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Abstract
We present a novel full hardware implementation of Streamlined NTRU Prime, with two variants: a high-speed, high-area
implementation and a slower, low-area implementation. We introduce several new techniques that improve performance,
including a batch inversion for key generation, a high-speed schoolbook polynomial multiplier, an NTT polynomial multiplier
combined with a CRT map, a new DSP-free modular reduction method, a high-speed radix sorting module, and new encoders
and decoders. With the high-speed design, we achieve the to-date fastest speeds for Streamlined NTRU Prime, with speeds
of 5007, 10,989, and 64,026 cycles for encapsulation, decapsulation, and key generation, respectively, while running at 285
MHz on a Xilinx Zynq Ultrascale+. The entire design uses 40,060 LUT, 26,384 flip-flops, 36.5 Bram, and 31 DSP.

Keywords NTRU Prime · Hardware Implementation · Lattice Cryptography · Post-Quantum Cryptography · FPGA

1 Introduction

With the advent of quantum computers, many cryptosystems
would become insecure. In particular, quantum computers
would completely break many public-key cryptosystems,
including RSA, DSA, and elliptic curve cryptosystems. Due
to this concern, the National Institute of Standards and Tech-
nology (NIST) began soliciting proposals for post-quantum
cryptosystems [17]. The algorithms solicited are divided into
public-key encryption (key exchange) and digital signature.
TheNISTPost-QuantumCryptography Standardization Pro-
cess has entered the third phase, and NTRU Prime [7] is one
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of the candidates of key encapsulation algorithms, as an alter-
nate candidate. Since hardware implementations will be an
important factor in the evaluation, it is important to research
hardware implementations for various use cases.

NTRU Prime has two instantiations: Streamlined NTRU
Prime and NTRU LPRime. In this paper, we implement the
Streamlined NTRU Prime cryptosystem on Xilinx Artix-7
and Xilinx Zynq Ultrascale+ FPGA. We present two differ-
ent versions: a high-performance, large-area implementation
and a slower, compact implementation. Both implement the
full cryptosystem, including all encoding and decoding, but
without a TRNG. We also present several novel designs to
implement the subroutines required by NTRUPrime, such as
sorting, modular reduction, polynomial multiplication, and
polynomial inversion.

2 Background

2.1 Definitions

Streamlined NTRU Prime [7] defines the following polyno-
mial rings:

R = Z[x]/(x p − x − 1) (1)

R/q = (Z/q)[x]/(x p − x − 1) (2)

R/3 = (Z/3)[x]/(x p − x − 1) (3)
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The parameters (p, q, w) of Streamlined NTRU Prime sat-
isfy the following:

p, q ∈ P (4)

w > 0, w ∈ Z, 2p ≥ 3w (5)

q ≥ 16w + 1 (6)

x p − x − 1 is irreducible inR/q (7)

The recommended parameter set for Streamlined NTRU
Prime is sntrup761:

p = 761, w = 286, q = 4591 (8)

For this reason, we will focus on this parameter set during
this paper. NTRU Prime also uses the following notations:

– Small: A polynomial of R has all of its coefficients in
(−1, 0, 1).

– Weight w: A polynomial of R has exactly w nonzero
coefficients.

– Short: The set of small weight w polynomials of R.
– Round: Rounding all coefficients of a polynomial to the
nearest multiple of 3.

– Hasha(x): The SHA-512 hash of the byte array x ,
prepended by the single byte value a. Only the first 256
bits of the output hash are used.

– Encode and Decode: Streamlined NTRU Prime uses an
encoding and decoding algorithm to transform polyno-
mials in R/3 and R/q to and from byte strings.

2.2 Streamlined NTRU Prime

The key generation of Streamlined NTRUPrime is described
in Algorithm 1, and the encapsulation and decapsulation in
Algorithms 2 and 3, respectively.

Algorithm1:StreamlinedNTRUPrimeKeyGeneration
[7]
1 Generate a uniform random small g ∈ R/3 until g is invertible in
R/3

2 Generate a uniform random f ∈ Short
3 Generate a uniform random byte array ρ of length (p + 3)/4
4 v ⇐ 1/g in R/3
5 K ⇐ g/(3 f ) in R/q
6 K̄ ⇐ Encode K
7 k̄ ⇐ Encode ( f , v)
8 return (K̄ , (k̄, K̄ , ρ, hash4(K̄ ))) as (public key, secret key)

Algorithm 2: Streamlined NTRU Prime Encapsulation
[7]
Input: public key K̄

1 Generate a uniform random r ∈ Short
2 K ⇐ Decode K̄
3 c ⇐ Round (Kr ) in R/q
4 c̄ ⇐ Encode c
5 r̄ ⇐ Encode r
6 C ⇐ (c̄, hash2(hash3(r̄), hash4(K̄ )))
7 return (C , hash1(hash3(r̄ ′),C)) as (ciphertext, session key)

Algorithm 3: Streamlined NTRU Prime decapsulation
[7]
Input: ciphertext C , secret key (k̄, K̄ , ρ, hash4(K̄ ))

1 c ⇐ Decode c̄
2 f , v ⇐ Decode k̄
3 e ⇐ (3 f c in R/q ) modulo 3
4 r ′ ⇐ ev in R/3
5 if r ′ does NOT have weight w then
6 r ′ ⇐ (1, 1, …, 1, 0, 0, …, 0) // The first w elements are 1,

the rest 0
7 Redo Encapsulation with K̄ and r ′, compute new ciphertext C ′
8 r̄ ′ ⇐ Encode r ′
9 if C ′ = C then

10 return hash1(hash3(r̄ ′),C)

11 else
12 return hash0(hash3(ρ),C)

2.3 Design consideration with FPGAs

Field-programmable gate arrays (FPGAs) are popular hard-
ware implementation platforms as one can easily construct
and prototype customized digital logic circuits, without the
large cost of manufacturing ASICs. Most FPGAs provide
several different general purposed resources which are either
common in general logic circuits or are able to simulate or
execute Boolean functions, which are constructed from basic
logic gates. On hardware implementation with FPGAs, the
utilization of these resources is one of the important standards
of comparison among similar implementations. To “make an
apples-to-apples comparison,” a specified FPGA platform is
often assigned in a call-for-proposal project. NIST recom-
mends that “(PQC submission) teams generally focus their
hardware implementation efforts on Artix-7” as an FPGA
platform [2]. Artix-7™ is a FPGA platform manufactured by
Xilinx® .Wewill focus onXilinx FPGAs in this paper, in par-
ticular Xilinx Zynq® Ultrascale+™ and Artix-7 FPGAs, but
note that the philosophy of the design consideration remains
the same if the resources are of similar types and structures,
even when the FPGA manufacturer differs. Here, we intro-
duce themain resources, ofwhose properties our design takes
advantage, provided in FPGAs.
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2.3.1 Look-up tables (LUTs)

Look-up tables are very basic units in popular FPGAs.ALUT
is a combinational logic unit with usually 4–6 input bits and
1–2 output bits. Here, we denote an LUT with m input bits
and n output bits as LUTm,n . An LUT can be considered
as a block of read-only memory. For example, an LUT5,2

can be considered as a block with 32 cells, each of which
contains 2 bits. Xilinx Zynq Ultrascale+ and Artix-7 provide
LUT units which support both the functions of LUT5,2 and
LUT6,1 [21,22].

Usually, LUTs are used to implement combinational dig-
ital circuit, but they are also useful to implement read-only
memories (ROMs) and random-access memory, call dis-
tributed RAM. For example, to construct a 12-bit, 32-cell
read-only memory unit, we will need 6 LUT5,2 units. A 13-
bit, 64-cell block costs 13 LUT6,1 units.

2.3.2 Digital Signal Processing (DSP) slices

ADSP slice is an arithmetic unit which consists of onemulti-
plier and some accumulators. The multiplier supports signed
integer multiplication with many bits, and it costs a lot of
LUTs to construct the same multiplier if the DSP slice is
not applied. Xilinx Zynq Ultrascale+ provides DSP slices
with 27 × 18-bit signed integer multipliers [26], and Xilinx
Artix-7 provides DSP slices with 25 × 18-bit signed integer
multipliers [23].

If we multiply two integers whose bit lengths are more
than the limit one DSP slice can offer, we can either apply
a pipeline approach, or connect two or more DSP slices in
parallel. For example, tomultiply a 24-bit signed integer with
a 32-bit signed integer, we can connect 2 slices in parallel, or
to multiply the multiplicand with the least significant 16 bits
of the other integer and then with the most significant bits.
If we can control the bit lengths of the integers we want to
multiply, however, we are able to limit the bit lengths so that
one DSP slice can handle the multiplication.

2.3.3 Block memories (BRAMs)

A block memory unit stores a certain large number of bits.
Every BRAM provides several channels with partially cus-
tomizable data widths during the hardware synthesis stage.
We can read and/or write the data stored in one BRAM
only via the channels. This fact means that we can access
as many words simultaneously as the number of channels
in one BRAM, and if we want to access more words at the
same clock cycle, we need either to duplicate the data from
the BRAM to another in advance, or to partition the data we
want to store in two or more BRAMs.

Both Xilinx Zynq Ultrascale+ and Artix-7 provides
BRAMunits [24,25], each ofwhich contains 36kbits and two

channels. Every BRAM unit can be divided into two blocks
with 18kbits, each of which in turn provides two channels,
and the synthesis report records 0.5 BRAMs of utilization as
long as a 18kbits block is utilized. In both FPGAs, the data
width of each 18kbits block can be customized as 1, 2, 4, 9,
or 18bits.

2.4 Multiplication using Good’s trick with NTT

Polynomial multiplication is one of the most important oper-
ations which needs to be carefully designed in NTRU Prime
(the other is the polynomial inversion).

Polynomials inR/q can be written as

f (x) =
p−1∑

i=0

fi x
i

where − q−1
2 ≤ fi ≤ q−1

2 for every i satisfying 0 ≤ i ≤
p − 1. The polynomial multiplication of two polynomial
f (x) and g(x) inR/q is

f (x) � g(x) � ( f (x)g(x) mod±q) mod x p − x − 1

where we denote r = n mod±q (signed modulo) for any
integer n and r if− q−1

2 ≤ r ≤ q−1
2 and there exist an integer

m such that n = mq+r . To reducemodulo x p−x−1 is easy
since we only need to substitute x j with x j−p+1 + x j−p for
every j ≥ p and reduce the eventual polynomial into the form∑p−1

i=0 fi xi . So the key is to evaluate f (x)g(x) mod±q. For
multiplying two polynomials of degree p−1, a fast-Fourier-
transform-like approach can effectively reduce the number of
integer multiplications we need, from O(p2) to O(p log p).
Such an approach operating in a prime field Z/q but not
complex numbers is a number theoretic transform (NTT).

NTT is usually a 2k-point transformation method with a
pre-determined positive integer k (written as NTT2k (·), and
the inverse operation iNTT1k (·)). For polynomials f (x) and
g(x) of degree at most 2k−1 andwith at least 2k−1 zero coef-
ficients, the polynomial multiplication can be implemented
as

f (x)g(x) = f (x)g(x) mod x2
k − 1

= iNTT2k (NTT2k ( f (x)) � NTT2k (g(x)))

where � is the point-wise multiplication. For NTRU Prime
with p = 761, we need to pad 263 monomials with zero
coefficients to the polynomials, making NTT211(·) work.

Good [11] provides another approach, applying NTT29(·)
instead and then doing 9 degree-512 polynomial multipli-
cations where the polynomials are with at least 256 zero
coefficients. In this approach, we need only to pad 7 zeros to
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the polynomials. This idea was introduced in NTRU Prime
originally in [1,8].

In the case p = 761, we regard the polynomial as of
degree 767 instead, with the coefficients of the high-degree
terms set to 0. Now since f (x)g(x) is of degree of at most
1534, we have f (x)g(x) = f (x)g(x) mod x3·512 − 1. We
set x = yz, and it can be shown that

f (x)g(x) = f (yz)g(yz) mod (y3 − 1)(z512 − 1)

In detail, we see that for the set of integer i in [0, 1535],
the mapping i ≡ 513� + 512 j (mod 1536) to the set of the
integer pair ( j, �) where 0 ≤ j ≤ 3 and 0 ≤ � ≤ 511 is one-
to-one and onto. Then, f (x) (and g(x), same as follows) can
be expressed as:

f (x) =
760∑

i=0

fi x
i +

1535∑

i=761

0xi ≡
1535∑

i=0

fi y
i mod 3zi mod 512

=
2∑

j=0

511∑

�=0

f(513�+512 j) mod 1536y
j z�

≡
(

511∑

�=0

f513� mod 1536 · z�
)

+
(

511∑

�=0

f(513�+1024) mod 1536 · z�
)
y

+
(

511∑

�=0

f(513�+512) mod 1536 · z�
)
y2

≡
(

511∑

�=0

f(� mod 3)29+� · z�
)

+
(

511∑

�=0

f((�−1) mod 3)29+� · z�
)
y

+
(

511∑

�=0

f((�−2) mod 3)29+� · z�
)
y2

(mod (y3 − 1)(z512 − 1))

Here, we define fy j (z) �
∑511

�=0 f((�− j) mod 3)29+� · z� for
convenience, and then f (x) ≡ fy0(z) + fy1(z)y + fy2(z)y

2

(mod (y3 − 1)(z512 − 1)). We can assert that f·(z) and g·(z)
are all of z-degree 511 andwith at least half of the coefficients
being 0, so that f·(z)g·(z) can be evaluated as

f·(z)g·(z) ≡ iNTT29(NTT29( f·(z)) � NTT29(g·(z)))

Then, f (x)g(x) is given by

h(x) = f (x)g(x)

≡ ( fy0(z) + fy1(z)y + fy2(z)y
2)(gy0(z)

+ gy1(z)y + gy2(z)y
2)

≡ ( fy0(z)gy0(z) + fy1(z)gy2(z) + fy2(z)gy1(z))

+ ( fy0(z)gy1(z) + fy1(z)gy0(z) + fy2(z)gy2(z))y

+ ( fy0(z)gy2(z) + fy1(z)gy1(z) + fy2(z)gy0(z))y
2

� hy0(z) + hy1(z)y + hy2(z)y
2

� h(z, y) =
2∑

j=0

511∑

�=0

h j�z
�y j (mod (y3 − 1)(z512 − 1))

We can regard the polynomial multiplication of h(x) =
f (x)g(x) as a school-book multiplication with respect to
y, where the coefficients of the powers of y’s are the sum
of products of the polynomials in z, which can be computed
by NTT. Notice that for every h j� the index j directs to the
coefficient polynomial of y j , and the index � directs to the
coefficient of z� in each polynomial. To map back the coef-
ficients of h(z, y) to those of h(x), we can see h(x) is given
by

h(x) =
1535∑

i=0

h(i mod 3),(i mod 512)x
i

2.5 Chinese remainder theorem and NTT

To compute NTT2k (·), we need to find a 2k-th root of unity in
the fieldZ/q. Specifically, to apply Good’s trick for p = 761
and q = 4591, we need to find a 512-th root of unity in
Z/4591. This is impossible since 4591 − 1 = 2 · 33 · 5 · 17
without the factor 512.

In [8], it is suggested to apply the Chinese remainder the-
orem (CRT) to resolve this issue. To make it clear how the
CRT can be applied, the following two cases are considered:
Case 1 Polynomial multiplications used in the standard
of NTRU Prime are multiplications with one small poly-
nomial (coefficients are all −1, 0, or 1) and one R/q
polynomial (coefficients are in the range [− q−1

2 ,
q−1
2 ], or

[−2295, 2295]). If we use the school-book scheme, we can
see that all of the coefficients in the polynomial multipli-
cation without modulo q are ranged in [− p(q−1)

2 ,
p(q−1)

2 ],
which is a 22-bit signed integer. If, instead, we want to apply
Good’s trick, we can choose two good primes (inwhose finite
fields we can find a 512-th root of unity) q1 and q2 such that
q1q2 > p(q−1)+1. Then, we applyGood’s trick separately.

For all coefficients of xi ’s computed with an NTT inZ/q1
and Z/q2, respectively, say hi,1 and hi,2, we can get the
eventual hi by

hi,1q
′
2q2 + hi,2q

′
1q1

≡ ((hi,1q
′
2) mod±q1)q2 + ((hi,2q

′
1) mod±q2)q1 � h(0)

i

hi ≡ h(0)
i (mod±q)
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where q ′
1 ≡ q−1

1 (mod q2) and q ′
2 ≡ q−1

2 (mod q1).We can

see that h(0)
i is in the range [−q1q2 + q1+q2

2 , q1q2 − q1+q2
2 ],

and we need only to check if it is in [− q1q2
2 ,

q1q2
2 ] and tune

up or down by q1q2. That is,

hi = h(0)
i + kq1q2, k ∈ {−1, 0, 1}

Notice that we will control the logic such that we always
multiply a 25-bit signed integer with a 18-bit signed integer,
as the built-in multipliers in Xilinx FPGAs we focused are
at least signed 25 × 18-bit multipliers. Controlling the size
of the multiplication in this manner provides the portability
between high-end and low-end FPGAs and utilizes the built-
inmultiplierwith a better effectiveness. This fact is important
in the next case.
Case 2 In our implementation, batch inversion is applied
(see Sect. 3.4). This makes multiplication with two R/q
polynomials necessary. In this case, all coefficients in the
polynomial multiplication without modulo q are ranged in

[− p(q−1)2

4 ,
p(q−1)2

4 ],which is [−4008206025, 4008206025],
and then the coefficients are 33-bit signed integers. In this
case, three good primes are picked. We have that

hi,1q
′
23q2q3 + hi,2q

′
31q3q1 + hi,3q

′
12q1q2

≡ ((hi,1q
′
23) mod±q1)q2q3

+ ((hi,2q
′
31) mod±q2)q3q1

+ ((hi,3q
′
12) mod±q3)q1q2

� h(0)
i

hi ≡ h(0)
i (mod±q)

whereq ′
23 ≡ (q2q3)−1 (mod q1),q ′

31 ≡ (q3q1)−1 (mod q2)

and q ′
12 ≡ (q1q2)−1 (mod q3). h

(0)
i is (roughly) ranged

in [− 3q1q2q3
2 ,

3q1q2q3
2 ], and we can still check if it is in

[− q1q2q3
2 ,

q1q2q3
2 ] and tune up or down by q1q2q3. That is,

hi = h(0)
i + kq1q2q3, k ∈ {−1, 0, 1}

We choose q1 = 7681, q2 = 12,289 and q3 = 15,361
here. In this case, q ′

23 = 2562 = (A02)16, q ′
31 = 8182 =

213 − (A)16 and q ′
12 = 10 = (A)16, making all three of

h′
i,a = (hi,aq ′

bc) mod±qa can be done with simple addition
or subtraction only followed by a modulo operation. This
makes all h′

i,a represented as 14-bit signed integers. Multi-
plying the remaining qbqc can be done also by one 25×18-bit
multiplier since in this configuration

h′
i,q1q2q3 + h′

i,q2q3q1 + h′
i,q3q1q2

= h′
i,q1 · 188771329 + h′

i,q2 · 117987841 + h′
i,q3

· 94391809
= h′

i,q1(184347 · 210 + 1) + h′
i,q2(230445 · 29 + 1)

+ h′
i,q3(184359 · 29 + 1)

= h′
i,q1((2D01B)16 · 210 + 1) + h′

i,q2((3842D)16 · 29 + 1)

+ h′
i,q3((2D027)16 · 29 + 1)

2.6 Montgomery’s trick

Montgomery’s trick is a method to accelerate inversion by
doing batch inversion [16]. This allows us to replace n inver-
sions in a ring with a single inversion, together with 3n − 3
multiplications. Montgomery’s trick is described in Algo-
rithm 4. The trick can lead to a significant speedup as long as
multiplication is at least 3 times as fast as a single inversion,
and one has enough storage space to store the intermedi-
ate products. Batch inversion with Montgomery’s trick for
NTRU Prime was already proposed in the original paper [4].
It was recently implemented for fast key generation in an
integration of NTRU Prime into OpenSSL [3]. There, for the
parameter set sntrup761 and a batch size of 32, it led to a key
generation speed of 156,317 cycles per key, compared to the
non-batch 819,332 cycles.

Algorithm 4: Description of Montgomery’s trick for
batch inversion
Input : n: the batch size, fx : an array of n numbers to be

inverted
Output: The array of n inverted f −1

x
1 a1 ← f1 ;
2 for i from 2 to n do
3 ai ← ai−1 · fi ;
4 end
5 Compute inverse a−1

n ;
6 for i from n to 2 do
7 f −1

i ← a−1
i · ai−1 ;

8 a−1
i−1 ← ai · fi ;

9 end
10 f −1

1 ← a−1
1 ;

11 return ( f −1
1 , . . . , f −1

n )

3 Hardware implementation

In this section, we describe the basic functionality and archi-
tecture of all core functions and modules of our Streamlined
NTRU Prime implementation.

3.1 Parallel schoolbookmultiplier

Thismultiplier use amassively parallel version of the school-
book multiplication algorithm. It consist of an LFSR, an
accumulator register, and a large number of multiply accu-
mulate units.

123



Journal of Cryptographic Engineering

The use of schoolbook multiplication both for NTRU
Prime [15] and for other lattice KEM [10,18] is not new.
Two different implementations, based on the same overall
design architecture, are presented in this paper: the first is
a high-speed, high-area implementation and the second is a
much smaller, but also slower implementation. Both are simi-
lar with regard to the speed-area product. They also have very
simple memory access patterns. The differences between the
two is that the faster implementation stores all values in flip-
flops, whereas the compact implementation uses distributed
RAM. The architecture is shown in Fig. 1.

The high performance and efficiency of this design is
based on the fact that in Streamlined NTRU Prime, all mul-
tiplications are always with one polynomial inR/3, and the
second either also inR/3 or inR/q.Multiplicationwith both
polynomials inR/q do not normally occur. (The only excep-
tion here is during the batch inversion using Montgomery’s
trick, see Sect. 3.4.) This idea was previously presented in
[10,18], and allows a number of optimizations. The fact that
one polynomial is always inR/3 allows the individual multi-
ply accumulate (MAC) units to be very simple, as only a very
small number of bit operations are needed. This in turn leads
to a very small footprint in the FPGA. In addition, we do not
perform any modular reduction at this step. Its algorithmic
description can be found in Algorithm 5.

Before the multiplication starts, the small R/3 polyno-
mial is loaded into an LFSR of length p, with the tap points
set to correspond to the polynomial of the NTRU Prime ring,
R/3 = (Z/3)[x]/(x p − x − 1). For this reason, 3 bits are
needed per coefficient, as the tap points can lead to coeffi-
cients in the range from −2 to 2. Once the R/3 polynomial
is fully shifted into the LFSR, the multiplication can begin.
During multiplication, one coefficient from the R/q poly-
nomial is retrieved from BRAM at a time. This coefficient
is then multiplied with every single coefficient in the LFSR,
and added coefficient-wise to an accumulator register. The
LFSR is then shifted once, and the next coefficient from the
R/q polynomial is retrieved. This repeats for every coeffi-
cient from the R/q polynomial. After this, the accumulator
register contains the completed polynomial multiplication.
The register contents are then sent to the multiplier output,
where they are taken modulo q. Because of the LFSR, no
additional polynomial modulo reduction is required.

For the high-speed schoolbook multiplier, p MAC units
are instantiated, and as a result, one coefficient from theR/q
polynomial canbeprocessedper clock cycle. For the compact
implementation using distributed RAM, 24 MAC units are
instantiated. This number comes from the value of p, and
the size of the smallest distributed RAM blocks. In Xilinx
FPGA’s, the LUT can be configured as 32-bit dualport RAM,
with one read/write port, and one read-only port. With p =
761, and 
761/24� = 32, it means that 24 MAC units pack
the RAM as densely as possible. This means that every 32

Algorithm 5: Single coefficient multiply accumulate
(MAC) algorithm. Note that no modulo calculation is
performed here. The 23 bits are large enough so that no
overflow can occur.
Input : a: a 23-bit signed number, b: a 13-bit signed number, c:

a 3-bit signed number with −2 ≥ c ≥ 2
Output: The 23-bit result a + b · c

1 r−2 ← −b � 1 ;
2 r−1 ← −b ;
3 r0 ← 0 ;
4 r1 ← b ;
5 r2 ← b � 1 ;
6 return a + rc

Fig. 1 Architecture of the parallel schoolbook polynomial multiplier
for the parameter set sntrup761.The accumulator array has a size of p·23
bits. The blocks with the label MAC are described in Algorithm 5. The
difference between the high-speed and the low-area multiplier are in the
number of MAC units, and whether the accumulator array and small
polynomial LFSR are implemented in flip-flops or in distributed RAM

clock cycles, a new coefficient from the R/q polynomial
is processed, and the multiplier thus also takes 32 times as
many cycles.

It takes p clock cycles to shift the R/3 polynomial into
the LFSR. It also takes p clock cycles to shift the result out of
the accumulator array, during which the accumulator array
is also set to 0. Both of these operation can be interleaved
to save time, i.e., a new R/3 polynomial can be shifted in,
while the accumulator array is shifted out. As a result, for
p = 761, the high-speed multiplication takes 1522 cycles,
otherwise 2283 cycles.

3.2 Architecture ofR/q ·R/qNTTmultiplier

The architecture NTTmultiplication employing Good’s trick
and a CRT map is shown in Fig. 2, which is modified from
the NTT/INTT architecture from [27].
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Coefficients in polynomials f (x) and g(x) are partitioned
into those of fy0(z), fy1(z), fy2(z), gy0(z), gy1(z), and
gy2(z), as are mentioned in Sect. 2.4. Each z-polynomial
is put into bank 0 and 1, and with proper design of the
four address generators to the reading and writing chan-
nels of bank 0 and 1, the z-polynomials are passed through
the 3 Butterfly units (for Z/7681, Z/12,289, and Z/15,361,
respectively), and the corresponding NTT vectors are calcu-
lated. Bank 2 is then used to store the result of the summation
of the point multiplications. The content in bank 2 contains
the NTT vectors of hy0(z), hy1(z), and hy2(z). The NTT
vectors are then calculated with three INTT operations, mak-
ing h(x) = f (x)g(x) ready, where each coefficient is of
3-tuple with each entry representing the coefficient modulo
7681, 12,289, 15,361, respectively. The CRT operation is
then done to find each coefficient modulo 4591, and then
the reduction of x p − x − 1 is computed, getting the final
h(r)(x) = h(x) mod x p − x − 1 ready.

This multiplier is used for the R/q · R/q multiplication
during batch inversion (see Sect. 3.4), and takes 35,463 clock
cycles. The control unitwhich controls the unit consists of the
following stages: load, NTT , point_mul, reload, I NT T ,
crt , and reduce stages.When the product of the polynomials
is ready, the control unit falls into f inish stage, and the result
can be fetched out of the multiplier.

– In the load stage, the coefficients of the polynomials f
and g to be multiplied are stored in bank 0 and bank 1,
and the address is determined byGood’s permutation and
address generators. 3090 clock cycles are consumed in
this stage.

– In the NT T stage, read one data frombank 0 and one data
from bank 1, pass them to the butterfly unit, and write the
output A and B back to the same address of bank 0 and
bank 1. There are six NTT operations with 512 points
to be done, and each NTT operation needs 2315 cycles
(256 × 9 + ε). It takes 13890 cycles in this stage.

– In the point_mul stage, read out two data from the same
bank and multiply it and decide which address to write
to bank 2 according to the power of y modulo y3 − 1.
We carefully write the result into bank 2 for the first
time, and for the second and third time, we read the
value from bank 2 in advance, add it into the result of
the point-multiplication, and save it back to bank 2. With
this design, we complete the addition of the 3 sets of point
multiplication which influence the value of h(x) in this
stage. There are nine sets of 512-point multiplications to
be calculated, and it takes 4616 (512 × 9 + ε) cycles in
this stage.

– In the reload stage, read data from bank 2 and write it
back to bank 0 and bank 1 after the nine point multipli-
cations. A total of 1541 cycles are consumed here.

– In the I NT T stage, the process is similar as in the NTT
stage. The differences are that the butterfly units and theω

address generator are now operated in the inverse mode.
Now, there are three INTT operations to be done, and
6945 cycles are consumed in this stage.

– In the crt stage, the DSP slices in the three butterfly units
are applied to calculate the partial result h′

i,aqbqc using
the CRT. All of the partial results are then added as one
integer, which is the input of the modulo q unit. After
this, f (x)g(x) is ready but without modulo x p − x − 1
applied. It takes 3080 cycles to complete this stage.

– In the reduce stage, h(r)(x) = f (x)g(x) mod x p−x−1
is evaluated. A register hd is constructed to help the lat-
ter addition. Each coefficient (denoted as hi ) of xi in
f (x)g(x) for 0 ≤ i ≤ 760 is copied into bank 2 sequen-
tially, and hi � 0 during the duplication of the lower
coefficients. hi for 761 ≤ i ≤ 1520 is then sequentially
loaded, and hi−761 is loaded from bank 2 simultaneously.
h(r)
i−761 � (hi + hd + hi−761) mod q is computed and

saved into bank 2 at the next cycle, and hd � hi simul-
taneously. After h1520 is processed, h760 is loaded, and
h(r)
760 � (hd + h760) mod q is computed and saved into

bank 2. This stage takes 1530 cycles.
– h(r)(x) is ready in bank 2 at the f inish stage. To reduce

the critical paths while fetching data from bank 2, a
pipeline approach in the address assignment integrated
with the unit is applied, which results in some overhead.
Fetching h(r)(x) takes 770 cycles.

We inspect in detail how the coefficients in the polynomial
fyi (z) and gyi (z) are stored in the memory banks. One z-
polynomial requires 512 cells as the storage of coefficients,
and we save half of the coefficients in 256 cells of bank 0
and the other half in 256 cells of bank 1. This design is to
feed the inputs simultaneously into the butterfly units, and an
efficient in-place memory addressing is introduced in [14],
which provides the formula of bank index B(·) and the lower
bits of the address Al(·). The higher bits of the address Ah(·)
just indicate which polynomial it is. The bank index and
address are given by

B(zi , hy j (z)) = i[8] ⊕ i[7] ⊕ · · · ⊕ i[0]
Al(z

i , hy j (z)) = i[8 : 1]

Ah(z
i , hy j (z)) =

{
j, h = f

j + 3, h = g

A(zi , hy j (z)) = 28Ah(.) + Al(.)

It should be noted that in the reload stage and at the end
of multiplication, as NTT itself re-arranges the order of the
coefficients such that the address in one polynomial is bit

123



Journal of Cryptographic Engineering

Fig. 2 Architecture of Good’s
trick NTT multiplication

reversed, the lower 9 bits of the address need to be reversed.
The higher 3 bits do not join the bit reversal.

3.3 Generation of short polynomials

During the encapsulation andkeygeneration inNTRUPrime,
a so-called short polynomial has to be created. For this, the
original NTRU Prime paper suggests using a sorting net-
work [4], and using a sorting algorithm is a well-established
method to randomly shuffle a list in constant-time [10,20]. In
our case, a list of p 32-bit random numbers is created. Of the
first w, the least significant bit is set to 0 so that the number
is always even. For the others, the lowest two bits are set to
(0, 1). This list of numbers is then sorted, after which the
upper 30 bits are discarded. The remaining two-bit numbers
are then subtracted by one.As a result, exactlyw elements are
either 1 or−1, and the rest are all zero. An alternativemethod
for generating short polynomials would be using a shuffling
algorithm such as Fisher–Yates, as used by a Dilithium hard-
ware implementation [13]. However, in Dilithium, a public
polynomial is sorted, wherase in NTRUPrime, a secret poly-
nomial is sorted, and thus requires a constant-time algorithm.
As Fisher–Yates shuffle is difficult to implement in constant-
time [10,20], we do not consider it an option.

The reference C implementation of NTRU Prime [7], as
well as the hardware implementation in [15], use a constant-
time sorting network. However, on an FPGA, we can use
a faster method in the form of the radix sorting algorithm
[12]. Radix sort is an extremely fast sorting algorithm, offer-
ing O(n) speed compared to the O(n log n) of the sorting
network used in [7,15]. But radix sort has the drawback of
having input-dependent addressing, which would disqualify
it for memory architectures that have a cache due to side-
channel leakages. As the BRAMs on an FPGA do not have
any sort of cache, we can safely implement the algorithm.
Our implementation is based on the radix sorting algorithm
found in the SUPERCOP benchmark suite [5]. As a result,
we can generate a new short polynomial in 4837 cycles. A
comparison of different sorting algorithms is in Table 3.

A further optimization we have implemented is the pre-
generation of short polynomials. As short polynomials can
be generated independently of the operation (encapsulation
or key generation) or any other input (e.g. the public key),
we can pregenerate a short polynomial, instead of generat-
ing it on-demand. This pregenerated short polynomial is then
cached, and is immediately output when the encapsulation or
key generation starts. Once it has been output, we can use the
rest of the time spent on encapsulation or key generation to
pregenerate a new short polynomial for the next operation.
This in particular speeds up encapsulation, as the rest of the
modules do not have to wait until the sorting has completed.
Note that this pregeneration is also possible for NTRU, but
not Saber or Kyber, and would allow for a similar speed up.

The one case where this pregeneration would not be pos-
sible is if an encapsulation starts immediately after power on.
In that case, the encapsulationwould have towait until a short
polynomial is generated. Further encapsulations however
would be able to use a cached pregenerated short polyno-
mial, so only the very first encapsulation would be delayed.
However, the describes scenario is unlikely to occur in the
real word, as it disregards aspects such as the loading of the
public key from a flash storage, which will likely take longer
than the 4837 cycles that the sorting takes.

3.4 Batch inversion usingMontgomery’s trick

To accelerate the inversion during key generation, we employ
batch inversion using Montgomery’s trick. For the polyno-
mial inversion itself, we use the constant-time extendedGCD
algorithm from [6]. This algorithm uses a constant number
of “division steps” (or divsteps) to calculate the inverse of
the input polynomial. This algorithm is used by the refer-
ence implementation of NTRU Prime, and was also used in
a previous hardware implementation [15]. We extend it by
allowing a configurable number of divsteps per clock cycle.
Increasing the number of divsteps per clock cycle propor-
tionally decreases the number of cycles. The architecture of
the R/q inversion is shown in Fig. 3. We do not consider
alternative inversion methods, such as Fermat’s method or

123



Journal of Cryptographic Engineering

Fig. 3 Architecture of the R/q
inversion module using the
extended GCD algorithm. The
to-be-inverted polynomial is
stored in RAM g. At the start of
the algorithm, RAM v stores an
all-zero polynomial, RAM r the
polynomial
(3−1 mod q, 0, . . . , 0), and
RAM f the polynomial
(1, 0, . . . , 0,−1,−1). The final
result is stored in RAM v. The
section marked “Divstep” is the
part that is replicated when
multiple divsteps are performed
per clock cycle. This also
requires wider read/write ports
to the RAM. The architecture of
the R/3 inversion is identical,
other that all arithmetic
operations are performed in
R/3

Hensel lifting, as they are either slower, not constant-time or
are not applicable to the rings used in NTRU Prime [3,6].

In our implementation,weonly implement batch inversion
for the inversion in R/q. For inversion in R/3, it is more
efficient to simply increase the number of parallel divsteps,
as the divstep operation inR/3 is trivial (see Table 6). With,
e.g., 32 parallel divsteps, an inversion in R/3 takes 47,166
cycles. The inversion inR/3 also has the potential of having
non-invertable polynomials. We skip the invertability check,
and simple redo the inversion with a new polynomial in case
of a non-invertable polynomial.However, for batch inversion,
we would have to check every polynomial for invertability,
as a single non-invertable polynomial would force us to redo
the entire batch.

Doing batch inversion has an additional caveat: it requires
n multiplications where both polynomials are inR/q (line 7
inAlgorithm 4). This is an issue, as the polynomialmultiplier
for NTRU Prime normally always has one operand in R/3.
This means we cannot use the our schoolbook multiplier,
as the multiplier has optimizations that rely on one operand
being inR/3. As a result, we add a second multiplier to our
design, namely the NTT multiplier with a CRT map for the
R/q · R/q multiplication.

Due to the additionalR/q ·R/qmultiplier, batch inversion
is not automatically the optimal way of inverting polyno-
mials in R/q. This is because the additional multiplier
consumes hardware resources that could otherwise be used
to implement more parallel divsteps for the R/q inversion.

In addition, larger batch sizes require more BRAM to store
intermediate results. Depending on the speed and hardware
consumption of non-batch inversion, batch inversion and
multiplication, respectively, together with the available hard-
ware resources and batch size, the optimal solution varies. A
contour plot that shows the minimum batch size needed for
Montgomery’s trick to be worthwhile for different inversion
and multiplication speeds is shown in Fig. 4. In practice, we
recommend to use batch sizes of 5, 21, and 42. These sizes
are found via experimentation, and pack the 36kbit BRAM
available in Xilinx FPGAs as densely as possible. Table 10
lists the additional BRAM cost for the different batch sizes,
as well as the associated cycles.

3.5 Reduction without DSPs

In this section, we extend the technique of fast mod-
ulo reduction in [27] (called Shifting Reduction in this
paper) without using additional DSP slices which are often
necessary in a Barrett reduction unit or a Montgomery
reduction unit. We apply this technique in the cases q ∈
{7681, 12,289, 15,361}. Moreover, in the case q = 4591,
another reduction technique (called Linear Reduction in this
paper) will be introduced. All four modular reductions are
fully pipelined, and can process one new operand per clock
cycle.
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Fig. 4 Minimum batch size when comparing the cycle count for the
three multiplications incurred per polynomial inversion when using
Montgomery’s trick, to simply accelerating the inversion itself. This
assumes a base R/q inversion speed of 1,200,000 cycles, which is the
rough number of cycles anR/q inversion takes with a single divstep per
clock cycle. An example: Assume the three multiplications take 40,000
cycles in total, which is roughly how long two R/q · R/3 and one
R/q · R/q multiplication take in our design. At the same, assume that
with the extra hardware resources, we could alternatively accelerate the
inversion by a factor of 2, so that it takes only 600,000 cycles. Accord-
ing to the plot, a batch size of 4 would be sufficient for Montgomery’s
trick to be worthwhile

3.5.1 Fast signedmodular multiplication on q = 12,289

We start with themodification of the unsigned reduction with
q = 12,289 as introduced in [27]. In the signed case, the
reduction is slightly different.

Suppose −6144 ≤ a ≤ 6144 and −6144 ≤ b ≤ 6144.
We know that z = ab is a 27-bit signed number (not 28-bit,
which is in the unsigned case) and

(5C00000)16 = −37748736 ≤ z

= ab ≤ 37748736 = (2400000)16

We have q = 214 − 212 + 1, so 214 ≡ 212 − 1 (mod q).
The sign bit z[26] contributes −226 ≡ 1365 = 211 − 683
(mod q). With a similar derivation in [27], z can be re-
expressed as

z = −226z[26] + 214z[25 : 14] + z[13 : 0]
≡ 1365z[26] + z[13 : 0]

+ 212(z[25 : 24] + z[23 : 22] + z[21 : 20] + z[19 : 18]
+ z[17 : 16] + z[15 : 14])
− (z[25 : 14] + z[25 : 16] + z[25 : 18] + z[25 : 20]
+ z[25 : 22] + z[25 : 24])

≡ 211z[26] + z[11 : 0]
+ 212(z[25 : 24] + z[23 : 22] + z[21 : 20]

+ z[19 : 18] + z[17 : 16] + z[15 : 14] + z[13 : 12])
− (683z[26] + z[25 : 14] + z[25 : 16]
+ z[25 : 18] + z[25 : 20] + z[25 : 22] + z[25 : 24])

We let

z pu � z[25 : 24] + z[23 : 22] + z[21 : 20] + z[19 : 18]
+ z[17 : 16] + z[15 : 14] + z[13 : 12]

z p2u � z pu[4] + z pu[3 : 2] + z pu[1 : 0]
z p3u � z p2u[2] + z p2u[1 : 0]
z p � 212z pu + 211z[26] + z[11 : 0]
zn � 683z[26] + z[25 : 14] + z[25 : 16] + z[25 : 18]

+ z[25 : 20] + z[25 : 22] + z[25 : 24]

Clearly, z p − zn ≡ z (mod q). z pu is not greater than 21,
z p2u is not greater than 6, and z p3u not greater than 3. z p can
be represented as

z p ≡ 212z p3u + 211z[26] + Z [11 : 0] − (z p2u[2] + z pu[4]
+z pu[4 : 2]) � z∗p (mod q)

which is not greater than 12,288+2048+4095 = 18,431 <

q + q−1
2 . We also have zn ≤ 683 + (3 + 15 + 63 + 255 +

1023 + 4095) = 6074 <
q−1
2 . Now, z0 � z∗p − zn ≡ z

(mod q) and is an integer in [−6074, 18,431]. We need only
to check if z0 is greater than q−1

2 = 6144, and perform a
subtraction of q if this is the case.

The equivalent logic circuit is given in Fig. 5. The thicker
blocks and dataflows differ from that in [27] for signed reduc-
tion.

3.5.2 Fast Signed Modular Multiplication on q = 7681

ShiftingReduction can be easily applied in the caseq = 7681
since q is of the form q = 2h − 2l + 1.

Suppose −3840 ≤ a ≤ 3840 and −3840 ≤ b ≤ 3840.
Now, z = ab is a 25-bit signed number and

(11F0000)16 = −14745600 ≤ z = ab ≤ 14745600

= (0E10000)16

Since q = 213−29+1, we have 213 ≡ 29−1 (mod q). The
sign bit z[24] contributes −224 ≡ −1912 (mod q). Now, z
can be re-expressed as

z = −224z[24] + 213z[23 : 13] + z[12 : 0]
≡ z[12 : 0] + 29(z[23 : 21] + z[20 : 17] + z[16 : 13])

− (1912z[24] + z[23 : 21] + z[23 : 17] + z[23 : 13])
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Fig. 5 Modified circuit for
signed reduction modulo 12,289

≡ z[8 : 0] + 29(z[23 : 21] + z[20 : 17] + z[16 : 13]
+ z[12 : 9]) − (1912z[24] + z[23 : 21]
+ z[23 : 17] + z[23 : 13]) (mod q)

We let

z pu � z[23 : 21] + z[20 : 17] + z[16 : 13] + z[12 : 9]
z p2u � z pu[5 : 4] + z pu[3 : 0]
z p3u � z p2u[4] + z p2u[3 : 0]
z p � z[8 : 0] + 29z pu

zn � 1912z[24] + z[23 : 21] + z[23 : 17] + z[23 : 13]

z pu is a 6-bit unsigned integer, and if z pu[5 : 4] = 3, then
z pu[3 : 0] ≤ 4 and z p2u ≤ 7. So z p2u ≤ 17 and is a 5-bit
integer and then z p3u ≤ 15, and z p2u[4] + z pu[5 : 4] ≤ 3.
Now,

z p = z[8 : 0] + 29z pu

≡ z[8 : 0] + 29z p2u − z pu [5 : 4]
≡ z[8 : 0] + 29z p3u − (z p2u [4] + z pu [5 : 4]) � z∗p (mod q)

and is bounded by 8191. On the other hand, zn is bounded by
1912+ 7+ 127+ 2047 = 4093. Therefore, z0 � z∗p − zn ≡
z p − zn = z (mod q) and is an integer in [−4093, 8191].
Actually,we can tighten the possible values to [−3581, 8191]
because of this lemma:

Lemma 1 z0 ≥ −3581, which is larger than −(q − 1)/2 =
−3840.

Proof We need to consider the case 3582 ≤ zn ≤ 4093 only,
since for the case zn < 3582 the inequality always holds.
Then,

3582 ≤ 1912z[24] + z[23 : 21] + z[23 : 17] + z[23 : 13]
≤ 4093

We know that the bound of each term is 1912, 7, 127, 2047,
respectively. Tomake zn not less than 3582, we need z[24] =
1. Therefore,

3582 − 1912 − 7 − 127 = 1539 = (603)16 ≤ z[23 : 13]
≤ 2047 = (7FF)16

Then, z[23 : 21] ≥ 6, implying z pu ≥ 6, and further z p2u ≥
1 and z p3u ≥ 1. Therefore, z∗p ≥ 512, and then

z∗p − zn ≥ 512 − 4093 = −3581.

��
We now only need to determine if z0 > 3840 where another
signed subtraction by q with reduction is necessary to bound
the eventual value in [−3840, 3840]. The equivalent circuit
for signed reduction modulo 7681 is shown in Fig. 6. We can
see that the architecture is very similar to that for modulo
12,289. The main difference is the dataflow of the sign bit.

3.5.3 Fast signedmodular multiplication on q = 15,361

We still use Shifting Reduction in the case q = 15,361.
Suppose −7680 ≤ a ≤ 7680 and−7680 ≤ b ≤ 7680. Now,
z = ab is a 27-bit signed number and

(47C0000)16 = −58,982,400 ≤ z = ab ≤ 58,982,400

≤ (3840000)16

We have q = 214−210+1, and the sign bit z[26] contributes
−226 ≡ 3345 = 212 − 751 (mod q). z can be re-expressed
as

z = −226z[26] + 214z[25 : 14] + z[13 : 0]
≡ 3345z[26] + z[13 : 0] + 210(z[25 : 22] + z[21 : 18]
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Fig. 6 Equivalent circuit for
signed reduction modulo 7681

+ z[17 : 14])
− (z[25 : 14] + z[25 : 18] + z[25 : 22])

= 212z[26] + z[9 : 0]
+ 210(z[25 : 22] + z[21 : 18] + z[17 : 14]
+ z[13 : 10])
− (751z[26] + z[25 : 14] + z[25 : 18] + z[25 : 22])

We let

z pu � z[13 : 10] + z[25 : 22] + z[21 : 18] + z[17 : 14]
z p2u � z pu[5 : 4] + z pu[3 : 0] + 4z[26]
z p3u � z p2u[4] + z p2u[3 : 0]
z p � 210z pu + 212z[26] + z[9 : 0]
zn � 751z[26] + z[25 : 14] + z[25 : 18] + z[25 : 22]

Note that the definition of z p2u is slightly different from the
other cases. We can see that z pu is a 6-bit unsigned integer.
If z pu[5 : 4] = 3, then z pu[3 : 0] ≤ 12 and z p2u ≤ 19. So
z p2u ≤ 21 and is a 5-bit integer. Now,

z p = 210z pu + 212z[26] + z[9 : 0]
= 210z pu[3 : 0] + 214z pu[5 : 4] + 210 · 4z[26] + z[9 : 0]
≡ z[9 : 0] + 210z p2u − z pu[5 : 4]
≡ z[9 : 0] + 210z p3u − (z p2u[4] + z pu[5 : 4])
� z∗p (mod q)

and is bounded by 16383. zn is bounded by 751 + 4095 +
255 + 15 = 5116. Therefore, z0 = z∗p − zn ≡ z p − zn = z
(mod q) and is an integer in [−5116, 16,383]. We need only
to check if the value of z0 is greater than 7680, and perform
a subtraction of q if this is the case.

The circuit for signed reduction modulo 15,361 is omitted
as it is similar to those formodulo 7681 and 12,289. Themain
difference is still the dataflow for the sign bit.

3.5.4 Fast signedmodular reduction on q = 4591

The reduction in integers modulo q = 4591 (or other q’s in
the parameter set of NTRU Prime) using shifting reduction is
not easily obtained since all of these primes are not of the form
q = 2h−2l+1. Specifically, q = 4591 = 212+29−24−1 is
of effective Hammingweight 4. Shifting reduction will make
the bits spread into the lower bits, making the positive and
the negative parts of the partial results (as z p and zn defined
in the case q ∈ {7681, 12,289, 15,361} ) hard to be analyzed.

In the signed version modification doing modulo 12,289,
we separate the sign bit from other bits and consider it
independently.Actually, every bit can be considered indepen-
dently, especially in the case q = 4591. We may transform
the reduction problem into several signed additions. Here,
we will call this technique linear reduction.

In the implementation we are considering, the integer z
that will be reduced is a 33-bit signed integer and bounded
by

(11117A137)16 ≤ z ≤ (0EEE85EC9)16 = 4,008,206,025

= (2295)2 · 761

And then, z can be represented as

z = − 232z[32] +
31∑

i=0

2i z[i] ≡ 433z[32]

+ 2079z[31] + 3335z[30] + 3963z[29]
+ 4277z[28] + 4434z[27]
+ 2217z[26] + 3404z[25] + 1702z[24]
+ 851z[23] + 2721z[22]
+ 3656z[21] + 1828z[20] + 914z[19]
+ 457z[18] + 2524z[17]
+ 1262z[16] + 631z[15] + 2611z[14]
+ 3601z[13] + 4096z[12]
+ z[11 : 0] (mod q)
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We can do 22 signed modular additions, but this approach
will make the critical path be 5 signed modular additions.
With an implementation in hardware, we can actually pre-
combine some of the additions.

The basic idea is to utilize the power of look-up tables
(LUTs). Xilinx FPGAs provide LUT units supporting the
functions of both LUT5,2 and LUT6,1. We can divide the
most significant 21 bits into five groups, each containing
3 to 5 specified bits, and collect z[11 : 0] as one group.
Specifically, we define

p0 � z[11 : 0]
p1 � (3335z[30] + 2721z[22]

+ 2524z[17] + 2611z[14]) mod q

p2 � (433z[32] + 851z[23] + 914z[19]
+ 457z[18] + 631z[15]) mod q

n0 � −(3963z[29] + 4277z[28] + 3404z[25]
+ 3656z[21] + 3601z[13]) mod q

n1 � −(4434z[27] + 1262z[16]
+ 4096z[12]) mod q

n2 � −(2079z[31] + 2217z[26]
+ 1702z[24] + 1828z[20]) mod q

We can apply any other partition. The partition we decide
is good for the latter calculation because we can see the the
bound of each group:

p0 ≤ 4095

p1 ≤ 4076 < 4095

p2 ≤ 3286, p2 + 4591 ≤ 7877 < 8191

n0 ≤ 4054 < 4095

n1 ≤ 3981 < 4095

n2 ≤ 3573, n2 + 4591 ≤ 8164 < 8191

All possible values of p1, p2,n0,n1, andn2 are pre-calculated
and stored in the distributed memory constructed by LUT5,2

units. The values of p1, p2, n0, n1, and n2 are then determined
at the outputs of the LUTs, according to the inputs z[33 : 12].

Now,we can easily implement the reductionwith themod-
ular additions:

p01 � p0 + p1

n01 � n0 + n1

z p � (p01 mod q) + p2

zn � (n01 mod q) + n2

z ≡ z∗ � z p − zn

We can see p01, n01, z p, zn are all 13-bit unsigned integers.
and z∗ is bounded by [−8191, 8191], which is a 14-bit signed
integer. z mod±q can be found by

z mod±q = z∗ + kq, k ∈ {−2,−1, 0, 1, 2}

The modular reduction for q = 4591 uses just 117 LUT, 53
FF and no DSP. This is significantly better than the Barrett-
basedmodular reduction from [15],which required 304LUT,
107 FF and one DSP.

3.6 General purpose encode/decode

On the implementation of the general purpose encoder
and decoder used in NTRU Prime (for the algorithms, see
Appendix A), we inspect inductively the details of the pro-
cess of the encoder, especially how R2 and M2 (denoted as
R2 and M2 in the algorithm) change with respect to R and
M , how many output bytes there are in each round, and what
exactly M2 is during each recursive call.
Case 1When len(M) = 1, that is, R = 〈r0〉 and M = 〈m0〉,
there is no recursive call. We know that r0 < 16384, so
all the bytes of r0 are dumped as output bytes to the encoded
sequence. Ifm0 > 255, the output is of 2 bytes and otherwise
1 byte.
Case 2 When len(M) = 2, that is, R = 〈r0, r1〉 and M =
〈m0,m1〉, we compute r ′

0 = r0 +m0r1. The upper bound for
r ′
0 and the new m′

0 can actually be pre-determined just from
m0 and m1. Whether 0, 1, or 2 bytes are sent as output can
also pre-determined from m0 and m1.
Case3When R = 〈r0, . . . r2n−1, r2n〉,M = 〈m0, . . . ,m0,m1〉
and len(M) = 2n + 1 where n is a positive integer, we can
compute that r ′

i = r2i +m0r2i+1 for each 0 ≤ i ≤ n−1. The
upper bound of each r ′

i and the newm′
0 can be pre-determined

just from m0. Whether 0, 1, or 2 bytes are sent as output
can also pre-determined by m0. We denote the “replaced” r ′

i

appended into R2 as r
′(replaced)
i , which satisfies

r ′(replaced)
i ∈

{
r ′
i ,

⌊
r ′
i

256

⌋
,

⌊
r ′
i

65,536

⌋}

and then we have R2 = 〈r ′(replaced)
0 , . . . , r ′(replaced)

n−1 , r2n} and
M2 = 〈m′

0, . . .m
′
0,m1〉, with len(M2) = n+1. Note that the

structure of M ′ and M are similar: a sequence of specified
integers m0s or m′

0s in [1, 16,383] followed by an integer
m1, which is either distinct from or the same as m0 or m′

0.
Case4When R = 〈r0, . . . , r2n, r2n+1〉,M = 〈m0, . . . ,m0,m1〉
and len(M) = 2n + 2 where n is a positive integer, we can
compute that r ′

i = r2i + m0r2i+1 for each 0 ≤ i ≤ n. If
0 ≤ i ≤ n − 1, the upper bound of r ′

i and the new m′
0

can be pre-determined only by m0. The upper bound of r ′
n ,

which is the last element in R2, and the new m′
1, which is
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Table 1 Round infomation doing R/q-encode

Round len(M) m0 Regular output Subtotal m1 Last output

1 761 4591 2 760 4591 N/A

2 381 322 1 190 4591 N/A

3 191 406 1 95 4591 N/A

4 96 644 1 47 4591 1

5 48 1621 1 23 11,550 2

6 24 10,265 2 22 286 1

7 12 1608 1 5 11,468 2

8 6 10101 2 4 282 1

9 3 1557 1 1 11,127 N/A

10 2 9740 N/A N/A 11,127 2

11 1 N/A N/A N/A 1608 2

Table 2 Round infomation doing Round-encode

Round len(M) m0 Regular output Subtotal m1 Last output

1 761 1531 1 380 1531 N/A

2 381 9157 2 380 1531 N/A

3 191 1280 1 95 1531 N/A

4 96 6400 2 94 1531 2

5 48 625 1 23 150 1

6 24 1526 1 11 367 1

7 12 9097 2 10 2188 2

8 6 1263 1 2 304 1

9 3 6232 2 2 1500 N/A

10 2 593 N/A N/A 1500 1

11 1 N/A N/A N/A 3475 2

the last element in M2, is pre-determined by both m0 and
m1. For 0 ≤ i ≤ n − 1, whether 0, 1, or 2 bytes are
sent as output when computing r ′

i is also pre-determined by
m0. Whether 0, 1, 2 bytes are sent as output when com-
puting r ′

n is pre-determined by m0 and m1. In this case,

the resulting R2 = 〈r ′(replaced)
0 , . . . , r ′(replaced)

n−1 , r ′(replaced)
n },

M2 = 〈m′
0, . . . ,m

′
0,m

′
1}, and len(M) = n+1. The structure

of M2 and M are still similar: a sequence of specified inte-
gers m0s or m′

0s followed by an integer m′
1, which is either

distinct from or the same as m0 or m′
0.

Weknow thatwhen the encode starts,M = 〈q, . . . , q〉 and
len(M) is odd. This implies that we need only to track m0,
m1 and the output bytes for each regular pair of r ’s and for
the last r . Table 1 show the values of m0, m1, and the output
bytes. We can see the total encoded bytes are of length 1158.

With q ′ = 1531 = q/3, which is applied in Round-
encode, a similar tracking info can also easily be pre-
determined, shown in Table 2. The total encoded bytes are
of length 1007.

All of the tracked info are providedoutside the encoder and
the decoder, making the circuit able to do the encode/decode
for any case of Q. Both of the encoder and the decoder needs
an internal memory buffer to save the intermediate R.

The block diagrams of the encoder and decoder are shown
in Figs. 7 and 8 , where the dashed blocks are outside of
the module. The parameter module is a look-up table of
either Table 1 or Table 2, making the encoder/decoder flexi-
ble to do/recover either R/q-encode or Round-encode. The
encoder needs a DSP slice to evaluate r ′

0 = r0 + m0r1. And
the decoder needs 4 DSP slices to apply Barrett’s reduction
to evaluate r0 = r ′

0 mod m0.
The encoding of a public key and cipherext takes 2297

and 2296 cycles, respectively. The decoding of a public key
and ciphertext takes 1550 and 1541 cycles, respectively.

3.7 SHA-512 hash function

Streamlined NTRU Prime uses SHA-512 internally as a
hash function. It is used on the one hand to generate the
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Fig. 7 Block diagram of the encoder

Fig. 8 Block diagram of the decoder

shared secret after encapsulation and decapsulation, but also
to create the ciphertext confirmation hash. The ciphertext
confirmation hash is a hash of the public key and the short
polynomial r and is appended to the ciphertext. Our SHA-
512 implementation is based on the implementation used in
[15,19], but has been optimized to increase performance. The
hashing of a 1024 bit block takes 117 cycles.

4 Evaluation and comparison with other
implementations

In this section, we compare and evaluate individual sub-
modules, as well as the full design, and provide area
utilization and performance results.

4.1 Comparison of sub-modules

Table 3 shows a comparison of different sorting algorithm
for arrays of size 761. The radix sort from this work is sig-
nificantly faster than the sorting network from [15]. While
not quite as fast as the FIFO merge sort from [10], our radix
sort does use less LUT, FF and BRAM, and runs at a higher
frequency. Due to the pregeneration of short polynomials, the

cycle count of the sorting does not factor into the cycle count
of the encapsulation, as long as the encapsulation operation
takes longer than the sorting, which is the case. As such, any
additional speed-up in sorting would not lead to a speed-up
in encapsulation. This is not the case for batch key genera-
tion, asmultiple short polynomials are needed. There, the key
generation must wait until the sorting algorithm is executed
a number of times equal to the batch size.

Table 4 shows a comparison of different multiplication
algorithms for NTRU Prime. This includes the Karatsuba
multiplier from [15], the high-speed and low-area school-
book multiplier from this work, as well as our new NTT and
CRTmultiplier.Our newhigh-speed schoolbookmultiplier is
by far the fastest, by over an order of magnitude. At the same,
it is also by far the most resource intensive. The Karatsuba-
based multiplier from [15] is the most compact with regard
to LUT, but it also is the slowest, and has a comparatively
high BRAM usage. Our new low-area schoolbook multiplier
uses no BRAM, and only slightly more LUT, but is more
than three time faster with regard to cycle count than the
Karatsuba-based multiplier. The NTT and CRT multiplier
has the benefit of being extendable to perform R/q · R/q
multiplication, with no increase in cycle count and only a
moderate increase in resource consumption. Otherwise, the
low-area schoolbook multiplier is better both in terms of
resource consumed and cycle count, and requires no BRAM
or DSPs. As a result, we only use the NTT multiplier for the
R/q · R/q multiplication during batch inversion.

Table 5 show a comparison of our new encoder and
decoder compared with the encoder and decoder from [15].
Our new encoder and decoder have either the same or lower
resource consumption, while at the same time significantly
reducing the cycle counts, aswell as increasing themax clock
frequency.

Table 6 shows a comparison of different inversion mod-
ules for NTRU Prime and NTRU-HPS. All implement the
extended GCD algorithm. Our R/q inversion improves on
the R/q inversion from [15], as due to the two divsteps
per clock cycles, we gain a nearly two-times speed up. At
the same, the amount of LUT and FF is reduced, and the
DSP count remains the same. This is due to the improved
modular reduction algorithm of our work. Increasing the
number of divsteps to four gives another speedup of almost
two, but also increases DSP, FF and LUT consumption. In
addition, distributed RAM is used instead BRAM. For the
inversion inR/3, it is clearly visible that increasing the num-
ber of divsteps only leads to a comparative small increase in
resource consumption, in exchange for a significant increase
in performance.While the inversion from[10] is over anorder
of magnitude faster, it also uses significantly more LUT and
FF than our designwith 32 divsteps per cycle. However, since
the R/3 is not the bottleneck during key generation, further
increasing the speed of R/3 is unnecessary.
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Table 3 A comparison of different sorting algorithms for generating fixed-weight polynomials of degree 761 for NTRU and NTRU Prime

Design LUT FF BRAM DSP Freq (MHz) Cycles Time (µs)

Radix sort, this work 823 220 2 0 285 4837 16.97

Batcher sorting network [15] 231 87 1.0 0 279 49,400 177.1

FIFO merge sort [10] 1441 940 3.5 0 250 2762 11.05

The target FPGA is a Xilinx Zynq Ultrascale+

Table 4 A comparison of different multiplication algorithms for NTRU Prime

Design LUT FF BRAM DSP Freq (MHz) Cycles Time (µs)

NTT and CRT, R/q · R/q 2004 1395 7.5 3 285 35,463 124.4

NTT and CRT, R/q · R/3 1888 1258 6.5 2 285 35,463 124.4

Schoolbook, High-Speed 27,594 20,078 0 0 289 1522 5.27

Schoolbook, Low-Area 1775 818 0 0 290 25,881 89.25

Karatsuba [15] 1463 817 4 0 279 78,132 280.0

The target FPGA is a Xilinx Zynq Ultrascale+. All multipliers except the NTT with the label R/q · R/q are for multiplying one polynomial in
R/3 with a second polynomial in R/q . Note that for the high-speed schoolbook multiplier, we assume that the loading of the small polynomial is
interleaved with the output of the result. Otherwise a multiplication takes 2283 cycles

Table 5 A comparison of different encoding and decoding algorithms for NTRU Prime

Design LUT FF BRAM DSP Freq (MHz) Cycles Time (µs)

Encode, this work 201 154 0.5 1 290 2297 7.92

Encode [15] 215 131 0.5 1 279 5348 19.2

Decode, this work 334 273 1 4 290 1550 5.34

Decode [15] 676 571 2 5 279 7380 26.4

All cycle counts are for public keys. The target FPGA is a Xilinx Zynq Ultrascale+

4.2 Comparison of the full design

In this section, we will compare our implementation with
existing Streamlined NTRU Prime implementations [9,15],
as well as with NTRU-HPS821 [10]. NTRU-HPS821 is a
round 3 finalist key-encapsulation algorithm. All Stream-
lined NTRU Prime implementations employ the parameter
set sntrup761, and NTRU-HPS821 has comparable security
strength. All benchmark numbers of individual operations of
our implementation for the Zynq Ultrascale+ and the Artix-
7 are listed in Tables 7 and 8, respectively. A comparison
with existing Streamlined NTRU Prime implementations, as
well as with NTRU-HPS821 is shown in Table 9. Benchmark
numbers of our full implementation are listed in Table 11.
Note that the cycles counts are not the simple addition of
the cycles counts of sub-modules, as there is a certain level
of overlapping of operations. Also note that, like the design
in [15], both of our implementations do not contain a ran-
dom number generator. This mirrors the reference design of
NTRU Prime [7], and allows us to directly use the inputs of
the known-answer-test to verify the correctness of our design.

However, particularly for the high-speed encapsulation, this
does somewhat skew the comparison with other KEMs. This
does not apply to the decapsulation, as it does not require any
randomness. In addition, for the low-area design, the SHA-
512 hash function could be used to generate the randomness
from a seed, as the hash function is both fast enough and has
enough idle time between its normal usage, though we did
not implement it for this work.

Our high-speed implementation has the fastest cycle count
and execution times of all Streamlined NTRU Prime imple-
mentations for all 3 operations. At the same time, while our
low-area implementation does require slightly more LUTs
(at most 31% more) then the lightweight implementation
from [15], our implementation is significantly faster, with
2.05, 4.08 and 3.04 speedup respectively for key generation,
encapsulation and decapsulation.

When comparing our high-speed implementation with
that of NTRU-HPS821 [10], one can see that our encapsu-
lation uses fewer LUT, flip-flops, BRAMs, but more DSP.
While our cycle count is slightly higher, this is compensated
by the higher frequency, leading to a slightly faster execu-
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Table 6 A comparison of different inversion modules for NTRU Prime and NTRU-HPS

Design LUT FF BRAM DSP Freq (MHz) Cycles Time (µs)

R/q, p = 761, 4 divsteps/cycle 3076 1099 0 19 285 311, 918 1094

R/q, p = 761, 2 divsteps/cycle 1122 593 2 11 285 600,906 2108

R/q, p = 761 [15] 1642 726 2 11 279 1,168,960 4190

R/3, p = 761, 32 divsteps/cycle 1040 517 0 0 285 47,166 165.5

R/3, p = 761, 2 divsteps/cycle 607 211 0 0 285 590,158 2071

R/3, p = 761 [15] 518 216 0 0 271 1,168,899 4101

R/3, p = 821 [10] 8534 5479 0 0 250 1846 7.38

The target FPGA is a Xilinx Zynq Ultrascale+. The upper rows are for inversion of polynomials in R/q, the lower in R/3. All use the extended
GCD algorithm

Table 7 Our work implemented on a Xilinx Zynq Ultrascale+ FPGA

Design Module Slices LUT FF BRAM DSP Freq (MHz) Cycles Time (µs)

SNTRUP, TW, high speed Key Gen 6038 37,813 25,368 33 23 285 64,026 224.7

Encap 5381 31,996 22,425 4.5 6 289 5007 17.3

Decap 5432 32,301 22,724 3.5 9 285 10,989 38.6

SNTRUP, TW, low area Key Gen 1232 7216 3726 5.5 12 285 629,367 2208

Encap 1074 6030 3211 4.5 7 290 29,245 100.8

Decap 1051 6016 3194 3 7 283 85,628 302.6

Encapsulation and key generation assume a single short polynomial has been pregenerated. The key generation cycle counts for our high-speed
implementation assume a batch size of 21, and list the amortized per-key cycles

Table 8 Our work implemented on a Xilinx Artix-7 FPGA

Design Module Slices LUT FF BRAM DSP Freq (MHz) Cycles Time (µs)

SNTRUP, TW, high speed Key Gen 10,827 39,200 25,536 33.5 23 143 64,026 447.7

Encap 11,218 40,879 22,382 4.5 6 144 5007 34.8

Decap 10,169 36,789 22,700 3.5 9 137 10,989 80.2

SNTRUP, TW, low area Key Gen 2376 7579 3824 5.5 12 159 629,367 3958

Encap 1945 6379 3069 4.5 6 147 29,245 198.9

Decap 1842 6279 3086 3 7 131 85,628 653.6

As to be expected of the lower-end platform, the design uses more LUT and has a lower maximum clock frequency when compared to the Zynq
Ultrascale+

tion time. For decapsulation, our design uses less of every
resource except BRAM. In particular, our design uses 31%
fewer flip-flops and 78% less DSP. Although our cycle count
is higher and our frequency is lower, the total execution time
is only 11% slower. For key generation, our design uses fewer
LUT, flip-flops, and DSP, while also having a lower cycle
count and faster clock speeds. However, our design does use
significantly more BRAM due to the batch inversion. Batch
inversion also has the downside of an initial large latency as
the whole batch is calculated. Table 10 compares the cycle
counts for different batch sizes. Larger batches increase the
total number of cycles to complete the batch, but dramatically
decrease the amortized cycles per key. However, the speedup
from increasing the batch size from 21 to 42 is relatively low.

4.3 High-speed vs. low-area design

The difference between our high-speed and low-area imple-
mentation lie in a number of different sub modules. For one,
the low-area version does not use batch inversion for key
generation, and uses only 2 divsteps per clock cycles instead
of 4 during R/q inversion, and 2 divsteps instead of 32 for
the R/3 inversion. The low-area implementation also uses
the compact version of the parallel schoolbook multiplier.
Finally, the high-speed implementation uses two separate
decoders, one for public keys, and one for ciphertexts. This
allows the secret key (which also contains the public key) and
the ciphertext to be decoded in parallel during decapsulation.
In the low-area implementation, only one decoder is present,
and the decoding occurs sequentially.
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Table 9 A comparison of different Streamlined NTRU Prime implementations for the parameter set sntrup761, as well as NTRU-HPS821

Module Design Slices LUT FF BRAM DSP Freq (MHz) Cycles Time (µs)

Keygen SNTRUP, TW, HS 6038 37,813 25,368 33 23 285 64,026 224.7

SNTRUP, TW, LA 1232 7216 3726 5.5 12 285 629,367 2208

SNTRUP [15] 1068 5935 4144 11.5 12 271 1,289,959 4748

NTRU-HPS821, [10] 10,127 50,347 44,281 6.5 45 250 67,157 268.6

Kyber L3, [10] – 10,590 10,458 6.5 6 450 ca. 2600 5.9

Saber L3, [10] 3634 20,496 13,939 1.5 0 370 2709 7.3

Encap SNTRUP, TW, HS 5381 31,996 22,425 4.5 6 289 5007 17.3

SNTRUP, TW, LA 1074 6030 3211 4.5 7 290 29,245 100.8

SNTRUP [15] 844 4570 2843 7.5 8 271 119,250 439

SNTRUP [9] 10,319 70,066 38,144 9 0 263 – 56.3

NTRU-HPS821, [10] 7370 33,698 30,551 5.5 0 250 4576 18.3

Kyber L3, [10] – 10,590 10,458 6.5 6 450 ca. 3700 8.3

Saber L3, [10] 3321 21,069 14,074 1.5 0 370 3735 10.1

Decap SNTRUP, TW, HS 5432 32,301 22,724 3.5 9 285 10,989 38.6

SNTRUP, TW, LA 1051 6016 3194 3 7 283 85,628 302.6

SNTRUP [15] 902 5117 2958 7 8 271 260,307 958

SNTRUP [9] 10,319 70,066 38,144 9 0 263 – 53.3

NTRU-HPS821, [10] 7785 38,642 33,003 2.5 45 300 10,211 34.0

Kyber L3, [10] – 10,590 10,458 6.5 6 450 ca. 4900 10.9

Saber L3, [10] 3816 21,342 14,233 1.5 0 370 4682 12.7

The entries for this work are marked with TW, and HS denotes the high-speed version, and LA the low-area version. The implementation from
[9] does not implement decoding or key generation. Encapsulation and key generation for our work assume a single short polynomial has been
pregenerated. The key generation cycle counts for our high-speed implementation assume a batch size of 21, and list the amortized per-key cycles.
All entries are implemented on a Xilinx Zynq Ultrascale+ FPGA. Implementations for Kyber and Saber (level 3 parameter set) are also included
for reference

Table 10 Effect of the different batch sizes on the speed of key generation, with 4 divsteps per clock cycle for the R/q inversion

Batch size Total cycles Amortized cycles BRAM

1 316,785 316,785 3.5

5 524,174 104,835 16.5

21 1,344,558 64,026 33

42 2,447,759 58,280 55.5

The clock frequency and other FPGA resources are only minimally affected by increasing the batch size

Table 11 Full implementation of our work, with all operations merged

Design Platform Slices LUT FF BRAM DSP Freq (MHz)

High speed Zynq Ultrascale+ 7051 40,060 26,384 36.5 31 285

Artix-7 11,745 41,428 26,381 36.5 31 140

Low area Zynq Ultrascale+ 1539 9154 4423 8.5 18 285

Artix-7 2968 9574 4399 8.5 18 128
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4.4 Timing side channels

Both the high-speed and the low-area implementation are
fully constant-timewith regard to secret input. The radix sort-
ing used in the generation of short polynomials does include
secret-dependantmemory indexing.However, as theBRAMs
on modern Xilinx FPGA have no cache, this does not expose
a side channel. At the same time, we did not implement any
advanced protections against more advanced attacks such as
DPA.

4.5 Applicability to NTRU LPRime

As mentioned earlier, the NIST submission of NTRU Prime
describes the KEM Streamlined NTRU Prime and NTRU
LPrime [7]. Both share many components, and many parts
of our design can be reused to implement NTRU LPrime,
namely the multipliers, the sorting module, the encoders and
decoders, the hash module and the modular reduction mod-
ules. In addition, onewould require theAES-basedXOFused
in NTRU LPrime, as well new state machines for the control
flow and operation scheduling.

5 Conclusion

We present a novel and complete constant-time hardware
implementation of Streamlined NTRU Prime, with two vari-
ants: A high-speed implementation and a low-area one. Both
compare favorably to existing Streamlined NTRU Prime
implementations, as well as to the round 3 finalist NTRU-
HPS821. The full source code of our implementation in
mixed Verilog and VHDL can be found on Github at https://
github.com/AdrianMarotzke/SNTRUP_on_FPGA.
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A Appendix: Encode and decode algorithm

1 limit = 16384
2 def Encode(R,M):
3 if len(M) == 0: return []
4 S = []
5 if len(M) == 1:
6 r,m = R[0],M[0]
7 while m > 1:
8 S += [r%256]
9 r,m = r//256 ,(m+255)//256

10 return S
11 R2 ,M2 = [],[]
12 for i in range(0,len(M)-1,2):
13 m,r = M[i]*M[i+1],R[i]+M[i]*R[i+1]
14 while m >= limit:
15 S += [r%256]
16 r,m = r//256 ,(m+255)//256
17 R2 += [r]
18 M2 += [m]
19 if len(M)&1:
20 R2 += [R[-1]]; M2 += [M[-1]]
21 return S+Encode(R2 ,M2)

Listing 1.1 The Python code of the encoder [7]. The lists R and M
must have the same length, and ∀i : 0 ≤ R[i] ≤ M[i] ≤ 214. Then,
Decode(Encode(R; M); M) = R.

1 limit = 16384

2 def Decode(S,M):

3 if len(M) == 0: return []

4 if len(M) == 1: return [sum(S[i]*256**i for i in range(len(S)))%M[0]]

5 k = 0; bottom ,M2 = [],[]

6 for i in range(0,len(M)-1,2):

7 m,r,t = M[i]*M[i+1],0,1

8 while m >= limit:

9 r,t,k,m = r+S[k]*t,t*256,k+1,(m+255)//256

10 bottom += [(r,t)]

11 M2 += [m]

12 if len(M)&1:

13 M2 += [M[-1]]

14 R2 = Decode(S[k:],M2)

15 R = []

16 for i in range(0,len(M)-1,2):

17 r,t = bottom[i//2]; r += t*R2[i//2];

18 R += [r%M[i]]; R += [(r//M[i])%M[i+1]]

19 if len(M)&1:

20 R += [R2[-1]]

21 return R

Listing 1.2 The Python code of the decoder [7].
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