CRYPTOLINE will also prove annotated
lemmas and use them to speed up verification.
Consider the following 32-bit ARM Cortex-M4 code for Montgomery reduction:

231

232

233

234

236

239

240

241

242

258

260

261

266

Anonymous Submission to IACR TCHES 7

smulbt m, T, QQ
smlabb t, QQ, m, T

The smulbt m, T, QQ instruction multiplies the bottom 16 bits of the register T with
the top 16 bits of the register QQ, and stores the 32-bit product in the register m. The
smlabb t, QQ, m, T instruction first multiplies the bottom 16 bits of the registers QQ
and m. It then adds the 32-bit product with the 32-bit register T and stores the sum
in the 32-bit register t. If the bottom 16 bits of QQ contains a modulus ¢ and the top
16 bits of QQ contains the negation of the inverse of ¢ modulo 26, then the register t is
Tqglq+T =T (¢ ¢+ 1) =T 0(mod 2'6) and has bottom 16 bits all zeroes.

To verify the ARM Cortex-M4 code, we construct the following CRYPTOLINE model:

(* smulbt m, T, QQ *)
spl T, T, T 16;

mull my m, Tp QQ¢;

(* smlabb t, QQ, m, T *)
mulj tmp QQp my;

add t tmp T;

The 32-bit register T is modeled by a 32-bit CRYPTOLINE variable T. The bottom and
top 16 bits of the register QQ are modeled by 16-bit variables QQy and QQ. respectively.
The CRYPTOLINE spl T; T, T 16 instruction splits the 32-bit variable T into two 16-bit
variables Ty (top) and Ty, (bottom). The mull m; m, Tp QQ: computes the 32-bit product
of T, and QQs, and stores the bottom and top 16 bits of the product in my and m; respectivey.
mulj tmp QQ, mp on the other hand stores the 32-bit product of QQp and my, in the variable
tmp. Finally, add t tmp T puts the sum of the 32-bit variables tmp and T in the variable t.
One can see the model construction is mostly straightforward. Using the formal semantics
for CRYPTOLINE in CoQ [38], one could also prove the correctness of model construction
with respect to another CoQ model for ARM Cortex-M4 programs.

We are ready to give the pre-condition for the program model formally. Recall that
the variables QQ, and QQ, contain a modulus ¢ and the negation of its inverse modulo 2'6.
Formally, we assume

R=2"%A0QQ,-QQ; +1=0 mod R (1)

Moreover, the number QQ, and the input T are not arbitrary. They must be in the proper
ranges to prevent overflow. Concretely, we need

QG < 2" A —[QQy - R/2] < T < |QQy - R/2) (2)

The pre-condition of our small program model is therefore (1) A (2). At the end of the
program, we wish to show the output t is congruent to T modulo QQ, and congruent to 0
modulo R. That is,

t=T mod QQu At=0 mod R (3)

Additionally, we wish to show the top 16-bit of output is between +2'6 times the modulus
QQp. Precisely, we want to show

—R-QQy <t < R-QQ (4)

After specifying the pre-condition (1) A (2) and the post-condition (3) A (4), we use
CRYPTOLINE to prove whether our program model computes the output t correctly for all
inputs QQp, QQ:, and T under our assumptions. CRYPTOLINE verifies it in seconds.

In this example, CRYPTOLINE verifies the program model without further annotations.
If more hints were needed, we would state them as assertions. CRYPTOLINE will prove
annotated assertions automatically. Once an assertion is proven, it can be assumed as a
hint to verify post-conditions.

268

298

8 Algebraic Linear Analysis for NTT Verifications

3.2 Algebraic Abstraction

Conventional program verification techniques such as SMT solvers do not work well for
cryptographic programs for two reasons. First, cryptographic programs often perform non-
linear computations but typical programs do not. Verification of non-linear computation
hence has very limited support in program verification. Second, cryptographic program
verification requires bit-accurate techniques for large integers but typical programs need
not. Machine integers suffice for most computation. Overflow thus can be overlooked at
first and verified by interval arithmetic later. Non-linear and bit-accurate analyses for
large integers are missing in conventional program verification techniques.

CrRYPTOLINE employs two verification techniques to address these issues. For bit-
accurate analysis, CRYPTOLINE uses an SMT QFBYV solver to verify simple linear com-
putations. SMT QFBYV solvers essentially translate bounded arithmetic computation to
Boolean circuits via bit blasting. SAT solvers are then invoked to verify Boolean circuits.
Since the computation in the program is verified through bit blasting, the technique is
clearly bit-accurate. SMT QFBYV solvers have been used in program verification and
testing. Despite their popularity, bit-accurate SMT QFBYV solvers fail to verify most
cryptographic programs satisfactorily. The Montgomery reduction program in the last
section, for instance, cannot be verified by the most advanced SMT QFBYV solver within a
week. This is perhaps unsurprising. If SMT QFBYV solvers could verify arbitrary non-linear
computation, the RSA1024 factoring challenge would have been resolved by now.

Algebraic abstraction is the distinct technique employed by CRYPTOLINE in order to
verify non-linear computation [37]. Roughly, algebraic abstraction transforms a crypto-
graphic program to a system of multivariate polynomial equations such that each program
trace corresponds to a solution to the system of equations. To verify an equality about
program variables, it suffices to check whether all solutions to the system of equations
are also solutions to the equality. Most importantly, such solutions can be checked by
algebraic techniques. Since non-linear computation is verified algebraically, CRYPTOLINE
performs especially well for cryptographic programs.

Going back to the Montgomery reduction example, CRYPTOLINE transforms the
program into the following system of polynomial equations:

R = 26 pre-condition
QQp-QQ:+1 = 0 mod R pre-condition
2167, +T, = T spl T, T, T 16
26m, +m, = Tp-QQ mull m my Tp QQ:
tmp = QQp-mp mulj tmp QQ, my
t = tmp+T add t tmp T

The first two equations are from the pre-condition (1). For each CRYPTOLINE instruc-
tion, there is a corresponding polynomial equation. Assume no overflow occurs in the
add t tmp T instruction. It is seen that all program traces are solutions to the system of
equations. In order to prove whether the post-condition (3) holds for all program traces,
it suffices to check whether all solutions to the system of equations are also solutions to
t=T mod QQ, and t =0 mod R.

Note that program traces with overflow will not be solutions to the system of equations.
Algebraic abstraction therefore is sound when no overflow occurs. Note also that algebraic
abstraction is only for equational reasoning. Since overflow detection and properties such
as the post-condition (4) require range analysis, equational reasoning is not applicable.
Range properties were verified by the bit-accurate technique with an SMT QFBV solver
in CRYPTOLINE [18].

311

328

329

330

331

336

338

339

340

341

344

345

346

347

348

349

Anonymous Submission to IACR TCHES 9

3.3 Algebraic Linear Analysis

In addition to Montgomery reduction, Barrett and Plantard multiplication can also be
implemented very efficiently on architectures with rounding instructions [12,23]. Although
rounding to integers can be checked by complex equational reasoning through algebraic
abstraction [12], it is best verified by bit-accurate analysis. Consequently, SMT QFBV
solvers appear to be suitable for verifying cryptographic programs using Barrett or Plantard
multiplication. However, bit-accurate SMT QFBYV solvers are not very scalable even for
cryptographic programs with linear computation. Using an SMT QFBV solver, the
PQClean ARM aarch64 Dilithium NTT using Barrett multiplication cannot be verified by
CRYPTOLINE in a week (Section 5). A more effective technique is needed.

We aim to develop a more scalable verification technique for NTT implementations
using various rounding instructions. As an example, consider the ARM aarch64 instruction
sqrdmulh Vd, Vn, Vm used in the PQClean ARM aarch64 implementation of Dilithium
NTT [26]. The instruction computes the signed products of corresponding elements in Vn
and Vm, doubles the products, and stores the most significant half of the saturated results
in Vd after rounding. It is modeled by 5 CRYPTOLINE instructions:

(* sqrdmulh vVd, Vn, Vm *)

mulj %Pnm %Vn %Vm; (* product *)

shl %Pnm2 %Pnm [1, 1, 1, 1]; (* double *)

spl %H33 %dc0 %Pnm2 31; (* get top 33 bits *)
add %R33 %H33 [1, 1, 1, 17; (* rounding *)

spl %Vd %dcl %R33 1; (* get top 32 bits *)

In CRYPTOLINE, vector variable names start with the percentage sign (%). In this example,
each vector variable has 4 signed 32-bit values. The mulj instruction computes 4 64-bit
signed products of corresponding elements in %Vn and %Vm. The shl instruction shifts
all elements to the left by 1 bit. The spl %H33 %dc %Pnm2 31 instruction splits each
element in %Pnm2 into top 33- and bottom 31-bit values. The 4 top 33-bit values are put
in %H33. The add %R33 %H33 [1, 1, 1, 1] instruction rounds the least significant bit.
Finally, the 4 top 32-bit rounded values are stored in %Vd by the last instruction. Note that
saturation is not modeled here. The model is correct only when no overflow occurs during
the execution of shl and add instructions. Indeed, the sqrdmulh instruction is used to
implement Barrett multiplication. If saturation occurs, the implementation is incorrect.

To develop an efficient linear analysis technique, we need a feature in NTT computation.
Recall that an NTT butterfly only requires addition and multiplication with constants.
The computation of NTTs is therefore linear. In the context of algebraic abstractions,
it means all equalities are linear. Concretely, let us consider the system of polynomial
equations corresponding to sqrdmulh Vd, Vn, Vm:

(* sqrdmulh Vd, Vn, Vm *)

Pnm[i] = Vn[i] - Vm[i] mulj %Pnm %Vn %Vm
Pnm2[i] = Pnm[i] -2 shl %Pnm2 %Pnm [1, 1, 1, 1]
231 H33[i] 4+ dcO[i] = Pnm2[i] spl %H33 %dcO0 %Pnm2 31
R33[i] = H33[i] +1 add %R33 %H33 [1, 1, 1, 1]
2Vd[i] + dcl1[i] = R33[i] spl %Vd %dcl %R33 1

In Barrett multiplication, the vector register Vm contains constants A = [[/\TRH where A
is a twiddle factor, R = 2'6 and ¢ = 8380417. After constant substitution, we obtain a
system of linear equations. Solving linear equations is much easier than solving general
polynomial equations. More efficient techniques are applicable for analysis. Solving the
above linear equations nevertheless is insufficient. Consider the last linear equation:

2vd[i] + dcl[i] = R33[i]

359

360

361

362

363

364

365

366

367

368

369

370

392

393

394

395

396

397

10 Algebraic Linear Analysis for NTT Verifications

Suppose R33[0] is the 33-bit value 4. The instruction spl %Vd %dcl %R33 1 splits 4
into top 32 and bottom 1 bit, sets Vd[0] and dc1[0] to 2 and 0 respectively. We have 2
Vd[0] + dc1[0] = R33[0] as expected. Nevertheless, more solutions are possible for the
linear equation. For instance, VA[0] = 0 and dc1[0] = 4 is another solution to 2 Vd[0] +
dc1[0] = R33[0] even though it does not correspond to any program trace. Such spurious
solutions do not reflect rounding in sqrdmulh. Yet they need to satisfy post-conditions in
algebraic abstraction. Verification may fail due to spurious solutions.

A simple way to address this problem is to remove spurious solutions. Consider the
following linear constraints for the instruction spl %Vd %dcl %R33 1:

2Vd[i] 4 dcl[i] = R33[i]
—931 < vd[i] < 23
0 < del[i] < 21

Recall that R33[i] is a 33-bit signed value. The additional linear inequalities make
the solution to the linear equation unique. No spurious solution is possible. Barrett
multiplication can be verified by solving linear constraints derived from CRYPTOLINE
programs. Since our new technique allows both equalities and inequalities in linear
constraints, it is called algebraic linear analysis to differentiate from existing equational
reasoning in algebraic abstractions.

Finally, note that constants in cryptographic programs can easily exceed 32- or 64-bit
machine integers. Typical linear constraint libraries such as Ip_solve or SCIP [3,14]
can induce overflow and give incorrect verification results for cryptographic programs.
For verification, it is necessary to use linear constraint libraries with exact integers. For
instance, the Integer Set Library uses the GNU Multiple Precision Arithmetic Library
GMP to solve linear constraints (Section 2.4). This is essential for algebraic linear analysis
of cryptographic programs.

3.4 Algebraic Soundness Checking

Recall that the absence of overflow is required to capture all program traces in algebraic
abstraction. Since equational reasoning is unsuitable for range analysis, overflow detection
for algebraic abstraction still requires bit-accurate analysis (Section 3.2). Overflow detection
however can be formulated as linear constraints easily. Can we apply algebraic linear
analysis to detecting overflow and get rid of bit-accurate analysis entirely?

Applying algebraic linear analysis to overflow detection is slightly more complicated.
The problem is as follows. Overflow detection is necessary for the soundness of algebraic
abstraction and hence algebraic linear analysis. How can algebraic linear analysis be
applied to overflow detection without securing soundness? Should the absence of overflow
not be checked before applying algebraic linear analysis? Could it be circular reasoning?

The answer is NO. It is sound to check overflow through algebraic linear analysis. To
see it, consider the program P; add a b c. Suppose a is a signed 16-bit variable. The
add instruction is transformed to a = b + ¢ in algebraic abstraction. To ensure all traces
are captured by the equation, the absence of overflow is checked by the linear constraint
—32768 < b + ¢ < 32768. We proceed by induction on the length of P.

If P is the empty program, it suffices to check —32768 < b 4 ¢ < 32768. This is clearly
a linear constraint. If P is not empty, we know how to detect overflow by linear constraints
for each instruction in P by induction. If no overflow can occur for all instructions in P,
we apply algebraic linear analysis and transform P to a system of linear constraints II.
All program traces of P are hence captured in solutions to II. Now consider two systems
of linear constraints: IIp = ITU {—32768 > b + ¢} and IT; = ITU {b + ¢ > 32768}. If I,
or IT; has a solution, then overflow can occur while executing add a b c. If neither has
a solution, there cannot be overflow for all traces of P; add a b c. In any case, overflow
detection is formulated as linear constraints. Other instructions are checked similarly.

398

399

400

416

437

439

440

441

Anonymous Submission to IACR TCHES 11

Informally, the argument says that algebraic linear analysis for P suffices to detect
overflow for the add instruction. If overflow cannot occur for the add instruction, algebraic
linear analysis is then applied to P; add a b c. Since overflow detection for the add
instruction only depends on P but not P; add a b c, there is no circle. Applying algebraic
linear analysis to overflow detection is therefore sound. We call it algebraic soundness
checking to differentiate from conventional soundness checking by bit-accurate techniques.

3.5 Multitrack Verification

CRYPTOLINE supports compositional reasoning using the cut instruction. With composi-
tional reasoning, the correctness reasoning of a long program can be decomposed into the
correctness of two shorter programs. For example, consider a Hoare triple {¢} Po; Py {¢'}.
If we can find a mid-condition p such that both {¢}Py{p} and {p}P1{1p} are valid, then
we conclude the validity of {¢}Py; P1{1}. Such mid-conditions are specified using cut
instructions in CRYPTOLINE.

A problem of using cut instructions is that a program cannot be decomposed in
different ways at the same time. For example, consider a program Py; Pi; P, with a
precondition ¢ and a postcondition g A t;. The verification of 1y requires a mid-
condition py between P, and P,, which decomposes into {¢}Py; P1{po} and {po}P2{0}.
On the other hand, the verification of ¥; requires a mid-condition p; right after Py. The
validity of {¢}Po; P1; Pa{t1} is therefore established by the validity of {¢}Py{p1} and
{p1}P1; Pa{11}. Recall that we wish to establish the validity of {¢}Py; P1; Pa{tpo A Y1 }.
How do we decompose it?

The natural and only way is to divide the program into three parts. {¢}Po{p1},
{p1}Pi{po}, and {po}P2{1bo A 11 }. But it would not do. To establish the post-condition
po in {p1}Pi{po}, information about P, may be necessary despite {¢}FPo; Pi{po} is
valid. Such information nonetheless may not appear in p;. Similarly, the post-condition
Y1 in {po}P2{¥1} may not be established because it does not necessarily follow from

{p1}Pr; Po{1}.

To resolve this issue, we propose multitrack verification and implement it in CRYPTO-
LINE. With the multitrack feature, an annotation (including pre-conditions, mid-conditions,
and post-conditions) can be placed on certain tracks. The verification is then carried
out by tracks. This allows a program to be decomposed by different ways in different
tracks. Take the previous example for demonstration. The pre-condition ¢ can be placed
on track 0 and track 1. The mid-condition py and post-condition iy are both placed on
track 0. The mid-condition p;1, and post-condition 1, are put on track 1. To verify track 0,
CRYPTOLINE only considers {¢} Py; P1; Pa{t)o} with mid-condition py between P; and Ps.
This Hoare triple is then decomposed into {¢}Py; Pi{po} and {po}P2{to}, which can be
proved successfully. To verify track 1, CRYPTOLINE ouly considers {¢} Py; Pr; Po{t1} with
the mid-condition p; between Py and P;. The Hoare triple for track 1 is then decomposed
into {¢} Po{p1} and {p1}P1; Po{1)1}, which can be verified separately.

4 Case Studies

To illustrate the generality of algebraic linear analysis in NTT verification, we discuss
6 NTT implementations for Dilithium and Kyber on Intel AVX2, ARM aarch64 and
Cortex-M4. We explain how NTTs are implemented on different architectures and their
CRYPTOLINE specifications.

456

460

461

462

463

464

466

467

468

469

476

478

479

480

481

482

12 Algebraic Linear Analysis for NTT Verifications

4.1 Dilithium

The Dilithium specification uses NTT for polynomial multiplications in the ring R, =
F,[x]/(x?%% + 1) with ¢ = 8380417 [31]. The PQClean project provides Intel AVX2 and
ARM aarch64 assembly implementations of NTT and inverse NTT [26]. Observe that an
element in F, where ¢ = 223 — 213 41 < 232 A field element hence can be stored in a
32-bit word. These assembly implementations are verified by CRYPTOLINE using algebraic
linear analysis. We explain how they are verified in this subsection.

4.1.1 Intel AVX2
The PQClean Intel AVX2 Dilithium NTT implementation performs 8 levels of CT butterflies

for an input polynomial f(z) = Zfi% a;xt € Fylx]/ (2?55 + 1). In the implementation, 4
32-bit coeflicients of a polynomial are packed into a 256-bit vector register. Due to the
number of available vector registers, CT butterflies are performed by 4 groups of 64 32-bit
coefficients. All the coefficients in one group are loaded into 8 256-bit vector registers in a
CT butterfly. The implementation first transforms the input polynomial to 4 63-degree
polynomials through levels 0 and 1 of CT butterflies in 4 groups. All the coefficients of
the polynomials are stored back to memory. The implementation then performs levels 2 to
7 of CT butterflies similarly by groups, in which one 63-degree polynomial is transformed
to 64 constant polynomials.

The PQClean Intel AVX2 Dilithium NTT uses Montgomery multiplication (Sec-
tion 2.2.3). Consider the following fragment from the implementation:

vpmuldq %ymml ,%ymm8 ,%ymml3
vpmuldq %ymm2 ,%ymm8 ,%ymm8
vpmuldq %ymmO ,%ymml13 ,%ymml3

The ymm8 register contains 8 32-bit polynomial coefficients a; (0 < i < 8). Let R = 232.
The ymm2 and ymm1 registers each contains 8 twiddles B; = A\; R mod ¢ and 8 pre-computed
values B! = B;g~! mod R (0 < i < 8) respectively. The vpmuldq %ymml, %ymm8, %ymml3
instruction computes the products of the 4 corresponding 32-bit values with even indices
in ymm8 and ymml, and stores the 4 64-bit products in ymm13. Hence the ymml3 register
contains a;B; (i = 0,2,4,6). Similarly, the ymm8 register contains a;B; after executing
vpmuldg %ymm2, %ymm8, %ymm8 (i =0,2,4,6). Since ymm0 contains 8 copies of ¢, ymm13
contains ¢(a; B mod R) after vpmuldq %ymmO, %ymml13, %ymml3. Consider the 4 64-bit
differences of the values in ymm8 and ymm13. By Montgomery multiplication, the top 32
bits of the differences are a;\; mod ¢ and the bottom 32 bits are all zeroes for i = 0,2, 4, 6.
The products a;A; mod ¢ for odd indices are computed similarly.

We verify the PQClean AVX2 Dilithium NTT implementation using CRYPTOLINE with

the input polynomial f(x) = Zfi% a;x’ € Fy[z]/(x*% + 1) and the following pre-condition

—q < a; < qfor 0<1i< 256.

CRYPTOLINE verifies the ranges of 256 output coefficients ¢; are between —9¢ and 9¢
for 0 < i < 256. Moreover, the following post-conditions are also verified (¢ = 1753)

f(x) = ¢; mod [g, x — PV for 0 < i < 256.

The PQClean Intel AVX2 implementation for Dilithium inverse NTT is similar. All the
coefficients are arranged into 4 groups. Levels 7 to 2 of GS butterflies are performed for
each group with results stored back to memory. It is then followed by levels 1 to 0 of GS
butterflies. We also use CRYPTOLINE to verify Intel AVX2 implementation for Dilithium
inverse NTT. Assume the input coefficients ¢; are between —q and ¢ for 0 < i < 256. We

488

489

490

492

493

494

495

496

497

498

499

500

508

509

510

519

521

Anonymous Submission to IACR TCHES 13

view these input coefficients correspond to a polynomial f(z) € F,/(x?°® +1). That is, we
have 256 additional pre-conditions

f(z) =¢; mod [q,x — Cbrv9(256+i)] for 0 < j < 256.

CRYPTOLINE verifies that the output coefficients a; of the inverse NTT are between —gq
and ¢ for 0 < ¢ < 256. Moreover, the polynomial F(z) = Efi% a;x* formed by the output

coefficients satisfies the post-condition

F(x) = 2%2f(z) mod [q,*% +1].

4.1.2 ARM aarch64

In the PQClean ARM aarch64 implementation, a 128-bit register contains 4 32-bit words.
The optimized implementation uses 2 groups of 12 128-bit registers for butterflies. Each
group performs 16 butterflies. In each group, 4 registers are for Barrett multiplication
(Section 2.2.4); the other 8 registers contain polynomial coefficients. In Dilithium, each
NTT level has 128 CT butterflies. Eight groups are therefore needed for an NTT level.
The implementation interleaves every two groups of butterflies.

Consider the following fragment from the optimized implementation:

mul v16.4s, v30.4s, v23.4s
sqrdmulh v30.4s, v30.4s, v22.4s
mls v16.4s, v30.4s, v4.s[0]

The 128-bit registers v30 and v23 contain 4 polynomial coefficients a; and 4 NTT twiddle
factors A; for 0 < ¢ < 4 respectively. After the mul instruction, the register v16 contains
the 4 32-bit half products of a;\; for 0 <i < 4.

Let R = 232, The register v22 is initialized to 4 constants [[Aﬁf with 0 < i < 4.
Recall the sqrdmulh computes double of the product of the two source operands v30 and
v22. The factor 2 in the denominator is added to compensate for the doubling in the

sqrdmulh instruction. After executing the instruction, the register v30 has 4 32-bit values

ai [2],

R

for 0 < i < 4.
1

The mls instruction first computes the 64-bit product of v30 and v4.s[0], subtracts
the product from v16, and stores the difference in v16. Since v4.s[0] contains the value
¢, v16 contains the following values after executing the instruction:

«],

7 for 0 < i< 4.

aiXi —q
1

That is, v16 contains the values a;\; mod g for 0 < i < 4 by Barrett multiplication.

Using CRYPTOLINE, we verify the PQClean ARM aarch64 implementation for the
Dilithium NTT. Assume the 256 coefficients of the input polynomial are between —|q/2]
and [¢/2]. The implementation outputs 256 values between —|8.5¢| and [8.5¢]. Moreover,
let f(x) denote the input function, ¢; the output values, and ¢ = 1753. CRYPTOLINE
verifies the following 256 post-conditions

f(x) = ¢; mod [g, x — ¢P™Vo256+H))] for 0 < i < 256.

PQClean ARM aarch64 implementation for Dilithium inverse NTT is similar. It also
uses 2 groups of 12 128-bit registers. For inverse NTT, Barrett multiplication is also

535

536

538

539

540

543

544

546

548

549

558

560

561

14 Algebraic Linear Analysis for NTT Verifications

employed in GS butterfly. We use CRYPTOLINE to verify the ARM aarch64 implementation
for Dilithium inverse NTT as well. Assume the input coefficients ¢; are between —q and
q and f(z) = ¢; mod [g,z — ¢P™vo(256+)] for 0 < 4 < 256. CRYPTOLINE shows that
coefficients a; of the output function are between —|q/2] and [¢/2]. Moreover, the output
function F(x) is 232 times the function f(z). Precisely, we have

255
F(x) = Z a;x’ = 232 f(x) mod [q, z*°% 4 1].
i=0

4.2 Kyber

The Kyber specification requires NTT for multiplication in the polynomial ring R, =
F,[x]/ (2?56 + 1) with ¢ = 3329 [32]. Its field element can hence be stored in a 16-bit word.
We discuss Intel AVX2 and ARM aarch64 assembly implementations of NTT and inverse
NTT from the PQClean project [26] and two ARM Cortex-M4 implementations from the
TPA [22] and pqm4 [25] projects.

4.2.1 Intel AVX2

The PQClean Intel AVX2 implementation for Kyber NTT was first verified in [24]. Later,
a variant was verified in [7]. The optimized implementation transforms a 255-degree
polynomial in F,[z]/(z?°® + 1) to 128 linear polynomials through 7 levels of Kyber NTT.
At each level, 128 butterflies are needed for 256 polynomial coefficients.

The PQClean Intel AVX2 implementation stores 16 16-bit polynomial coefficients in a
256-bit register. The optimized implementation performs 64 butterflies with 12 256-bit
vector registers in parallel: 8 256-bit vector registers are for 128 polynomial coefficients and
4 256-bit vector registers for Montgomery multiplication (Section 2.2.3). The computation
of 64 parallel butterflies repeats twice to perform 128 butterflies at each level. The
Kyber AVX2 implementation uses similar instructions as the PQClean Dilithium AVX2
implementation but with different word sizes. See Section 4.1.1 for details.

Assume the 256 coefficients of the input polynomial all start between —g and gq.
CRYPTOLINE verifies the coefficients of 128 linear output polynomials are between —8¢
and 8¢q. The following 128 modular equations are verified (¢ = 17)

f(x) = ¢; + dix mod [g, 22 — ¢P™Vs(128+D)] for 0 < i < 128 (5)

where f(z) is the input polynomial and ¢; + d;x are the output polynomials.

The PQClean Intel AVX2 implementation for Kyber inverse NTT is similar. 128
coefficients are computed in parallel at each level. Assume the coefficients of 128 linear
input polynomials ¢; +d;x are between —q and ¢ for 0 < ¢ < 128. They moreover represents
a polynomial f(x) € F,/(z%% + 1) such that

f(x) = ¢; + diz mod [g, 2% — ¢P™Vs(128+9)] for 0 < i < 128. (6)

CRYPTOLINE verifies the 256 coefficients a; of output polynomial are between —31625 and
31625. Moreover, the output polynomial F(z) and the polynomial f(x) satisfy

255
F(z) = Z a;z’ = 2'% f(x) mod [g, 2*°% 4 1]. (7)
i=0

4.2.2 ARM aarch64

Different from the Intel AVX2 implementation, Barrett multiplication is employed in the
PQClean ARM aarch64 implementation of Kyber NTT. In the optimized implementation,

563

564

565

566

590

591

592

595

596

597

598

599

Anonymous Submission to IACR TCHES 15

each 128-bit register stores 8 coefficients. As in the Dilithium ARM aarch64 implementation,
similar instructions but different word sizes are used to implement Barrett multiplication.
Please consult Section 4.1.2 for details.

The PQClean ARM aarch64 implementation for Kyber NTT also uses 2 groups of 12
128-bit registers for butterflies. Four of them are for Barrett multiplication and the others
are for polynomial coefficients. Each group hence computes 32 butterflies. A level of Kyber
NTT has 128 CT butterflies and requires 4 groups of computation. The implementation
computes a level of Kyber NTT by interleaving the 2 register groups.

The optimized implementation moreover divides Kyber NTT into two phases. The top
phase transforms the input polynomial to 32 polynomials of degree 7 through 5 levels of
Kyber NTT. The bottom phase then transforms 32 polynomials of degree 7 to 128 linear
polynomials. Recall an ARM aarch64 128-bit register can store 8 polynomial coefficients.
After the top phase, coefficients of a 7-degree polynomial can be loaded in a 128-bit register.
It is easier to schedule 128-bit registers in the bottom phase.

Assume the 256 input polynomial coefficients are between —|¢/2| and [¢/2]. Our
verification shows all coefficients of 128 linear output polynomials are between —q and
q for the PQClean ARM aarch64 implementation of Kyber NTT. Moreover, the same
post-condition in (5) is verified.

The PQClean ARM aarch64 implementation for Kyber inverse NTT is similar. Two
groups of 12 128-bit registers are used to compute GS butterflies. It also divides 7 levels
of computation into two. The bottom phase transforms 128 linear input polynomials
to 32 polynomials of degree 7; the top phase transforms these 32 polynomials to the
output polynomial of degree 255. Assume all coefficients of 128 linear input polynomials
¢i + d;xz are between —q and ¢ and they represent a polynomial f(x) such that (6) holds.
CRYPTOLINE verifies that coefficients a; of the output polynomial F(z) are between —¢q
and g. Moreover, F(z) is congruent to 2'6 times the polynomial f(z) in F,[z]/(z%5% + 1).
That is, the post-condition (7) is verified.

4.2.3 ARM Cortex-M4

ARM Cortex-M4 is a 32-bit architecture. We verify two ARM Cortex-M4 implementations
for Kyber NTT. One implemented CT and GS butterflies with Montgomery multiplication
and was verified in [24]; the other uses Plantard multiplication [22] and is yet to be verified.

Montgomery Multiplication. This implementation uses specialized 32-bit instructions to
optimize butterfly computation. Specifically, ARM Cotex-m4 supports 16-bit operations
within the 32-bit architecture. For example, smulbb, smultb, and smulbt are multiplication
instructions that compute 32-bit products of signed 16-bit integers from bottom and top
halves of 32-bit registers. They are used for efficient multiplication in Kyber NTT.

For example, the following fragment computes a product with Montgomery multiplica-
tion (Section 2.2.3):

smultb r6, r6, rio0
smulbt ri12, r6, rilil
smlabb r12, ri1l, rl12, ré6

The 32-bit ré register contains two polynomial coefficients and the bottom half (16 bits)
of r10 has the value B = AR mod *¢ for some twiddle A and R = 2'6. The smultb
r6, r6, rl0 computes the 32-bit value aB for the polynomial coefficient a stored in the
top 16 bits of r6. The top half of r11 contains ¢’ such that ¢¢' +1 = 0 mod R. After the
smulbt r12, r6, rll, the rl2 register contains the 32-bit value (aB mod R)q’. Finally,
the bottom half of r11 contains q. The smlabb r12, rl1l, rl2, r6 instruction computes

607

608

609

610

611

612

614

615

616

617

619

620

621

623

624

625

626

627

630

631

632

634

635

636

638

639

640

641

16 Algebraic Linear Analysis for NTT Verifications

the 32-bit product of the 2 bottom halves of r11 and r12, and stores the 32-bit sum of
the product, and r6 in r12. The r12 register hence has the 32-bit value

(aBq' mod R)q + aB.

By unsigned Montgomery multiplication, the top and bottom halves of r12 are (a modg
representative of) aA and zero respectively [24].

Let f(x) be the input polynomial in F,[z]/(z?°® + 1) with coefficients between —¢q and
q. CRYPTOLINE verifies the coefficients of 128 linear output polynomials ¢; + d;x are
between 0 and ¢g. Moreover, the linear output polynomials satisfy the post-condition (5).

The ARM Cortex-M4 implementation for Kyber inverse NTT also uses unsigned
Montgomery multiplication in its GS butterflies. Assume all coefficients of the linear
input polynomials ¢; + d;x are between —q and ¢. The linear input polynomials moreover
represent a polynomial f(z) such that (6) holds. Then the 256 coefficients a; must be
between —¢q and ¢. The post-condition (7) is verified by CRYPTOLINE as well.

Plantard Multiplication. As of early 2025, the most efficient ARM Cortex-M4 imple-
mentation for Kyber NTT is reported in [22]. It multiplies polynomial coefficients with
Plantard multiplication (Section 2.2.5). Using ARM Cortex-M4’s smulwb instruction, the
implementation performs a multiplication, an arithmetic right shift followed by bit masking
in one cycle. Concretely, consider the following two instructions from the implementation:

smulwb 1lr, rl10, ré6
smlabt 1lr, 1lr, ri12, ro0

The bottom half of the register r6 contains a 16-bit polynomial coefficient a. The
register r10 is the pre-computed 32-bit value b = —A(R mod ¢)(¢~! mod ' R) mod [I' R
with a twiddle factor A and R = 232. The smulwb 1r, r10, r6 instruction takes the 16-bit
value in the bottom of ré6 and the 32-bit value in r10, performs a signed multiplication,
and then stores the top 32-bit value of the 48-bit product in 1r (note: of course, there is a
smulwt for the top half). Recall R = 2'°. The bottom halve of 1r is

abmod h R ab mod £232
P1= R = 216 - .
2

Now the top 16 bits of r12 contains q. The r0 register has the value 8. The smlabt
lr, 1r, r12, rO0 instruction computes the product of p; (the bottom half of 1r) and the
top half of r12, adds the 32-bit value of r0, then stores the result in 1r. After executing
the smlabt 1r, 1r, ri12, ro0 instruction, the top half of 1r has the value

H;]/?}%ﬂ = VP;;&J = a) mod *q.
3

Thanks to smulwb, a mulmod 3329 on the ARM Cortex-M4 is two instructions. After 7
levels of Kyber NTT, the implementation returns 128 linear polynomials ¢; + d;x such that

f(x) = ¢; + diz mod [g, 2% — ¢P™Vs(U2+)] and — 8[q/2] < ¢, d; < 8[q/2]

where f(z) is the input polynomial in F,/(x?*® + 1) and 0 < i < 128.

One would expect that the inverse NTT would be the same process in reverse, but
not quite. In contrast to standard GS butterflies, the ARM Cortex-M4 implementation
from [22] uses CT butterflies throughout its inverse NTT implementation. The idea is to
transform polynomial rings F,[z]/(z™ — i) to Fy[y]/(y™ £ 1) through twisting and then
add/subtract coefficients. Since twisting is implemented by Plantard multiplication, the
computation is exactly CT butterflies but with different twiddle factors.

Anonymous Submission to IACR TCHES 17

648 To see how CT butterflies are used to implement inverse NTT. Recall C2k71 = —1.
«0 Consider the following isomorphism:

650 Fq[l‘]/<$2k - 1) = IFq[x]/<w2k71 - > []/(> substitute o = x, 1 = ¢ 1z
w2 Flal/ed T = 1) x Flal /(T e 1) =)/ (23 — 1) x Fyla]/(? - 1)
- o Fq[x] Fq[m] Fq[ﬂ q[]) L .
<;’17%k72 — 1> <x%k72 + 1> <x%k—2 — 1> <I%k—2 + 1> substitute 2 = (" “xo, z3 = ¢~ “z1
2 2k 2

I

Folz]/(ad " —1) x Fylz]/(ad ~ —1) x Fyla]/(a? ~ — 1) x Fla] /(23 - 1)
~ F, [z] ~ ~ F, [z] ~ F, [z])
oot = H ﬁ == H ﬁ = H m since z; = (T 'w

x . x
0<i<22 \brva(i) o<i<ar v Prve() 0<i<2k

655 Recall that variable substitutions (x; = (~‘x) are implemented by twisting. It can be
s then seen from the above that twisting switches between GS and CT butterflies leaving
s7 the result and the overall computational effort constant. The reason to use GS or “twisted”
52 NT'Ts is that its inverse uses CT butterflies throughout, avoiding the repeated potential
5o doubling of coefficients when using GS butterflies when lazy reductions are used.

660 Let us give a concrete example from the ARM Cortex-M4 implementation with Plan-

F
s tard multiplication in [22]. Recall Kyber’s incomplete negacyclic NTT is <2§[i]1> o~
x
127 127
F F
662 H q[‘r} = q[x,y} Consider

— (brvs(128+0)) — : (22 — g,y — (Prvs(128+0))

<o ¢ i

Cg+dg£L' EFq[x7y]/<x2_y7y_C17> 09+d9$ EFq[x7y}/<x2_y7y+C17>
010+d10x EFq[xvy]/<x2_y7y_C81> cll+d11x E]Fq[x,y]/(xz—y,y+C81>.

s Take y17 = (7y and yg; = (~8y. Recall ('2® = —1 mod ¢q. We have

663

g +dgr €]Fq[$,y]/<332 —y7y—C17> = Fq[x,y17]/(2 —C y17,y17— 1>
. cg+dox € Folw,yl/(a® —y,y+ (7)) = Fylz,yr]/(a? - y17, Y17 + 1)
cio +dior € Fq[z7y]/<a:2 —yy—C) = Fq[ﬂf ys1]/{z? — C Ys1,Ys1 — 1)
ciit+dur € Folz,yl/(a® —y,y+) = Folz,ys1]/(x® — Plysi,ys1 + 1)
ss Therefore
667 %((Cg + Cg) + (dg + dg)df + [(68 — Cg) + (ds - dg)l‘}yl'ﬂ — (Cg + dgl‘, Co + dng)

s is the inverse NTT mapping from Fy[z,yi7]/(z? — (Myrr,y1r — 1) x Fylz, y17]/(2® —

oo CYTyrr,yar + 1) to Fylz, yir]/(x? — (Myar, yi, — 1). Similarly,
oo 2((cr0 4 e11) + (dio + di)z + [(cr0 — c11) + (dio — d11)zlys1) <— (ci0 + diom, c11 + d11@)

on is the inverse NTT mapping from Fy[z,ys1]/(z? — (¥lysi,ys1 — 1) x Fylz,ys1]/(x? —

o2 CPlysi,ys + 1) to Fyle, ysi]/(2? — Plysi, vg, — 1)
673 Now recall y = ¢!7y17 = (8ys1 and hence yg1 = (~%%y17. Thus

bo + b1z + (b2 + b3z)ys1 € Fylz,ys1]/(z* — Plysi, v — 1)
= bo+biz+ by +bsx)yir € Fylz,yir]/(@? — (MTyur,yi + 1)

674

os The twisting ys1 = (~%*y17 is computed by Plantard multiplication in [22]. Moreover,

1 (CLQ + bo) + (a1 + b1)1‘ + (GQ + C_64b2) + (CL3 + C_64b3)a:)y17+
2\ ((ao — bo) + (a1 — b1)x)y?; + ((a2 — ¢~ %b2) + (az — ¢~%bs)x)yd,
— (a0 + a1z + (a2 + asz)y17, bo + brx 4+ (704 (ba + bsz)y17)

676

682

683

684

685

686

687

689

690

692

693

695

696

697

18 Algebraic Linear Analysis for NTT Verifications

is the inverse NTT mapping from Fy[z,v17]/(z% — (Yyrr,yd — 1) x Fylz,ys1]/(z? —

CHlysi, yg — 1) to Fylz, yr7] /(2 — (Mynr,yiy — 1),

Assume the coefficients of 128 input linear polynomials are between —|g¢/2] and
[q/2]. The input polynomials moreover represent a polynomial f(z) such that (6) holds.
CRYPTOLINE verifies the ranges of output coefficients a; are between —|q/2] and [q/2].
Moreover, the output polynomial F'(z) satisfies

255
F(x) = Zaixi = —2%f(z) mod [q, %% + 1].
=0

5 Evaluation

We implement our algebraic linear analysis in the CRYPTOLINE toolkit and compare our
technique with others by verifying the latest Intel AVX2, ARM aarch and Cortex-M4
assembly implementations for the Kyber and Dilithium NTTs in packages PQClean [26],
IPA [22], and pqm4 [25]. Table 1 lists the verified assembly implementations'. The column
Multiplication shows the name of efficient multiplication used in the implementation. ASM
indicates the number of vector assembly instructions while CL counts the number of scalar
instructions in the corresponding CRYPTOLINE model for the assembly code.

The CRYPTOLINE models for the PQClean Intel AVX2 and the pqm4 ARM Cortex-M4
implementations for Kyber NTTs are taken from [24]. We construct the CRYPTOLINE
models for the other implementations by extracting a running trace from each implemen-
tation and translating the running trace to a CRYPTOLINE model. Since the verified
implementations do not have conditional branches, a running trace is representative. We
then give the specifications of the CRYPTOLINE models as described in Section 4.

We compare three verification techniques in the experiments. The first technique is our
algebraic linear analysis where polytope libraries are used to solve linear integer constraints.
The second technique is the bit-accurate SMT QFBYV solver in CRYPTOLINE. The third
technique is based on our algebraic linear analysis but uses SMT LIA (Linear Integer
Arithmetic) solvers instead of polytope libraries. For our technique, we use PPLPY in the
pam4d ARM Cortex-M4 and the PQClean Intel AVX2 implementations for Kyber inverse
NTT? and ISLPY in the other implementations. We use the SMT solvers BOOLECTOR
and Z3 respectively for SMT QFBV and SMT LIA. BOOLECTOR is specially designed for
solving SMT QFBYV queries and is the default solver of CRYPTOLINE for range checks. Z3
is a general and efficient SMT solver that supports multiple theories.

All implementations contain range and algebraic properties (which involve modular
equations) to be verified. We use our technique, SMT QFBV, and SMT LIA to verify range
properties (including algebraic soundness checking). For algebraic properties, we use the
computer algebra system Singular for implementations with Montgomery multiplication;
for those using Barrett or Plantard multiplication, our technique and SMT LIA are
used. Singular was used to verify 4 implementations with Montgomery multiplication
n [24]. We also verify algebraic properties in the same implementations with Singular.
Range properties in these implementations are verified by algebraic linear analysis for
comparison. Algebraic linear analysis is used for implementations with Barrett or Plantard
multiplication because the correctness of both multiplications involves complex equational
reasoning intractable for Singular.

All our experiments are running on a Ubuntu 24.04.1 server with 3.5GHz AMD EPYC
7763 and 2TB RAM. Table 2 shows the experimental results. Tisr,, Tqrev, and Tria
represent the running time of CRYPTOLINE where range checks are carried out by our

1 After we extracted the CRYPTOLINE models, function names of Kyber implementations in PQclean
were changed as a result of NIST’s standardization.
21sLPY does not perform well in the two examples compared with PPLPY.

738

739

Anonymous Submission to TACR TCHES 19
Table 1: Benchmarks with Line of Code Information

Scheme Package Arch Function® Multiplication | ASM CL
AVX2 ntt_avx Montgomery 2337 | 25696
Dilithi PQCI invntt avx Montgomery 2265 | 25904
b can hoa ntt Barrett 2016 | 22994
aare invntt_tomont Barrett 2505 | 28341
AVXD polyvec_ ntt Montgomery 585 | 14352
polyvec_invntt_tomont | Montgomery 637 | 16224
ntt_ SIMD_ top Barrett 400 9716
PQClean el ntt_SIMD_bot Barrett 621 | 11234
Keber aare intt _SIMD_top Barrett 463 | 11311
Y intt_SIMD_ bot Barrett 629 | 11248
ntt_ fast_ plant Plantard 4160 | 14471
IPA Cortex-Md4 invntt_ fast_ plant Plantard 4215 | 15260
ntt_ fast Montgomery 5976 | 13989
pqmd Cortex-M4 invntt_ fast Montgomery 6243 | 16053

1 - .
These function names are suffixes of their original names.

algebraic linear analysis, SMT QFBYV, and SMT LIA, respectively. TO indicates a 2-
hour timeout. The results show that our algebraic linear analysis outperforms SMT
QFBV and SMT LIA significantly. Our technique can verify most implementations using
Montgomery, Barrett, and Plantard multiplication in 8 minutes. For the PQClean AVX2
the pqm4 Cortex-M4 implementations for Kyber inverse NTT, our approach requires 53
and 22 minutes, respectively. A reason our approach requires more time in those two
implementations is that both implementations are originally specified by relations between
the output polynomial and each pair of input coefficients (since Kyber has an incomplete
NTT) in [24]. Our new specifications used in the other inverse NTT implementations on
the other hand describe relations between the input polynomial of NTT and the output
polynomial of inverse NTT, which involve much fewer predicates.

SMT QFBYV is slower than our approach in all the implementations. SMT QFBV
successfully verifies range checks of Kyber NTT implementations but fails for most Dilithium
NTT implementations. Recall the prime number in Kyber is much smaller than that in
Dilithium. 16-bit computation is sufficient for Kyber, but 32-bit computation is needed
for Dilithium. SMT QFBYV does not scale well for 32-bit verification. SMT LIA can verify
implementations using Montgomery multiplication but fails to verify all implementations
using Barrett and Plantard multiplication. Of the six implementations using Montgomery
multiplication, SMT LIA’s performance is comparable to ours in four, worse in one, and
significantly better in another. We actually wait for the SMT QFBV solver for over
two hours beyond the timeout limit on two implementations. In this experiment, the
SMT QFBYV technique cannot verify the PQClean aarch64 Dilithium NTT within a week,
whereas it verifies the PQClean AVX2 Dilithium inverse NTT in approximately one month.

6 Discussion

Multiplication in finite polynomial rings is essential to lattice-based cryptography. For
efficiency, lattice-based schemes like Kyber and Dilithium require polynomial multipli-
cation to be implemented by NTTs [31,32]. Even for polynomial rings unsuitable for
NTTs, ingenious techniques have been developed to multiply polynomials through NTTs
indirectly [15]. Optimized NTT implementations have become a critical component in
lattice-based cryptography.

Efficient NTT implementations however are diverse. Depending on the instruction set
architecture, different algorithms have been applied to attain optimal NTT implementations
on different architectures. Montgomery multiplication is currently used in Intel AVX2

779

20 Algebraic Linear Analysis for NTT Verifications

Table 2: Experimental Results

Scheme Package Arch Function TisL TqrBV TLia
ntt_avx 96s 474s 88s

Dilithium | PQClean AVX2 invntt__avx 443s TO? 447s
rch64 ntt 279s TO? TO?

aare invntt_tomont 161s TO* [TO*

polyvec_ ntt 51s 84s 50s

AVX2 polyvec_ invntt_ tomont | 3160s 3666s 669s

ntt_SIMD__top 80s 229s | TO?

PQClean _— ntt_SIMD_bot 116s 215s | TO?

Kvber intt_ SIMD_ top 125s 197s TO?
Y intt_SIMD_ bot 79s 142s | TO?
ntt_ fast_ plant 177s 454s TO?

IPA | Cortex-Md \—— 05 F St plant 99s | 218 | TO"

ntt fast 162s 218s 419s

pamd | Cortex-Md invntt_fast 1291s | 1298s | 1280s

4 TO indicates timeout (which is 2 hours)

Dilithium and Kyber NTTs (Section 4.1.1 and 4.2.1). Barrett multiplication is employed
in ARM aarch64 Dilithium and Kyber NTTs (Section 4.1.2 and 4.2.2). The optimal ARM
Cortex-M4 Kyber NTT currently uses Plantard multiplication instead (Section 4.2.3). The
optimized ARM Cortex-M4 implementation moreover twists variables to avoid reduction
in inverse NTT. With so many optimizations on different NTT implementations, the
correctness of each and every implementation is far from clear. Verifying diverse NTT
implementations is an important yet challenging problem.

Algebraic linear analysis is our answer to verify diverse NTT implementations on
different architectures. Based on the insight of algebraic abstraction, algebraic linear
analysis employs algebraic techniques to verify linear computation in NTT implementations.
In contrast to traditional bit-accurate techniques such as SMT QFBV, algebraic linear
analysis is more scalable and verifies 32-bit computation in Dilithium NTT easily (Section 5).
It moreover outperforms SMT QFBYV conclusively for efficient Barrett and Plantard
multiplication employed in Kyber NTT. The generality and efficacy of algebraic linear
analysis are supported by our extensive experiments. It would be interesting to verify
more sophisticated NTT implementations with our technique. Investigations about the
limitations of algebraic linear analysis are certainly welcome.

To our knowledge, the PQClean Intel AVX2 and ARM aarch64 implementations for
Dilithium NTT have never been verified. The fastest ARM Cortex-M4 Kyber NTT
implementation with Plantard multiplication is never verified until now. Due to the
generality of algebraic linear analysis, we report the first verification results on 3 NTT
implementations for Dilithium and Kyber on Intel AVX2, ARM aarch64 and Cortex-M4.
Without our new technique, the verification of Intel AVX2 and ARM aarch64 Dilithium
NTT implementations is infeasible for the existing bit-accurate technique SMT QFBV.

References
[1] The Coq proof assistant. To be renamed Rocq, https://coq.inria.fr/.

[2] EasyCrypt: Computer-aided cryptographic proofs. https://github.com/
EasyCrypt/easycrypt.

[3] Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Program-
ming Computation, 1(1):1-41, Jul 2009.

https://coq.inria.fr/
https://github.com/EasyCrypt/easycrypt
https://github.com/EasyCrypt/easycrypt
https://github.com/EasyCrypt/easycrypt

789

790

791

793

794

795

796

799

Anonymous Submission to IACR TCHES 21

[4]

[10]

[11]

[12]

[13]

[14]

[15]

Reynald Affeldt. On construction of a library of formally verified low-level arithmetic
functions. Innovations in Systems and Software Engineering, 9(2):59-77, 2013. https:
//staff.aist.go.jp/reynald.affeldt/documents/arilib-affeldt.pdf.

Reynald Affeldt and Nicolas Marti. An approach to formal verification of arithmetic
functions in assembly. In Mitsu Okada and Ichiro Satoh, editors, Advances in Computer
Science, volume 4435 of Lecture Notes in Computer Science, pages 346—360. Springer,
2007.

Reynald Affeldt, David Nowak, and Kiyoshi Yamada. Certifying assembly with formal
security proofs: The case of BBS. Science of Computer Programming, 77(10-11):1058—
1074, 2012.

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Vincent
Laporte, Jean-Christophe Léchenet, Tiago Oliveira, Hugo Pacheco, Miguel Quaresma,
Peter Schwabe, Antoine Séré, and Pierre-Yves Strub. Formally verifying Kyber:
Episode IV: Implementation correctness. TACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2023(3):164-193, June 2023.

José Bacelar Almeida, Santiago Arranz Olmos, Manuel Barbosa, Gilles Barthe,
Frangois Dupressoir, Benjamin Grégoire, Vincent Laporte, Jean-Christophe Léchenet,
Cameron Low, Tiago Oliveira, Hugo Pacheco, Miguel Quaresma, Peter Schwabe, and
Pierre-Yves Strub. Formally verifying kyber - episode V: Machine-checked IND-CCA
security and correctness of ML-KEM in EasyCrypt. In Leonid Reyzin and Douglas
Stebila, editors, CRYPTO 2024, Part II, volume 14921 of LNCS, pages 384-421.
Springer, Cham, August 2024.

Daichi Aoki, Kazuhiko Minematsu, Toshihiko Okamura, and Tsuyoshi Takagi. Efficient
word size modular multiplication over signed integers. In 29th IEEE Symposium on
Computer Arithmetic, ARITH 2022, Lyon, France, September 12-14, 2022, pages
94-101. IEEE, 2022.

Andrew W. Appel. Verification of a cryptographic primitive: SHA-256. ACM
Transactions on Programming Languages and Systems, 37(2):7:1-7:31, 2015.

Hanno Becker, John Harrison, and Matthias J. Kannwischer. Works in progress
— personal communication. https://github.com/jargh/s2n-bignum-dev/tree/
mlkem and https://github.com/pg-code-package/mlkem-native.

Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang, and Shang-Yi
Yang. Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1.
TACR TCHES, 2022(1):221-244, 2022.

Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. Verified
correctness and security of openssl HMAC. In USENIX Security Symposium, pages
207-221. USENIX Association, 2015.

Michel Berkelaar, Kjell Eikland, and Peter Notebaert. 1p_solve: Open source (mixed-
integer) linear programming system. https://lpsolve.sourceforge.net/.

Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor Seiler,
Cheng-Jhih Shih, and Bo-Yin Yang. NTT multiplication for NTT-unfriendly rings
new speed records for Saber and NTRU on Cortex-M4 and AVX2. TACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(2):159-188, 2021. https://doi.org/10.46586/
tches.v2021.12.159-188.

https://staff.aist.go.jp/reynald.affeldt/documents/arilib-affeldt.pdf
https://staff.aist.go.jp/reynald.affeldt/documents/arilib-affeldt.pdf
https://staff.aist.go.jp/reynald.affeldt/documents/arilib-affeldt.pdf
https://github.com/jargh/s2n-bignum-dev/tree/mlkem
https://github.com/jargh/s2n-bignum-dev/tree/mlkem
https://github.com/jargh/s2n-bignum-dev/tree/mlkem
https://github.com/pq-code-package/mlkem-native
https://lpsolve.sourceforge.net/
https://doi.org/10.46586/tches.v2021.i2.159-188
https://doi.org/10.46586/tches.v2021.i2.159-188
https://doi.org/10.46586/tches.v2021.i2.159-188

829

830

831

848

849

850

851

863

864

865

866

867

22

Algebraic Linear Analysis for NTT Verifications

[16]

[17]

[18]

Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala.
Simple high-level code for cryptographic arithmetic - with proofs, without compromises.
In IEEE Symposium on Security and Privacy, pages 1202-1219. IEEE, 2019.

Robert W Floyd. Assigning meanings to programs. Mathematical aspects of computer
science, 19(19-32):1, 1967.

Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin
Yang. Signed cryptographic program verification with typed cryptoline. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS 19, page 1591-1606, New York, NY, USA, 2019. Association for Computing
Machinery.

John R. Harrison. HOL Light, a higher-order logic proof assistant. https://github.
com/jrh13/hol-1light/.

Charles Antony Richard Hoare. An axiomatic basis for computer programming.
CACM, 12(10):576-580, 1969.

Dennis Hofheinz, Kathrin Hovelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. In Theory of Cryptography, volume 10677, pages
341-371, 2017. https://eprint.iacr.org/2017/604.

Junhao Huang, Jipeng Zhang, Haosong Zhao, Zhe Liu, Ray C. C. Cheung, Cetin Kaya
Kog, and Donglong Chen. Improved plantard arithmetic for lattice-based cryptography.
IACR TCHES, 2022(4):614-636, 2022.

Vincent Hwang. Private communication. Unpublished thesis.

Vincent Hwang, Jiaxiang Liu, Gregor Seiler, Xiaomu Shi, Ming-Hsien Tsai, Bow-Yaw
Wang, and Bo-Yin Yang. Verified NTT multiplications for NISTPQC KEM lattice
finalists: Kyber, SABER, and NTRU. JACR TCHES, 2022(4):718-750, 2022.

Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. PQM4:
Post-quantum crypto library for the ARM Cortex-M4. https://github.com/mupg/
pam4.

Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom Wiggers. Im-
proving software quality in cryptography standardization projects. In IEEE European
Symposium on Security and Privacy, FuroSE&P 2022 - Workshops, Genoa, Italy, June
6-10, 2022, pages 19-30, Los Alamitos, CA, USA, 2022. IEEE Computer Society.

Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancréede Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM.
Technical report, National Institute of Standards and Technology, 2020.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

Magnus O. Myreen and Gregorio Curello. Proof pearl: A verified bignum implemen-
tation in x86-64 machine code. In Certified Programs and Proofs, volume 8307 of
Lecture Notes in Computer Science, pages 66-81. Springer, 2013.

Magnus O. Myreen and Michael J. C. Gordon. Hoare logic for realistically modelled
machine code. In Orna Grumberg and Michael Huth, editors, International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, volume 4424
of Lecture Notes in Computer Science, pages 568-582. Springer, 2007.

https://github.com/jrh13/hol-light/
https://github.com/jrh13/hol-light/
https://github.com/jrh13/hol-light/
https://eprint.iacr.org/2017/604
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

880

881

882

883

889

890

891

892

893

894

903

904

905

906

910

911

912

913

Anonymous Submission to IACR TCHES 23

[30]

[31]

[32]

[33]

[34]

[37]

NIST, the National Institute of Standards and Technology. Sha-3 standard:
Permutation-based hash and extendable-output functions, 2015. https://csrc.
nist.gov/pubs/fips/202/final.

NIST, the National Institute of Standards and Technology. Module-lattice-based
digitial signature standard, 2024. https://csrc.nist.gov/pubs/fips/204/final.

NIST, the National Institute of Standards and Technology. Module-lattice-based
key-encapsulation mechanism standard, 2024. https://csrc.nist.gov/pubs/fips/
203/final.

Thomas Plantard. Efficient word size modular arithmetic. In 28th IEEE Symposium
on Computer Arithmetic, ARITH 2021, Lyngby, Denmark, June 14-16, 2021, page
139. IEEE, 2021.

Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede
Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien
Stehlé. CRYSTALS-KYBER. Technical report, National Institute of Stan-
dards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/
round-3-submissions.

Gregor Seiler. Faster AVX2 optimized NTT multiplication for ring-LWE lattice
cryptography. Cryptology ePrint Archive, Report 2018/039, 2018.

Mark Shand and Jean Vuillemin. Fast implementations of RSA cryptography. In
Earl E. Swartzlander Jr., Mary Jane Irwin, and Graham A. Jullien, editors, 11th
Symposium on Computer Arithmetic, 29 June - 2 July 1993, Windsor, Canada,
Proceedings, pages 252-259. IEEE Computer Society/, 1993.

Ming-Hsien Tsai, Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi, Bow-Yaw Wang, and Bo-Yin
Yang. Certified verification for algebraic abstraction. In Constantin Enea and Akash
Lal, editors, International Conference on Computer Aided Verification, volume 13966
of LNCS, pages 329-349. Springer, 2023.

Ming-Hsien Tsai, Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi, Bow-Yaw Wang, and Bo-Yin
Yang. CoqCryptoLine: A verified model checker with certified results. In Constantin
Enea and Akash Lal, editors, International Conference on Computer Aided Verification,
volume 13966 of LNCS, pages 227-240. Springer, 2023.

Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. Certified verification of algebraic
properties on low-level mathematical constructs in cryptographic programs. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
ACM CCS 2017, pages 1973-1987. ACM Press, October / November 2017.

Sven Verdoolaege. Presburger formulas and polyhedral compilation. Technical report,
Polly Labs and KU Leuven, 2021.

Sven Verdoolaege. Integer set library. https://libisl.sourceforge.io/, 2024.

Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam
Petcher, and Andrew W. Appel. Verified correctness and security of mbedtls HMAC-
DRBG. In ACM SIGSAC Conference on Computer and Communications Security,
pages 2007-2020. ACM, 2017.

https://csrc.nist.gov/pubs/fips/202/final
https://csrc.nist.gov/pubs/fips/202/final
https://csrc.nist.gov/pubs/fips/202/final
https://csrc.nist.gov/pubs/fips/204/final
https://csrc.nist.gov/pubs/fips/203/final
https://csrc.nist.gov/pubs/fips/203/final
https://csrc.nist.gov/pubs/fips/203/final
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://libisl.sourceforge.io/

	Introduction
	Motivation
	Contributions
	Related Work

	Preliminaries
	The Number Theoretic Transform
	Lattice-Based Cryptography
	Program Specifications
	Integer Set Library

	Formal Verification with CryptoLine
	CryptoLine Overview
	Algebraic Abstraction
	Algebraic Linear Analysis
	Algebraic Soundness Checking
	Multitrack Verification

	Case Studies
	Dilithium
	Kyber

	Evaluation
	Discussion

