
Certified Verification for Algebraic Abstraction

Ming-Hsien Tsai4, Yu-Fu Fu2, Jiaxiang Liu5(B), Xiaomu Shi3, Bow-Yaw Wang1,
and Bo-Yin Yang1

1 Academia Sinica, Taipei, Taiwan
{bywang,byyang}@iis.sinica.edu.tw
2 Georgia Institute of Technology, Atlanta, USA

yufu@gatech.edu
3 Institute of Software, Chinese Academy of Sciences,

Beijing, China
xshi0811@gmail.com

4 National Institute of Cyber Security, Taipei, Taiwan
mhtsai208@gmail.com

5 Shenzhen University, Shenzhen, China
jiaxiang0924@gmail.com

Abstract. We present a certified algebraic abstraction technique for verifying
bit-accurate non-linear integer computations. In algebraic abstraction, programs
are lifted to polynomial equations in the abstract domain. Algebraic techniques
are employed to analyze abstract polynomial programs; SMT QF BV solvers are
adopted for bit-accurate analysis of soundness conditions. We explain how to
verify our abstraction algorithm and certify verification results. Our hybrid tech-
nique has verified non-linear computations in various security libraries such as
BITCOIN and OPENSSL. We also report the certified verification of Number-
Theoretic Transform programs from the post-quantum cryptosystem KYBER.

1 Introduction

Bit-accurate non-linear integer computations are infamously hard to verify. Conven-
tional bit-accurate techniques such as bit blasting do not work well for non-linear
computations. Approximation techniques through floating-point computation on the
other hand are inaccurate. Non-linear integer computation nonetheless is essential to
computer cryptography. Analyzing complex non-linear computation in cryptographic
libraries is still one of the most challenging problems of the utmost importance today.

In this paper, we address the verification problem through algebraic abstraction.
In algebraic abstraction, abstract programs are represented by polynomial equations.
Non-linear computation about abstract polynomial programs is analyzed algebraically
and hence more efficiently through techniques from commutative algebra. Algebraic
abstraction however is unsound due to overflow in bounded integer computation. We
characterize soundness conditions with queries using the Quantifier-Free Bit-Vector
(QF BV) logic from Satisfiability Modulo Theories (SMT) [2]. SMT solvers are then
used to check soundness conditions before applying algebraic abstraction.

Our hybrid technique takes advantages of both algebraic and bit-accurate analyses.
Non-linear algebraic properties are verified algebraically. Polynomials are computed
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 329–349, 2023.
https://doi.org/10.1007/978-3-031-37709-9_16

https://doi.org/10.5281/zenodo.7881358
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_16&domain=pdf
https://doi.org/10.1007/978-3-031-37709-9_16

330 M.-H. Tsai et al.

and analyzed by algorithms from commutative algebra. Coefficients, variables and
arithmetic functions are atomic in such algorithms. Our algebraic analysis is hence very
efficient for non-linear computation. Soundness conditions, on the other hand, require
bit-accurate analysis. Our technique applies SMT QF BV solvers to check soundness
conditions. By combining algebraic with bit-accurate analyses, algebraic abstraction
successfully verifies non-linear computation in real-world cryptographic programs.

Cryptographic programs undoubtedly are widely deployed critical software. Errors
in their verification need to be minimized. To this end, we use the proof assistant
COQ [4] to verify the soundness theorem for algebraic abstraction. To ensure the cor-
rectness of external algebraic and bit-accurate analysis tools, results from external tools
are certified in our technique as well. With verified abstraction and certified external
results, verification of bit-accurate non-linear integer computation through algebraic
abstraction is certified. We explain how to certify our hybrid verification technique.

We evaluate our certified technique with cryptographic programs from secu-
rity libraries in BITCOIN [27], BORINGSSL [8,12], NSS [20], OPENSSL [23] and
PQCRYPTO-SIDH [18]. These programs compute field and group operations in ellip-
tic curve cryptography. We also verify Number-Theoretic Transform (NTT) programs
from the post-quantum cryptosystem KYBER [6]. In lattice-based post-quantum cryp-
tography, computation in polynomial rings is needed. NTT is a discrete variant of the
Fast Fourier Transform used for polynomial multiplication in KYBER. Our certified
algebraic abstraction technique verifies cryptographic programs from elliptic curve and
post-quantum cryptography successfully. Our contributions are summarized as follows.

– We detail algebraic abstraction for checking non-linear modular equations with mul-
tiple moduli;

– We certify algebraic abstraction and its verification;
– We report certified verification results for 39 real-world cryptographic programs in
elliptic curve and post-quantum cryptography.

Related Work. GFVERIF employs an ad hoc technique to verify non-linear computation
in cryptographic programs with a computer algebra system [3]. CRYPTOLINE [9,24,29]
is a tool designed for the specification and verification of cryptographic assembly codes.
Its verification algorithm utilizes computer algebra systems in addition to SMT solvers.
CRYPTOLINE is also leveraged to verify cryptographic C programs [9,17]. The opti-
mized KYBER NTT program for avx2 is verified in [15], but the underlying verifi-
cation algorithm is left unexplained. None of these works certified their verification
results. Users had to trust these verification tools. BVCRYPTOLINE certifies algebraic
abstraction but not soundness conditions [29]. It does not allow multiple moduli in
modular equations either. Particularly, it cannot concisely specify NTT by the Chi-
nese remainder theorem over polynomial rings. Compared with these works, our tech-
nique admits modular equations with multiple moduli in assumptions and assertions,
and is fully certified. To explicate our advantages, consider the specification of mul-
tiplication in the field Zp434/〈x2 + 1〉 where p434 is a prime number. An element
in the field is of the form u0 + u1x where x2 + 1 = 0. To specify r0 + r1x is the
product of u0 + u1x and v0 + v1x, one can write two modular equations with one
modulo: r0 ≡ u0v0 − u1v1 mod [p434] and r1 ≡ u0v1 + u1v0 mod [p434]. With

Certified Verification for Algebraic Abstraction 331

multiple moduli, we write r0 + r1x ≡ (u0 + u1x)(v0 + v1x) mod [p434, x2 + 1]
succinctly. Our simple specifications are most useful for complicated fields such as
Zp381/〈x2 + 1, y3 − x − 1, z2 − y〉. Each element of the complex field is of the form∑

ui,j,kxiyjzk with 0 ≤ i, k < 2 and 0 ≤ j < 3. Twelve modular equations are
needed previously. One modular equation with multiple moduli suffices to specify its
field multiplication in this work. Furthermore, our technique is verified in COQ. The
correctness of our abstraction algorithm and soundness theorem are formally proven in
COQ. We also show how to certify results from external tools. In summary, the cor-
rectness of algebraic abstraction algorithm is verified and answers from external tools
are certified. Verification results are therefore fully certified. We believe this is the best
guarantee a model checker can offer. Our verified model checker is sufficiently practical
to verify industrial cryptographic programs too!

Analysis of linear polynomial programs was discussed, for instance, in [21,22]. The
reduction from the root entailment problem to the ideal membership problem is dis-
cussed in [14]. In this work, the computer algebra system SINGULAR [13] is employed
to compute standard bases of ideals and certificates. The certified SMT QF BV solver
COQQFBV [26] is adopted to certify soundness conditions.

The paper is organized as follows. Section 2 gives the needed backgrounds. It is fol-
lowed by the syntax and semantics of the language TOYLANG. An implementation of
the unsigned Montgomery reduction is given as a running example (Sect. 3). Section 4
presents algebraic abstraction and its verification algorithms. We briefly describe certi-
fied verification of algebraic abstraction in Sect. 5. Section 6 shows experimental results
of real-world cryptographic programs. We conclude in Sect. 7.

2 Preliminaries

Let N and Z denote the set of non-negative and all integers respectively. Fix a set of
variables x. We write Z[x] for the set of polynomials in variables x with coefficients in
Z. A polynomial equation is of the form e = e′ with e, e′ ∈ Z[x]; a polynomialmodular
equation is of the form e ≡ e′ mod [f0, f1, . . . , fm] with e, e′, f0, f1, . . . , fm ∈ Z[x].
A valuation ρ of x is a mapping from x to Z. Given a valuation ρ, a polynomial e
evaluates to the integer e[ρ] by replacing every variable x with ρ(x). A valuation ρ
is a root of the equation e = e′ if (e − e′)[ρ] = 0. A valuation ρ is a root of the
modular equation e ≡ e′ mod [f0, f1, . . . , fm] if (e − e′)[ρ] = z0f0[ρ] + z1f1[ρ] +
· · · + zmfm[ρ] for some z0, z1, . . . , zm ∈ Z. A (modular) equation is an equation or a
modular equation. A system of (modular) equations is a set of (modular) equations. A
root of a system of (modular) equations is a common root of every (modular) equation
in the system. Let Φ be a system of (modular) equations and φ a (modular) equation,
roots of Φ entail roots of φ (written ∀x.Φ =⇒ φ) if all roots of Φ are also roots of φ.
Given Φ and φ, the root entailment problem is to decide whether ∀x.Φ =⇒ φ.

An ideal in Z[x] generated by f0, f1, . . . , fm ∈ Z[x] is defined by
〈f0, f1, . . . , fm〉 = {f0h0 + f1h1 + · · · + fmhm|h0, h1, . . . , hm ∈ Z[x]}. If
〈f0, f1, . . ., fm〉 and 〈g0, g1, . . . , gn〉 are ideals, define their sum 〈f0, f1, . . . , fm〉 +
〈g0, g1, . . . , gn〉 = 〈f0, f1, . . . , fm, g0, g1, . . ., gn〉. For instance, 〈x〉 = {xf |f ∈ Z[x]}
and 〈6〉 + 〈10〉 = 〈2〉. Given f ∈ Z[x] and an ideal I , the ideal membership problem is
to decide whether f ∈ I .

332 M.-H. Tsai et al.

A bit-vector is a bit sequence of a width w. A bit-vector denotes an integer between
0 and 2w − 1 inclusively using the most-significant-bit-first representation. The SMT
QF BV logic defines bit-vector functions. Assume bv0 and bv1 are bit-vectors of width
w. The addition (bvadd bv0 bv1) and subtraction (bvsub bv0 bv1) functions return bit-
vectors of width w representing the sum and difference respectively. The multiplica-
tion function (bvmul bv0 bv1) returns the least significant w bits of the product. The
left shift function (bvshl bv0 n) shifts bv0 to the left by n bits; the logical right shift
function (bvlshr bv0 n) shifts bv0 to the right by n bits. The zero extension func-
tion (zero extend bv0 n) appends n most significant 0’s to bv0. The extraction func-
tion (bvextract h l bv0) extracts bits indexed h to l from bv0 (w > h ≥ l ≥ 0).
An SMT QF BV expression is constructed from bit-vector values, variables, and func-
tions. An SMT QF BV assertion is of the form (assert ⊥), (assert (= be be′)), or
(assert (not (= be be′))) with SMT QF BV expressions be and be′. An SMT QF BV
query is a set of SMT QF BV assertions. A store is a mapping from bit-vector
variables to bit-vector values. An SMT QF BV expression evaluates to a bit-vector
value on a store. An SMT QF BV assertion (assert (= be be′)) is satisfied by a
store if be and be′ evaluate to the same bit-vector value on the store, and otherwise
(assert (not (= be be′))) is satisfied. The SMT QF BV assertion (assert ⊥) is never
satisfied. An SMT QF BV query is satisfiable if all assertions are satisfied by a store.

3 TOYLANG

We consider a register transfer language called TOYLANG to illustrate algebraic
abstraction. For clarity, many programming constructs are removed from TOYLANG.
The language nevertheless is sufficiently expressive to implement Montgomery reduc-
tion [19], an indispensable algorithm found in real-world cryptographic programs.

3.1 Syntax and Semantics

The syntax of TOYLANG is shown in Fig. 1. For simplicity, we assume all numbers are
unsigned and all variables are of widths 1 or w. Variables of width 1 are also called bit
variables. An atom is a number or a variable.

Fig. 1. TOYLANG – Syntax

Certified Verification for Algebraic Abstraction 333

TOYLANG supports several arithmetic instructions: addition (ADD), carrying addi-
tion (ADDS), addition-with-carry (ADC), carrying addition-with-carry (ADCS), sub-
traction (SUB), borrowing subtraction (SUBS), half- (MUL) and full-multiplication
(MULL). Moreover, logical left shift (SHL) and logical right shift (SHR) instructions are
allowed. In addition to assignments, (modular) equations can be specified in assumption
(ASSUME) or assertion (ASSERT) instructions. A program is a sequence of instructions.
We assume ASSERT instructions can only appear at the end of programs. They specify
a (modular) equation to be verified and thus are emphasized with a framed box.

Fig. 2. TOYLANG – Semantics

Let σ be a store. We write σ[v �→ bv] for the store obtained by mapping v to the
bit-vector bv and other variables u to σ(u). [[v]]σ represents the bit-vector σ(v) for any
variable v; otherwise, [[n]]σ is the bit-vector representing the number n of width w.

The semantics of TOYLANG is defined with SMT QF BV bit-vector functions
(Fig. 2). In the figure, (|σ, s, σ′|) denotes that the store σ′ is obtained after executing the
instruction s on the store σ. The addition instruction ADD corresponds to the bit-vector
addition function. For the addition with carry instruction, the carry bit is extended with
w − 1 zeros and added to the sum of the first two operands. The two carrying addi-
tion instructions compute the bit-vector sums of width w + 1. The most significant
bit is stored in the output carry bit. Subtraction instructions are similar; their semantics
are defined with the bit-vector subtraction function bvsub instead. The semantics of SHL

and SHR instructions are defined by corresponding bit-vector functions bvshl and bvlshr

334 M.-H. Tsai et al.

respectively. The semantics of half-multiplication instruction MUL uses the bit-vector
multiplication function bvmul. For full-multiplication, both operands are extended to
width 2w before computing their product.

Fig. 3. Semantics of (Modular) Equations

The ASSUME instruction filters computations by (modular) equations. Figure 3
defines when a store satisfies a (modular) equation. A number n denotes a non-negative
integer. A variable denotes the integer toZ([[v]]σ) represented by the corresponding bit-
vector [[v]]σ in the store. Arithmetic operations denote corresponding integer operations.
Particularly, the integer {|e|}σ is exact and not necessarily less than 2w. Equality denotes
integer equality. σ satisfies e0 ≡ e1 mod [f0, f1, . . . , fm] if {|e0|}σ − {|e1|}σ is in the
ideal generated by {|f0|}σ, {|f1|}σ, . . . , {|fm|}σ . The ASSERT instruction checks if the
current store satisfies the given (modular) equation. The computation resumes if it suc-
ceeds. It is an error if the ASSERT instruction fails.

Fig. 4. Simplified Montgomery Reduction

Montgomery reduction algorithm is widely used to compute remainders without
division [19]. Figure 4a shows a simplified unsignedMontgomery reduction algorithm.1

Suppose we want to compute the remainder of a number 0 ≤ T < R2 modulo N on 64-
bit architectures withR = 264. Montgomery reduction algorithm needs another number
N ′ with NN ′+1 ≡ 0 mod R as an input. It first computes m = ((T mod R)N ′) mod
R and then t = (T + mN)/R. Observe that the remainder and quotient divided by

1 The complete algorithm requires range analysis not discussed in this work.

Certified Verification for Algebraic Abstraction 335

R = 264 amount to bit masking and shifting respectively. Arithmetic division is never
used. To prove tR ≡ T mod N , we first show T + mN ≡ 0 mod R. Observe T +
mN = T + (((T mod R)N ′) mod R)N ≡ T + TN ′N ≡ T (1 + N ′N) ≡ 0 mod R.
Therefore, T + mN is a multiple of R and t = (T + mN)/R is an integer. Hence
tR = T + mN ≡ T mod N .

In the TOYLANG implementation (Fig. 4b), we represent T by two 64-bit variables
TH and TL with T = 264TH +TL. Hence TL = T mod 264.m is computed by the half-
multiplication instruction MUL. The full-multiplication computes the product mN of m
and N . The following two addition instructions compute the sum of T and the product
mN . After adding T , the least significant 64 bits (tL) should be zeros. We hence assert
tL ≡ 0 mod [264]. If the assertion succeeds, tL is in fact 0 since it is a 64-bit variable.
We thus assume tL = 0. The last assertion checks that the result 264(264c + tH) is
indeed congruent to T modulo N .

4 Algebraic Abstraction

Algebraic abstraction is a technique to lift computation to an algebraic domain. In the
abstract algebraic domain, program instructions are transformed to polynomial equa-
tions. Computation in turn is characterized by the roots of systems of polynomial equa-
tions. Algebraic abstraction hence allows us to apply algebraic tools from commutative
algebra. The abstraction technique requires programs in the static single assignment
form. We hence assume input programs are in the static single assignment form.

Fig. 5. Algebraic Abstraction

Figure 5 lifts TOYLANG instructions to polynomial equations. Intuitively, we would
like the semantics of each instruction characterized by roots of corresponding polyno-
mial equations. For instance, v ← ADD a0 a1 is lifted to v = a0 + a1. The ADC

instruction is similar. The carrying addition instruction c : v ← ADDS a0 a1 is lifted to
two equations: c · (c − 1) = 0 and c · 2w + v = a0 + a1. Since c is a carry, it must be
0 or 1, and hence a root of c · (c − 1) = 0. The carrying addition-with-carry instruction
ADCS is similar, as well as subtraction instructions SUB and SUBS.

The half-multiplication instruction v ← MUL a0 a1 is lifted to v = a0 · a1; the full-
multiplication instruction vH : vL ← MULL a0 a1 corresponds to vH ·2w+vL = a0 ·a1.

336 M.-H. Tsai et al.

Fig. 6. Abstract Montgomery Reduction

The logical left shift instruction v ← SHL a n corresponds to v = a · 2n; the logical
right shift instruction v ← SHR a n is lifted to v · 2n = a. The ASSUME q instruction is
lifted to the (modular) equation q. All computations thus must satisfy q. A TOYLANG

program is lifted to the system of (modular) equations from its instructions. The system
of (modular) equations is called the abstract polynomial program. Figure 6 shows the
abstract polynomial program for the Montgomery reduction program.

4.1 Soundness Conditions

Algebraic abstraction in Fig. 5 however is unsound. The TOYLANG semantics is defined
over bounded integers of bit width w. Polynomial equations in algebraic abstraction are
interpreted over integers. When overflow occurs in TOYLANG instructions, for instance,
its computation is not captured by corresponding polynomial equations. Consider the
instruction v ← ADD 2w−1 2w−1. By the TOYLANG semantics, v has the bit-vector
value bvadd [[2w−1]]σ[[2w−1]]σ = 0 after execution. Clearly, 0 is not a root of the equa-
tion v = 2w−1 + 2w−1. The abstraction is unsound.

In order to check soundness for algebraic abstraction, we define soundness condi-
tions for TOYLANG instructions to ensure that all computations are captured by cor-
responding polynomial equations. Intuitively, we give an SMT QF BV query for each
instruction in a TOYLANG program such that the query is satisfiable if and only if the
computation at the instruction can overflow.

To this end, we first use SMT QF BV logic to characterize computations in TOY-
LANG programs. Recall TOYLANG programs are in the static single assignment form.
Figure 7 defines an SMT QF BV query �P � for any TOYLANG program P . Except
the ASSUME instruction, the figure follows the semantics of TOYLANG. For instance,
�v ← ADC a0 a1 d� asserts v equal to the bit-vector sum of a0 and a1 with d extended
by w−1 zeros in the SMT QF BV query. Others are similar. It is not hard to see that all
computations of a TOYLANG program satisfy the corresponding SMT QF BV query.

Lemma 1. Let P be a TOYLANG program without ASSERT instructions and σ, σ′

stores with (|σ, P, σ′|). Then the SMT QF BV query �P � is satisfied by the store σ′.

Certified Verification for Algebraic Abstraction 337

Fig. 7. Soundness Conditions I

Our next task is to define SMT QF BV queries for instructions such that their alge-
braic abstraction is unsound if and only if the corresponding SMT QF BV query is
satisfiable (Fig. 8). The instruction v ← ADD a0 a1 is lifted to v = a0+a1. The abstrac-
tion is unsound when there is carry. That is, (bvextract w w (bvadd (zero extend a0 1)
(zero extend a1 1))) is 1. The instructions ADC and SUB are similar. Algebraic abstrac-
tion for the instructions ADDS, ADCS and SUBS is always sound. Their correspond-
ing SMT QF BV queries are not satisfiable (assert ⊥). For the half-multiplication
v ← MUL a0 a1, its abstraction v = a0 · a1 is unsound when the most signifi-
cant w bits of the product of a0 and a1 are not all zeros. The corresponding SMT
QF BV query is hence (assert (not (= 0 (bvextract (2w − 1) w bvx)))) where bvx
is the bit-vector product of a0 and a1. The abstraction for full-multiplication instruc-
tion is never unsound. For the v ← SHL a0 n instruction, its algebraic abstraction is
unsound if the most significant n bits of a0 are not zeros. The algebraic abstraction of
the v ← SHR a0 n instruction is unsound when the least significant n bits of a0 are not
zeros. Relevant bits are obtained by bvextract respectively. The abstraction for ASSUME

is always sound.
To check soundness of the algebraic abstraction �s� for the instruction s in the

TOYLANG program P s, we apply Lemma 1 to obtain a computation of P through �P �
and check if �s� for s is unsatisfiable. We say the soundness condition for the instruction
s in the TOYLANG program P s holds if �P s� is unsatisfiable. In order to ensure
the soundness of the abstract polynomial program �P � for the TOYLANG program P ,
soundness conditions for all instructions in P must hold. That is, soundness conditions

338 M.-H. Tsai et al.

Fig. 8. Soundness Conditions II

for s in all prefixes P ′ s of P must hold. Define the valuation ρσ of the store σ by
ρσ(v) = toZ([[v]]σ) for every v ∈ x. The next theorem gives the soundness condition.

Proposition 1 (Soundness). Let P be a TOYLANG program without ASSERT instruc-
tions and σ, σ′ stores with (|σ, P, σ′|). ρσ′ is a root of the system of (modular) equations
�P � if soundness conditions for s in every prefix P ′ s of P hold.

We say that the soundness condition for P holds if soundness conditions for s in all
prefixes P ′ s of P hold. Let us take a closer look at the abstract Montgomery reduc-
tion program (Fig. 6). The half-multiplication instruction m ← MUL TL N ′ is lifted to
m = TL · N ′. However, the soundness condition for the instruction requires the most
significant 64 bits of the product to be zeros (Fig. 8). Since TL is arbitrary, the sound-
ness condition does not hold in general. To obtain a sound algebraic abstraction for
Montgomery reduction, we modify the TOYLANG program slightly (Fig. 9).

In the revised program, the first full-multiplication instruction is used to compute
the least significant 64 bits of the product of TL and N ′ (marked by

√
). The most

significant 64 bits of the product are stored in the variable dc (for don’t care). Note that
the soundness condition of the revised program holds trivially. The algebraic abstraction
for the revised Montgomery reduction program is sound by Proposition 1.

4.2 Polynomial Program Verification

Let P be a TOYLANG program without ASSERT instructions. Our goal is to verify
P ASSERT φ with algebraic abstraction. Consider the system of (modular) equations

Φ = �P �. For any stores σ and σ′ with (|σ, P, σ′|), ρσ′ is a root of Φ if the soundness

Certified Verification for Algebraic Abstraction 339

Fig. 9. Abstract Montgomery Reduction (Revised)

condition for P holds by Proposition 1. To verify ASSERT φ on σ′, we need to check if
ρσ′ is also a root of the (modular) equation φ. That is, we want to show if ∀x.Φ =⇒ φ.

Proposition 2. Let P be a TOYLANG program without ASSERT instructions and φ a
(modular) equation. Suppose the soundness condition for P holds. The assertion in
P ASSERT φ succeeds if ∀x.�P � =⇒ φ.

We extend [14] to check the root entailment problem. Recall that Φ is a system of
(modular) equations. We first simplify it to a system of equations. This is best seen by
an example. Consider ∀x y u v.x ≡ y mod [3u2, u + v] =⇒ 0 = 0. We have

∀x y u v.x ≡ y mod [3u2, u + v] =⇒ 0 = 0
iff ∀x y u v.[∃k0 k1(x − y = 3u2 · k0 + (u + v) · k1)] =⇒ 0 = 0
iff ∀x y u v k0 k1.x − y = 3u2 · k0 + (u + v) · k1 =⇒ 0 = 0.

Therefore, it suffices to consider the problem of checking ∀x.Ψ =⇒ φ where Ψ is a
system of equations and φ is a (modular) equation. We solve the simplified problem by
constructing instances of the ideal membership problem.

Let Ψ = {e0 = e′
0, e1 = e′

1, . . . , en = e′
n}. Consider the ideal I = 〈e0 − e′

0, e1 −
e′
1, . . . , en − e′

n〉 generated by the polynomial equations in Ψ . Suppose the polynomial
e − e′ ∈ I . We claim ∀x.Ψ =⇒ e = e′. Indeed, e − e′ = (e0 − e′

0) · h0 + (e1 −
e′
1) · h1 + · · · + (en − e′

n) · hn for some h0, h1, . . . , hn ∈ Z[x] since e − e′ ∈ I .
For any root ρ of Ψ , (e0 − e′

0)[ρ] = (e1 − e′
1)[ρ] = · · · = (en − e′

n)[ρ] = 0. Hence
(e − e′)[ρ] = ((e0 − e′

0) · h0)[ρ] + ((e1 − e′
1) · h1)[ρ] + · · · + ((en − e′

n) · hn)[ρ] = 0.
ρ is also a root of e − e′ = 0 and thus ∀x.Ψ =⇒ e = e′.

Now suppose the polynomial e − e′ ∈ I + 〈f0, f1, . . . , fm〉. We claim ∀x.Ψ =⇒
e ≡ e′ mod [f0, f1, . . . , fm]. Since e − e′ ∈ I + 〈f0, f1, . . . , fm〉, e − e′ = (e0 −
e′
0) · h0 + (e1 − e′

1) · h1 + · · · + (en − e′
n) · hn + f0 · k0 + f1 · k1 + · · · + fm · km

for some h0, h1, . . . , hn, k0, k1, . . . , km ∈ Z[x]. For any root ρ of Ψ , (e − e′)[ρ] =
((e0 − e′

0) · h0)[ρ] + ((e1 − e′
1) · h1)[ρ] + · · · + ((en − e′

n) · hn)[ρ] + f0 · k0[ρ] + f1 ·
k1[ρ] + · · · + fm · km[ρ] = 0 + f0[ρ]k0[ρ] + f1[ρ]k1[ρ] + · · · + fm[ρ]km[ρ]. We again
have ∀x.Ψ =⇒ e ≡ e′ mod [f0, f1, . . . , fm] as required.

Our discussion is summarized as follows.

340 M.-H. Tsai et al.

Fig. 10. Polynomial Programs to Ideals

Proposition 3. Let P be a TOYLANG program without ASSERT instructions and I the
ideal with �P � � I (Fig. 10). Then

1. ∀x.�P � =⇒ e = e′ if e − e′ ∈ I;
2. ∀x.�P � =⇒ e ≡ e′ mod [f0, f1, . . . , fm] if e − e′ ∈ I + 〈f0, f1, . . . , fm〉.

In order to verify (modular) equations with algebraic abstraction, Proposition 1 is
applied to ensure the soundness of abstraction. Proposition 3 then checks whether (mod-
ular) equations indeed are satisfied for abstract polynomial programs. The main theorem
summarizes our theoretical developments.

Theorem 1. Let P be a TOYLANG program without ASSERT instructions, σ, σ′ stores
with (|σ, P, σ′|) and I the ideal with �P � � I . If the soundness condition for P holds,

1. the assertion in P ASSERT e = e′ succeeds provided e − e′ ∈ I;

2. the assertion in P ASSERT e ≡ e′ mod [f0, f1, . . . , fm] succeeds provided e−e′ ∈
I + 〈f0, f1, . . . , fm〉.

The ideal membership problem can be solved by computing Gröbner bases for ide-
als [7]. Many computer algebra systems compute Gröbner bases for ideals with simple
commands. For instance, the groebner command in SINGULAR [13] computes a
Gröbner basis for any ideal by a user-specified monomial ordering. The reduce com-
mand then checks if a polynomial belongs to the ideal via its Gröbner basis.

Recall the abstract polynomial program for revised Montgomery reduction in Fig. 9.
Figure 11a shows the ideal for the abstract polynomial program before ASSUME tL = 0.
To verify the two ASSERT instructions, Figs. 11b and 11c show the instances of the
ideal membership problem corresponding to the two assertions. Observe the ideal 〈tL〉
corresponds to ASSUME tL = 0 in Fig. 11c. Since the soundness condition for the
abstract polynomial program holds trivially (Sect. 4.1), it remains to check the ideal
membership problem. Both instances are verified immediately.

5 Certified Verification

In TOYLANG, we only highlight necessary instructions to verify unsigned Montgomery
reduction. For real-world programs performing non-linear computation, more instruc-
tions are needed and the signed representation of bit-vectors is also used. In order to ver-

Certified Verification for Algebraic Abstraction 341

Fig. 11. Instances of Ideal Membership Problem

ify real-world cryptographic programs, we extend algebraic abstraction with these fea-
tures found in CRYPTOLINE [9,29]. For such complicated languages, algebraic abstrac-
tion can be tedious to implement. Its verification algorithm moreover relies on com-
plex algorithms from computer algebra systems and SMT QF BV solvers. It is unclear
whether these external tools function correctly on given instances. In order to improve
the quality of verification results, we have verified algebraic abstraction with the proof
assistant COQ, and certified results from external tools with COQ and a verified certifi-
cate checker. We briefly describe how to verify our algorithms and certify results from
external tools. Please see the technical report [28] for details.

5.1 Verified Abstraction Algorithm

The proof assistant COQ with the SSREFLECT library [4,11] is used to verify our
algebraic abstraction technique. We define the TOYLANG syntax as a COQ data type
(Fig. 1). The COQ-NBITS theory [26] is adopted to formalize the semantics of TOY-
LANG (Fig. 2). The COQ binary integer theory Z is used to formalize the semantics of
(modular) equations (Fig. 3). We formalize polynomial expressions with integral coef-
ficients by the COQ polynomial expression theory PExpr Z.

To see how our algebraic abstraction algorithm is verified, consider Proposition 2.
Let program be the COQ data type for TOYLANG programs and meqn the data type
for (modular) equations. We define the predicate algsnd : program → Prop for the
soundness condition for a given program (Figs. 7 and 8). Similarly, we define the func-
tion algabs : program → seq meqn for our algebraic abstraction algorithm where
seq meqn is the COQ data type for sequences of meqn (Fig. 5). To write down the
formal statement for Proposition 2, it remains to formalize the root entailment. Let exp
and valuation be the data types for expressions and valuations respectively. Define the
function eval exp : exp → valuation → Z which evaluates an expression to an integer
on a valuation; and eval exps : seq exp → valuation → seq Z evaluates expressions
to integers on a valuation. Consider the predicate eval bexp : meqn → valuation →
Prop defined by

342 M.-H. Tsai et al.

eval bexp (e = e’) rho := eval exp e rho = eval exp e’ rho

eval bexp (e = e’ mod fs) rho := ∃ks, (eval exp e rho) - (eval exp e’ rho) =

zadds (zmuls ks (eval exps fs rho))

where zadds zs := foldl Z.add 0 zs and zmuls xs ys := map2 Z.mul xs ys. The
predicate eval bexp (e = e’) rho checks if the expressions e and e’ evaluate to the same
integer on the valuation rho; eval bexp (e = e’ mod fs) rho checks if the difference
of eval exp e rho and eval exp e’ rho is equal to a linear combination of the integers
eval exps fs rho. The predicate eval bexp meq rho thus checks if rho is a root of the
(modular) equation meq.

We are ready to formalize the root entailment. Consider the predicate entails (Phi
: seq meqn) (psi : meqn) : Prop defined by

∀rho, (∀phi,phi ∈ Phi → eval bexp phi rho) → eval bexp psi rho.

That is, every common root of the system Phi is also a root of psi. The following
proposition formalizes Proposition 2 and is proved in COQ.

Proposition 4. Let P : program be without assert instructions and psi : meqn. If
algsnd P and entails (algabs P) psi, then the assertion in P assert psi succeeds.

To apply this proposition to a given program P and a (modular) equation psi, one
needs to show algsnd P and entails (algabs P) psi in COQ. In principle, both predi-
cates algsnd P and entails (algabs P) psi could be proved manually in COQ. However,
it would be impractical even for programs of moderate sizes. To address this problem,
we establish these predicates through certificates computed by external tools.

5.2 Verification through Certification

To show algsnd P for an arbitrary program P, we follow the certified verification
technique developed in the SMT QF BV solver COQQFBV [26]. More concretely,
we specify our bit-blasting algorithm for soundness conditions in COQ (Figs. 7 and 8).
The algorithm converts soundness conditions to Boolean formulae in the conjunctive
normal form. We then formally verify that soundness conditions hold if and only if the
corresponding Boolean formulae are unsatisfiable in COQ. The constructed Boolean
formulae are sent to the SAT solver KISSAT [5]. For each Boolean formula, KISSAT

checks its satisfiability with a certificate. We then use the verified certificate checker
GRATCHK [16] to validate these certificates.

Our next goal is to show entails (algabs P) psi. More generally, we show entails
Phi psi with arbitrary Phi : seq meqn and psi : meqn via the COQ polynomial ring
theory and the computer algebra system SINGULAR [13]. To this end, we first formu-
late the root entailment of polynomial expressions in the COQ polynomial ring theory.
Recall PExpr Z is the COQ data type for polynomial expressions with integral coef-
ficients. Given integers, the function zpeval : PExpr Z → seq Z → Z evaluates a
polynomial expression to an integer. We formalize the root entailment of polynomial
expressions by the predicate zpentails (Pi : seq (PExpr Z)) (tau : PExpr Z):

∀zs, (∀pi,pi ∈ Pi → zpeval pi zs = 0) → zpeval tau zs = 0.

Certified Verification for Algebraic Abstraction 343

We proceed to connect the root entailment of (modular) equations to the root entail-
ment of polynomial expressions. Let the functions zpexprs of exprs : seq expr →
seq (PExpr Z) and zpexprs of meqns : seq meqn→ seq (PExpr Z) convert expres-
sions and (modular) equations to polynomial expressions respectively (Fig. 10). When
the consequence of root entailment is a modular equation, recall that moduli in the
consequence become ideal generators (Proposition 3). To extract moduli from conse-
quences, define zpexpr of conseq : meqn → PExpr Z × seq (PExpr Z) by

zpexpr of conseq (e = e’) := (e - e’, [::])

zpexpr of conseq (e = e’ mod fs) := (e - e’, zpexprs of exprs fs)

The following COQ lemma shows how to check the root entailment of (modular) equa-
tions through the root entailment of polynomial expressions:

Lemma 2. ∀ (Phi : seq meqn) (psi : meqn), zpentails (Pi ++ zpexprs of meqns
Phi) tau implies entails Phi psi where (tau, Pi) = zpexpr of conseq psi.

Note that moduli in the consequence psi are added to the antecedents Phi.
Our last step is to show zpentails (Pi ++ zpexprs of meqns Phi) tau. Again,

we establish the generalized form zpentails Pi tau for polynomial expressions Pi
and a polynomial expression tau. We prove the predicate by showing that tau can
be expressed as a combination of expressions in Pi. Consider the predicate vali-
date zpentails (Xi : seq (PExpr Z)) (Pi : seq (PExpr Z)) (tau : PExpr Z) defined
by

size Xi = size Pi ∧
ZPeq (ZPnorm tau) (ZPnorm (foldl ZPadd 0 (map2 ZPmul Xi Pi))).

The predicate validate zpentails checks if the Xi and Pi are of the same size. It
then normalizes the polynomials tau and foldl ZPadd 0 (map2 ZPmul Xi Pi) using
ZPnorm. If normalized polynomials are equal (ZPeq), the predicate is true. In foldl
ZPadd 0 (map2 ZPmul Xi Pi), ZPadd and ZPmul are the constructors for polyno-
mial expression addition and multiplication respectively. The expressionmap2 ZPmul
Xi Pi hence returns products of elements in Xi with corresponding elements in Pi. The
expression foldl ZPadd 0 (map2 ZPmul Xi Pi) then computes the sum of these prod-
ucts. The predicate validate zpentails Xi Pi tau therefore checks if tau is equal to a
polynomial combination of expressions in Pi. In other words, tau belongs to the ideal
generated by Pi. Using Lemma 2, we prove the following variant of Proposition 3 in
COQ:

Proposition 5. ∀ Phi psi Xi, validate zpentails Xi (Pi ++ zpexprs of meqns Phi)
tau implies entails Phi psi where (tau, Pi) = zpexpr of conseq psi.

The main difference between Propositions 3 and 5 lies in certifiability. There are
many ways to establish ideal membership. Proposition 5 asks for witnesses Xi to jus-
tify ideal membership explicitly. Most importantly, such Xi need not be constructed
manually. They are in fact computed by external tools. Precisely, these polynomial

344 M.-H. Tsai et al.

expressions are computed by the lift command in the computer algebra system SIN-
GULAR [13]. The lift command computes polynomial expressions representing tau
in the ideal generated by Pi ++ zpexprs of meqns Phi. After SINGULAR computes
these polynomial expressions, we convert them to polynomial expressions Xi in COQ.
The predicate validate zpentails Xi (Pi ++ zpexprs of meqns Phi) tau checks if
tau is indeed represented by Xi using the COQ polynomial ring theory. If the check
succeeds, we obtain entails Phi psi by Proposition 5. Otherwise, the predicate entails
Phi psi is not established. Note that SINGULAR need not be trusted. If Xi is computed
incorrectly, the check validate zpentails Xi (Pi ++ zpexprs of meqns Phi) tau will
fail in COQ. Proposition 5 allows us to show entails Phi psi with certification.

5.3 Optimization

Lots of optimizations are needed and verified to make algebraic abstraction feasible
for TOYLANG programs with thousands of instructions. For instance, the static sin-
gle assignment transformation and program slicing algorithms are both specified and
verified in COQ. Furthermore, the bit blasting algorithm is extended significantly to
check soundness conditions effectively. For example, the soundness condition for the
half-multiplication instruction MUL requires bvmul (Fig. 8). This could not work well
because of complicated non-linear bit-vector computation. To reduce the complexity
of overflow checking in half-multiplication, we implement and verify the algorithm
from [10]. Last but not least, algebraic abstraction almost surely induces ideals with
hundreds of polynomial generators if not thousands. Computing Gröbner bases for such
ideals is infeasible. To address this problem, we develop heuristics to reduce the number
of generators in ideals through rewriting. Our heuristics are also specified and verified
in COQ. These optimizations are essential in our experiments.

6 Evaluation

We have implemented certified algebraic abstraction in the tool COQCRYPTOLINE [1].
COQCRYPTOLINE is built upon OCAML codes extracted from our COQ development.
It calls the computer algebra system SINGULAR [13] and certifies answers from the
algebraic tool. The certified SMT QF BV solver COQQFBV [26] is used to verify
soundness conditions. We choose two classes of real-world cryptographic programs in
experiments. For elliptic curve cryptography, we verify various field or group operations
from BITCOIN [27], BORINGSSL [8,12], NSS [20], OPENSSL [23], and PQCRYPTO-
SIDH [18]. For post-quantum cryptography, we verify the C reference and optimized
Intel avx2 implementations of the Number-Theoretic Transform in the cryptosystem
KYBER [6]. Experiments are conducted on an Ubuntu 22.04.1 Linux server with
3.20GHz 32-core Xeon Gold 6134M and 1TB RAM.

We compare COQCRYPTOLINE with the uncertified CRYPTOLINE [9,24]. Table 1
shows the experimental results. LCL shows the number of instructions. TCCL and TCL

give the verification time of COQCRYPTOLINE and CRYPTOLINE in seconds respec-
tively. %Int shows the percentage of time spent in extracted OCAML programs in
COQCRYPTOLINE. %CAS and %SMT give the percentages of time spent on SINGU-
LAR and COQQFBV respectively.

Certified Verification for Algebraic Abstraction 345

Table 1. Experimental Results on Industrial Cryptographic Programs

Function LCL %Int %SMT %CAS TCCL TCL Function LCL %Int %SMT %CAS TCCL TCL

bitcoin/asm/secp256k1 fe *

mul inner 167 0.13 99.52 0.34 91.96 2.41 sqr inner 151 0.28 99.13 0.59 28.30 1.17

bitcoin/field/secp256k1 fe *

mul inner 132 0.09 98.81 1.11 58.34 1.44 mul int 6 0.14 95.21 4.65 1.17 0.02

negate 10 0.37 95.60 4.04 0.61 0.02 sqr inner 119 0.12 98.60 1.28 34.08 0.91

bitcoin/group/

secp256k1 ge neg 31 1.82 90.48 7.70 0.24 0.03

secp256k1 gej double var.part.14 948 0.53 98.93 0.54 1091.28 25.50

bitcoin/scalar/secp256k1 scalar *

mul 918 1.19 98.26 0.54 167.97 6.28 mul 512 338 0.50 98.51 0.98 36.97 2.20

sqr 929 1.49 97.81 0.70 147.07 5.41 sqr 512 349 0.66 98.10 1.23 27.45 3.11

secp256k1 scalar reduce 104 2.50 91.18 6.32 1.21 0.09

secp256k1 scalar reduce 512 580 1.62 97.50 0.88 47.83 1.88

boringssl/fiat curve25519/fe *

mul impl 114 0.04 99.67 0.29 70.85 1.65 sqr impl 96 0.09 99.38 0.53 25.30 0.75

fe mul121666 54 1.31 95.61 3.08 0.84 0.07

x25519 scalar mult generica 1068 0.27 99.55 0.18 1019.43 279.95

boringssl/fiat curve25519 x86/fe *

mul impl 375 0.38 99.28 0.34 81.67 1.79 sqr impl 299 0.52 99.08 0.40 39.89 0.97

fe mul121666 96 1.96 95.02 3.02 1.07 0.08

x25519 scalar mult generica 3287 0.45 99.40 0.15 4454.87 240.00

nss/Hacl Curve25519 51/

fmul0 127 0.03 99.67 0.30 136.53 31.11 fmul1 67 0.09 98.85 1.06 12.65 0.26

fsqr0 98 0.03 99.64 0.33 75.10 2.90 fsqr20 196 0.06 99.55 0.38 105.24 3.15

fmul20 238 0.06 99.65 0.29 200.54 35.29

point add and doublea 1165 0.13 99.65 0.22 2611.51 355.34

point double 582 0.17 99.49 0.35 975.02 17.06

openssl/curve25519/fe51 *

mul 111 0.06 99.66 0.28 57.91 1.20 sq 93 0.08 99.34 0.58 23.06 0.69

fe51 mul121666 55 1.27 95.95 2.78 0.70 0.07

x25519 scalar multa 1042 0.29 99.54 0.17 912.24 281.26

PQCrypto-SIDH/P434/x86 64/

fpmul434 266 91.74 0.02 8.24 0.39 0.05 fp2mul434 1161 1.10 98.62 0.29 726.40 42.44

PQCrypto-SIDH/P503/arm64/

fpmul 553 2.43 96.19 1.39 249.24 5.49 fpmul-fixed 554 2.39 95.75 1.86 250.41 5.46

PQClean/kyber/NTT

PQCLEAN KYBER512 CLEAN ntt 6273 4.78 34.21 61.01 1113.92 46.54

PQCLEAN KYBER768 AVX2 ntt 8975 5.41 83.63 10.96 433.31 29.63
a One (out of three) modular polynomial equation in post-conditions fails to certify due to stack overflow.

6.1 Field and Group Operation in Elliptic Curves

In elliptic curve cryptography, a rational point on a curve is represented by field ele-
ments from a large finite field. Rational points on the curve form a group. The group
operation in turn is computed by operations in the underlying finite field. In BITCOIN,
the finite field is Zp256k1 with p256k1 = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1.
The underlying field for Curve25519 is Zp25519 with p25519 = 2255−19. PQCRYPTO-
SIDH however uses slightly more complicated fieldsZp434/〈x2+1〉 andZp503/〈x2+1〉
with p434 = 2216 · 3137 − 1 and p503 = 2250 · 3159 − 1. Field elements in Zp256k1 and

346 M.-H. Tsai et al.

Zp25519 are represented by multiple limbs of 64-bit numbers. Field multiplication, for
instance, is implemented by a number of 64-bit arithmetic instructions. Field elements
in Zp434/〈x2 + 1〉 and Zp503/〈x2 + 1〉 are of the form u + vx where u, v ∈ Zp434

or Zp503 and x2 = −1. Two moduli are used to specify multiplication for such fields:
p434, x2 + 1 for Zp434/〈x2 + 1〉, and p503, x2 + 1 for Zp503/〈x2 + 1〉. Multiplication
of PQCRYPTO-SIDH is easily specified by modular equations with multiple moduli.

COQCRYPTOLINE verifies every field operation with certification within 12.1min.
Group operations are implemented by field operations. Their certified verification thus
takes more time. The most complicated case x25519 scalar mult generic (3287 instruc-
tions) from BORINGSSL takes about 1.3 h.a In comparison, CRYPTOLINE verifies
the same program in 4 min without certification. In almost all cases, a majority of
time is spent on COQQFBV. Running time for extracted OCAML programs is neg-
ligible. Interestingly, COQCRYPTOLINE finds a bug in the arm64 multiplication code
for Zp503/〈x2 + 1〉 from PQCRYPTO-SIDH. Towards the end of multiplication, the
programmer incorrectly stores the register x25 in memory before adding a carry. After
fixing the bug, COQCRYPTOLINE finishes certified verification in about 5 min.

6.2 Number-Theoretic Transform in Kyber

The United States National Institute of Standards and Technology (NIST) is cur-
rently determining next-generation post-quantum cryptography (PQC) standards. In
July 2022, Crystals-KYBER (or simply KYBER) was announced to be the winner for
key establishment mechanisms.

One of the most critical steps in KYBER is modular polynomial multiplication over
the polynomial ring Rq = Zq[x]/〈x256 + 1〉 with q = 3329. In Rq, coefficients are
elements in the field Zq. A polynomial in Rq is obtained by modulo x256 +1 and hence
has a degree less than 256. Consider x256 ∈ Zq[x]. Since x256 ≡ −1 mod (x256 +
1), x256 is −1 in Rq. Unsurprisingly, polynomial multiplication is one of the most
expensive computations in KYBER. An efficient way to multiply polynomials is through
a discretized Fast Fourier Transform called the Number-Theoretic Transform (NTT).

Recall the Chinese remainder theorem for integers is but a ring isomorphism
between residue systems. For instance, Z42

∼= Z6 × Z7. For polynomial rings, we
have the following ring isomorphism

Zq[x]/〈x2n − ω2〉 ∼= Zq[x]/〈xn − ω〉 × Zq[x]/〈xn + ω〉 (ω ∈ Zq).

Observe that xn is equal to ω in Zq[x]/〈xn −ω〉 for xn ≡ ω mod (xn −ω). Similarly,
xn is equal to −ω in Zq[x]/〈xn + ω〉. Recall polynomials in Zq[x]/〈x2n − ω2〉 have
degrees less than 2n. We can rewrite any polynomial in Zq[x]/〈x2n − ω2〉 as f(x) +
g(x)xn where degrees of f and g are both less than n. The polynomial f(x) + g(x)xn

is then equal to f(x) + ωg(x) in Zq[x]/〈xn − ω〉; and it is equal to f(x) − ωg(x) in
Zq[x]/〈xn+ω〉. NTT computes the following ring isomorphism between Zq[x]/〈x2n−
ω2〉 and Zq[x]/〈xn −ω〉×Zq[x]/〈xn +ω〉 by substituting ±ω for xn in f(x)+g(x)xn:

f(x) + g(x)xn ↔ (f(x) + ωg(x), f(x) − ωg(x)) . (1)

Multiplication in Zq[x]/〈x2n − ω2〉 can therefore be computed by respective multi-
plications in Zq[x]/〈xn ± ω〉 through the isomorphism. That is, a multiplication for

Certified Verification for Algebraic Abstraction 347

polynomials of degrees less than 2n (in Zq[x]/〈x2n − ω2〉) is replaced by two multipli-
cations for polynomials of degrees less than n (in Zq[x]/〈xn ± ω〉).

In KYBER, ring isomorphisms are applied repeatedly until linear polynomials are
obtained. That is, KYBER NTT computes the isomorphism

Rq = Zq[x]/〈x256 + 1〉 ∼= Zq[x]/〈x2 − ζ0〉 × · · · × Zq[x]/〈x2 − ζ127〉 (2)

where ζj’s are the principal 256-th roots of unity. A polynomial of a degree less than 256
is hence mapped via KYBER NTT to 128 linear polynomials, each modulo a different
x2 − ζj . In PQCLEAN [25], a reference C implementation and a hand-optimized Intel
avx2 assembly implementation of KYBER NTT are provided. In addition to degree
reduction, the two implementations utilize signed Montgomery reduction extensively
for efficient multiplication over Zq. We verify whether the two NTT implementations
compute the ring isomorphism correctly.

To specify the correctness requirements of KYBER NTT, one could write down
modular equations (1) according to its computation. Each equation would require
explicit substitution. Thanks to modular equations with multiple moduli, a more
intuitive and mathematical specification based on (2) is also expressible. Let F =
Σ255

k=0fkxk denote the input polynomial in Rq = Zq[x]/〈x256 + 1〉 and the coefficients
fk’s are input variables with −q < fk < q (0 ≤ k < 256). Let Gj = gj,0 +gj,1x be the
j-th final output linear polynomial from the implementations. The modular equations

F ≡ Gj mod [q, x2 − ζj], for all 0 ≤ j < 128

specify the correctness of the KYBER NTT implementations. Observe that our specifi-
cation is almost identical to (2). Modular equations with multiple moduli allow cryp-
tographic programmers to express mathematical specification naturally. They greatly
improve usability and reduce specification efforts in algebraic abstraction.

COQCRYPTOLINE verifies the C reference implementation in about 18.6 min. The
highly optimized avx2 implementation is verified in about 7.2 min. Observe that each
layer of ring isomorphism requires 128 signed Montgomery reductions. KYBER NTT
therefore has 7 × 128 = 896 Montgomery reductions similar to the running example in
Fig. 4b. Algebraic abstraction successfully verifies the two KYBER NTT implementa-
tions within 20 min. In comparison, CRYPTOLINE verifies both NTT implementations
in 1 min without certification.

7 Conclusion

Verification through algebraic abstraction combines both algebraic and bit-accurate
analyses. Non-linear computation is analyzed algebraically; soundness conditions are
checked with bit-accurate SMT QF BV solvers. We describe how to verify the tech-
nique and certify its results. In the experiments, the hybrid technique successfully veri-
fies non-linear integer computation found in cryptographic programs from elliptic curve
and post-quantum cryptography with certification. We plan to explore more applications
of algebraic abstraction in programs from post-quantum cryptography in near future.

348 M.-H. Tsai et al.

Acknowledgments. The authors in Academia Sinica are partially funded by National Sci-
ence and Technology Council grants NSTC110-2221-E-001-008-MY3, NSTC111-2221-E-001-
014-MY3, NSTC111-2634-F-002-019, the Sinica Investigator Award AS-IA-109-M01, the Data
Safety and Talent Cultivation Project AS-KPQ-109-DSTCP, and the Intel Fast Verified Postquan-
tum Software Project. The authors in Shenzhen University and ISCAS are partially funded
by Shenzhen Science and Technology Innovation Commission (JCYJ20210324094202008), the
National Natural Science Foundation of China (62002228, 61836005), and the Natural Science
Foundation of Guangdong Province (2022A1515011458, 2022A1515010880).

References

1. CoqCryptoLine GitHub repository (2023). https://github.com/fmlab-iis/coq-cryptoline
2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB).

http://www.smt-lib.org/ (2016)
3. Bernstein, D.J., Schwabe, P.: gfverif. http://gfverif.cryptojedi.org (2015)
4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development - Coq’Art:

The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-662-07964-5

5. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling
and treengeling entering the SAT competition 2020. In: Balyo, T., Froleyks, N., Heule,
M., Iser, M., Suda, M.J.M. (eds.) Competition 2020 - Solver and Benchmark Descriptions.
Department of Computer Science Report Series B, vol. B-2020-1, pp. 50–53. University of
Helsinki (2020)

6. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In: Smith,
M., Piessens, F. (eds.) IEEE European Symposium on Security and Privacy, pp. 353–367.
IEEE (2018)

7. Buchberger, B., Winkler, F.: Gröbner bases and applications, vol. 17. Cambridge University
Press Cambridge (1998)

8. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code for cryp-
tographic arithmetic - with proofs, without compromises. In: IEEE Symposium on Security
and Privacy, pp. 1202–1219. IEEE (2019)

9. Fu, Y.F., Liu, J., Shi, X., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Signed cryptographic pro-
gram verification with typed CryptoLine. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J.
(eds.) ACM SIGSAC Conference on Computer and Communications Security, pp. 1591–
1606. ACM (2019)

10. Gok, M., Schulte, M.J., Arnold, M.G.: Integer multipliers with overflow detection. IEEE
Trans. Comput. 55(8), 1062–1066 (2006)

11. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J. Formalized
Reason. 3(2), 95–152 (2010)

12. Google: BoringsSSL (2021). https://boringssl.googlesource.com/boringssl/
13. Greuel, G.M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Hei-

delberg (2002). https://doi.org/10.1007/978-3-662-04963-1
14. Harrison, J.: Automating elementary number-theoretic proofs using Gröbner bases. In: Pfen-

ning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 51–66. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73595-3 5

15. Hwang, V., et al.: Verified NTT multiplications for NISTPQC KEM lattice finalists: Kyber,
SABER, and NTRU. IACR Trans. Cryptograph. Hardware Embedd. Syst. 2022, 718–750
(2022)

https://github.com/fmlab-iis/coq-cryptoline
http://www.smt-lib.org/
http://gfverif.cryptojedi.org
https://doi.org/10.1007/978-3-662-07964-5
https://boringssl.googlesource.com/boringssl/
https://doi.org/10.1007/978-3-662-04963-1
https://doi.org/10.1007/978-3-540-73595-3_5

Certified Verification for Algebraic Abstraction 349

16. Lammich, P.: Efficient verified (UN)SAT certificate checking. In: de Moura, L. (ed.) CADE
2017. LNCS (LNAI), vol. 10395, pp. 237–254. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63046-5 15

17. Liu, J., Shi, X., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Verifying arithmetic in cryptographic C
programs. In: Lawall, J., Marinov, D. (eds.) IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 552–564. IEEE (2019)

18. Microsoft Research: PQCrypto-SIDH (2022). https://github.com/microsoft/PQCrypto-SIDH
19. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44, 519–

521 (1985)
20. Mozilla: Network security services (2021). https://developer.mozilla.org/en-US/docs/

Mozilla/Projects/NSS
21. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process. Lett. 91,

233–244 (2004)
22. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra. In: Leroy,

X. (ed.) POPL, pp. 330–341. ACM (2004)
23. OpenSSL: OpenSSL library. https://github.com/openssl/openssl (2021)
24. Polyakov, A., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Verifying arithmetic assembly programs

in cryptographic primitives. In: Schewe, S., Zhang, L. (eds.) International Conference on
Concurrency Theory, pp. 1–16. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2018)

25. PQClean: The PQClean project. https://github.com/PQClean/PQClean (2021)
26. Shi, X., Fu, Y.F., Liu, J., Tsai, M.H., Wang, B.Y., Yang, B.Y.: CoqQFBV: a scalable certified

SMT quantifier-free bit-vector solver. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS,
vol. 12760, pp. 149–171. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-
9 7

27. The Bitcoin Developers: Bitcoin source code (2021). https://github.com/bitcoin/bitcoin
28. Tsai, M.H., Fu, Y.F., Shi, X., Liu, J., Wang, B.Y., Yang, B.Y.: Automatic certified verifica-

tion of cryptographic programs with COQCRYPTOLINE . IACR Cryptol. ePrint Arch. 1116
(2022). https://eprint.iacr.org/2022/1116

29. Tsai, M.H., Wang, B.Y., Yang, B.Y.: Certified verification of algebraic properties on low-
level mathematical constructs in cryptographic programs. In: Evans, D., Malkin, T., Xu, D.
(eds.) ACM SIGSAC Conference on Computer and Communications Security, pp. 1973–
1987. ACM (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/978-3-319-63046-5_15
https://doi.org/10.1007/978-3-319-63046-5_15
https://github.com/microsoft/PQCrypto-SIDH
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://github.com/openssl/openssl
https://github.com/PQClean/PQClean
https://doi.org/10.1007/978-3-030-81688-9_7
https://doi.org/10.1007/978-3-030-81688-9_7
https://github.com/bitcoin/bitcoin
https://eprint.iacr.org/2022/1116
http://creativecommons.org/licenses/by/4.0/

	Certified Verification for Algebraic Abstraction
	1 Introduction
	2 Preliminaries
	3 ToyLang
	3.1 Syntax and Semantics

	4 Algebraic Abstraction
	4.1 Soundness Conditions
	4.2 Polynomial Program Verification

	5 Certified Verification
	5.1 Verified Abstraction Algorithm
	5.2 Verification through Certification
	5.3 Optimization

	6 Evaluation
	6.1 Field and Group Operation in Elliptic Curves
	6.2 Number-Theoretic Transform in Kyber

	7 Conclusion
	References

