
RAIDq: A software-friendly, multiple-parity RAID

Ming-Shing Chen†, Bo-Yin Yang‡, and Chen-Mou Cheng†‡
†Department of Electrical Engineering, National Taiwan University, Taiwan

‡Research Center for Information Technology Innovation, Academia Sinica, Taiwan

Abstract

As disk manufacturers compete to build ever larger and
cheaper disks, the possibility of RAID failures becomes
more significant for larger and larger disk arrays, creating
opportunities for products beyond RAID 6. In this paper,
we present the design and implementation of RAIDq, a
software-friendly, multiple-parity RAID. RAIDq uses a
linear code with efficient encoding and decoding algo-
rithms and addresses a wide range of general cases of
RAID that are of practical interest. However, RAIDq
does have a limit on how many data disks it can support,
which we will analyze in this paper. A second benefit of
RAIDq is that it includes existing RAID 5 and 6 as spe-
cial cases and hence is 100% backward compatible. This
allows RAIDq to reuse the efficient coding algorithms
and implementations of RAID 5 and 6. Last but not least,
RAIDq is optimized for software implementation, as its
encoding only involves simple XOR and multiplication by
several fixed elements in a finite field. Thanks to the pop-
ularity of RAID 6, such operations have been highly op-
timized on modern processors, of which RAIDq can take
advantage, as corroborated by our experiment results.

1 Introduction

Since its inception in the early eighties, RAID has been a
mainstream technology to increase the performance and
reliability of computer storage systems at a cost of using
redundant disks for storing checksum data. For many
applications, RAID 5 and 6 are the preferred standards
because they allow efficient encoding and decoding, thus
providing a good trade-off among performance, reliabil-
ity, and cost.

Nevertheless, the RAID technology does seem to start
showing some wear over the years. As disk manufac-
turers compete to build ever larger and cheaper disks,
the possibility of RAID failures becomes more signifi-
cant for RAID 5 and 6 products in the mainstream mar-

ket [4]. Although there are several alternative methods
of extending beyond RAID 6, use of Reed-Solomon or
similar codes still seems the most attractive because they
can generate an (almost) arbitrary amount of checksum
data for a wide range of disk-array sizes and configura-
tions [8]. The downside of using these codes is that they
often involve general finite-field operations in encoding
and decoding, which tend to be much more expensive
than those for RAID 5 and 6. This is possibly a major
reason why there has not been wide industrial adoption
of RAID technologies beyond RAID 6, as cost is a major
concern especially for entry-level products.

Why have there not been efficient constructions like
RAID 5 and 6 but with more redundant disks? As
pointed out by Leventhal in 2010, RAID 5 and 6 prob-
ably represent two special cases for which there are
highly efficient specialized encoding and decoding algo-
rithms [4]. He concluded: “Not only is there a need for
triple-parity RAID, but there’s also a need for efficient
algorithms that truly address the general case of RAID
with an arbitrary number of parity devices.”

In this paper, we present our answer to Leventhal’s
call: a software-friendly, multiple-parity RAID called
RAIDq. The construction of RAIDq allows efficient en-
coding and decoding algorithms, and it somewhat ad-
dresses the general case of RAID with an arbitrary
amount of checksum data up to certain limits. We can
easily compute these limits, and in most cases, they are
quite generous for practical RAID systems. That is,
when we try to scale up and build a large RAID system, it
is more likely that we hit some system or hardware limits
such as bus bandwidth before we hit the coding limits.

Our construction was inspired by Plank’s influential
paper [5]. For ease of exposition, we shall henceforth
use the following terminology.

Definition 1 A Plank’s code is a linear [n + m,n] code
over Fq whose generator matrix A is of the (systematic)
form A =

[
In F

]
. Here F is an n×m Vandermonde

matrix Van(m;α0, . . . , αn−1) := [α j
i]i=0,...,n−1, j=0,...,m−1,

where αi’s are distinct nonzero elements, not neces-
sarily generators, of Fq, and In the n× n identity ma-
trix. This will be termed the Plank’s code generated by
[α0, . . . ,αn−1]. Usually we set α0 := 1. When αi := α i

for some fixed α , we call it the Plank’s code generated by
α (of length n+m and rank n over Fq).

With αi := α i for a generator α ∈ Fq, Plank’s code
would allow very efficient encoding, erasure decoding,
and even error correction, as implemented and discussed
by Anvin [1]. For m = 1 or 2, they are exactly the check-
sums used in RAID 5 and 6. However, Plank’s codes,
even those generated by one element, turn out to be nei-
ther identical nor isomorphic to Reed-Solomon codes,
and the highly efficient constructions of Anvin [1] are
maximum distance separable (MDS) over F256 only for
m = 1, 2, or 3. In fact, Plank himself discovered this and
corrected this unfortunate error in a subsequent note [6].

Nevertheless, RAIDq still uses Plank’s codes because
we believe that they are actually suitable for building
general RAID systems beyond RAID 6. As we shall see,
one can build a reasonably large RAID system by care-
fully choosing appropriate αi’s. Furthermore, although
finite-field operations are involved in encoding and de-
coding, these operations can be significantly accelerated
by various SIMD (single-instruction, multiple-data) in-
structions commonly found on modern processors. For
example, PSHUFB (Packed-Shuffle-Byte) is a 16-entry ta-
ble look-up instruction common to latest x86 processors,
with which we will discuss how to accelerate multipli-
cation in small binary fields in Section 3. Lastly, some
of the latest Intel processors with built-in I/OAT DMA
engine have special circuitry to accelerate the F256 oper-
ations in RAID 6. Such special circuitry can certainly be
used to accelerate the encoding and decoding of a spe-
cialized class of Plank’s codes.

2 Plank’s codes for RAID

2.1 Why Plank’s RAID >7 does not work
In the rest of this paper, we will call triple-parity RAID as
RAID 7, quadruple-parity RAID as RAID 8, etc. When
we examine Anvin’s construction of RAID 7 based on
Plank’s code generated by α of length n + 3 over F256,
we see that it works fine because the code is MDS. This
is because all square submatrices of Van(3;α i,α j,αk)
are of full rank, i.e., whose determinants are never zero
as long as 0≤ i < j < k < 255.

To extend this construction to RAID 8 over F256,
these determinants must be nonzero: (I) :=

∣∣∣∣ 1 α3i

1 α3 j

∣∣∣∣,
(II) :=

∣∣∣∣∣∣
1 α i α3i

1 α j α3 j

1 αk α3k

∣∣∣∣∣∣, and (III) :=

∣∣∣∣∣∣
1 α2i α3i

1 α2 j α3 j

1 α2k α3k

∣∣∣∣∣∣ . (I) 6= 0

unless i ≡ j (mod 85); (II) is equal to (α i−α j)(α i−
αk)(α j −αk)(α i + α j + αk), and (III) can be written
as α3(i+ j+k)(α−i−α− j)(α−i−α−k)(α− j−α−k)(α−i +
α− j +α−k). Since α 7→α−1 is an automorphism in F256,
we know (II) and (III) vanish together or not at all. Us-
ing the same α as in most RAID 6 implementations, we
can only go as high as 21. Choosing α as some other
generators can lead to the determinants being nonzero
for distinct i, j,k < 28, but no α gets us to 28 or higher.

Therefore, following the original narrative of An-
vin [1], we can construct RAID 8 (quadruple-parity)
over F256 up to 21+4 disks, or 27+4 if compatibility with
existing RAID 6 is disregarded.

We note that the 21+4 limit with the standard α is
not “unluckily small.” Let us re-examine the regular-
ity check above for the original quadruple-parity Plank’s
code. Without loss of generality, we can assume i = 0.
If 1+α j +αk is essentially a random number in F256 as
j < k varies, one of the determinants (II) will become
zero as we reach n data disks, where

(n
2

)
≈ q = 255, or

n ≈ 22. The standard α is seen then to give us almost
exactly the average result.

In fact, the regularity check for RAID 7 using a Plank’s

code based on [1,a,b] would require

∣∣∣∣∣∣
1 1 1
1 a j ak

1 b j bk

∣∣∣∣∣∣ 6= 0

for all j,k. If we again assume that a and b are unrelated,
this would again be nearly random in F256 as j,k change,
and we would not be able to use more data disks than
&
√

2q. It is only because the highly nonrandom set of
generators [1,α,α2] was used that we obtain an MDS
code here.

2.2 Constructing RAIDq 7 and 8

The common implementation of RAID 6 is over F256
with the representation F256 := F2[x]/(x8 +x4 +x3 +x2 +
1) (“0x11d F256”) and generator α := x (“0x02”). We
use a notation of [1,α] as “checksum generators” for rep-
resenting the two checksums in RAID 6. That is, the
starting “1” represents the first XOR checksum s0 = ∑i di,
and “α” represents the second checksum s1 = ∑i diα

i,
for i = 0, . . . ,n−1.

In constructing RAIDq, we seek more efficient
“checksum generators.” Our selection criteria include:
(1) compatible with RAID 6 checksums and easy to ac-
celerate with RAID 6 hardware; (2) allowing maximal
number of data disks while being MDS; and (3) mini-
mizing the computational cost by restricting to simple
XOR and (preferably) multiplication by low powers of α .
We note that due to the nature of RAID applications, we
set higher priorities on encoding than erasure decoding,
followed by error correcting, when it comes to minimiz-
ing computational cost.

2

2.2.1 Improvement of RAIDq 7 over RAID 7

If there is specialized circuitry to compute the second
RAID 6 checksum ∑i diα

i (just this particular form, not
arbitrary power series), then instead of using [1,α,α2]
as the checksum generators for RAID 7, our recommen-
dation is to use [1,α,α

1
2] for a better utilization of the

specialized RAID 6 accelerator. With the α
1
2 as the third

checksum generator, the checksum calculation can be di-
vided into two passes of RAID 6 checksum computa-
tions:

∑
i=0,1,···

diα
i
2 = ∑

i=0,2,4,···
diα

i
2 +α

1
2

(
∑

i=1,3,5,···
diα

(i−1)
2

)

= ∑
i=0,1,2,···

d2iα
i +α

1
2

(
∑

i=0,1,2,···
d2i+1α

i

)
.

2.2.2 RAIDq 8 based on specialized Plank’s codes

We seek elements of the form α1/i as checksum genera-
tors to construct RAIDq 8 that scales better than the 21+4
RAID 8 based on the [1,α,α2,α3] Plank code described
in Section 2.1. [1,α,α1/3,α2/3] is our first candidate,
which increases the range of being MDS from 21 to 63
data disks with RAID 6 compatibility. If we take square
roots and use [1,α1/2,α1/6,α1/3] instead, we can have a
higher utilization of existing RAID 6 hardware accelera-
tors at a cost of losing compatibility.

There is only one (rather minor) technical detail:
α1/3 is not in F256, so we have to work in an exten-
sion field that contains α1/3, the smallest being F224 :=
F256[Y]/(Y 3 + α). We choose this particular repre-
sentation of F224 because here α1/3 and α2/3 have
rather sparse polynomial representations: α1/3 := α85Y
(0x00d600), and α2/3 := α170Y 2 (0xd70000), making
multiplication by them much cheaper.

2.2.3 RAIDq 8 based on general Plank’s codes

Besides generating all checksum generators as α i with
only one α , we further investigate general choices of
checksum generators in a Plank’s code. Furthermore,
we shall not restrict ourselves to F256, as we have seen
above that working in an extension field might help im-
prove error-control capabilities without sacrificing en-
coding/decoding performance. Indeed, we have found a
quite efficient quadruple-parity RAID construction over
F216 := F256[X]/(X2 + α3X + 1) using [1,α,α1/2,X] as
the checksum generators. We note that three out of the
four checksums are actually in F256, and the construction
is compatible with Plank’s RAID 7. Here F216 elements
are represented as linear polynomials in F256[X], and “X”
is the indeterminate (0x0100 in binary representation).

Table 1: Proposed candidates for RAIDq 8
Checksum generators Max. n Working field

[1,α,α1/2,α3/2] 21 F256
[1,α,α1/3,α2/3] 63 F224

[1,α,α1/2,X] 92 F216

Although this is not an MDS code, the maximal num-
ber of data disks for the [1,α,α1/2,X] construction is 92,
which we believe should be more than enough for many
practical RAID applications. These proposed candidates
of RAIDq 8 are summarized in Table 1.

2.3 Erasure decoding and error correction

In erasure decoding, in order to reuse the highly opti-
mized encoder, we can replace the missing data symbols
with 0 and encode them again to get a set of new check-
sums. The missing symbols can then be solved from the
linear system composed of the checksum differences and
part of the generating matrix corresponding to the posi-
tions of the missing symbols. For small RAID systems, it
is possible to enumerate all erasure modes, and hence we
can prepare all possible inverse matrices to avoid com-
puting them on the fly in decoding.

Plank’s codes also allow correction of errors in un-
known positions up to half the number of parity disks,
which is a supplementary yet important feature for many
RAID applications. The error correction mode of Plank’s
code is very similar to that of Reed-Solomon codes.
For the [1,α,α1/2,X] Plank’s code recommended for
RAIDq 8, however, the error decoder of general Plank’s
code is not applicable, as the fourth checksum is no
longer in the ascending form of α i. In this case, we can
guess one error position and then solve the other error
via general Plank’s checksums. The last checksum in the
extension field can then be used to confirm the result.

3 Hardware acceleration of F2n arithmetic

We suggest to implement fast and high-throughput arith-
metic in small binary fields using SIMD table look-up
instructions, e.g., PSHUFB on Intel x86 processors. Al-
though the mnemonic PSHUFB may indicate that it was
designed for data movement, we can use this instruction
for simultaneously looking up 16 values from a 16-byte
table of 4-bit entries. This instruction is available in all
new Intel and AMD processors, and a similar instruction
exists in ARM processors with NEON extensions.

3

3.1 Scalar-vector multiplication in F256

The multiplication of a 16-wide vector in F256 by an arbi-
trary scalar can be accomplished with two PSHUFB oper-
ations [3]. More precisely, suppose we need to multiply
a vector of elements a(i) by a scalar b in F256. We can cut
each a(i) into two nybbles corresponding to higher- and
lower-degree parts as follows:

a(i)×b =
((

a(i)
7 x7 + · · ·+a(i)

0

)
b(x)

)
=
(

a(i)
7 x3 + · · ·+a(i)

4

)(
x4b(x)

)
+
(

a(i)
3 x3 + · · ·+a(i)

0

)
b(x).

Therefore, we can obtain the desired result by loading
two pre-computed multiplication results of x4b(x) and
b(x), followed by two PSHUFB’s for table look-up and
an XOR for combining results.

Only a few fixed scalar-vector multiplications are
needed in the encoding of Plank’s codes. We can there-
fore optimize for these specific scalars instead of using
the general F256 multiplication. Let us start with the ob-
vious one, namely, the multiplication with the α that is a
simple polynomial x (0x02 in 0x11d F256).

c×α = x · (c7x7 + · · ·+ c0) mod (x8 + x4 + x3 + x2 +1)

= c7x8 +
(
c6x7 + · · ·+ c0x

)
mod (x8 + · · ·)

→ c7
(
x4 + x3 + x2 +1

)
+
(
c6x7 + · · ·+ c0x

)
.

The reduction c7x8 mod (x8 + x4 + x3 + x2 + 1) is ac-
complished by conditional adding x4 + x3 + x2 + 1.
The standard way to compute this in C language
is result = ((c<<1)&0xff)^((c&0x80)?0x1d:0).
One can also optimize with PSHUFB, yielding the com-
plementary ((c&0x80)?0:0xe2) in certain situations.

Finally, multiplication by other small powers of α be-
tween α−4 and α4 can be efficiently implemented using
one fewer PSHUFB as compared to multiplication by a
generic element as follows:

c×α
3 =

(
c4x7 + · · ·+ c0x3)+(

c7x10 + c6x9 + c5x8 mod (x8 + x4 + x3 + x2 +1)
)
.

The modular part still requires one PSHUFB, but the
other PSHUFB can be replaced by a logical shift (PSLLW
or PSRLW). This results in higher throughput and lower
latency, as well as lower register pressure. However, we
note that the lack of byte-sized PSLLB or PSRLB makes
things more awkward than expected.

Unlike the constant-time F256 multiplication on
RAID 6 hardware, the performance of F256 arithmetics
in software may change depending on the implementa-
tion. The benchmark results of some of the proposed
SSSE3 implementations are summarized in Table 2.

Table 2: Cycle counts of F256 operations for 4 KB data
on Intel Xeon E5430 @ 2.66 GHz

F256 operation Cycle count
×α (SSE2) 914
×α 725
×α3 900
× arbitrary element 1187

3.2 Multiplication in F216 and F224

F216 and F224 are implemented as extension fields from
0x11d F256, which allows us to reuse some of the highly-
optimized implementations of F256 arithmetics. Further-
more, a multiplication by an element in F256 would be
preserved byte-wise in the extension fields.

For general multiplication in extension field, multipli-
cation a(X) ·b(X) of two arbitrary F216 -elements are im-
plemented with Karatsuba [2] as a polynomial multipli-
cation over F256. Similarly, 3-way Karatsuba [2] is also
applicable to arbitrary F224 multiplications.

For a hardware that enables us to do a long vector
(block) checksum in DMA fashion over F256, i.e., high-
speed, offloaded evaluation of ∑d jα

j or even any ∑d ja j
for specified coefficients a j, these can be applied toward
arithmetic in F216 and F224 as well. For example, for data
blocks Di (considered as long vectors of F216), we can
write down the checksum ∑DiX i as

D0 +XD1 +
(
1+α

3X
)

D2 +
(

α
3 +(1+α

6)X
)

D3

+
(
(1+α

6)+α
9X
)

D4 +
(

α
9 +(1+α

6 +α
12)X

)
D5

+
(
(1+α

6 +α
12)+α

15X
)

D6 + · · · .

We can see clearly that it does have some regular struc-
ture, which leads to efficient use of any special hardware
already in place to sum power series in α over F256 after
we split each element of F216 into two halves .

Finally, we compare our multiplication techniques
with those proposed by Plank, Greenan, and Miller [7].
In their proposal, a 16-bit element is divided into four
nybbles, and a multiplication can be computed using
eight table look-ups (two for each nybble). This tech-
nique is applicable to all F216 representations at a cost of
storing huge pre-computed look-up tables. Specifically,
it requires 8× 16 bytes of storage for each F216 element
(65536× 128 bytes in total), which cannot possibly fit
into the L1 cache of any of today’s processors. Our tower
field-based techniques, on the other hand, require much
less fast memory, not to mention that they also involve
less table-ups at run time.

4

Table 3: Erasure-coding throughput (MB/s) for n = 16
Code m Max. n Encode Decode
[1,α] SSE2 (Linux) 2 - 8762 -
[1,α] 2 - 9051 6467
Reed-Solomon 2 - 3833 3517
[1,α,α2] 3 - 5147 3276
[1,α,α1/2] 3 - 4707 3542
Reed-Solomon 3 - 2977 2444
[1,α,α2,α3] 4 21 3818 2478
[1,α,α1/2,α3/2] 4 21 3225 2338
[1,α,α1/3,α2/3] 4 63 2387 1290
[1,α,α1/2,X] 4 92 3186 1772
Reed-Solomon 4 - 2490 1921

Table 4: Error-correcting performance for n = 16

[1,α,α1/2,X] RAIDq 8 Throughput (MB/s)
Encode 3187
Decode (0 errors) 2695
Decode (2 errors) 87

4 Experiments and concluding remarks

4.1 Experiment setup and results

We have implemented several RAID encoders and de-
coders, including a Reed-Solomon coder, in C lan-
guage and Intel SIMD intrinsics. Some coders, such
as the encoder of [1,α] and [1,α,α2], are further hand-
optimized using assembly language. For erasure coding,
the [1,α] SSE2 implementation is taken from the RAID 6
code in Linux kernel, which is implemented by Anvin [1]
in assembly language without our SSSE3 optimizations.
We leave its decoding performance blank because the de-
coding involves general F256 multiplications, and there
is no natural SSE2 implementation except changing the
data layout to a “bitsliced” form [3]. All the other imple-
mentations have our SSSE3 optimizations.

The experiments on erasure coding and error cor-
recting are performed on an Intel Xeon E5430 pro-
cessor (supporting both SSE2 and SSSE3) running at
2.66 GHz. The throughput results of various RAIDq
implementations are shown in Table 3. Here, the de-
coding throughput is measured with maximal erasures in
the data blocks and hence represents a worst-case sce-
nario. Table 4 shows the performance of detecting and
correcting from two random errors for RAIDq 8 base on
the [1,α,α1/2,X] Plank’s code. Such error correcting is
not yet a standard feature and is usually done by a long-
running process in the background (“data scrubbing”),

so the performance requirement might be not so strin-
gent. Lastly, we note that a slight mismatch in encoding
throughput between Table 3 and 4 is possibly due to mea-
surement error.

4.2 Comparison with Reed-Solomon RAID
From Table 3, we see that RAIDq almost always out-
performs Reed-Solomon RAID. Here we analyze such
performance gain at an algorithmic level. The main dif-
ference is that Reed-Solomon encoding involves gen-
eral finite-field multiplication, whereas the encoding of
Plank’s codes only involves multiplication by several
fixed elements in the field, which can be optimized by
the techniques described in Section 3. RAIDq also has an
edge over Reed-Solomon RAID even without the above
optimizations because RAIDq always uses an XOR check-
sum, which is not possible with general Reed-Solomon
codes. Furthermore, the performance gain from encod-
ing will affect decoding and error correcting because op-
timized decoders often reuse encoders as well, as de-
scribed in Section 2.3. There are rare cases where RAIDq
is outperformed by Reed-Solomon RAID, e.g., in decod-
ing of [1,α,α1/3,α2/3] and [1,α,α1/2,X]. This happens
because here the decoder needs to perform additional ex-
pensive multiplications in F216 and F224 in order to sup-
port more data disks.

Finally, we note that all performance results presented
here represent worst-case scenarios. We expect that in
practice, the most common disks failures can be recov-
ered from the much faster RAID 5 or 6 checksum compu-
tation, which is possible because RAIDq includes them
as special cases.

References
[1] ANVIN, H. P. The mathematics of RAID-6, 2009.
[2] BERNSTEIN, D. J. Fast multiplication and its applications. Algo-

rithmic number theory 44 (2008), 325–384.
[3] CHEN, A. I.-T., CHEN, M.-S., CHEN, T.-R., CHENG, C.-M.,

DING, J., KUO, E. L.-H., LEE, F. Y.-S., AND YANG, B.-Y. SSE
implementation of multivariate PKCs on modern x86 CPUs. In
CHES 2009 (Lausanne, Switzerland, September 2009), pp. 33–48.

[4] LEVENTHAL, A. Triple-parity RAID and beyond. Queue 7, 11
(December 2009), 30:30–30:39.

[5] PLANK, J. S. A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems. Software: Practice and Expe-
rience 27, 9 (September 1997), 995–1012.

[6] PLANK, J. S., AND DING, Y. Note: Correction to the 1997 tutorial
on Reed-Solomon coding. Software: Practice and Experience 35,
2 (February 2005), 189–194.

[7] PLANK, J. S., GREENAN, K. M., AND MILLER, E. L. Screaming
fast Galois Field arithmetic using Intel SIMD instructions. In FAST
2013 (San Jose, CA, USA, February 2013).

[8] PLANK, J. S., LUO, J., SCHUMAN, C. D., XU, L., AND
WILCOX-O’HEARN, Z. A performance evaluation and examina-
tion of open-source erasure coding libraries for storage. In FAST
2009 (San Francisco, CA, USA, February 2009).

5

