
CoqCryptoLine: A Verified Model
Checker with Certified Results

Ming-Hsien Tsai4(B), Yu-Fu Fu2, Jiaxiang Liu5, Xiaomu Shi3,
Bow-Yaw Wang1, and Bo-Yin Yang1

1 Academia Sinica, Taipei, Taiwan
{bywang,byyang}@iis.sinica.edu.tw

2 Georgia Institute of Technology, Atlanta, USA
yufu@gatech.edu

3 Institute of Software, Chinese Academy of Sciences, Beijing, China
xshi0811@gmail.com

4 National Institute of Cyber Security, Taipei, Taiwan
mhtsai208@gmail.com

5 Shenzhen University, Shenzhen, China
jiaxiang0924@gmail.com

Abstract. We present the verified model checker CoqCryptoLine
for cryptographic programs with certified verification results. The
CoqCryptoLine verification algorithm consists of two reductions. The
algebraic reduction transforms into a root entailment problem; and the
bit-vector reduction transforms into an SMT QF_BV problem. We
specify and verify both reductions formally using Coq with MathComp.
The CoqCryptoLine tool is built on the OCaml programs extracted
from verified reductions. CoqCryptoLine moreover employs certified
techniques for solving the algebraic and logic problems. We evaluate
CoqCryptoLine on cryptographic programs from industrial security
libraries.

1 Introduction

CoqCryptoLine [1] is a verified model checker with certified verification
results. It is designed for verifying complex non-linear integer computations
commonly found in cryptographic programs. The verification algorithms of
CoqCryptoLine consist of two reductions. The algebraic reduction transforms
polynomial equality checking into a root entailment problem in commutative
algebra; the bit-vector reduction reduces range properties to satisfiability of
queries in the Quantifier-Free Bit-Vector (QF_BV) logic from Satisfiability
Modulo Theories (SMT) [6]. Both verification algorithms are formally specified
and verified by the proof assistant Coq with MathComp [7,17]. CoqCryp-

toLine verification programs are extracted from the formal specification and
therefore verified by the proof assistant automatically.

The original version of this chapter was revised: The mistakes in authors affiliation
information and typographical errors have been corrected. The correction to this
chapter is available at https://doi.org/10.1007/978-3-031-37703-7_22
c© The Author(s) 2023, corrected publication 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 227–240, 2023.
https://doi.org/10.1007/978-3-031-37703-7_11

https://zenodo.org/record/7881403
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_11&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_22
https://doi.org/10.1007/978-3-031-37703-7_11

228 M.-H. Tsai et al.

To minimize errors from external tools, recent developments in certified verifi-
cation are employed by CoqCryptoLine. The root entailment problem is solved
by the computer algebra system (CAS) Singular [19]. CoqCryptoLine asks
the external algebraic tool to provide certificates and validates certificates with
the formal polynomial theory in Coq. SMT QF_BV queries on the other hand
are answered by the verified SMT QF_BV solver CoqQFBV [33]. Answers to
SMT QF_BV queries are therefore all certified as well. With formally verified
algorithms and certified answers from external tools, CoqCryptoLine gives
verification results with much better guarantees than average automatic verifi-
cation tools.

Reliable verification tools would not be very useful if they could not check
real-world programs effectively. In our experiments, CoqCryptoLine verifies
54 real-world cryptographic programs. 52 of them are from well-known security
libraries such as Bitcoin [35] and OpenSSL [30]. They are implementations
of field and group operations in elliptic curve cryptography. The remaining two
are the Number-Theoretic Transform (NTT) programs from the post-quantum
cryptosystem Kyber [10]. All field operations are implemented in a few hundred
lines and verified in 6 minutes. The most complicated generic group operation
in the elliptic curve Curve25519 consists of about 4000 lines and is verified by
CoqCryptoLine in 1.5 h.

Related Work. There are numerous model checkers in the community, e.g. [8,
13,21–23]. Nevertheless, few of them are formally verified. To our knowl-
edge, the first verification of a model checker was performed in Coq for
the modal μ-calculus [34]. The LTL model checker CAVA [15,27] and the
model checker Munta [38,39] for timed automata were developed and verified
using Isabelle/HOL [29], which can be considered as verified counterparts
of SPIN [21] and Uppaal [23], respectively. CoqCryptoLine instead checks
CryptoLine models [16,31] that are for the correctness of cryptographic pro-
grams. It can be seen as a verified version of CryptoLine. A large body of work
studies the correctness of cryptographic programs, e.g. [2–4,9,12,14,24,26,40],
cf. [5] for a survey. They either require human intervention or are unverified, while
our work is fully automatic and verified. The most relevant work is bvCryp-

toLine [37], which is the first automated and partly verified model checker
for a very limited subset of CryptoLine. We will compare our work with it
comprehensively in Sect. 2.3.

2 CoqCryptoLine

CoqCryptoLine is an automatic verification tool that takes a CryptoLine

specification as input and returns certified results indicating the validity of the
specification. We briefly describe the CryptoLine language [16] followed by the
modules, features, and optimizations of CoqCryptoLine in this section.

2.1 CryptoLine Language

A CryptoLine specification contains a CryptoLine program with pre-
and post-conditions, where the CryptoLine program usually models some

CoqCryptoLine: A Verified Model Checker with Certified Results 229

cryptographic program [16,31]. Both the pre- and post-conditions consist of an
algebraic part, which is formulated as a conjunction of (modular) equations, and
a range part as an SMT QF_BV predicate. A CryptoLine specification is
valid if every program execution starting from a program state satisfying the
pre-condition ends in a state satisfying the post-condition.

CryptoLine is designed for modeling cryptographic assembly programs.
Besides the assignment (mov) and conditional assignment (cmov) statements,
CryptoLine provides arithmetic statements such as addition (add), addition
with carry (adc), subtraction (sub), subtraction with borrow (sbb), half multi-
plication (mul) and full multiplication (mull). Most of them have versions that
model the carry/borrow flags explicitly (like adds, adcs, subs, sbbs). It also
allows bitwise statements, for instance, bitwise AND (and), OR (or) and left-
shift (shl). To deal with multi-word arithmetic, CryptoLine further includes
multi-word constructs, for example, those that split (split) or join (join) words,
as well as multi-word shifts (cshl). CryptoLine is strongly typed, admitting
both signed and unsigned interpretations for bit-vector variables and constants.
The cast statement converts types explicitly. Finally, CryptoLine also sup-
ports special statements (assert and assume) for verification purposes.

2.2 The Architecture of CoqCryptoLine

CoqCryptoLine reduces the verification problem of a CryptoLine specifi-
cation to instances of root entailment problems and SMT problems over the
QF_BV logic. These instances are then solved by respective certified techniques.
Moreover, the components in CoqCryptoLine are also specified and verified
by the proof assistant Coq with MathComp [7,17]. Figure 1 gives an overview
of CoqCryptoLine. In the figure, dashed components represent external tools.
Rectangular boxes are verified components and rounded boxes are unverified.
Note that all our proof efforts using Coq are transparent to users. No Coq

proof is required from users during verification of cryptographic programs with
CoqCryptoLine. Details can be found in [36].

Starting from a CryptoLine specification text, the CoqCryptoLine parser
translates the text into an abstract syntax tree defined in the Coq module DSL.
The module gives formal semantics for the typed CryptoLine language [16].
The validity of CryptoLine specifications is also formalized. Similar to most
program verification tools, CoqCryptoLine transforms CryptoLine specifi-
cations to the static single assignment (SSA) form. The SSA module gives our
transformation algorithm. It moreover shows that validity of CryptoLine speci-
fications is preserved by the SSA transformation. CoqCryptoLine then reduces
the verification problem via two Coq modules.

The SSA2ZSSA module contains our algebraic reduction to the root entail-
ment problem. Concretely, a system of (modular) equations is constructed from
the given program so that program executions correspond to the roots of the
system of (modular) equations. To verify algebraic post-conditions, it suffices to
check if the roots for executions are also roots of (modular) equations in the
post-condition. However, program executions can deviate from roots of (modu-
lar) equations when over- or under-flow occurs. CoqCryptoLine will generate

230 M.-H. Tsai et al.

COQCRYPTOLINE parser

DSL

SSASSA2ZSSA SSA2QFBV

Validator

computer algebra system

SMT QF BV solver

solve
solve

solve
validate

trusted
verified

untrusted

verified module

verified external solver
unverified module

unverified external solver

Fig. 1. Overview of CoqCryptoLine

soundness conditions to ensure the executions conform to our (modular) equa-
tions. The algebraic verification problem is thus reduced to the root entailment
problem provided that soundness conditions hold.

The SSA2QFBV module gives our bit-vector reduction to the SMT QF_BV

problem. It constructs an SMT query to check the validity of the given Crypto-

Line range specification. Concretely, an SMT QF_BV query is built such that
all program executions correspond to satisfying assignments to the query and
vice versa. To verify the range post-conditions, it suffices to check if satisfying
assignments for the query also satisfy the post-conditions. The range verifica-
tion problem is thus reduced to the SMT QF_BV problem. On the other hand,
additional SMT queries are constructed to check soundness conditions for the
algebraic reduction. We formally prove the equivalence between soundness con-
ditions and corresponding queries.

With the two formally verified reduction algorithms, it remains to solve the
root entailment problems and the SMTQF_BV problems with external solvers.
CoqCryptoLine invokes an external computer algebra system (CAS) to solve
the root entailment problems, and improves the techniques in [20,37] to validate
the (untrusted) returned answers. Currently, the CAS Singular [19] is sup-
ported. To solve the SMT QF_BV problems, CoqCryptoLine employs the
certified SMT QF_BV solver CoqQFBV [33]. In all cases, instances of the two
kinds of problems are solved with certificates. And CoqCryptoLine employs
verified certificate checkers to validate the answers to further improve assurance.

Note that the algebraic reduction in SSA2ZSSA is sound but not complete due
to the abstraction of bit-accurate semantics into (modular) polynomial equations
over integers. Thus a failure in solving the root entailment problem by CAS does
not mean that the algebraic post-conditions are violated. On the other hand, the
bit-vector reduction in SSA2QFBV is both sound and complete.

The CoqCryptoLine tool is built on OCaml programs extracted from
verified algorithms in Coq with MathComp. We moreover integrate the OCaml

CoqCryptoLine: A Verified Model Checker with Certified Results 231

programs from the certified SMT QF_BV solver CoqQFBV. Our trusted
computing base consists of (1) CoqCryptoLine parser, (2) text interface with
external SAT solvers (from CoqQFBV), (3) the proof assistant Isabelle [29]
(from the SAT solver certificate validator Grat used by CoqQFBV) and (4) the
Coq proof assistant. Particularly, sophisticated decision procedures in external
CASs and SAT solvers used in CoqQFBV need not be trusted.

2.3 Features and Optimizations

CoqCryptoLine comes with the following features and optimizations imple-
mented in its modules.

Type System. CoqCryptoLine fully supports the type system of the Cryp-

toLine language. The type system is used to model bit-vectors of arbitrary
bit-widths with unsigned or signed interpretation. Such a type system allows
CoqCryptoLine to model more industrial examples translated from C pro-
grams via GCC [16] or LLVM [24] compared to bvCryptoLine [37], which only
allows unsigned bit-vectors, all of the same bit-width.

Mixed Theories. With the assert and assume statements supported by
CoqCryptoLine, it is possible to make an assertion on the range side (or
on the algebraic side) and then make an equivalent assumption on the alge-
braic side (or resp. on the range side). With this feature, a predicate can be
asserted on one side where the predicate is easier to prove, and then assumed
on the other side to ease the verification of other predicates. The equivalence
between the asserted predicate and the assumed predicate is currently not ver-
ified by CoqCryptoLine, though it is achievable. Both assert and assume

statements are not available in bvCryptoLine.

Multi-threading. All extracted OCaml code from the verified algorithms in Coq

runs sequentially. To speed up, SMT QF_BV problems, as well as root entail-
ment problems, are solved parallelly.

Efficient Root Entailment Problem Solving. CoqCryptoLine can be used as
a solver for root entailment problems with certificates validated by a verified
validator. A root entailment problem is reduced to an ideal membership problem,
which is then solved by computing Gröbner basis [20]. To solve a root entailment
problem with a certificate, we need to find a witness of polynomials c0, . . . , cn
such that

q = Σn
i=0cipi (1)

where q and pi’s are given polynomials. To compute the witness, bvCryptoLine

relies on gbarith [32], where new variables are introduced. CoqCryptoLine

utilizes the lift command in Singular instead without adding fresh variables.
We show in the evaluation section that using lift is more efficient than using
gbarith. The witness found is further validated by CoqCryptoLine, which

232 M.-H. Tsai et al.

relies on the polynomial normalization procedure norm_subst in Coq to check
if Eq. 1 holds. bvCryptoLine on the other hand uses the ring tactic in Coq,
where extra type checking is performed. Elimination of ideal generators through
variable substitution is an efficient approach to simplify an ideal membership
problem [37]. The elimination procedure implemented in CoqCryptoLine can
identify much more variable substitution patterns than those found by bvCryp-

toLine.

Multi-moduli. Modular equations with multi-moduli are common in post-
quantum cryptography. For example, the post-quantum cryptosystem Kyber

uses the polynomial ring Z3329[X]/〈X256 + 1〉 containing two moduli 3329 and
X256+1. To support multi-moduli in CoqCryptoLine, in the proof of our alge-
braic reduction, we have to find integers c0, . . . , cn such that e1 − e2 = Σn

i=0cimi

given the proof of e1 = e2 (mod m0, . . . ,mn) where e1, e2, and mi’s are inte-
gers. Instead of implementing a complicated procedure to find the exact ci’s, we
simply invoke the xchoose function provided by MathComp to find ci’s based
on the proof of e1 = e2 (mod m0, . . . ,mn). Multi-moduli is not supported by
bvCryptoLine.

Tight Integration with CoqQFBV. CoqCryptoLine verifies every atomic
range predicate separately using the certified SMT QF_BV solver CoqQFBV.
Constructing a text file as the input to CoqQFBV for every atomic range
predicate is not a good idea because the bit-blasting procedure in CoqQFBV

is performed several times for the identical program. CoqCryptoLine thus is
tightly integrated with CoqQFBV to speed up bit-blasting of the same program
using the cache provided by CoqQFBV. bvCryptoLine uses the SMT solver
Boolector to prove range predicates without certificates.

Slicing. During the reductions from the verification problem of a Crypto-

Line specification to instances of root entailment problems and SMT QF_BV

problems, a verified static slicing is performed in CoqCryptoLine to produce
smaller problems. Unlike the work in [11], which sets all assume statements as
additional slicing criteria, the slicing in CoqCryptoLine is capable of pruning
unrelated predicates in assume statements. The slicing procedure implemented
in CoqCryptoLine is much more complicated than the one in bvCryptoLine

due to the presence of assume statements. This feature is provided as command-
line option because it makes the verification incomplete. With slicing, the time
in verifying industrial examples is reduced dramatically.

3 Walkthrough

We illustrate how CoqCryptoLine is used in this section. The x86_64 assembly
subroutine ecp_nistz256_mul_montx from OpenSSL [30] shown in Fig. 2 is
verified as an example.

An input for CoqCryptoLine contains a CryptoLine specification for the
assembly subroutine. The original subroutine is marked between the comments

CoqCryptoLine: A Verified Model Checker with Certified Results 233

PROGNAME STARTS and PROGNAME ENDS, which is obtained automatically from
the Python script provided by CryptoLine [31].

Prior to the “START” comment are the parameter declaration, pre-condition,
and variable initialization. After the “END” comment is the post-condition of
the subroutine. After the subroutine ends, the result is moved to the output
variables.

The assembly subroutine ecp_nistz256_mul_montx takes two 256-bit
unsigned integers a and b and the modulus m as inputs. The 256-bit integer
m is the prime p256 = 2256 − 2224 + 2192 + 296 − 1 from the NIST curve. The
256-bit integers a and b (less than the prime) are the multiplicands. Each 256-bit
input integer d ∈ {a, b,m} is denoted by four 64-bit unsigned integer variables
di (for 0 ≤ i < 4) in little-endian representation. The expression limbs n [d0,
d1, ..., di] is short for d0 + d1*2**n + ... +di*2**(i *n)1. The inputs and
constants are then put in the variables for memory cells with the mov state-
ments. There are two parts to a pre-condition. The first part is for the algebraic
reduction; the second part is for the bit-vector reduction:

and [m0=0xffffffffffffffff, m1=0x00000000ffffffff,
m2=0x0000000000000000, m3=0xffffffff00000001]

&&
and [m0=0xffffffffffffffff@64, m1=0x00000000ffffffff@64,

m2=0x0000000000000000@64, m3=0xffffffff00000001@64,
limbs 64 [a0,a1,a2,a3] <u limbs 64 [m0,m1,m2,m3],
limbs 64 [b0,b1,b2,b3] <u limbs 64 [m0,m1,m2,m3]]

The output 256-bit integer represented by the four variables ci (for 0 ≤ i < 4)
has two requirements. Firstly, the output integer times 2256 equals the product
of the input integers modulo p256. Secondly, the output integer is less than p256.
Formally, we have this post-condition:

eqmod limbs 64 [0, 0, 0, 0, c0, c1, c2, c3]
limbs 64 [a0, a1, a2, a3] * limbs 64 [b0, b1, b2, b3]
limbs 64 [m0, m1, m2, m3]

&&
limbs 64 [c0, c1, c2, c3] <u limbs 64 [m0, m1, m2, m3]

Here, we employ the algebraic reduction to verify the non-linear modular
equality, and the bit-vector reduction to verify the proper range of the output
integer.

However, verifying ecp_nistz256_mul_montx takes extra annotations to hint
CoqCryptoLine how to verify the post-condition. E.g., in adding two 256-
bit integers represented by 64-bit variables, a chain of four 64-bit additions is
performed and carries are propagated. The last carry as the chain ends must be
zero or the 256-bit sum is incorrect. In ecp_nistz256_mul_montx two interleaved
addition chains use the carry and the overflow flags for carries respectively, so
we annotate as follows at the end of two interleaving addition chains to tell
CoqCryptoLine about the final carries:
1 ** is the exponentiation operator in CryptoLine.

234 M.-H. Tsai et al.

proc main
(uint64 a0, uint64 a1, uint64 a2, uint64 a3,
uint64 b0, uint64 b1, uint64 b2, uint64 b3,
uint64 m0, uint64 m1, uint64 m2, uint64 m3) =

{ and [m0 = 0xffffffffffffffff,
m1 = 0x00000000ffffffff,
m2 = 0x0000000000000000,
m3 = 0xffffffff00000001]

&&
and [m0 = 0xffffffffffffffff@64,

m1 = 0x00000000ffffffff@64,
m2 = 0x0000000000000000@64,
m3 = 0xffffffff00000001@64,
limbs 64 [a0, a1, a2, a3] <u

limbs 64 [m0, m1, m2, m3],
limbs 64 [b0, b1, b2, b3] <u

limbs 64 [m0, m1, m2, m3]] }

mov L0x7fffffffd9b0 a0; mov L0x7fffffffd9b8 a1;
mov L0x7fffffffd9c0 a2; mov L0x7fffffffd9c8 a3;
mov L0x7fffffffd9d0 b0; mov L0x7fffffffd9d8 b1;
mov L0x7fffffffd9e0 b2; mov L0x7fffffffd9e8 b3;

mov L0x55555557c000 0xffffffffffffffff@uint64;
mov L0x55555557c008 0x00000000ffffffff@uint64;
mov L0x55555557c010 0x0000000000000000@uint64;
mov L0x55555557c018 0xffffffff00000001@uint64;

(* ecp_nistz256_mul_montx STARTS *)
mov rdx L0x7fffffffd9d0;
mov r9 L0x7fffffffd9b0;
mov r10 L0x7fffffffd9b8;
mov r11 L0x7fffffffd9c0;
mov r12 L0x7fffffffd9c8;
mull r9 r8 rdx r9;
mull r10 rcx rdx r10;
mov r14 0x20@uint64;
mov r13 0@uint64;

...

mov r8 0@uint64;
clear carry;
clear overflow;
mull rbp rcx rdx L0x7fffffffd9b0;

adcs carry r9 r9 rcx carry;
adcs overflow r10 r10 rbp overflow;
mull rbp rcx rdx L0x7fffffffd9b8;
adcs carry r10 r10 rcx carry;
adcs overflow r11 r11 rbp overflow;
mull rbp rcx rdx L0x7fffffffd9c0;
adcs carry r11 r11 rcx carry;
adcs overflow r12 r12 rbp overflow;
mull rbp rcx rdx L0x7fffffffd9c8;
mov rdx r9;

adcs carry r12 r12 rcx carry;
split ddc rcx r9 32;
shl rcx rcx 32;
adcs overflow r13 r13 rbp overflow;
split rbp dc r9 32;

assert true && rbp=ddc;
assume rbp=ddc && true;

adcs carry r13 r13 r8 carry;
adcs overflow r8 r8 r8 overflow;

assert true && and [carry=0@1,overflow=0@1];
assume and [carry=0,overflow=0] && true;

...

mov L0x7fffffffda00 r8;
mov L0x7fffffffda08 r9;
(* ecp_nistz256_mul_montx ENDS *)

mov c0 L0x7fffffffd9f0;
mov c1 L0x7fffffffd9f8;
mov c2 L0x7fffffffda00;
mov c3 L0x7fffffffda08;

{ eqmod limbs 64 [0, 0, 0, 0, c0, c1, c2, c3]
limbs 64 [a0, a1, a2, a3] *
limbs 64 [b0, b1, b2, b3]
limbs 64 [m0, m1, m2, m3]

&&
limbs 64 [c0, c1, c2, c3] <u

limbs 64 [m0, m1, m2, m3] }

Fig. 2. CryptoLine Model for ecp_nistz256_mul_montx

assert true && and [carry=0@1, overflow=0@1];
assume and [carry=0, overflow=0] && true;

The assert statement verifies that both the carry and overflow flags are
zeroes through the bit-vector reduction. The assume statement then passes this
information to the algebraic reduction. Effectively, CoqCryptoLine checks that
both flags are zero for all inputs satisfying the pre-condition, then uses those facts
as lemmas to verify the post-condition with the algebraic reduction.

The full specification for ecp_nistz256_mul_montx has 230 lines, including
50 lines of manual annotations. 20 are straightforward annotations for variable
declaration and initialization. The remaining 30 lines of annotations are hints to
CoqCryptoLine, which then verifies the post-condition in 30 s with 24 threads.

The illustration of the typical verification flow shows how a user constructs
a CryptoLine specification. The pre-condition for program inputs, the post-
condition for outputs, and variable initialization must be specified manually.
Additional annotations may be added as hints. Notice that hints only tell
CoqCryptoLine what, not why properties should hold. Proofs of annotated
hints and the post-condition are found by CoqCryptoLine automatically. Con-
sequently, manual annotations are minimized and verification efforts are reduced
significantly.

CoqCryptoLine: A Verified Model Checker with Certified Results 235

4 Evaluation

We evaluate CoqCryptoLine on 52 benchmarks from four industrial security
libraries Bitcoin [35], boringSSL [14,18], nss [25], and OpenSSL [30]. The C
reference and optimized avx2 implementations of the Number-Theoretic Trans-
form (NTT) from the post-quantum key encapsulation mechanism Kyber [10]
are also evaluated. Among the total 54 benchmarks, 43 benchmarks contain fea-
tures not supported by bvCryptoLine such as signed variables. All experiments
are performed on an Ubuntu 22.04.1 machine with a 3.20GHz Intel Xeon Gold
6134M CPU and 1TB RAM.

Benchmarks from security libraries are various field and group operations
from elliptic curve cryptography (ECC). In ECC, rational points on curves are
represented by elements in large finite fields. In Bitcoin, the finite field is the
residue system modulo the prime p256k1 = 2256 −232 −29−28−27−26 −24−1.
For other security libraries (boringSSL, nss, and OpenSSL), we verify the
operations in Curve25519 using the residue system modulo the prime p25519 =
2255 −19 as the underlying field. Rational points on elliptic curves form a group.
The group operation in turn is implemented by a number of field operations.

In lattice-based post-quantum cryptosystems, polynomial rings are used.
Specifically, the polynomial ring Z3329[X]/〈X256 + 1〉 is used in Kyber. To
speed up multiplication in the polynomial ring, Kyber requires the multiplica-
tion to be implemented by NTT. NTT is a discrete Fast Fourier Transform over
finite fields. Instead of complex roots of unity, NTT uses the principal roots of
unity in fields. Mathematically, the Kyber NTT computes the following ring
isomorphism

Z3329[X]/〈X256 + 1〉 ∼= Z3329[X]/〈X2 − ζ0〉 × · · · × Z3329[X]/〈X2 − ζ127〉
where ζi’s are the principal roots of unity.

We first compare CoqCryptoLine with all optimizations described in this
paper against the unverified model checker CryptoLine [16]. Both tools invoke
the computer algebra system Singular [19], but CryptoLine neither lets Sin-
gular produce certificates nor certifies answers from Singular. CoqCrypto-

Line moreover uses the certified SMT QF_BV solver CoqQFBV [33]; Cryp-

toLine uses the uncertified but very efficient Boolector [28].
For the ECC experiments, CoqCryptoLine verifies all field operations in

6 minutes. It takes a few thousand seconds to verify group operations. The
most complex implementation (x25519_scalar_mult_generic) from boringSSL

(4274 statements) takes about 1.5 hours.2 For Kyber, CoqCryptoLine verifies
in 2642 and 1048 seconds, respectively, that the reference and avx2 NTT imple-
mentations indeed compute the isomorphism. The unverified CryptoLine in
comparison finishes verification in about 95 seconds. A summary of the compar-
ison between CoqCryptoLine and CryptoLine is shown in Fig. 3a. Though
CoqCryptoLine is much slower than CryptoLine, the running time (1.5
hours) for the most complex implementation is still acceptable.
2 Two (out of three) modular polynomial equations in the post-condition are certified.

236 M.-H. Tsai et al.

10−1 101 103

10−1

101

103

(a) COQCRYPTOLINE versus CRYPTO-
LINE

0

50

100

2.09

93.38

4.63

(b) Percentages of average running time
for COQCRYPTOLINE internal OCAML
code (INT), external SMT QF BV solver
(SMT), and external computer algebra sys-
tem (CAS)

10−1 101 103

10−1

101

103

gbarith

l
i
f
t

(c) gbarith versus lift

10−1 101 103 105

10−1

101

103

105

(d) COQCRYPTOLINE− versus COQCRYP-
TOLINE

Fig. 3. Running time (in seconds) comparisons

Figure 3b shows the percentages of average running time for CoqCrypto-

Line internal OCaml code (INT), external SMT QF_BV solver (SMT), and
external computer algebra system (CAS). External solvers take much more time
than the internal OCaml program does. Between external solvers, the exter-
nal computer algebra system takes 4.63% of the time and the external SMT

QF_BV solver spends 93.28% of the time.
To show the performance of the lift optimization, we run CoqCryptoLine

and bvCryptoLine on root entailment problems generated from the bench-
marks. Here we only consider 12 root entailment problems that trigger gbarith
in bvCryptoLine. Figure 3c shows the running time of Singular in solving

CoqCryptoLine: A Verified Model Checker with Certified Results 237

root entailment problems based on gbarith in bvCryptoLine and lift in
CoqCryptoLine. bvCryptoLine fails to solve 3 root entailment problems in
one hour. For the other 9 root entailment problems, lift outperforms gbarith.

We also compare CoqCryptoLine with and without slicing. The version of
CoqCryptoLine without slicing is denoted by CoqCryptoLine

−. The run-
ning time comparison between CoqCryptoLine and CoqCryptoLine

− in
Fig. 3d shows that slicing reduces the running time obviously.

5 Conclusion

CoqCryptoLine is a verified model checker for cryptographic programs with
certified results. Its modules are formally verified in Coq with MathComp.
CoqCryptoLine moreover employs external tools and validates their answers
with certificates. We evaluate CoqCryptoLine on benchmarks from indus-
trial security libraries (Bitcoin, boringSSL, nss and OpenSSL) and a
post-quantum cryptography standard candidate (Kyber). In our experiments,
CoqCryptoLine verifies most cryptographic programs with certificates in a
reasonable time (6min). Benchmarks with thousands of lines are verified in
1.5 h. To our knowledge, this is the first certified verification on operations of
the elliptic curve secp256k1 used in Bitcoin, and the avx2 and reference imple-
mentations of Kyber number-theoretic transform.

Acknowledgments. The authors in Academia Sinica are partially funded by National
Science and Technology Council grants NSTC110-2221-E-001-008-MY3, NSTC111-
2221-E-001-014-MY3, NSTC111-2634-F-002-019, the Sinica Investigator Award AS-
IA-109-M01, the Data Safety and Talent Cultivation Project AS-KPQ-109-DSTCP,
and the Intel Fast Verified Postquantum Software Project. The authors in Shenzhen
University and ISCAS are partially funded by Shenzhen Science and Technology Inno-
vation Commission (JCYJ20210324094202008), the National Natural Science Founda-
tion of China (62002228, 61836005), and the Natural Science Foundation of Guangdong
Province (2022A1515011458, 2022A1515010880).

References

1. CoqCryptoLine GitHub repository (2023). https://github.com/fmlab-iis/coq-
cryptoline

2. Affeldt, R.: On construction of a library of formally verified low-level arithmetic
functions. Innov. Syst. Softw. Eng. 9(2), 59–77 (2013)

3. Almeida, J.B., et al.: Jasmin: High-assurance and high-speed cryptography. In:
ACM SIGSAC Conference on Computer and Communications Security, pp. 1807–
1823. ACM (2017)

4. Appel, A.W.: Verification of a cryptographic primitive: SHA-256. ACM Trans.
Programm. Lang. Syst. 37(2), 7:1–7:31 (2015)

5. Barbosa, M., et al.: Sok: Computer-aided cryptography. In: 42nd IEEE Symposium
on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pp.
777–795. IEEE (2021). https://doi.org/10.1109/SP40001.2021.00008

https://github.com/fmlab-iis/coq-cryptoline
https://github.com/fmlab-iis/coq-cryptoline
https://doi.org/10.1109/SP40001.2021.00008

238 M.-H. Tsai et al.

6. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

7. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science, Springer (2004). https://doi.org/10.1007/978-3-662-07964-5

8. Beyer, D., Keremoglu, M.E.: Cpachecker: A tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6806, pp. 184–190. Springer
(2011). https://doi.org/10.1007/978-3-642-22110-1_16

9. Bond, B., et al.: Vale: Verifying high-performance cryptographic assembly code.
In: USENIX Security Symposium, pp. 917–934. USENIX Association (2017)

10. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In:
Smith, M., Piessens, F. (eds.) IEEE European Symposium on Security and Privacy,
pp. 353–367. IEEE (2018)

11. Chalupa, M., Strejcek, J.: Evaluation of program slicing in software verification. In:
Ahrendt, W., Tarifa, S.L.T. (eds.) Integrated Formal Methods - 15th International
Conference, IFM 2019, Bergen, Norway, December 2-6, 2019, Proceedings. Lecture
Notes in Computer Science, vol. 11918, pp. 101–119. Springer (2019). https://doi.
org/10.1007/978-3-030-34968-4_6

12. Chen, Y.F., et al.: Verifying Curve25519 software. In: Ahn, G.J., Yung, M., Li, N.
(eds.) ACM SIGSAC Conference on Computer and Communications Security, pp.
299–309. ACM (2014)

13. Cimatti, A., et al.: NuSMV 2: An opensource tool for symbolic model checking. In:
Brinksma, E., Larsen, K.G. (eds.) Computer Aided Verification, 14th International
Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings. Lec-
ture Notes in Computer Science, vol. 2404, pp. 359–364. Springer (2002). https://
doi.org/10.1007/3-540-45657-0_29

14. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level
code for cryptographic arithmetic - with proofs, without compromises. In: IEEE
Symposium on Security and Privacy, pp. 1202–1219. IEEE (2019)

15. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.: A
fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
Computer Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings. Lecture Notes in Computer
Science, vol. 8044, pp. 463–478. Springer (2013). https://doi.org/10.1007/978-3-
642-39799-8_31

16. Fu, Y.F., Liu, J., Shi, X., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Signed cryptographic
program verification with typed cryptoline. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM SIGSAC Conference on Computer and Communications
Security, pp. 1591–1606. ACM (2019)

17. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J.
Formalized Reason. 3(2), 95–152 (2010)

18. Google: Boringssl (2021). https://boringssl.googlesource.com/boringssl/
19. Greuel, G.M., Pfister, G.: A Singular Introduction to Commutative Algebra.

Springer-Verlag (2002)
20. Harrison, J.: Automating elementary number-theoretic proofs using Gröbner bases.

In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 51–66. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_5

21. Holzmann, G.J.: The SPIN Model Checker - primer and reference manual. Addison-
Wesley (2004)

www.SMT-LIB.org
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-030-34968-4_6
https://doi.org/10.1007/978-3-030-34968-4_6
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31
https://boringssl.googlesource.com/boringssl/
https://doi.org/10.1007/978-3-540-73595-3_5

CoqCryptoLine: A Verified Model Checker with Certified Results 239

22. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002). http://research.microsoft.com/
users/lamport/tla/book.html

23. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1-2), 134–152 (1997). https://doi.org/10.1007/s100090050010

24. Liu, J., Shi, X., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Verifying arithmetic in cryp-
tographic C programs. In: Lawall, J., Marinov, D. (eds.) IEEE/ACM International
Conference on Automated Software Engineering, pp. 552–564. IEEE (2019)

25. Mozilla: Network security services (2021). https://developer.mozilla.org/en-US/
docs/Mozilla/Projects/NSS

26. Myreen, M.O., Curello, G.: Proof Pearl: a verified bignum implementation in x86-
64 machine code. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307,
pp. 66–81. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1_5

27. Neumann, R.: Using promela in a fully verified executable LTL model checker.
In: Giannakopoulou, D., Kroening, D. (eds.) Verified Software: Theories, Tools
and Experiments - 6th International Conference, VSTTE 2014, Vienna, Austria,
July 17-18, 2014, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 8471, pp. 105–114. Springer (2014). https://doi.org/10.1007/978-3-319-12154-
3_7

28. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisfiability, Boolean Mod-
eling Comput. 9(1), 53–58 (2014)

29. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

30. OpenSSL: OpenSSL library. https://github.com/openssl/openssl (2021)
31. Polyakov, A., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Verifying arithmetic assembly

programs in cryptographic primitives. In: Schewe, S., Zhang, L. (eds.) Interna-
tional Conference on Concurrency Theory, pp. 4:1–4:16. LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2018)

32. Pottier, L.: Connecting Gröbner bases programs with Coq to do proofs in algebra,
geometry and arithmetics. In: Rudnicki, P., Sutcliffe, G., Konev, B., Schmidt, R.A.,
Schulz, S. (eds.) Proceedings of the LPAR 2008 Workshops, Knowledge Exchange:
Automated Provers and Proof Assistants, and the 7th International Workshop on
the Implementation of Logics, Doha, Qatar, November 22, 2008. CEUR Workshop
Proceedings, vol. 418. CEUR-WS.org (2008). http://ceur-ws.org/Vol-418/paper5.
pdf

33. Shi, X., Fu, Y.F., Liu, J., Tsai, M.H., Wang, B.Y., Yang, B.Y.: CoqQFBV: a
scalable certified SMT quantifier-free bit-vector solver. In: Leino, R., Silva, A.
(eds.) International Conference on Computer Aided Verification. Springer, Lecture
Notes in Computer Science (2021)

34. Sprenger, C.: A verified model checker for the modal µ-calculus in Coq. In: Steffen,
B. (ed.) Tools and Algorithms for Construction and Analysis of Systems, 4th Inter-
national Conference, TACAS ’98, Held as Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28
- April 4, 1998, Proceedings. Lecture Notes in Computer Science, vol. 1384, pp.
167–183. Springer (1998). https://doi.org/10.1007/BFb0054171

35. The Bitcoin Developers: Bitcoin source code (2021). https://github.com/bitcoin/
bitcoin

36. Tsai, M.H., Fu, Y.F., Shi, X., Liu, J., Wang, B.Y., Yang, B.Y.: Automatic certified
verification of cryptographic programs with COQCRYPTOLINE. IACR Cryptol.
ePrint Arch. p. 1116 (2022)

http://research.microsoft.com/users/lamport/tla/book.html
http://research.microsoft.com/users/lamport/tla/book.html
https://doi.org/10.1007/s100090050010
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://doi.org/10.1007/978-3-319-03545-1_5
https://doi.org/10.1007/978-3-319-12154-3_7
https://doi.org/10.1007/978-3-319-12154-3_7
https://doi.org/10.1007/3-540-45949-9
https://github.com/openssl/openssl
http://ceur-ws.org/Vol-418/paper5.pdf
http://ceur-ws.org/Vol-418/paper5.pdf
https://doi.org/10.1007/BFb0054171
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin

240 M.-H. Tsai et al.

37. Tsai, M.H., Wang, B.Y., Yang, B.Y.: Certified verification of algebraic properties
on low-level mathematical constructs in cryptographic programs. In: Evans, D.,
Malkin, T., Xu, D. (eds.) ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1973–1987. ACM (2017)

38. Wimmer, S.: Munta: A verified model checker for timed automata. In: André,
É., Stoelinga, M. (eds.) Formal Modeling and Analysis of Timed Systems - 17th
International Conference, FORMATS 2019, Amsterdam, The Netherlands, August
27-29, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11750, pp. 236–
243. Springer (2019). https://doi.org/10.1007/978-3-030-29662-9_14

39. Wimmer, S., Lammich, P.: Verified model checking of timed automata. In: Beyer,
D., Huisman, M. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems - 24th International Conference, TACAS 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 10805, pp. 61–78. Springer (2018). https://doi.org/10.1007/
978-3-319-89960-2_4

40. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: A
verified modern cryptographic library. In: ACM SIGSAC Conference on Computer
and Communications Security, pp. 1789–1806. ACM (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-29662-9_14
https://doi.org/10.1007/978-3-319-89960-2_4
https://doi.org/10.1007/978-3-319-89960-2_4
http://creativecommons.org/licenses/by/4.0/

	CoqCryptoLine: A Verified Model Checker with Certified Results
	1 Introduction
	2 CoqCryptoLine
	2.1 CryptoLine Language
	2.2 The Architecture of CoqCryptoLine
	2.3 Features and Optimizations

	3 Walkthrough
	4 Evaluation
	5 Conclusion
	References

