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Abstract. The topic of verifying postquantum cryptographic software has never been4

more pressing than today between the new NIST postquantum cryptosystem standards5

being finalized and various countries issuing directives to switch to postquantum or6

at least hybrid cryptography in a decade. One critical issue in verifying lattice-based7

cryptographic software is range-checking in the finite-field arithmetic assembly code8

which occurs frequently in highly optimized cryptographic software. For the most9

part these have been handled by Satisfiability Modulo Theory (SMT) but so far10

they mostly are restricted to Montgomery arithmetic and 16-bit precision. We add11

semi-automatic range-check reasoning capability to the CryptoLine toolkit via the12

Integer Set Library (wrapped via the python package islpy) which makes it easier13

and faster in verifying more arithmetic crypto code, including Barrett and Plantard14

finite-field arithmetic, and show experimentally that this is viable on production code.15
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Code17

1 Introduction18

1.1 Motivation19

Due to the recent issuance of NIST’s new Postquantum Standards (FIPS-203–205) which are20

much more complex than their pre-quantum brethren, the topic of verifying postquantum21

cryptography, in particular lattice-based cryptography, has again come to the fore.22

There have been already efforts to verify lattice-based cryptography. In particular, [8,24]23

both verified lattice-based crypto programs in different ways. However, these are mostly24

centered around KEMs and do not cover Dilithium and similar lattice-based Postquantum25

digital signatures. There are no published articles verifying Dilithium in the literature.26

One possible reason for this is that when verifying range properties in the context of27

arithmetic cryptographic code involving multiplications, it seems that 16-bit multiplications28

with 32-bit products can be handled moderately well using current SMT technology.29

However, range checks for 32-bit multiplications with 64-bit products seem to be out of the30

capabilities of SMT(SAT) solvers. Furthermore, most of the code verified seems to involve31

Montgomery reductions and multiplications, which are easier to verify in an algebraic32

manner. Far fewer discussions exist on Barrett multiplications (currently the state of33

the art for ARM aarch64 code) and Plantard multiplications (state of the art for some34

cryptosystem-platform combinations, most prominent being Kyber on ARM Cortex-M4).35

We conclude that there surely would be interest in (a) verification of the core component36

(NTT multiplications) of Dilithium, (b) verification for Barrett and Plantard multiplications,37

and (c) range verification in 32-bit arithmetic involving mulmods.38

1.2 Contributions39

We introduce an adaptation of the ISL (Integer Set Library, wrapped in python) library40

into the CryptoLine toolkit. Such usage of an integral set reasoning tool is new as far as41
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we can check, and it handles ranges arising from linear arithmetic relations extremely well.42

This makes it useful to verify more lattice-based PQC implementations.43

As mentioned above, most verification of postquantum arithmetic code restrict them-44

selves to Montgomery mulmod arithmetic in 16 bits. Our ISL-based tool handles both45

Plantard and Barrett multiplications easily and extends effortlessly to 32-bit arithmetic.46

As a result of the new addenda to the CryptoLine toolkit, we are able to verify47

several optimized Kyber and Dilithium NTT/iNTT and platform combinations, which we48

exhibit in Section 5. Both the Dilithium (i)NTT Barrett-based implementations and the49

Kyber (i)NTT Plantard-based implementations had not been verified (in print). All these50

are highly optimized current state-of-the-art implementations.51

1.3 Related Work52

There are many other current solutions for verifying cryptographic code that guarantees53

range properties. Some use Coq (Rocq) [1], and some EasyCrypt [2], such as in the54

well-known Jasmin code for Kyber [8]. Still others rely on Satisfiability Modulo Theory55

(SMT) solvers for range checking [18]. As far as we can determine, there are few if any56

cases wherein non-Montgomery mulmods or 32-bit arithmetic underwent range checks.57

A possible reason for this is that it is difficult for SMT (represented by SAT solvers) to58

handle highly non-linear 32-bit operations (e.g., mulmods) and reason about ranges at the59

same time. In our own experimentation, it proved possible to handle a limited amount of60

16-bit Barrett (and Plantard) mulmods, and 32-bit Montgomery mulmods, but not 32-bit61

Barrett mulmods. We conjecture that others may have run into the same problem.62

There are many prior formal verifications [4–6, 10, 13, 28, 29, 42] of cryptographic63

programs, mostly in symmetric cryptography. Many of these use proof assistants that are64

non-(semi-)automated. Most of these techniques are not applied in practice to arithmetic-65

rich, highly optimized, cryptographic software dealing with Public-Key Cryptography.66

Some methods do produce verified arithmetic cryptographic code but prescribe a way of67

programming such as Fiat [16] and Jasmin with built-in proofs [8]. We rarely if at all see68

verification methods that are carried out on hand-optimized code “in the wild”. Exceptions69

are the CryptoLine sequence of works started by [18,39] and [11] (work in progress, using70

HOL Light [19]) which verify (existing) optimized assembly programs. As can be seen71

below, we build onto CryptoLine here.72

2 Preliminaries73

2.1 The Number Theoretic Transform74

Kyber and Dilithium [27, 31, 32, 34] each builds a specific variant of the NTT (Number75

Theoretic Transform) into the specifications for polynomial multiplications. It is therefore76

vital to understand the mathematics behind NTT multiplications.77

In the simplest form of NTTs, using the Cooley-Tukey (CT) formulation, we multiply78

in Fq[x]/⟨x2k − 1⟩, for a prime field Fq with a principal root ζ of order 2k with ζ2k−1 = −1.79

The Chinese Remainder Theorem (CRT) applies to the quotient ring Fq[x]/⟨x2n−λ2⟩ ∼=80

Fq[x]/⟨xn − λ⟩ × Fq[x]/⟨xn + λ⟩ for the following ring isomorphism in one level of NTT:81

Fq[x]/⟨x2n − λ2⟩ ←→ Fq[x]/⟨xn − λ⟩ × Fq[x]/⟨xn + λ⟩82

2n−1∑
i=0

aix
i −→

(
n−1∑
i=0

(ai + λan+i)xi,

n−1∑
i=0

(ai − λan+i)xi

)
83

n−1∑
i=0

1
2(ci + c′

i)xi +
n−1∑
i=0

1
2λ (ci − c′

i)xn+i ←−

(
n−1∑
i=0

cix
i,

n−1∑
i=0

c′
ix

i

)
84
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(a) Cooley–Tukey (CT) Butterfly
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(b) Gentleman–Sande (GS) Butterfly

Figure 1: Butterflies in NTT

A one-level isomorphism is computed by butterflies. The mapping from Fq[x]/⟨x2n−λ2⟩85

to Fq[x]/⟨xn − λ⟩ × Fq[x]/⟨xn + λ⟩ computes a product and followed by addition and86

subtraction. This is called a Cooley–Tukey (CT) butterfly (Figure 1a). Its inverse87

mapping computes a sum and a difference, followed by multiplication. This is called a88

Gentleman–Sande (GS) butterfly (Figure 1b). The constants λ and λ−1 are called twiddles.89

For a positive integer n =
∑k−1

i=0 ni2i < 2k, where ni ∈ {0, 1}, we may write brvk(n) =90 ∑k−1
i=0 nk−1−i2i, the “length-k bit-reversal of n”, then apply the CRT repeatedly to get91

Fq[x]/⟨x2k

− 1⟩ ∼= Fq[x]/⟨x2k−1
− 1⟩ × Fq[x]/⟨x2k−1

+ 1⟩92

∼= Fq[x]/⟨x2k−2
− 1⟩ × Fq[x]/⟨x2k−2

+ 1⟩ × Fq[x]/⟨x2k−2
− ζ2k−2

⟩ × Fq[x]/⟨x2k−2
+ ζ2k−2

⟩93

∼=
Fq[x]

⟨x2k−2 − ζ
k︷︸︸︷

0 · · · 0b⟩
× Fq[x]

⟨x2k−2 − ζ1

k−1︷︸︸︷
0 · · · 0b⟩

× Fq[x]

⟨x2k−2 − ζ01

k−2︷︸︸︷
0 · · · 0b⟩

× Fq[x]

⟨x2k−2 − ζ11

k−2︷︸︸︷
0 · · · 0b⟩

94

∼=
3∏

i=0

Fq[x]
⟨x2k−2 − ζbrvk(i)⟩

∼= · · · ∼=
2ℓ−1∏
i=0

Fq[x]
⟨x2k−ℓ − ζbrvk(i)⟩

∼= · · · ∼=
2k−1∏
i=0

Fq[x]
⟨x− ζbrvk(i)⟩

95

If k > ℓ, we do not end at Fq[x] modulo a linear polynomial (i.e., copies of Fq) and we call96

that an incomplete NTT. For Kyber and Dilithium, we started with Fq[x]/⟨x256 + 1⟩, and97

the “negacyclic” transform can be considered half of an NTT starting from Fq[x]/⟨x512−1⟩.98

So Kyber has an incomplete negacyclic NTT and Dilithium a complete negacyclic NTT.99

Note that “twisting” f(x) = a0 +a1x+ · · ·+aix
i + · · ·+an−1x

n−1 via scaling variables100

linearly with x = cy gives a0 + ca1y + · · · + ciaiy
i + · · · + cn−1an−1y

n−1, or ai 7→ ciai.101

Twisting is also used for controlling the magnitude of coefficients: Just before coefficients102

potentially overflow, twisting eliminates that danger at little cost.103

2.2 Lattice-Based Cryptography104

We first describe the Crystals KEM and digital signature pair and then describe the main105

types of arithmetic used. Note each uses an NTT that is constant across parameter sets.106

2.2.1 Kyber107

Kyber or ML-KEM [32,34] is a NIST standard lattice-based Key Encapsulation Mechanism108

(KEM) based on the Module Learning With Errors (M-LWE) problem using an ℓ ×109

ℓ matrix in the polynomial ring Rq = Fq[x]/⟨xn + 1⟩, with q = 3329 and n = 256.110

The Kyber KEM is Hofheinz–Hövelmanns–Kiltz transformed [21] from a CPA-secure111

Public-Key Encryption (PKE) described in [32, 34]. Time-critical operations are one112

(ℓ× ℓ)× (ℓ× 1) matrix-to-vector polynomial multiplication (MatrixVectoMul), plus zero,113

one, or two MatrixVectorMul of ℓ × 1 inner products of polynomials (InnerProd) for114

keygen, encapsulation, and decapsulation respectively. The specifications explicitly enforce115
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all multiplications to be via (incomplete) NTTs. The public matrix A is sampled in116

(incomplete) NTT domain by expanding a seed using SHAKE128 [30]. Kyber’s 7-level117

incomplete negacyclic NTT is Fq[x]
⟨x28 + 1⟩

∼=
127∏
i=0

Fq[x]
⟨x2 − ζbrv8(128+i)⟩

.118

2.2.2 Dilithium119

Dilithium or ML-DSA [27,31] is a NIST standard digital signature scheme based on the120

M-SIS (Module Small Integer Solutions) and M-LWE problems, using a k × ℓ matrix of121

polynomials in the ring Rq = Fq[x]/⟨x256 + 1⟩ with q = 223 − 213 + 1 = 8380417.122

For a full description see [27, 31]. The core operation of key generation, signature123

generation, and signature verification is the (k × ℓ)× (ℓ× 1) matrix-to-vector polynomial124

multiplications (MatrixVectorMul). In signature generation, this operation is executed125

repeatedly in a rejection-sampling loop. Like Kyber, Dilithium builds an NTT into the126

specification, in that A is sampled “in NTT domain” using SHAKE256 [30]. Dilithium’s127

8-level complete negacyclic NTT is Fq[x]
⟨x28 + 1⟩

∼=
255∏
i=0

Fq[x]
⟨x− ζbrv9(i+256)⟩

.128

2.2.3 (Signed) Montgomery multiplication or Hensel division [35, 36]129

This ingenious variant of Peter Montgomery’s method is initially due to Gregor Seiler as130

follows: Given any X and a suitable power of two R, we compute q′ = q−1 mod R, and now131

can compute XR−1 mod q by first computing ℓ = Xq′ mod R, then because R|(X − ℓq),132

we have XR−1 ≡ (X − ℓq)R−1 ≡ Xh − [ℓq]h (mod q), where “high half” [•]h = ⌊•/R⌋.133

This computation improves on a traditional Montgomery reduction in microarchitectures134

with a “high-half” product, especially a high-half-product-with-accumulation: Further, with135

b known, we can compute ab ≡ [a ·B]h− [q · [a ·B′]l]h (mod q) with 2×high+1× low mults136

using precomputed B = bR mod ±q, B′ = Bq′ mod ±R. (Note: [xy]l = xy mod ±R.)137

2.2.4 Barrett multiplication [12]138

Let J·K be a function from the reals to the integers such that |x− JxK| ≤ 1, then we say139

that J·K is an integer approximation and a mod J·Kb is defined to be a − Ja/bKb. When140

J·K0, J·K1 are integer approximations. We can compute a representative of ab mod q via141

ab− Lq ≡ ab (mod q), where L =

u

v
a

r
bR
q

z

0
R

}

~

1

.142

The only question is whether the resulting range is useful, in particular, whether it falls143

into the data width. [12] showed that144

ab−

u

v
a

r
bR
q

z

0
R

}

~

1

q =
a
(
bR mod J·K0q

)
+
(
a
(
bR mod J·K0q

)
(−q−1) mod J·K1R

)
q

R
.145

This means

∣∣∣∣∣∣ab−
u

v
a

r
bR
q

z

0
R

}

~

1

q

∣∣∣∣∣∣ ≤
|a|
∣∣∣modJ·K0q

∣∣∣+
∣∣∣modJ·K1R

∣∣∣ q
R

, where
∣∣∣modJ·KX

∣∣∣ means146

the maximal
∣∣a mod J·KX

∣∣ for the integer approximation J·K. For uses of Barrett multi-147

plication in instruction sets like the Neon, JxK0 = JxK1 = 2⌊x/2⌉ (“round to even”), and148

here [12] showed that if |a| ≤ R/2, then the result is between ±q. When the result is149

always within a signed word, we need not compute the higher half of either ab or Lq at all.150
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Since b̂ =
r

BR
q

z

0
is precomputed, we only need to compute one higher-half (ab̂) in addition151

to the two lower-half products ab+ L(−q), one of them with accumulation.152

2.2.5 Signed Plantard reduction and multiplication (formulated as in [23])153

Thomas Plantard’s reduction [33] was introduced into cryptographic NTTs in [9, 22] and154

provides the state-of-the-art signed 16-bit modular arithmetic on ARM Cortex-M4.155

Let JK1, JK2, JK3 be integer approximations, q, R > 1 be coprime integers, R̃ be a factor156

of R, and B be a positive integer. If for all integers z of absolute value ≤ B, we have157

z +
(
z · (−q−1) mod JK1R

)
q

R
158

=
t
z +

(
z · (−q−1) mod JK1R

)
q −

(
z +

(
z · (−q−1) mod JK1R mod JK2R̃

)
q
)

R

|

3

159

then Plantard reduction computes a representative of zR−1 mod q as160

u

w
v

r
z·(−q−1) mod JK1 R

R̃

z

2
q

R/R̃

}

�
~

3

.161

Usually R̃ = R/R̃ = 216, occasionally 232; J·K1 = ⌊·⌉ (so modJ·K1 = mod±), J·K2 = ⌊·⌋162

(so modJ·K2 = standard mod), J·K3 = ⌊· + r⌋, with r = 1
2 , or αq/(R/R̃) — usually for a163

suitably α > 0 with 2αq < R/R̃ (in [22], α = 8). For Plantard Multiplication z = ab with164

a fixed b, we compute ab mod ±q as the Plantard reduction of a · (bR mod ±q); in other165

words, with a precomputed b̂ = (bR mod ±q)
(
−q−1 mod ±R

)
mod ±R compute166 

⌊
ab̂ mod ±R

R̃

⌋
q + 8q

R/R̃

[=in [22] bit 16–31 of
(((

bit 16–31 of ab̂
)

as sint16

)
q + 8q

)
as sint16

]
.167

Plantard multiplication is uniquely tight, and we get a canonical ab mod ±q be-168

tween ± q
2 (if q odd). However, it requires a higher-half multiplication in addition to a169

middle word multiplication of a double-word and a single-word integer. This latter opera-170

tion can be simulated by one higher-half and one lower-half multiplication.171

2.3 Program Specifications172

We will use the formalism in [17,20] to specify intended program behaviors. Let P be a173

program, ϕ and ψ are predicates about program variables. A Hoare triple is of the form174

{ϕ}P{ψ}. Given a Hoare triple {ϕ}P{ψ}, the program P is expected to behave as follows.175

Starting from any state where program variables satisfy the pre-condition ϕ, the program176

P must end in a state where program variables satisfy the post-condition ψ. If this is177

indeed the case, we say the triple {ϕ}P{ψ} is valid. Observe that a Hoare triple is valid if178

the program satisfies the post-condition on all inputs satisfying the pre-condition.179

Note that a program is correct only with respect to its specification in this formalism.180

In this work, we establish the correctness of 6 assembly implementations of NTTs. Each181

implementation will be a program. Pre- and post-conditions specify the isomorphisms182

between input and output polynomials. Moreover, coefficient ranges are crucial to program183

correctness. They appear in specifications of assembly implementations of NTTs as well.184
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2.4 Integer Set Library185

Many polytope libraries are available. Most of them however use native machine num-186

bers and hence are of a fixed finite precision. Since cryptographic programs perform187

multiprecision computations, typical polytope libraries are not useful. Among libraries188

manipulating polytopes with exact integers, we have tested the Z3 SMT solver (Z3), the189

Parma Polyhedra Library (ppl), and the Integer Set Library (isl). isl is found to be most190

the efficient for the analysis of cryptographic programs.191

Integer Set Library (isl) is an open-sourced C library for manipulating relations over192

exact integers bounded by linear constraints. It supports all standard set operations such193

as intersection, union, projection, and emptiness check [40, 41]. Among others, the library194

has been used for program analysis such as loop optimization in GCC and LLVM.195

In isl, a space defines the (named) dimension of an integer space. An isl set is an196

integer set in an isl space. An isl set is a union of basic sets. An isl basic set in turn is a197

conjunction of affine constraints over integers or a projection of a basic set. An isl affine198

constraint is of the form199

c0 + c1D1 + c2D2 + · · · cnDn ≥ 0200

where ci ∈ Z and Di are dimension names for all i.201

For instance, consider an isl space with dimensions X and Y . Define the isl basic set202

bset = {(X,Y )| X − 2Y ≥ 0 ∧ −X + 2Y ≥ 0 ∧
99 − X ≥ 0 ∧ −1 + X ≥ 0 }203

Then bset represents the set {(X,Y )|0 < X < 100 and X = 2Y }. If the dimension Y is204

projected out of bset, we obtain an isl basic set comprising all even integers between 0205

and 100. Although one can construct an isl basic set for all even integers between 0 and206

100 by these steps, isl actually provides a function to convert a string to isl basic sets.207

The basic set of even integers between 0 and 100 can be obtained by the following string:208

{ [X] : exists (Y : X = 2Y and 1 <= X and X <= 99) }209

In addition to set construction, it is easy to check emptiness of the set bset in islpy210

by calling bset.is_empty().211

3 Formal Verification with CryptoLine212

3.1 CryptoLine Overview213

CryptoLine is an automatic formal verification toolkit for cryptographic programs. To214

verify a cryptographic program with CryptoLine, a formal program model is needed.215

A program model specifies how the cryptographic program executes. Verifiers use the216

CryptoLine modeling language to construct such a program model. The CryptoLine217

language is based on assembly languages and thus most suitable for cryptographic assembly218

programs. After a program model is constructed, verifiers specify what the cryptographic219

program is intended to compute. For instance, it may compute the field multiplication220

operation over a large finite field. Given a program model and its functional specification,221

the CryptoLine toolkit tries to prove the model conforms to the specification for all222

inputs automatically. CryptoLine may fail to finish in a reasonable time. Verifiers can223

annotate the program model with lemmas as hints. CryptoLine will also prove annotated224

lemmas and use them to speed up verification.225

Consider the following 32-bit ARM Cortex-M4 code for Montgomery reduction:226
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smulbt m, T, QQ
smlabb t, QQ , m, T

227

The smulbt m, T, QQ instruction multiplies the bottom 16 bits of the register T with228

the top 16 bits of the register QQ, and stores the 32-bit product in the register m. The229

smlabb t, QQ, m, T instruction first multiplies the bottom 16 bits of the registers QQ230

and m. It then adds the 32-bit product with the 32-bit register T and stores the sum231

in the 32-bit register t. If the bottom 16 bits of QQ contains a modulus q and the top232

16 bits of QQ contains the negation of the inverse of q modulo 216, then the register t is233

Tq−1q + T ≡ T · (q−1q + 1) ≡ T · 0(mod 216) and has bottom 16 bits all zeroes.234

To verify the ARM Cortex-M4 code, we construct the following CryptoLine model:235

(* smulbt m, T, QQ *)
spl Tt Tb T 16;
mull mt mb Tb QQt;
(* smlabb t, QQ, m, T *)
mulj tmp QQb mb;
add t tmp T;

236

The 32-bit register T is modeled by a 32-bit CryptoLine variable T. The bottom and237

top 16 bits of the register QQ are modeled by 16-bit variables QQb and QQt respectively.238

The CryptoLine spl Tt Tb T 16 instruction splits the 32-bit variable T into two 16-bit239

variables Tt (top) and Tb (bottom). The mull mt mb Tb QQt computes the 32-bit product240

of Tb and QQt, and stores the bottom and top 16 bits of the product in mb and mt respectivey.241

mulj tmp QQb mb on the other hand stores the 32-bit product of QQb and mb in the variable242

tmp. Finally, add t tmp T puts the sum of the 32-bit variables tmp and T in the variable t.243

One can see the model construction is mostly straightforward. Using the formal semantics244

for CryptoLine in Coq [38], one could also prove the correctness of model construction245

with respect to another Coq model for ARM Cortex-M4 programs.246

We are ready to give the pre-condition for the program model formally. Recall that247

the variables QQb and QQt contain a modulus q and the negation of its inverse modulo 216.248

Formally, we assume249

R = 216 ∧ QQb · QQt + 1 ≡ 0 mod R (1)250

Moreover, the number QQb and the input T are not arbitrary. They must be in the proper251

ranges to prevent overflow. Concretely, we need252

QQb < 214 ∧ −⌊QQb ·R/2⌋ ≤ T ≤ ⌊QQb ·R/2⌋ (2)253

The pre-condition of our small program model is therefore (1) ∧ (2). At the end of the254

program, we wish to show the output t is congruent to T modulo QQb and congruent to 0255

modulo R. That is,256

t ≡ T mod QQb ∧ t ≡ 0 mod R (3)257

Additionally, we wish to show the top 16-bit of output is between ±216 times the modulus258

QQb. Precisely, we want to show259

−R · QQb ≤ t ≤ R · QQb (4)260

After specifying the pre-condition (1) ∧ (2) and the post-condition (3) ∧ (4), we use261

CryptoLine to prove whether our program model computes the output t correctly for all262

inputs QQb, QQt, and T under our assumptions. CryptoLine verifies it in seconds.263

In this example, CryptoLine verifies the program model without further annotations.264

If more hints were needed, we would state them as assertions. CryptoLine will prove265

annotated assertions automatically. Once an assertion is proven, it can be assumed as a266

hint to verify post-conditions.267
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3.2 Algebraic Abstraction268

Conventional program verification techniques such as SMT solvers do not work well for269

cryptographic programs for two reasons. First, cryptographic programs often perform non-270

linear computations but typical programs do not. Verification of non-linear computation271

hence has very limited support in program verification. Second, cryptographic program272

verification requires bit-accurate techniques for large integers but typical programs need273

not. Machine integers suffice for most computation. Overflow thus can be overlooked at274

first and verified by interval arithmetic later. Non-linear and bit-accurate analyses for275

large integers are missing in conventional program verification techniques.276

CryptoLine employs two verification techniques to address these issues. For bit-277

accurate analysis, CryptoLine uses an SMT QFBV solver to verify simple linear com-278

putations. SMT QFBV solvers essentially translate bounded arithmetic computation to279

Boolean circuits via bit blasting. SAT solvers are then invoked to verify Boolean circuits.280

Since the computation in the program is verified through bit blasting, the technique is281

clearly bit-accurate. SMT QFBV solvers have been used in program verification and282

testing. Despite their popularity, bit-accurate SMT QFBV solvers fail to verify most283

cryptographic programs satisfactorily. The Montgomery reduction program in the last284

section, for instance, cannot be verified by the most advanced SMT QFBV solver within a285

week. This is perhaps unsurprising. If SMT QFBV solvers could verify arbitrary non-linear286

computation, the RSA1024 factoring challenge would have been resolved by now.287

Algebraic abstraction is the distinct technique employed by CryptoLine in order to288

verify non-linear computation [37]. Roughly, algebraic abstraction transforms a crypto-289

graphic program to a system of multivariate polynomial equations such that each program290

trace corresponds to a solution to the system of equations. To verify an equality about291

program variables, it suffices to check whether all solutions to the system of equations292

are also solutions to the equality. Most importantly, such solutions can be checked by293

algebraic techniques. Since non-linear computation is verified algebraically, CryptoLine294

performs especially well for cryptographic programs.295

Going back to the Montgomery reduction example, CryptoLine transforms the296

program into the following system of polynomial equations:297

R = 216 pre-condition
QQb · QQt + 1 ≡ 0 mod R pre-condition

216Tt + Tb = T spl Tb Tt T 16
216mt + mb = Tb · QQt mull mt mb Tb QQt

tmp = QQb · mb mulj tmp QQb mb
t = tmp + T add t tmp T

298

The first two equations are from the pre-condition (1). For each CryptoLine instruc-299

tion, there is a corresponding polynomial equation. Assume no overflow occurs in the300

add t tmp T instruction. It is seen that all program traces are solutions to the system of301

equations. In order to prove whether the post-condition (3) holds for all program traces,302

it suffices to check whether all solutions to the system of equations are also solutions to303

t ≡ T mod QQb and t ≡ 0 mod R.304

Note that program traces with overflow will not be solutions to the system of equations.305

Algebraic abstraction therefore is sound when no overflow occurs. Note also that algebraic306

abstraction is only for equational reasoning. Since overflow detection and properties such307

as the post-condition (4) require range analysis, equational reasoning is not applicable.308

Range properties were verified by the bit-accurate technique with an SMT QFBV solver309

in CryptoLine [18].310
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3.3 Algebraic Linear Analysis311

In addition to Montgomery reduction, Barrett and Plantard multiplication can also be312

implemented very efficiently on architectures with rounding instructions [12,23]. Although313

rounding to integers can be checked by complex equational reasoning through algebraic314

abstraction [12], it is best verified by bit-accurate analysis. Consequently, SMT QFBV315

solvers appear to be suitable for verifying cryptographic programs using Barrett or Plantard316

multiplication. However, bit-accurate SMT QFBV solvers are not very scalable even for317

cryptographic programs with linear computation. Using an SMT QFBV solver, the318

PQClean ARM aarch64 Dilithium NTT using Barrett multiplication cannot be verified by319

CryptoLine in a week (Section 5). A more effective technique is needed.320

We aim to develop a more scalable verification technique for NTT implementations321

using various rounding instructions. As an example, consider the ARM aarch64 instruction322

sqrdmulh Vd, Vn, Vm used in the PQClean ARM aarch64 implementation of Dilithium323

NTT [26]. The instruction computes the signed products of corresponding elements in Vn324

and Vm, doubles the products, and stores the most significant half of the saturated results325

in Vd after rounding. It is modeled by 5 CryptoLine instructions:326

(* sqrdmulh Vd , Vn, Vm *)
mulj %Pnm %Vn %Vm; (* product *)
shl %Pnm2 %Pnm [1, 1, 1, 1]; (* double *)
spl %H33 %dc0 %Pnm2 31; (* get top 33 bits *)
add %R33 %H33 [1, 1, 1, 1]; (* rounding *)
spl %Vd %dc1 %R33 1; (* get top 32 bits *)

327

In CryptoLine, vector variable names start with the percentage sign (%). In this example,328

each vector variable has 4 signed 32-bit values. The mulj instruction computes 4 64-bit329

signed products of corresponding elements in %Vn and %Vm. The shl instruction shifts330

all elements to the left by 1 bit. The spl %H33 %dc %Pnm2 31 instruction splits each331

element in %Pnm2 into top 33- and bottom 31-bit values. The 4 top 33-bit values are put332

in %H33. The add %R33 %H33 [1, 1, 1, 1] instruction rounds the least significant bit.333

Finally, the 4 top 32-bit rounded values are stored in %Vd by the last instruction. Note that334

saturation is not modeled here. The model is correct only when no overflow occurs during335

the execution of shl and add instructions. Indeed, the sqrdmulh instruction is used to336

implement Barrett multiplication. If saturation occurs, the implementation is incorrect.337

To develop an efficient linear analysis technique, we need a feature in NTT computation.338

Recall that an NTT butterfly only requires addition and multiplication with constants.339

The computation of NTTs is therefore linear. In the context of algebraic abstractions,340

it means all equalities are linear. Concretely, let us consider the system of polynomial341

equations corresponding to sqrdmulh Vd, Vn, Vm:342

(* sqrdmulh Vd, Vn, Vm *)
Pnm[i] = Vn[i] · Vm[i] mulj %Pnm %Vn %Vm
Pnm2[i] = Pnm[i] · 2 shl %Pnm2 %Pnm [1, 1, 1, 1]

231 H33[i] + dc0[i] = Pnm2[i] spl %H33 %dc0 %Pnm2 31
R33[i] = H33[i] +1 add %R33 %H33 [1, 1, 1, 1]

2 Vd[i] + dc1[i] = R33[i] spl %Vd %dc1 %R33 1

343

In Barrett multiplication, the vector register Vm contains constants λ̂ = JλR
q K where λ344

is a twiddle factor, R = 216 and q = 8380417. After constant substitution, we obtain a345

system of linear equations. Solving linear equations is much easier than solving general346

polynomial equations. More efficient techniques are applicable for analysis. Solving the347

above linear equations nevertheless is insufficient. Consider the last linear equation:348

2 Vd[i] + dc1[i] = R33[i]349
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Suppose R33[0] is the 33-bit value 4. The instruction spl %Vd %dc1 %R33 1 splits 4350

into top 32 and bottom 1 bit, sets Vd[0] and dc1[0] to 2 and 0 respectively. We have 2351

Vd[0] + dc1[0] = R33[0] as expected. Nevertheless, more solutions are possible for the352

linear equation. For instance, Vd[0] = 0 and dc1[0] = 4 is another solution to 2 Vd[0] +353

dc1[0] = R33[0] even though it does not correspond to any program trace. Such spurious354

solutions do not reflect rounding in sqrdmulh. Yet they need to satisfy post-conditions in355

algebraic abstraction. Verification may fail due to spurious solutions.356

A simple way to address this problem is to remove spurious solutions. Consider the357

following linear constraints for the instruction spl %Vd %dc1 %R33 1:358

2 Vd[i] + dc1[i] = R33[i]
−231 ≤ Vd[i] < 231

0 ≤ dc1[i] < 21
359

Recall that R33[i] is a 33-bit signed value. The additional linear inequalities make360

the solution to the linear equation unique. No spurious solution is possible. Barrett361

multiplication can be verified by solving linear constraints derived from CryptoLine362

programs. Since our new technique allows both equalities and inequalities in linear363

constraints, it is called algebraic linear analysis to differentiate from existing equational364

reasoning in algebraic abstractions.365

Finally, note that constants in cryptographic programs can easily exceed 32- or 64-bit366

machine integers. Typical linear constraint libraries such as lp_solve or SCIP [3, 14]367

can induce overflow and give incorrect verification results for cryptographic programs.368

For verification, it is necessary to use linear constraint libraries with exact integers. For369

instance, the Integer Set Library uses the GNU Multiple Precision Arithmetic Library370

GMP to solve linear constraints (Section 2.4). This is essential for algebraic linear analysis371

of cryptographic programs.372

3.4 Algebraic Soundness Checking373

Recall that the absence of overflow is required to capture all program traces in algebraic374

abstraction. Since equational reasoning is unsuitable for range analysis, overflow detection375

for algebraic abstraction still requires bit-accurate analysis (Section 3.2). Overflow detection376

however can be formulated as linear constraints easily. Can we apply algebraic linear377

analysis to detecting overflow and get rid of bit-accurate analysis entirely?378

Applying algebraic linear analysis to overflow detection is slightly more complicated.379

The problem is as follows. Overflow detection is necessary for the soundness of algebraic380

abstraction and hence algebraic linear analysis. How can algebraic linear analysis be381

applied to overflow detection without securing soundness? Should the absence of overflow382

not be checked before applying algebraic linear analysis? Could it be circular reasoning?383

The answer is NO. It is sound to check overflow through algebraic linear analysis. To384

see it, consider the program P ; add a b c. Suppose a is a signed 16-bit variable. The385

add instruction is transformed to a = b + c in algebraic abstraction. To ensure all traces386

are captured by the equation, the absence of overflow is checked by the linear constraint387

−32768 ≤ b+ c < 32768. We proceed by induction on the length of P .388

If P is the empty program, it suffices to check −32768 ≤ b+ c < 32768. This is clearly389

a linear constraint. If P is not empty, we know how to detect overflow by linear constraints390

for each instruction in P by induction. If no overflow can occur for all instructions in P ,391

we apply algebraic linear analysis and transform P to a system of linear constraints Π.392

All program traces of P are hence captured in solutions to Π. Now consider two systems393

of linear constraints: Π0 = Π ∪ {−32768 > b+ c} and Π1 = Π ∪ {b+ c ≥ 32768}. If Π0394

or Π1 has a solution, then overflow can occur while executing add a b c. If neither has395

a solution, there cannot be overflow for all traces of P ; add a b c. In any case, overflow396

detection is formulated as linear constraints. Other instructions are checked similarly.397
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Informally, the argument says that algebraic linear analysis for P suffices to detect398

overflow for the add instruction. If overflow cannot occur for the add instruction, algebraic399

linear analysis is then applied to P ; add a b c. Since overflow detection for the add400

instruction only depends on P but not P ; add a b c, there is no circle. Applying algebraic401

linear analysis to overflow detection is therefore sound. We call it algebraic soundness402

checking to differentiate from conventional soundness checking by bit-accurate techniques.403

3.5 Multitrack Verification404

CryptoLine supports compositional reasoning using the cut instruction. With composi-405

tional reasoning, the correctness reasoning of a long program can be decomposed into the406

correctness of two shorter programs. For example, consider a Hoare triple {ϕ}P0;P1{ψ}.407

If we can find a mid-condition ρ such that both {ϕ}P0{ρ} and {ρ}P1{ψ} are valid, then408

we conclude the validity of {ϕ}P0;P1{ψ}. Such mid-conditions are specified using cut409

instructions in CryptoLine.410

A problem of using cut instructions is that a program cannot be decomposed in411

different ways at the same time. For example, consider a program P0;P1;P2 with a412

precondition ϕ and a postcondition ψ0 ∧ ψ1. The verification of ψ0 requires a mid-413

condition ρ0 between P1 and P2, which decomposes into {ϕ}P0;P1{ρ0} and {ρ0}P2{ψ0}.414

On the other hand, the verification of ψ1 requires a mid-condition ρ1 right after P0. The415

validity of {ϕ}P0;P1;P2{ψ1} is therefore established by the validity of {ϕ}P0{ρ1} and416

{ρ1}P1;P2{ψ1}. Recall that we wish to establish the validity of {ϕ}P0;P1;P2{ψ0 ∧ ψ1}.417

How do we decompose it?418

The natural and only way is to divide the program into three parts. {ϕ}P0{ρ1},419

{ρ1}P1{ρ0}, and {ρ0}P2{ψ0 ∧ ψ1}. But it would not do. To establish the post-condition420

ρ0 in {ρ1}P1{ρ0}, information about P0 may be necessary despite {ϕ}P0;P1{ρ0} is421

valid. Such information nonetheless may not appear in ρ1. Similarly, the post-condition422

ψ1 in {ρ0}P2{ψ1} may not be established because it does not necessarily follow from423

{ρ1}P1;P2{ψ1}.424

To resolve this issue, we propose multitrack verification and implement it in Crypto-425

Line. With the multitrack feature, an annotation (including pre-conditions, mid-conditions,426

and post-conditions) can be placed on certain tracks. The verification is then carried427

out by tracks. This allows a program to be decomposed by different ways in different428

tracks. Take the previous example for demonstration. The pre-condition ϕ can be placed429

on track 0 and track 1. The mid-condition ρ0 and post-condition ψ0 are both placed on430

track 0. The mid-condition ρ1, and post-condition ψ1 are put on track 1. To verify track 0,431

CryptoLine only considers {ϕ}P0;P1;P2{ψ0} with mid-condition ρ0 between P1 and P2.432

This Hoare triple is then decomposed into {ϕ}P0;P1{ρ0} and {ρ0}P2{ψ0}, which can be433

proved successfully. To verify track 1, CryptoLine only considers {ϕ}P0;P1;P2{ψ1} with434

the mid-condition ρ1 between P0 and P1. The Hoare triple for track 1 is then decomposed435

into {ϕ}P0{ρ1} and {ρ1}P1;P2{ψ1}, which can be verified separately.436

4 Case Studies437

To illustrate the generality of algebraic linear analysis in NTT verification, we discuss438

6 NTT implementations for Dilithium and Kyber on Intel AVX2, ARM aarch64 and439

Cortex-M4. We explain how NTTs are implemented on different architectures and their440

CryptoLine specifications.441
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4.1 Dilithium442

The Dilithium specification uses NTT for polynomial multiplications in the ring Rq =443

Fq[x]/⟨x256 + 1⟩ with q = 8380417 [31]. The PQClean project provides Intel AVX2 and444

ARM aarch64 assembly implementations of NTT and inverse NTT [26]. Observe that an445

element in Fq where q = 223 − 213 + 1 < 232. A field element hence can be stored in a446

32-bit word. These assembly implementations are verified by CryptoLine using algebraic447

linear analysis. We explain how they are verified in this subsection.448

4.1.1 Intel AVX2449

The PQClean Intel AVX2 Dilithium NTT implementation performs 8 levels of CT butterflies450

for an input polynomial f(x) =
∑255

i=0 aix
i ∈ Fq[x]/⟨x256 + 1⟩. In the implementation, 4451

32-bit coefficients of a polynomial are packed into a 256-bit vector register. Due to the452

number of available vector registers, CT butterflies are performed by 4 groups of 64 32-bit453

coefficients. All the coefficients in one group are loaded into 8 256-bit vector registers in a454

CT butterfly. The implementation first transforms the input polynomial to 4 63-degree455

polynomials through levels 0 and 1 of CT butterflies in 4 groups. All the coefficients of456

the polynomials are stored back to memory. The implementation then performs levels 2 to457

7 of CT butterflies similarly by groups, in which one 63-degree polynomial is transformed458

to 64 constant polynomials.459

The PQClean Intel AVX2 Dilithium NTT uses Montgomery multiplication (Sec-460

tion 2.2.3). Consider the following fragment from the implementation:461

vpmuldq %ymm1 ,%ymm8 ,%ymm13
vpmuldq %ymm2 ,%ymm8 ,%ymm8
vpmuldq %ymm0 ,%ymm13 ,%ymm13

462

The ymm8 register contains 8 32-bit polynomial coefficients ai (0 ≤ i < 8). Let R = 232.463

The ymm2 and ymm1 registers each contains 8 twiddles Bi = λiR mod q and 8 pre-computed464

values B′
i = Biq

−1 mod R (0 ≤ i < 8) respectively. The vpmuldq %ymm1, %ymm8, %ymm13465

instruction computes the products of the 4 corresponding 32-bit values with even indices466

in ymm8 and ymm1, and stores the 4 64-bit products in ymm13. Hence the ymm13 register467

contains aiB
′
i (i = 0, 2, 4, 6). Similarly, the ymm8 register contains aiBi after executing468

vpmuldq %ymm2, %ymm8, %ymm8 (i = 0, 2, 4, 6). Since ymm0 contains 8 copies of q, ymm13469

contains q(aiB
′
i mod R) after vpmuldq %ymm0, %ymm13, %ymm13. Consider the 4 64-bit470

differences of the values in ymm8 and ymm13. By Montgomery multiplication, the top 32471

bits of the differences are aiλi mod q and the bottom 32 bits are all zeroes for i = 0, 2, 4, 6.472

The products aiλi mod q for odd indices are computed similarly.473

We verify the PQClean AVX2 Dilithium NTT implementation using CryptoLine with474

the input polynomial f(x) =
∑255

i=0 aix
i ∈ Fq[x]/⟨x256 + 1⟩ and the following pre-condition475

−q < ai < q for 0 ≤ i < 256.476

CryptoLine verifies the ranges of 256 output coefficients ci are between −9q and 9q477

for 0 ≤ i < 256. Moreover, the following post-conditions are also verified (ζ = 1753)478

f(x) ≡ ci mod [q, x− ζbrv9(256+i)] for 0 ≤ i < 256.479

The PQClean Intel AVX2 implementation for Dilithium inverse NTT is similar. All the480

coefficients are arranged into 4 groups. Levels 7 to 2 of GS butterflies are performed for481

each group with results stored back to memory. It is then followed by levels 1 to 0 of GS482

butterflies. We also use CryptoLine to verify Intel AVX2 implementation for Dilithium483

inverse NTT. Assume the input coefficients ci are between −q and q for 0 ≤ i < 256. We484
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view these input coefficients correspond to a polynomial f(x) ∈ Fq/⟨x256 + 1⟩. That is, we485

have 256 additional pre-conditions486

f(x) ≡ ci mod [q, x− ζbrv9(256+i)] for 0 ≤ j < 256.487

CryptoLine verifies that the output coefficients ai of the inverse NTT are between −q488

and q for 0 ≤ i < 256. Moreover, the polynomial F (x) =
∑255

i=0 aix
i formed by the output489

coefficients satisfies the post-condition490

F (x) ≡ 232f(x) mod [q, x256 + 1].491

4.1.2 ARM aarch64492

In the PQClean ARM aarch64 implementation, a 128-bit register contains 4 32-bit words.493

The optimized implementation uses 2 groups of 12 128-bit registers for butterflies. Each494

group performs 16 butterflies. In each group, 4 registers are for Barrett multiplication495

(Section 2.2.4); the other 8 registers contain polynomial coefficients. In Dilithium, each496

NTT level has 128 CT butterflies. Eight groups are therefore needed for an NTT level.497

The implementation interleaves every two groups of butterflies.498

Consider the following fragment from the optimized implementation:499

mul v16.4s , v30.4s , v23.4s
sqrdmulh v30.4s , v30.4s , v22.4s
mls v16.4s , v30.4s , v4.s [0]

500

The 128-bit registers v30 and v23 contain 4 polynomial coefficients ai and 4 NTT twiddle501

factors λi for 0 ≤ i < 4 respectively. After the mul instruction, the register v16 contains502

the 4 32-bit half products of aiλi for 0 ≤ i < 4.503

Let R = 232. The register v22 is initialized to 4 constants
r

λiR
2q

z

0
with 0 ≤ i < 4.504

Recall the sqrdmulh computes double of the product of the two source operands v30 and505

v22. The factor 2 in the denominator is added to compensate for the doubling in the506

sqrdmulh instruction. After executing the instruction, the register v30 has 4 32-bit values507

u

v
ai

r
λiR

q

z

0
R

}

~

1

for 0 ≤ i < 4.508

The mls instruction first computes the 64-bit product of v30 and v4.s[0], subtracts509

the product from v16, and stores the difference in v16. Since v4.s[0] contains the value510

q, v16 contains the following values after executing the instruction:511

aiλi − q

u

v
ai

r
λiR

q

z

0
R

}

~

1

for 0 ≤ i < 4.512

That is, v16 contains the values aiλi mod q for 0 ≤ i < 4 by Barrett multiplication.513

Using CryptoLine, we verify the PQClean ARM aarch64 implementation for the514

Dilithium NTT. Assume the 256 coefficients of the input polynomial are between −⌊q/2⌋515

and ⌈q/2⌉. The implementation outputs 256 values between −⌊8.5q⌋ and ⌈8.5q⌉. Moreover,516

let f(x) denote the input function, ci the output values, and ζ = 1753. CryptoLine517

verifies the following 256 post-conditions518

f(x) ≡ ci mod [q, x− ζbrv9(256+i)] for 0 ≤ i < 256.519

PQClean ARM aarch64 implementation for Dilithium inverse NTT is similar. It also520

uses 2 groups of 12 128-bit registers. For inverse NTT, Barrett multiplication is also521
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employed in GS butterfly. We use CryptoLine to verify the ARM aarch64 implementation522

for Dilithium inverse NTT as well. Assume the input coefficients ci are between −q and523

q and f(x) ≡ ci mod [q, x − ζbrv9(256+i)] for 0 ≤ i < 256. CryptoLine shows that524

coefficients ai of the output function are between −⌊q/2⌋ and ⌈q/2⌉. Moreover, the output525

function F (x) is 232 times the function f(x). Precisely, we have526

F (x) =
255∑
i=0

aix
i ≡ 232f(x) mod [q, x256 + 1].527

4.2 Kyber528

The Kyber specification requires NTT for multiplication in the polynomial ring Rq =529

Fq[x]/⟨x256 + 1⟩ with q = 3329 [32]. Its field element can hence be stored in a 16-bit word.530

We discuss Intel AVX2 and ARM aarch64 assembly implementations of NTT and inverse531

NTT from the PQClean project [26] and two ARM Cortex-M4 implementations from the532

IPA [22] and pqm4 [25] projects.533

4.2.1 Intel AVX2534

The PQClean Intel AVX2 implementation for Kyber NTT was first verified in [24]. Later,535

a variant was verified in [7]. The optimized implementation transforms a 255-degree536

polynomial in Fq[x]/⟨x256 + 1⟩ to 128 linear polynomials through 7 levels of Kyber NTT.537

At each level, 128 butterflies are needed for 256 polynomial coefficients.538

The PQClean Intel AVX2 implementation stores 16 16-bit polynomial coefficients in a539

256-bit register. The optimized implementation performs 64 butterflies with 12 256-bit540

vector registers in parallel: 8 256-bit vector registers are for 128 polynomial coefficients and541

4 256-bit vector registers for Montgomery multiplication (Section 2.2.3). The computation542

of 64 parallel butterflies repeats twice to perform 128 butterflies at each level. The543

Kyber AVX2 implementation uses similar instructions as the PQClean Dilithium AVX2544

implementation but with different word sizes. See Section 4.1.1 for details.545

Assume the 256 coefficients of the input polynomial all start between −q and q.546

CryptoLine verifies the coefficients of 128 linear output polynomials are between −8q547

and 8q. The following 128 modular equations are verified (ζ = 17)548

f(x) ≡ ci + dix mod [q, x2 − ζbrv8(128+i)] for 0 ≤ i < 128 (5)549

where f(x) is the input polynomial and ci + dix are the output polynomials.550

The PQClean Intel AVX2 implementation for Kyber inverse NTT is similar. 128551

coefficients are computed in parallel at each level. Assume the coefficients of 128 linear552

input polynomials ci +dix are between −q and q for 0 ≤ i < 128. They moreover represents553

a polynomial f(x) ∈ Fq/⟨x256 + 1⟩ such that554

f(x) ≡ ci + dix mod [q, x2 − ζbrv8(128+i)] for 0 ≤ i < 128. (6)555

CryptoLine verifies the 256 coefficients ai of output polynomial are between −31625 and556

31625. Moreover, the output polynomial F (x) and the polynomial f(x) satisfy557

F (x) =
255∑
i=0

aix
i ≡ 216f(x) mod [q, x256 + 1]. (7)558

4.2.2 ARM aarch64559

Different from the Intel AVX2 implementation, Barrett multiplication is employed in the560

PQClean ARM aarch64 implementation of Kyber NTT. In the optimized implementation,561
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each 128-bit register stores 8 coefficients. As in the Dilithium ARM aarch64 implementation,562

similar instructions but different word sizes are used to implement Barrett multiplication.563

Please consult Section 4.1.2 for details.564

The PQClean ARM aarch64 implementation for Kyber NTT also uses 2 groups of 12565

128-bit registers for butterflies. Four of them are for Barrett multiplication and the others566

are for polynomial coefficients. Each group hence computes 32 butterflies. A level of Kyber567

NTT has 128 CT butterflies and requires 4 groups of computation. The implementation568

computes a level of Kyber NTT by interleaving the 2 register groups.569

The optimized implementation moreover divides Kyber NTT into two phases. The top570

phase transforms the input polynomial to 32 polynomials of degree 7 through 5 levels of571

Kyber NTT. The bottom phase then transforms 32 polynomials of degree 7 to 128 linear572

polynomials. Recall an ARM aarch64 128-bit register can store 8 polynomial coefficients.573

After the top phase, coefficients of a 7-degree polynomial can be loaded in a 128-bit register.574

It is easier to schedule 128-bit registers in the bottom phase.575

Assume the 256 input polynomial coefficients are between −⌊q/2⌋ and ⌈q/2⌉. Our576

verification shows all coefficients of 128 linear output polynomials are between −q and577

q for the PQClean ARM aarch64 implementation of Kyber NTT. Moreover, the same578

post-condition in (5) is verified.579

The PQClean ARM aarch64 implementation for Kyber inverse NTT is similar. Two580

groups of 12 128-bit registers are used to compute GS butterflies. It also divides 7 levels581

of computation into two. The bottom phase transforms 128 linear input polynomials582

to 32 polynomials of degree 7; the top phase transforms these 32 polynomials to the583

output polynomial of degree 255. Assume all coefficients of 128 linear input polynomials584

ci + dix are between −q and q and they represent a polynomial f(x) such that (6) holds.585

CryptoLine verifies that coefficients ai of the output polynomial F (x) are between −q586

and q. Moreover, F (x) is congruent to 216 times the polynomial f(x) in Fq[x]/⟨x256 + 1⟩.587

That is, the post-condition (7) is verified.588

4.2.3 ARM Cortex-M4589

ARM Cortex-M4 is a 32-bit architecture. We verify two ARM Cortex-M4 implementations590

for Kyber NTT. One implemented CT and GS butterflies with Montgomery multiplication591

and was verified in [24]; the other uses Plantard multiplication [22] and is yet to be verified.592

Montgomery Multiplication. This implementation uses specialized 32-bit instructions to593

optimize butterfly computation. Specifically, ARM Cotex-m4 supports 16-bit operations594

within the 32-bit architecture. For example, smulbb, smultb, and smulbt are multiplication595

instructions that compute 32-bit products of signed 16-bit integers from bottom and top596

halves of 32-bit registers. They are used for efficient multiplication in Kyber NTT.597

For example, the following fragment computes a product with Montgomery multiplica-598

tion (Section 2.2.3):599

smultb r6 , r6, r10
smulbt r12 , r6 , r11
smlabb r12 , r11 , r12 , r6

600

The 32-bit r6 register contains two polynomial coefficients and the bottom half (16 bits)601

of r10 has the value B = λR mod ±q for some twiddle λ and R = 216. The smultb602

r6, r6, r10 computes the 32-bit value aB for the polynomial coefficient a stored in the603

top 16 bits of r6. The top half of r11 contains q′ such that qq′ + 1 ≡ 0 mod R. After the604

smulbt r12, r6, r11, the r12 register contains the 32-bit value (aB mod R)q′. Finally,605

the bottom half of r11 contains q. The smlabb r12, r11, r12, r6 instruction computes606
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the 32-bit product of the 2 bottom halves of r11 and r12, and stores the 32-bit sum of607

the product, and r6 in r12. The r12 register hence has the 32-bit value608

(aBq′ mod R)q + aB.609

By unsigned Montgomery multiplication, the top and bottom halves of r12 are (a modq610

representative of) aλ and zero respectively [24].611

Let f(x) be the input polynomial in Fq[x]/⟨x256 + 1⟩ with coefficients between −q and612

q. CryptoLine verifies the coefficients of 128 linear output polynomials ci + dix are613

between 0 and q. Moreover, the linear output polynomials satisfy the post-condition (5).614

The ARM Cortex-M4 implementation for Kyber inverse NTT also uses unsigned615

Montgomery multiplication in its GS butterflies. Assume all coefficients of the linear616

input polynomials ci + dix are between −q and q. The linear input polynomials moreover617

represent a polynomial f(x) such that (6) holds. Then the 256 coefficients ai must be618

between −q and q. The post-condition (7) is verified by CryptoLine as well.619

Plantard Multiplication. As of early 2025, the most efficient ARM Cortex-M4 imple-620

mentation for Kyber NTT is reported in [22]. It multiplies polynomial coefficients with621

Plantard multiplication (Section 2.2.5). Using ARM Cortex-M4’s smulwb instruction, the622

implementation performs a multiplication, an arithmetic right shift followed by bit masking623

in one cycle. Concretely, consider the following two instructions from the implementation:624

smulwb lr, r10 , r6
smlabt lr, lr, r12 , r0

625

The bottom half of the register r6 contains a 16-bit polynomial coefficient a. The626

register r10 is the pre-computed 32-bit value b̂ = −λ(R mod q)(q−1 mod JK1R) mod JK1R627

with a twiddle factor λ and R = 232. The smulwb lr, r10, r6 instruction takes the 16-bit628

value in the bottom of r6 and the 32-bit value in r10, performs a signed multiplication,629

and then stores the top 32-bit value of the 48-bit product in lr (note: of course, there is a630

smulwt for the top half). Recall R̃ = 216. The bottom halve of lr is631

p1 =
t
ab̂ mod JK1R

R̃

|

2

=
⌊
ab̂ mod ±232

216

⌋
.632

Now the top 16 bits of r12 contains q. The r0 register has the value 8q. The smlabt633

lr, lr, r12, r0 instruction computes the product of p1 (the bottom half of lr) and the634

top half of r12, adds the 32-bit value of r0, then stores the result in lr. After executing635

the smlabt lr, lr, r12, r0 instruction, the top half of lr has the value636

s
qp1

R/R̃

{

3
=
⌊
qp1 + 8q

216

⌋
= aλ mod ±q.637

Thanks to smulwb, a mulmod 3329 on the ARM Cortex-M4 is two instructions. After 7638

levels of Kyber NTT, the implementation returns 128 linear polynomials ci + dix such that639

f(x) ≡ ci + dix mod [q, x2 − ζbrv8(128+i)] and − 8⌊q/2⌋ < ci, di < 8⌈q/2⌉640

where f(x) is the input polynomial in Fq/⟨x256 + 1⟩ and 0 ≤ i < 128.641

One would expect that the inverse NTT would be the same process in reverse, but642

not quite. In contrast to standard GS butterflies, the ARM Cortex-M4 implementation643

from [22] uses CT butterflies throughout its inverse NTT implementation. The idea is to644

transform polynomial rings Fq[x]/⟨xn − i⟩ to Fq[y]/⟨yn ± 1⟩ through twisting and then645

add/subtract coefficients. Since twisting is implemented by Plantard multiplication, the646

computation is exactly CT butterflies but with different twiddle factors.647
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To see how CT butterflies are used to implement inverse NTT. Recall ζ2k−1 = −1.648

Consider the following isomorphism:649

Fq[x]/⟨x2k

− 1⟩ ∼= Fq[x]/⟨x2k−1
− 1⟩ × Fq[x]/⟨x2k−1

+ 1⟩ substitute x0 = x, x1 = ζ−1x650

∼= Fq[x]/⟨x2k−1

0 − 1⟩ × Fq[x]/⟨ζ−2k−1
x2k−1

1 + 1⟩ ∼= Fq[x]/⟨x2k−1

0 − 1⟩ × Fq[x]/⟨x2k−1

1 − 1⟩651

∼=
Fq[x]

⟨x2k−2
0 − 1⟩

× Fq[x]
⟨x2k−2

0 + 1⟩
× Fq[x]
⟨x2k−2

1 − 1⟩
× Fq[x]
⟨x2k−2

1 + 1⟩ substitute x2 = ζ−2x0, x3 = ζ−2x1
652

∼= Fq[x]/⟨x2k−2

0 − 1⟩ × Fq[x]/⟨x2k−2

2 − 1⟩ × Fq[x]/⟨x2k−2

1 − 1⟩ × Fq[x]/⟨x2k−2

3 − 1⟩653

∼=
∏

0≤i<22

Fq[x]
⟨x2k−2

brv2(i) − 1⟩
∼= · · · ∼=

∏
0≤i<2k

Fq[x]
⟨xbrvk(i) − 1⟩

∼=
∏

0≤i<2k

Fq[x]
⟨x− ζbrvk(i)⟩ since xi = ζ−ix.654

Recall that variable substitutions (xi = ζ−ix) are implemented by twisting. It can be655

then seen from the above that twisting switches between GS and CT butterflies leaving656

the result and the overall computational effort constant. The reason to use GS or “twisted”657

NTTs is that its inverse uses CT butterflies throughout, avoiding the repeated potential658

doubling of coefficients when using GS butterflies when lazy reductions are used.659

Let us give a concrete example from the ARM Cortex-M4 implementation with Plan-660

tard multiplication in [22]. Recall Kyber’s incomplete negacyclic NTT is Fq[x]
⟨x28 + 1⟩

∼=661

127∏
i=0

Fq[x]
⟨x2 − ζbrv8(128+i)⟩

∼=
127∏
i=0

Fq[x, y]
⟨x2 − y, y − ζbrv8(128+i)⟩

. Consider662

c8 + d8x ∈ Fq[x, y]/⟨x2 − y, y − ζ17⟩ c9 + d9x ∈ Fq[x, y]/⟨x2 − y, y + ζ17⟩
c10 + d10x ∈ Fq[x, y]/⟨x2 − y, y − ζ81⟩ c11 + d11x ∈ Fq[x, y]/⟨x2 − y, y + ζ81⟩.663

Take y17 = ζ−17y and y81 = ζ−81y. Recall ζ128 ≡ −1 mod q. We have664

c8 + d8x ∈ Fq[x, y]/⟨x2 − y, y − ζ17⟩ = Fq[x, y17]/⟨x2 − ζ17y17, y17 − 1⟩
c9 + d9x ∈ Fq[x, y]/⟨x2 − y, y + ζ17⟩ = Fq[x, y17]/⟨x2 − ζ17y17, y17 + 1⟩

c10 + d10x ∈ Fq[x, y]/⟨x2 − y, y − ζ81⟩ = Fq[x, y81]/⟨x2 − ζ81y81, y81 − 1⟩
c11 + d11x ∈ Fq[x, y]/⟨x2 − y, y + ζ81⟩ = Fq[x, y81]/⟨x2 − ζ81y81, y81 + 1⟩.

665

Therefore666

1
2 ((c8 + c9) + (d8 + d9)x+ [(c8 − c9) + (d8 − d9)x]y17) ←− (c8 + d8x, c9 + d9x)667

is the inverse NTT mapping from Fq[x, y17]/⟨x2 − ζ17y17, y17 − 1⟩ × Fq[x, y17]/⟨x2 −668

ζ17y17, y17 + 1⟩ to Fq[x, y17]/⟨x2 − ζ17y17, y
2
17 − 1⟩. Similarly,669

1
2 ((c10 + c11) + (d10 + d11)x+ [(c10 − c11) + (d10 − d11)x]y81) ←− (c10 + d10x, c11 + d11x)670

is the inverse NTT mapping from Fq[x, y81]/⟨x2 − ζ81y81, y81 − 1⟩ × Fq[x, y81]/⟨x2 −671

ζ81y81, y81 + 1⟩ to Fq[x, y81]/⟨x2 − ζ81y81, y
2
81 − 1⟩.672

Now recall y = ζ17y17 = ζ81y81 and hence y81 = ζ−64y17. Thus673

b0 + b1x+ (b2 + b3x)y81 ∈ Fq[x, y81]/⟨x2 − ζ81y81, y
2
81 − 1⟩

= b0 + b1x+ ζ−64(b2 + b3x)y17 ∈ Fq[x, y17]/⟨x2 − ζ17y17, y
2
17 + 1⟩674

The twisting y81 = ζ−64y17 is computed by Plantard multiplication in [22]. Moreover,675

1
2

(
(a0 + b0) + (a1 + b1)x+ (a2 + ζ−64b2) + (a3 + ζ−64b3)x)y17+

((a0 − b0) + (a1 − b1)x)y2
17 + ((a2 − ζ−64b2) + (a3 − ζ−64b3)x)y3

17

)
←−

(
a0 + a1x+ (a2 + a3x)y17, b0 + b1x+ ζ−64(b2 + b3x)y17

)676
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is the inverse NTT mapping from Fq[x, y17]/⟨x2 − ζ17y17, y
2
17 − 1⟩ × Fq[x, y81]/⟨x2 −677

ζ81y81, y
2
81 − 1⟩ to Fq[x, y17]/⟨x2 − ζ17y17, y

4
17 − 1⟩.678

Assume the coefficients of 128 input linear polynomials are between −⌊q/2⌋ and679

⌈q/2⌉. The input polynomials moreover represent a polynomial f(x) such that (6) holds.680

CryptoLine verifies the ranges of output coefficients ai are between −⌊q/2⌋ and ⌈q/2⌉.681

Moreover, the output polynomial F (x) satisfies682

F (x) =
255∑
i=0

aix
i ≡ −232f(x) mod [q, x256 + 1].683

5 Evaluation684

We implement our algebraic linear analysis in the CryptoLine toolkit and compare our685

technique with others by verifying the latest Intel AVX2, ARM aarch and Cortex-M4686

assembly implementations for the Kyber and Dilithium NTTs in packages PQClean [26],687

IPA [22], and pqm4 [25]. Table 1 lists the verified assembly implementations1. The column688

Multiplication shows the name of efficient multiplication used in the implementation. ASM689

indicates the number of vector assembly instructions while CL counts the number of scalar690

instructions in the corresponding CryptoLine model for the assembly code.691

The CryptoLine models for the PQClean Intel AVX2 and the pqm4 ARM Cortex-M4692

implementations for Kyber NTTs are taken from [24]. We construct the CryptoLine693

models for the other implementations by extracting a running trace from each implemen-694

tation and translating the running trace to a CryptoLine model. Since the verified695

implementations do not have conditional branches, a running trace is representative. We696

then give the specifications of the CryptoLine models as described in Section 4.697

We compare three verification techniques in the experiments. The first technique is our698

algebraic linear analysis where polytope libraries are used to solve linear integer constraints.699

The second technique is the bit-accurate SMT QFBV solver in CryptoLine. The third700

technique is based on our algebraic linear analysis but uses SMT LIA (Linear Integer701

Arithmetic) solvers instead of polytope libraries. For our technique, we use pplpy in the702

pqm4 ARM Cortex-M4 and the PQClean Intel AVX2 implementations for Kyber inverse703

NTT2 and islpy in the other implementations. We use the SMT solvers Boolector704

and Z3 respectively for SMT QFBV and SMT LIA. Boolector is specially designed for705

solving SMT QFBV queries and is the default solver of CryptoLine for range checks. Z3706

is a general and efficient SMT solver that supports multiple theories.707

All implementations contain range and algebraic properties (which involve modular708

equations) to be verified. We use our technique, SMT QFBV, and SMT LIA to verify range709

properties (including algebraic soundness checking). For algebraic properties, we use the710

computer algebra system Singular for implementations with Montgomery multiplication;711

for those using Barrett or Plantard multiplication, our technique and SMT LIA are712

used. Singular was used to verify 4 implementations with Montgomery multiplication713

in [24]. We also verify algebraic properties in the same implementations with Singular.714

Range properties in these implementations are verified by algebraic linear analysis for715

comparison. Algebraic linear analysis is used for implementations with Barrett or Plantard716

multiplication because the correctness of both multiplications involves complex equational717

reasoning intractable for Singular.718

All our experiments are running on a Ubuntu 24.04.1 server with 3.5GHz AMD EPYC719

7763 and 2TB RAM. Table 2 shows the experimental results. TISL, TQFBV, and TLIA720

represent the running time of CryptoLine where range checks are carried out by our721

1After we extracted the CryptoLine models, function names of Kyber implementations in PQclean
were changed as a result of NIST’s standardization.

2islpy does not perform well in the two examples compared with pplpy.
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Table 1: Benchmarks with Line of Code Information
Scheme Package Arch Function3 Multiplication ASM CL

Dilithium PQClean
AVX2 ntt_avx Montgomery 2337 25696

invntt_avx Montgomery 2265 25904

aarch64 ntt Barrett 2016 22994
invntt_tomont Barrett 2505 28341

Kyber

PQClean

AVX2 polyvec_ntt Montgomery 585 14352
polyvec_invntt_tomont Montgomery 637 16224

aarch64

ntt_SIMD_top Barrett 400 9716
ntt_SIMD_bot Barrett 621 11234
intt_SIMD_top Barrett 463 11311
intt_SIMD_bot Barrett 629 11248

IPA Cortex-M4 ntt_fast_plant Plantard 4160 14471
invntt_fast_plant Plantard 4215 15260

pqm4 Cortex-M4 ntt_fast Montgomery 5976 13989
invntt_fast Montgomery 6243 16053

1 These function names are suffixes of their original names.

algebraic linear analysis, SMT QFBV, and SMT LIA, respectively. TO indicates a 2-722

hour timeout. The results show that our algebraic linear analysis outperforms SMT723

QFBV and SMT LIA significantly. Our technique can verify most implementations using724

Montgomery, Barrett, and Plantard multiplication in 8 minutes. For the PQClean AVX2725

the pqm4 Cortex-M4 implementations for Kyber inverse NTT, our approach requires 53726

and 22 minutes, respectively. A reason our approach requires more time in those two727

implementations is that both implementations are originally specified by relations between728

the output polynomial and each pair of input coefficients (since Kyber has an incomplete729

NTT) in [24]. Our new specifications used in the other inverse NTT implementations on730

the other hand describe relations between the input polynomial of NTT and the output731

polynomial of inverse NTT, which involve much fewer predicates.732

SMT QFBV is slower than our approach in all the implementations. SMT QFBV733

successfully verifies range checks of Kyber NTT implementations but fails for most Dilithium734

NTT implementations. Recall the prime number in Kyber is much smaller than that in735

Dilithium. 16-bit computation is sufficient for Kyber, but 32-bit computation is needed736

for Dilithium. SMT QFBV does not scale well for 32-bit verification. SMT LIA can verify737

implementations using Montgomery multiplication but fails to verify all implementations738

using Barrett and Plantard multiplication. Of the six implementations using Montgomery739

multiplication, SMT LIA’s performance is comparable to ours in four, worse in one, and740

significantly better in another. We actually wait for the SMT QFBV solver for over741

two hours beyond the timeout limit on two implementations. In this experiment, the742

SMT QFBV technique cannot verify the PQClean aarch64 Dilithium NTT within a week,743

whereas it verifies the PQClean AVX2 Dilithium inverse NTT in approximately one month.744

6 Discussion745

Multiplication in finite polynomial rings is essential to lattice-based cryptography. For746

efficiency, lattice-based schemes like Kyber and Dilithium require polynomial multipli-747

cation to be implemented by NTTs [31, 32]. Even for polynomial rings unsuitable for748

NTTs, ingenious techniques have been developed to multiply polynomials through NTTs749

indirectly [15]. Optimized NTT implementations have become a critical component in750

lattice-based cryptography.751

Efficient NTT implementations however are diverse. Depending on the instruction set752

architecture, different algorithms have been applied to attain optimal NTT implementations753

on different architectures. Montgomery multiplication is currently used in Intel AVX2754



20 Algebraic Linear Analysis for NTT Verifications

Table 2: Experimental Results
Scheme Package Arch Function TISL TQFBV TLIA

Dilithium PQClean
AVX2 ntt_avx 96s 474s 88s

invntt_avx 443s TO4 447s

aarch64 ntt 279s TO4 TO4

invntt_tomont 161s TO4 TO4

Kyber

PQClean

AVX2 polyvec_ntt 51s 84s 50s
polyvec_invntt_tomont 3160s 3666s 669s

aarch64

ntt_SIMD_top 80s 229s TO4

ntt_SIMD_bot 115s 215s TO4

intt_SIMD_top 125s 197s TO4

intt_SIMD_bot 79s 142s TO4

IPA Cortex-M4 ntt_fast_plant 177s 454s TO4

invntt_fast_plant 99s 218s TO4

pqm4 Cortex-M4 ntt_fast 162s 218s 419s
invntt_fast 1291s 1298s 1289s

4 TO indicates timeout (which is 2 hours)

Dilithium and Kyber NTTs (Section 4.1.1 and 4.2.1). Barrett multiplication is employed755

in ARM aarch64 Dilithium and Kyber NTTs (Section 4.1.2 and 4.2.2). The optimal ARM756

Cortex-M4 Kyber NTT currently uses Plantard multiplication instead (Section 4.2.3). The757

optimized ARM Cortex-M4 implementation moreover twists variables to avoid reduction758

in inverse NTT. With so many optimizations on different NTT implementations, the759

correctness of each and every implementation is far from clear. Verifying diverse NTT760

implementations is an important yet challenging problem.761

Algebraic linear analysis is our answer to verify diverse NTT implementations on762

different architectures. Based on the insight of algebraic abstraction, algebraic linear763

analysis employs algebraic techniques to verify linear computation in NTT implementations.764

In contrast to traditional bit-accurate techniques such as SMT QFBV, algebraic linear765

analysis is more scalable and verifies 32-bit computation in Dilithium NTT easily (Section 5).766

It moreover outperforms SMT QFBV conclusively for efficient Barrett and Plantard767

multiplication employed in Kyber NTT. The generality and efficacy of algebraic linear768

analysis are supported by our extensive experiments. It would be interesting to verify769

more sophisticated NTT implementations with our technique. Investigations about the770

limitations of algebraic linear analysis are certainly welcome.771

To our knowledge, the PQClean Intel AVX2 and ARM aarch64 implementations for772

Dilithium NTT have never been verified. The fastest ARM Cortex-M4 Kyber NTT773

implementation with Plantard multiplication is never verified until now. Due to the774

generality of algebraic linear analysis, we report the first verification results on 3 NTT775

implementations for Dilithium and Kyber on Intel AVX2, ARM aarch64 and Cortex-M4.776

Without our new technique, the verification of Intel AVX2 and ARM aarch64 Dilithium777

NTT implementations is infeasible for the existing bit-accurate technique SMT QFBV.778
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