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This paper presents a study of the LLL algorithm from the 
perspective of statistical physics. Based on our experimental 
and theoretical results, we suggest that interpreting LLL as a 
sandpile model may help understand much of its mysterious 
behavior. In the language of physics, our work presents 
evidence that LLL and certain 1-d sandpile models with 
simpler toppling rules belong to the same universality class.
This paper consists of three parts. First, we introduce sandpile 
models whose statistics imitate those of LLL with compelling 
accuracy, which leads to the idea that there must exist a 
meaningful connection between the two. Indeed, on those 
sandpile models, we are able to prove the analogues of some 
of the most desired statements for LLL, such as the existence 
of the gap between the theoretical and the experimental RHF 
bounds. Furthermore, we test the formulas from finite-size 
scaling theory (FSS) against the LLL algorithm itself, and 
find that they are in excellent agreement. This in particular 
explains and refines the geometric series assumption (GSA), 
and allows one to extrapolate various quantities of interest 
to the dimension limit. In particular, we obtain the estimate 
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that the empirical average RHF converges to ≈ 1.02265 as the 
dimension goes to infinity.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. The mysteries of LLL

The LLL algorithm [20] is one of the most celebrated algorithmic inventions of the 
twentieth century, with countless applications to pure and computational number theory, 
computational science, and cryptography. It is also the most fundamental of lattice 
reduction algorithms, in that nearly all known reduction algorithms are generalizations 
of LLL in some sense, and they also utilize LLL as their subroutine. (We refer the reader 
to [23] for a thorough survey on LLL and these related topics.) Thus it is rather curious 
that many of the salient features of LLL in practice is left totally unexplained, not even 
in a heuristic, speculative sense, even to this day.

The most well-known among the mysteries of LLL is the gap between its worst-case 
root Hermite factor (RHF) and the observed average-case, as documented in Nguyen 
and Stehlé [22]. It is a theorem from the original LLL paper [20] that the shortest vector 
of an LLL-reduced basis (in the theoretical sense) in dimension n, with its determinant 
normalized to 1, has length at most (4/3)n−1

4 ≈ 1.075n, whereas in practice one almost 
always observes ≈ 1.02n, regardless of the way in which the input is sampled. This is a 
strange phenomenon in the light of the works of Kim [17] and Kim and Venkatesh [18], 
which provide experimental and theoretical evidence that, for almost every lattice, nearly 
all of its LLL bases have RHF close to the worst bound. It is as though the algorithm 
is consciously dodging those plethora of inferior bases every time it is run. This leads to 
the suspicion that LLL must be operating in a complex manner that belies the simplicity 
of its code.

There are also many other LLL phenomena that remain unaccounted for. One is 
the geometric series assumption (GSA), originally proposed by Schnorr [27], and its 
partial failure at the boundaries, both of which are observed in other blockwise reduction 
algorithms as well e.g. BKZ [28]. Despite being an indispensable component of numerous 
cryptanalyses of lattice-based systems (e.g. see [30], [2]), the current understanding of 
GSA is not much better than that of the RHF gap problem above: not even a heuristic 
explanation, or a precise formulation, only vague empirical observations. There are also 
questions raised regarding the time complexity of LLL. Nguyen and Stehlé [22] suggest 
that, in most practical situations, the average time complexity is much lower than the 
worst-case, suggesting that there may be the average-worst case gap phenomenon here 
as well. The complexity of the optimal LLL algorithm — i.e. where the parameter δ
equals 1 — is not proven to be polynomial-time, although observations suggest that it 
is (see Akhavi [1] and references therein).

http://creativecommons.org/licenses/by/4.0/
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This lack of understanding of the practical behavior of LLL — and reduction algo-
rithms in general — may incur a hefty price, especially when it comes to cryptographic 
applications. To put it somewhat bluntly: simply by running LLL, we managed to “im-
prove” the RHF of LLL from 1.075 to 1.02; what keeps one from entertaining the 
possibility that a cheap trick might improve it further to, say, 1.005, and thereby cripple 
all lattice-based cryptosystems? As unrealistic — and perhaps even outrageous — as this 
may sound, our current understanding of reduction algorithms is severely unequipped to 
address this question.

1.2. This paper

The theme of the present paper is that statistical physics may enable a scientific 
approach to the empirical behavior of the LLL algorithm, by studying it as a kind of 
a sandpile model. As demonstrated throughout this paper, for each LLL phenomenon, 
there is a corresponding sandpile phenomenon, most of which are either already familiar 
to physicists or captured by well-known methods in physics. Some aspects of our work 
seem to present challenges to physics, and we hope those will motivate rich and fruitful 
interdisciplinary interactions revolving around the LLL algorithm, and lattice reduction 
algorithms in general.

In Section 2, we justify this perspective by presenting stochastic sandpile models 
that are both impressively close to LLL and mathematically accessible. Specifically, we 
propose two models of LLL, which we name LLL-SP and SSP respectively. LLL-SP 
(Algorithm 2 below) is a non-Abelian stochastic model that exhibits nearly identical 
quantitative behavior to that of LLL in numerous aspects, both in terms of their output 
statistics such as the distribution of RHF, and their dynamics. This provides compelling 
evidence that the two algorithms operate under the same principles, or put it formally, 
that they are in the same universality class. SSP (Algorithm 4) is an Abelian stochastic 
model that is mathematically far more tractable than LLL-SP, and still imitates the 
most important aspects of the output statistics of LLL.

In Sections 3 and 4, we prove on these models some of the most desired statements 
regarding LLL. On the RHF gap phenomenon, we have the following

Theorem 1. In all sufficiently large system sizes (which corresponds to the lattice dimen-
sions for LLL), there exists a gap between the worst-case and the average-case RHFs of 
SSP.

Theorem 5 below provides a more precise quantitative statement, after the necessary 
definitions are set up. We mention that the mathematical study of SSP and the proof 
of this theorem are announced in the companion paper [19], separated from the present 
paper in order for consideration in a purely physical context. Hence Section 3, where we 
introduce Theorem 1, is expository, included for the completeness of the presentation of 
our perspective on LLL. We expect that a key idea in the proof of Theorem 1 can be 
extended to yield the same result for LLL-SP; see Conjecture 6.
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We are able to prove some fairly strong statements regarding the time complexity of 
LLL-SP (which also applies to SSP):

Theorem 2. Choose an input basis {b1, . . . , bn} ⊆ Rn, and let E = n2 log maxi ‖bi‖. 
Then

• (Lower bound on complexity) There exists a constant C such that, with probability 
1 − CE−1/2, LLL-SP takes at least E/4 swaps to terminate.

• (Polynomial-time complexity of the optimal LLL) With probability 1 − η, the opti-
mal LLL-SP — that is, with the maximal δ parameter — terminates within Oη(E)
swaps.

See Theorems 7 and 8 for precise statements. The lower bound is of particular interest 
from the cryptographic perspective, since it sets a certain limit on the strength of lattice 
reduction algorithms. We expect that this result is also valid for LLL assuming a certain 
conjecture on its dynamical property that is well-supported by our experiments; see 
Conjecture 4 below.

In Section 5, we further develop the connection between LLL and sandpile models 
by “applying” finite-size scaling theory (FSS) to LLL. FSS is a theory in physics that 
studies critical phase transitions, such as water freezing into ice, and metals being mag-
netized. Although there is no critical phenomenon to discuss for LLL, the analogy with 
sandpile models motivates us to investigate if some observables in LLL scale with di-
mension in a similar way to what is seen in physics in finite-size scaling theory of critical 
phenomena.

Denote by yn the natural log of the “average RHF” of LLL in dimension n, and y∞ :=
limn→∞ yn. Also, for a (LLL-reduced) basis B = {b1, . . . , bn} and its Gram-Schmidt 
orthogonalization {b∗

1, . . . , b∗
n}, write r(i) = log ‖b∗

i ‖/‖b∗
i+1‖. Then the formulas from 

FSS that would normally apply to (Abelian) sandpiles translate to the following for LLL: 
there exists a single constant σ such that

(i) y∞ = yn + D
nσ + (smaller errors), for some constant D.

(ii) Var(yn) ∼ n−2σ.
(iii) 2y∞ − E(r(i)) ∼ i−σ or (n − i)−σ, depending on whether i is near 1 or n − 1.

All three statements are clearly interesting: (i) and (ii) are self-explanatory, and (iii) 
provides the correct formulation of the GSA (which says that r(i) are nearly constant) 
and its partial failures near the boundaries. Our data on dimensions up to 300 — sum-
marized in Tables 2 and 3, and Figs. 11-14 below — fit robustly with all of the above 
formulas with σ ≈ 0.75. Accordingly, we obtain a numerical estimate

(average RHF of LLL) → 1.02265 . . . , as n → ∞. (1)



J. Ding et al. / Journal of Number Theory 244 (2023) 339–368 343
It may be of interest that Grassberger, Dhar, and Mohanty [14] numerically obtained 
the same value of σ ≈ 0.75 for a sandpile model with a very different toppling rule. In 
physics, different systems with the same critical exponents (such as σ here) that govern 
their behavior in the system size limit are said to belong to the same universality class. 
It is expected that there exist not too many distinct universality classes.

There exists some subtlety regarding (iii), arising from the fact that LLL is non-
Abelian as a sandpile model. It does hold on one end with σ ≈ 0.75 for the first 8-10 
values of i, but on the other end, it holds with a different exponent ≈ 1.05. At this point, 
we do not know how to explain this phenomenon in a satisfactory manner; it could be 
the size of our data — which is quite large from the lattice reduction perspective, but 
tiny from the physical one — or the authors’ shortcomings in physics. At the very least, 
we obtain a neat extrapolation of E(r(i)) on both ends, which has been of some recent 
cryptographic interest (see [2], [30]).

1.3. Comparison with previous works

This paper is not the first to compare LLL, and blockwise reduction algorithms in 
general, to a sandpile model. The formal similarity seems to have been first noticed 
in Madritsch and Vallée [24] — see also Vallée [29]. This idea was and is being more 
vigorously applied to the simulation of BKZ, the algorithm used in practice to challenge 
lattice-based cryptosystems that may be viewed as a generalization of LLL. We refer the 
readers to [7], [15], and the more recent [2] for examples.

The present work most importantly differs in motivation from the above-mentioned 
works, and other related works in the cryptographic literature. In cryptography, often the 
goal is to craft what is called a simulator of BKZ, an algorithm of very small temporal 
and spatial complexity that aids the practitioners in predicting the outcome of BKZ, 
with a particular interest in the RHF and the output profile. On the other hand, our 
goal is to search for a scientific theory that matches the observed behavior of LLL. It is 
one of our hopes that our work serves as a contribution to the construction of a better 
simulator, but we do not claim to be part of that competition.

This difference in our motivation is what leads us to investigate LLL in ways that 
have not been tried in the previous works, which are nearly exclusively focused on cryp-
tographic applications. We subject our models to far more severe challenges — running 
tens of thousands of tests, applying tweaks, comparing more observables than just the 
RHF — than is done for the simulators. We do come up with a high-quality simulator 
of LLL as a result, yet that is the bare minimum necessity, not a sufficiency, to convince 
anyone that LLL may be governed by the laws of statistical physics, like the sandpile 
models are. Furthermore, adopting the well-developed ideas of physics such as the op-
erator algebra method (Sections 3 and 4), and finite-size scaling theory (Section 5), we 
question some of the statements that have often been taken for granted, such as whether 
the number 1.02 is not a mere anomaly of the small dimensions, and whether the GSA 
is really the ideal description of the output shape of LLL.
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We again stress that we are not pitting our work against the literature on BKZ 
simulators, and ask the reader to avoid the mistake of the same kind. Rather, we hope 
our work to be understood as an attempt to see LLL under a different light. Yes, LLL 
has been viewed as a sandpile model in the sense of an algorithm, but it has never been 
viewed as a sandpile model in the sense of an object subject to the principles of statistical 
mechanics. In that aspect our work is the first of its kind.

1.4. Assumptions and notations

In Sections 2–4, instead of the original LLL reduction from [20], we work with its 
Siegel variant, a slight simplification of LLL. The Siegel reduction shares with LLL all 
the same qualitative features, but easier to handle theoretically, making it a reasonable 
starting point for our study. However, in Section 5 (the section on FSS), we revert to the 
original LLL, since it would be more interesting to extrapolate its RHF than that of the 
Siegel variant. Either way, our numerous smaller experiments suggest that the choice of 
LLL or Siegel affects the outcomes marginally at most.

The integer n always represents the dimension of the relevant Euclidean space. Our 
lattices in Rn always have full rank. A basis B, besides its usual definition, is an ordered
set, and we refer to its i-th element as bi. Denote by b∗

i the component of bi orthogonal to 
all vectors preceding it, i.e. b1, . . . , bi−1. Also, for i > j, define μi,j := 〈bi, b∗

j 〉/〈b∗
j , b∗

j 〉. 
Thus the following equality holds in general:

bi = b∗
i +

i−1∑
j=1

μi,jb∗
j . (2)

We say B is size-reduced if all |μi,j | ≤ 0.5. One can size-reduce any basis B, i.e. turn 
it into a size-reduced basis, by the following simple algorithm: for j = n − 1 to 1, and 
for each j < i ≤ n, add or subtract bj from bi repeatedly until |μi,j | ≤ 0.5 holds (in 
computations, one sometimes allows μi,j to be slightly greater than 0.5 in order to avoid 
floating-point errors). One can check using (2) that this procedure indeed produces a 
size-reduced basis.

We will write for shorthand αi := ‖b∗
i ‖/‖b∗

i+1‖, and Qi := (α−2
i + μ2

i+1,i)−1/2. When 
discussing lattices, ri := logαi, and when discussing sandpiles, ri refers to the “amount 
of sand” at vertex i.

1.5. Data for the experiments

The original codes for the experiment are made available on SK’s website https://
sites .google .com /view /seungki /home. For the data, please consult one of the authors — 
the raw data is of several gigabytes in size.

https://sites.google.com/view/seungki/home
https://sites.google.com/view/seungki/home
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2. Modeling LLL by a sandpile

2.1. The LLL algorithm

We briefly review the LLL algorithm; for details, we recommend [20], in which it is 
first introduced, and also [16] and [23]. A pseudocode for the LLL algorithm is provided 
in Algorithm 1. In Line 3, we deliberately left the choice algorithm, that is, the method 
for choosing k, unprescribed. The standard choice is to choose the lowest k satisfying 
the inequality.

Algorithm 1 The LLL algorithm (Siegel variant).
0. Input: a basis B = {b1, . . . , bn} of Rn, a parameter δ < 0.75
1. while true, do:
2. Size-reduce B.
3. (Lovász test) choose a k ∈ {1, . . . , n − 1} such that δ‖b∗

k‖2 > ‖b∗
k+1‖2

4. if there is no such k, break
5. swap bk and bk+1 in B
6. Output B = {b1, . . . , bn}, a δ-reduced LLL basis.

Proposition 3. After carrying out Step 5 in Algorithm 1, the following changes occur:

(i) αnew
k−1 = Qkαk−1

(ii) αnew
k = Q−2

k αk

(iii) αnew
k+1 = Qkαk+1

(iv) μnew
k,k−1 = μk+1,k−1

(v) μnew
k+1,k = Q2

kμk+1,k
(vi) μnew

k+2,k+1 = μk+2,k − μk+2,k+1μk+1,k
(vii) μnew

k,l = μk+1,l, μnew
k+1,l = μk,l for 1 ≤ l ≤ k − 1

viii) μnew
l,k = μl,k+1 − μl,k+1μk+1,kμ

new
k+1,k + μl,kμ

new
k+1,k for l ≥ k + 2

(ix) μnew
l,k+1 = μl,k − μl,k+1μk+1,k for l ≥ k + 2

and there are no other changes. The superscript “new” refers to the corresponding vari-
able after the swap.
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Fig. 1. An illustration of a (legal) toppling Ti.

Proof. Straightforward calculations (see e.g. [20]). �
2.2. Sandpile basics

We also briefly review the basics of the sandpile models. For references, see Bak-Tang-
Wieselfeld [3], Dhar [9], [10] or Perkinson [25].

A sandpile model is defined on a finite graph G, with one distinguished vertex called 
the sink. In the present paper, we only concern ourselves with the cycle graph, say An, 
consisting of vertices {v1, . . . , vn} and one unoriented edge for each adjacent pair vi and 
vi+1. We also consider v1 and vn as adjacent. We designate vn as the sink.

A configuration is a function r : {v1, . . . , vn} → R. Just as reduction algorithms work 
with bases, sandpile models work with configurations. We write for short ri = r(vi). One 
may think of ri as the amount or height of the pile of sand placed on vi.

Just as LLL computes a reduced basis by repeatedly swapping neighboring basis 
vectors, sandpiles compute a stable configuration by repeated toppling. Let T, I ∈ R>0. 
A configuration is stable if ri ≤ T for all i = n. A toppling operator Ti (i = n) replaces 
ri by ri − 2I, and ri−1 by ri−1 + I and ri+1 by ri+1 + I. An illustration is provided in 
Fig. 1. Applying Ti when ri > T is called a legal toppling. By repeatedly applying legal 
topplings, all excess “sand” will eventually be thrown away to the sink, and the process 
will terminate.

In our paper, T — threshold — will always be a fixed constant, but I — increment
— could be a function of the current configuration, or a random variable, or both. If I
is independent of the configuration, we say the model is Abelian, otherwise non-Abelian. 
In Abelian models, the stable configuration reached is independent of the order of the 
legal topplings taken. This is not necessarily the case for non-Abelian models, as is 
demonstrated in Section 2.4 below.

If the increment I is a random variable, we say the model is stochastic. The (non-
stochastic) Abelian sandpile theory is quite well-developed, with rich connections to other 
fields of mathematics — see e.g. [21]. Other sandpile models are far less understood, 
especially the non-Abelian ones.
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Fig. 2. Graphs of logQi as a function of ri, for μ = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, from top to bottom. The graph 
corresponding to μ = 0.5 crosses the x-axis at x = T ≈ 0.1438.

2.3. The LLL sandpile model

Motivated by Proposition 3, especially the formulas (i) – (iii), we propose the following 
Algorithm 2, which we call the LLL sandpile model, or LLL-SP for short.

Algorithm 2 The LLL sandpile model (LLL-SP).
0. Input: α1, . . . , αn ∈ R, μ2,1, . . . , μn,n−1 ∈ [−0.5, 0.5], a parameter δ < 0.75
1. Let ri := logαi, μi := μi+1,i T := −0.5 log δ, Qi := (α−2

i + μ2
i+1,i)

−1/2.
2. while true, do:
3. choose a k ∈ {1, . . . , n − 1} such that rk > T
4. if there is no such k, break
5. subtract 2 logQk from rk
6. add logQk to rk−1 (if k − 1 ≥ 1) and rk+1 (if k + 1 ≤ n − 1)
7. (re-)sample μk−1, μk, μk+1 uniformly from [−0.5, 0.5]
8. Output: real numbers r1, . . . , rn−1 ≤ T

The only difference between LLL (Algorithm 1) and LLL-SP (Algorithm 2) lies in the 
way in which the μ’s are replaced after each swap or topple. Our experimental results 
below demonstrate that this change hardly causes any difference in their behavior. A 
theoretical perspective is discussed at the end of this section.

The increment I = logQi = −1
2 log(e−2ri + μ2

i ) is not as unnatural as it might seem 
— see Fig. 2. The dashed lines there represent the graph of

Iμ(r) =
{
r if r > − logμ
− logμ otherwise,

for comparison. The decision to sample μi’s uniformly is largely provisional, though 
some post hoc justification is provided in Fig. 6. If desired, one could refine the model 
by adopting part of Proposition 3 for updating μi.
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Table 1
Averages and standard deviations of RHF, rounded up to appropriate dig-
its.

original random greedy
dim LLL LLL-SP LLL LLL-SP LLL LLL-SP

80 1.0276
0.00218

1.0273
0.00223

1.0268
0.00206

1.0264
0.00209

1.0267
0.00197

1.0256
0.00197

100 1.0285
0.00182

1.0282
0.00183

1.0277
0.00172

1.0272
0.00177

1.0276
0.00161

1.0265
0.00167

120 1.0291
0.00157

1.0288
0.00160

1.0283
0.00151

1.0279
0.00153

1.0282
0.00142

1.0271
0.00142

2.4. Numerical comparisons

For each dimension n = 80, 100, 120, we ran LLL and LLL-SP 5,000 times with the 
same set of input bases of determinant ≈ 210n, generated using the standard method 
suggested in Section 3 of [22]. We used fpLLL [12] for the LLL algorithm. We remind 
the reader that we have used the Siegel variant here.

In addition, we also ran the same experiment with the following two other choice 
algorithms, to see how they affect the outcome:

• random: randomly and uniformly choose an index from those on which swapping/top-
pling is available, and swap/topple on that index.

• greedy: swap/topple on the index with the greatest increment logQk.

Fig. 3 shows the average shape of the output bases and configurations by LLL and 
LLL-SP. One easily observes that the algorithms yield nearly indistinguishable outputs 
(except possibly for the greedy; see Remark below). In particular, since RHF can be 
computed directly from the ri’s by the formula

RHF = exp
(

1
n2

n−1∑
i=1

(n− i)ri

)
, (3)

we expect both to yield about the same RHF. Indeed, Table 1 and Fig. 4 show that 
the RHF distribution of LLL and LLL-SP are in excellent agreement (again except for 
greedy, for which the average differs by ≈ 0.0011).

The reason that we find LLL and LLL-SP slightly differ with respect to the greedy 
choice algorithm has to do with the fact that, unlike the original and the random, it 
“probes” one step ahead before making its toppling choice, which has an effect on the 
μi-distribution — indeed, see Fig. 6 below. We expect this difference to disappear, if LLL-
SP is modified to simulate the μi-distribution more carefully, using parts of Proposition 3. 
Still, it is remarkable that the difference in the average RHF ≈ 0.0011 is independent of 
dimension, and the standard deviations remain nearly identical.
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Fig. 3. Average output of LLL (orange square) and LLL-SP (blue circle). Graphs on each column, from left 
to right, correspond to the original, random, and greedy choice algorithms, respectively. Graphs on each 
row represent the results in dimensions 80, 100, and 120, respectively. Within each graph, the horizontal 
and vertical axes represent the index k on vertices and the average height of the piles rk, respectively. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

The resemblance of the two algorithms runs deeper than on the level of output statis-
tics. See Figs. 5 and 6, which depict the plot of points (i, Q−2

k(i)) and μk(i)+1,k(i) = μk(i)
as we ran LLL and LLL-SP on dimension 80, where k(i) is k chosen at i-th iteration. 
The two plots are again indistinguishable, yet another piece of evidence that LLL and 
LLL-SP possess nearly identical dynamics. Although too cumbersome to present here, 
we have the same results on higher dimensions as well.

2.5. Discussion

The only difference between LLL and LLL-SP has to do with the way they update 
the μk(= μk+1,k)’s. For LLL-SP, the μk-variables are i.i.d. and independent of the rk-
variables. For LLL, μk is determined by a formula involving its previous value and rk. 
However, it seems plausible that the μk’s in LLL, as a stochastic process, is mixing, which 
roughly means that they are close to being i.i.d, in the sense that a small perturbation 
in μk causes the next value μnew

k to become near unpredictable. Numerically, this is 
robustly supported by the graphs at the bottom of Fig. 6. Theoretically, our intuition 
comes from the fact that the formula μnew

k = μk/(μ2
k+α−2

k ) (mod 1) is an approximation 
of the Gauss map x �→ {1/x}, which is well-known to have excellent mixing properties 
(see e.g. Rokhlin [26] and the references in Bradley [5] for more recent works).
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Fig. 4. Probability distributions of RHFs of LLL and LLL-SP in dimension 120.

The above discussion can be summarized and formulated in the form of a mathematical 
conjecture, which can then be considered a rigorous version of the statement “LLL is 
essentially a sandpile model.” Below is our provisional formulation of such a conjecture.

Conjecture 4. Let D be a “generic” distribution on the set of bases in Rn, to be used to 
sample inputs for LLL. Define k(i), as earlier, to be the index of the pile toppled at i-th 
iteration, so that k(i) is a random variable depending on the input distribution, and so 
is μk(i). Then

(i) The sequence (|μk(i)|)i=1,2,... is strongly mixing as a stochastic process. (Roughly 
speaking, this means |μk(N)| is nearly independent of |μk(M)| when N − M is 
large; see the text [4] for a precise definition.)
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Fig. 5. Plots of i versus Q−2
k(i) during a typical run of LLL(left) and LLL-SP(right), with respect to the 

sequential, random, and greedy choice algorithms, respectively from top to bottom.

(ii) Each |μk(i)| is contained in a compact subset S of the set of all probability density 
functions on [0, 0.5] with respect to the L∞-norm. S is independent of the dimen-
sion, the input distribution, or any other variable.

The design intent of Conjecture 4 is so that what is provable for LLL-SP would also 
be provable for LLL by an analogous argument (e.g. the theorems in Section 4), while 
retaining the flexibility as to what the correct distribution of μk might be. It is to be 
updated accordingly as our understanding of LLL and LLL-SP progresses, in the hope 
that Conjecture 4 may come within reach at some point.

3. Abelian sandpile analogue of LLL, and its RHF gap

The drawback of LLL-SP as a model of LLL is that, being non-Abelian, it is difficult to 
study theoretically; indeed, there are few proven results on non-Abelian sandpile models. 
In this section, we introduce a certain Abelian stochastic sandpile model that we named 
SSP, which is in a sense an abelianized version of LLL-SP. At a first glance, SSP seems 
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Fig. 6. Plots of i versus μk(i) for LLL(left) and LLL-SP(right), with respect to the sequential, random, and 
greedy choice algorithms, respectively from top to bottom.

rather removed from LLL, but the shapes of their average output are surprisingly similar. 
Moreover, SSP admits a mathematical theory that is analogous to that of ASM due to 
Dhar [8], [10]. This allows us to prove statements such as the average-worst case gap in 
RHF (Theorem 5), suggesting that SSP may be a good starting point for investigating 
the RHF distributions of reduction algorithms.

We again mention that this section is in fact an exposition of a concurrently written 
work [19] by SK and YW, slightly rearranged to emphasize the connection to LLL. 
Although we transferred much of our work on SSP to a separate paper in order to 
properly treat it from the physical perspective, we offer its detailed summary for the 
completeness of our narrative here.

3.1. Background on ASM

To facilitate the reader’s understanding, we briefly describe the Abelian sandpile 
model (ASM), the most basic of sandpile models, and parts of its theory that is rel-
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evant to us. Its pseudocode is provided in Algorithm 3. See Dhar [8], where the theory 
is originally developed, or the presentation slides by Perkinson [25].

Algorithm 3 Abelian sandpile model (ASM).
0. Input: r1, . . . , rn−1 ∈ Z, parameters T, I ∈ Z, 0 < I ≤ T/2
1. while true, do:
2. choose a k ∈ {1, . . . , n − 1} such that rk > T
3. if there is no such k, break
4. subtract 2I from rk
5. if k > 1, add I to rk−1; if k < n, add I to rk+1
6. Output: integers r1, . . . , rn−1 ≤ T

The important ASM concepts for us are that of the recurrent configurations and the 
steady state. Let M be the set of all stable (non-negative) configurations of ASM. Given 
two configurations r, s ∈ M , we have the operation

r ⊕ s = (stabilization of r + s),

which is the outcome of ASM with input being the configuration r+s defined by (r+s)i =
ri+si for each i. Unlike LLL, the output of ASM is independent of the choice of toppling 
order — hence the term “Abelian” — and thus ⊕ is well-defined. This operation makes 
M into a commutative monoid.

Define g ∈ M to be the configuration with g1 = 1 and g2 = . . . = gn−1 = 0. We call 
r ∈ M recurrent if

g ⊕ . . .⊕ g︸ ︷︷ ︸
m times

= r for infinitely many m.

One can actually take any g for which at least one gi is coprime to the g.c.d. of T
and I (this condition is only to avoid concentration on a select few congruence classes). 
Equivalently, with LLL in mind, we can also define that r is recurrent if there exist 
infinitely many non-negative input configurations such that their stabilization results in 
r. It is a theorem that the set R of the recurrent configurations of ASM forms a group 
under ⊕.

(Note for the experts: these definitions of recurrent configurations may be rather 
unconventional, but are equivalent to the standard formulations, e.g. the one in [8]. It 
is a simple exercise to prove the equivalence, under the following setting: interpret the 
space of all configurations as Zn−1 and consider the orbits of the toppling operators, 
which are cosets of a certain sublattice of Zn−1. In each coset, there exists exactly one 
configuration to which infinitely many non-negative configurations on the same coset 
stabilizes.)

One may ask, given an r ∈ R, what is the proportion of m ∈ Z>0 that satisfies 
g ⊕ . . . ⊕ g (m times) = r? It turns out that the answer is 1/|R| for any r ∈ R, that is, 
each element of R has the same chance of appearing. This distribution, say ρ, on R is 
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Fig. 7. Average output of SSP, n = 100, I = 200 and T = 400.

called the steady state of the system. And the phrase average output shape that we have 
been using in the empirical sense obtains a formal definition as 

∑
r∈R ρ(r)r. The steady 

state is unique in the following sense: choose an r ∈ R according to ρ, and take any 
configuration s; then r ⊕ s is again distributed as ρ.

3.2. Introduction to SSP

A pseudocode for SSP is provided in Algorithm 4. This is exactly the same as ASM, 
except for Step 4, which determines the amount of sand to be toppled at random. The 
decision to sample from the uniform distribution is an arbitrary one; we could have 
chosen any compactly supported distribution, and much of the discussion below still 
applies.

Algorithm 4 Stochastic sandpile (SSP).
0. Input: r1, . . . , rn−1 ∈ Z, parameters T, I ∈ Z, 0 < I ≤ T/2
1. while true, do:
2. choose a k ∈ {1, . . . , n − 1} such that rk > T
3. if there is no such k, break
4. sample γ uniformly from {1, . . . , I}
5. subtract 2γ from rk
6. augment γ to rk−1 and rk+1
7. Output: integers r1, . . . , rn−1 ≤ T

The average output shape of this stochastic sandpile model (SSP) is shown in Fig. 7. 
Fig. 7 shares all the major characteristics of Fig. 3: flat in the middle, and diminishing at 
both ends. In cryptographic literature these features have been respectively referred to 
as the geometric series assumption (GSA) and its failure at the boundaries. In Section 
5, we will see that finite-size scaling theory provides a far more quantitatively robust 
description of the output shape.
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3.3. Mathematical properties of SSP

A mathematical theory of SSP closely analogous to that of ASM has been recently 
developed in [19], largely motivated by the experimental result of the previous section. 
Every aspect of the above-mentioned ASM theory carries over to the SSP theory, except 
that instead of configurations one works with a distribution on the set of configurations, 
due to its stochastic nature. For configurations r(1), . . . , r(k) and pi ∈ (0, 1] such that 
p1 + . . . + pk = 1, we write

k∑
i=1

pi[r(i)] (4)

to represent a distribution that assigns probability pi to the configuration r(1). For 
instance, if r is a configuration unstable at vertex i, and if vi = (0, . . . , −1, 2, −1, . . . , 0)
with 2 in i-th entry, then for the toppling operator Ti we have

Ti[r] =
I∑

γ=1

1
I
[r − γvi]. (5)

We say a configuration of form (4) is mixed if k ≥ 2 and pure otherwise, stable if all 
r(i)’s are stable, and nonnegative if all r(i)’s are nonnegative.

The most important property of SSP is that, like ASM, it possesses a unique steady 
state, that is, a mixed configuration g such that

g ⊕ f = g

for any nonnegative f . It is clear that if we understand the steady state, then we under-
stand the RHF distribution. The following is easy to prove:

Theorem 5. SSP possesses a unique steady state. The worst-case log (RHF) of SSP is 
T/2 +on(1). The average log (RHF) of SSP is bounded from above by T/2 −I/2e2+on(1).

We note that empirically one observes log (RHF) ≈ T/2 − I/8 on average.

Sketch (and discussion) of proof. This is essentially Proposition 8 of [19]. We present the 
sketch of the proof for completeness. Most of the argument is devoted to the existence 
of the steady state, from which the rest of the theorem follows.

Take an unstable (pure) configuration r. If r is sufficiently far away from the origin in 
the configuration space, we must topple on each and every vertex at least once — in fact, 
arbitrarily many times — on the way of stabilizing r. So consider T1T2 . . . Tn−1[r], where 
Ti is the toppling operator on vertex i. By repeated applications of (5), T1T2 . . . Tn−1[r]
is a distribution on the configuration space that is supported on a parallelepiped-shaped 
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Fig. 8. The parallelepiped argument.

cluster, as illustrated in the top of Fig. 8 in case n = 3 and I = 4; the upper-right vertex 
in the parallelogram is r − (1, 1, . . . , 1).

Applying Ti to this parallelepiped-shaped distribution amounts to “pushing” the par-
allelepiped in the direction of i, resulting in another parallelepiped-shaped distribution. 
The middle graph in Fig. 8 illustrates this process, by indicating with x marks the 
outcome of applying T1 to the original distribution (assuming that the horizontal axis 
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represents r1). Repeating, we eventually reach the situation as in the bottom of Fig. 8, 
where none of the Ti would preserve the shape of the parallelepiped, since (T, T, . . . , T )
is already a stable configuration and thus Ti leaves it there. From this point on, the 
action of Ti can no longer be easily described.

However, we claim that, for any r sufficiently far enough from the origin, the distribu-
tion on the parallelepiped obtained by the time the upper-right corner reaches (T, . . . , T )
is arbitrarily close to a certain limiting distribution ℘. To see this, consider the action 
of Ti on the distribution on the parallelepiped, while forgetting the information about 
where that parallelepiped is located in the configuration space. Then one notices that 
each Ti acts as a linear operator on the space of such distributions. Simultaneously di-
agonalizing all Ti’s — possible because they pairwise commute — one finds that 1 is the 
single largest eigenvalue of multiplicity one, whose corresponding eigenvector is ℘. Upon 
repeated applications of Ti’s, the components corresponding to the lesser eigenvalues 
converge to zero, proving the claim. This proves that SSP has a unique steady state.

In fact, ℘ can be easily computed, allowing us to show that the maximum point density 
of the steady state occurs at (T, . . . , T ) with density ≈ (I/2)−(n−1). This is enough to 
deduce a nontrivial upper bound on the average RHF, as follows. Estimate the number 
N(α) of stable configurations whose log (RHF) are greater than α, and take α such that 
N(α) · (I/2)−(n−1) vanishes as n → ∞. It turns out we can choose α = T/2 − I/2e2. �

There are a couple of difficulties in directly applying the same idea to LLL or LLL-SP. 
For instance, because the increment depends on the ri’s for those systems, the effect of 
Ti is not as neat as illustrated in Fig. 8. It would push the side of the parallelepiped with 
“uneven force,” skewing the shape of the parallelepiped and the distribution lying on it. 
This makes proving the existence of the steady state for LLL or LLL-SP difficult.

However, for the purpose of bounding the average RHF away from the worst-case, all 
we need to show is that the maximum density of the output distribution cannot be too 
large. This seems feasible yet quite vexing; we state it as a conjecture below for future 
reference. As in the SSP case, we expect that the maximum density is attained on the 
upper-right corner.

Conjecture 6. For a generic distribution D on the set of bases of Rn, the probability 
density function of the corresponding output distribution D◦ of LLL (or LLL-SP) is 
bounded from above by a constant C that depends only on n.

It may also be interesting to try to deduce other statements on the RHF of SSP, e.g. 
a lower bound on the average RHF, or why the average RHF appears to be Gaussian, 
as in Fig. 4.
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4. Regarding time complexity

Although expanding the SSP theory, and Theorem 5 in particular, to LLL-SP seems 
challenging for the time being, we are able to prove some attractive statements for 
LLL-SP with respect to its complexity, which we present below. We also consider their 
extensions to LLL assuming the truth of Conjecture 4.

4.1. A lower bound

The theorem below gives a probabilistic lower bound on the complexity of LLL-
SP, which agrees up to constant factor with the well-known upper bound. There are 
two ingredients in the proof: (i) measuring the progress of the LLL algorithm by the 
quantity energy, a well-known idea from the original LLL paper [20] (ii) bounding the 
performance of LLL-SP by a related SSP.

Theorem 7. Consider LLL-SP, and an input configuration r whose log-energy E = E(r), 
defined by

E(r) =
n−1∑
j=1

n−1∑
i=j

(n− i)ri,

is sufficiently large — in fact, E > 10H works, with H defined as in (6). Then the 
probability that LLL-SP is not terminated in E/4 steps is at least 1 − CE−1/2 for an 
absolute constant C > 0.

Observe that the familiar upper bound O(n2 log maxi ‖bi‖) on the number of required 
steps is equivalent to O(E), with the implicit constant depending on δ.

Proof. If the algorithm is terminated, then E must have become less than

n∑
i=1

(n− i + 1)(n− i)T/2,

(where T := − log δ1/2 > 0) which equals,

H := T

6 (n3 − n). (6)

Taking the converse, we see that if E is greater than (6), then LLL-SP has not yet 
terminated. At i-th toppling, E decreases by at most logμ−2

k(i), where k(i) is the index 
of the vertex in which i-th toppling occurred. If toppled N times, the decrease in E is 
bounded by at most FN :=

∑N
i=1 logμ−2

k(i). In sum,

Prob(E − FN > H) (7)
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gives the lower bound on the probability that LLL-SP is not terminated after N swaps. 
Hence, it suffices to show that (7) is bounded from below by 1 −CE−1/2 when N = E/2.

The central limit theorem is applicable on FN , since μk(i) are i.i.d. More precisely, 
we apply the Berry-Esseen theorem, which asserts the following. Suppose we have i.i.d. 
random variables X1, X2, . . ., so that m = E(X1), σ = (E(X2

1 ) − E(X1)2)1/2, and ρ =
E(X3

1 ) are all finite. Furthermore, let YN =
∑N

i=1 Xi, and let GN (x) be the cumulative 
distribution function of YN , and ΦN (x) be the cumulative distribution function of the 
normal distribution N(Nm, Nσ2). Then for all x and N ,

|GN (x) − ΦN (x)| = O(N−1/2),

where the implied constant depends on m, σ, ρ only.
We let Xi = logμ−2

k(i) so that FN = GN , and apply the Berry-Esseen theorem. It is 
easy to compute and check that m, σ, ρ are all finite e.g. m = 2(1 + log 2) ≈ 3.386 and 
σ = 2. Then, for a random variable NN ∼ N (Nm, Nσ2), (7) is bounded by

Prob(E −NN > H)

plus an error of O(N−1/2).
Now choose N = E/4, so that NN ∼ N ((1 + log 2)E/2, E). Using Chebyshev’s in-

equality we can prove

Prob(NN ≥ 0.9E) ≤ O(E−1),

where the implied constant is absolute. Thus if E is large enough so that E−H > 0.9E, 
we have that (7) is at least 1 − CE−1/2 for some C > 0, as desired. �
Remark. 1. We can use the same idea to obtain a lower bound on the average RHF of 
LLL-SP, but it turns out to be slightly less than 1, which happens to be useless in the 
context we are in.

2. There exists a central limit theorem for a strong mixing process (see [4]), and also a 
central limit theorem for a sequence of independent but non-identical sequence of random 
variables (e.g. the Lyapunov CLT). Conjecture 4 states that the |μk(i)| of LLL is strong 
mixing (weaker than independent) and non-identical (though contained in a compact 
set). We do not know whether there exists a central limit theorem that applies in this 
context, though we suspect that there should be.

4.2. The optimal LLL problem

The optimal LLL problem (see e.g. [1]) asks whether LLL with the optimal parameter 
δ = 3/4 terminates in polynomial time. The following theorem, while crude, shows that 
this is true for LLL-SP with arbitrarily high probability.
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Theorem 8. For any η > 0 small, LLL-SP with δ = 3/4 terminates after Oη(E) steps 
with probability 1 − η.

Proof. Write μ for the random variable uniformly distributed in [0, 1/2]. In the case 
δ < 3/4, the complexity bound of LLL is established with the observation that, with 
each swap, the energy E decreases by at least c := log(δ + 1/4)−1 > 0, and thus the 
algorithm must terminate within E/c steps. Similarly, in the case δ = 3/4, we try to 
show that the minimum change of energy log(δ + μ2)−1 is strictly bounded away from 
zero almost all the time.

(If I was the increment for a given toppling operation, it is easy to show that the 
energy decreases by 2I after such a step.)

Choose a small ε > 0, and let p = Prob(μ ≤ (1 − ε)/2) = 1 − ε. Let d = log(3/4 +
p2/4)−1, which is the minimum possible change in energy provided μ ≤ (1 − ε)/2. Now 
take 10E/d samples μ1, μ2, . . . of μ (there is nothing special about the constant 10 here). 
If at least E/d of those samples are less than (1 −ε)/2, LLL-SP would terminate. Proving 
that this probability is arbitrarily close to 1 is now a simple exercise with the binomial 
distribution. �

Observe that the above proof carries over to the case of LLL assuming Conjecture 4; 
the compactness condition on the μk(i) distributions allows control on the probability 
that they are all simultaneously bounded away from 1/2(1 − ε).

5. Finite-size scaling theory

Finite-size scaling (FSS) is a theory in statistical physics used to study critical phe-
nomena. Such phenomena are often studied via models on finite graphs and then by 
analyzing the quantity χ of interest as the system size L — the number of vertices of the 
graph — goes to infinity. Roughly speaking, FSS asserts that, upon a proper rescaling 
of the variables, χ becomes nearly independent of L for L � 0. FSS also provides a 
description of this asymptotic behavior of χ as L → ∞.

For sandpile models, FSS implies asymptotic formulas that would be particularly 
interesting if they also applied to the LLL algorithm, as discussed in Section 1.2 above. 
Although it would be inappropriate to say “apply FSS to LLL,” as LLL has no underlying 
critical phenomenon, the formulas themselves, isolated from the context of the original 
theory, could certainly be tried. We ran a long experiment on LLL that is analogous 
to the one in Section III of Grassberger, Dhar, and Mohanty [14], in which the authors 
employ FSS to study the Oslo model, a sandpile model with entirely different toppling 
rule than the ones we have considered so far. This section presents the results from this 
experiment.
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Fig. 9. χ (when L = ∞) as a function of normalized temperature ε, diverging near εcrit.

5.1. A brief introduction to FSS

We start with a brief introduction to FSS and its predictions that are pertinent to 
our work. For readers who are unfamiliar with physics but wish to gain some quick 
basic knowledge, we recommend browsing the theory of one- and two-dimensional Ising 
models. Also see Section III of [14], which states the formulas (8)-(10) that we will 
introduce below. For more serious general treatises on FSS, see [6] or [13].

In the theory of critical phase transition in physics — e.g. the transition in a magnetic 
material from a magnetized to unmagnetized state — one finds that the quantity χ of 
interest, for example the magnetic susceptibility, diverges near the critical point, or 
critical temperature; see Fig. 9. Furthermore, this divergence is often described by a 
power law, e.g.

χ ∼ C

(ε− εcrit)γ
+ C1

(ε− εcrit)γ1
+ C2

(ε− εcrit)γ2
+ . . .with γ > γ1 > γ2 . . .

where ε = ε(T ) is an appropriate normalization of the temperature T , and εcrit is the 
normalized critical temperature. The theory of critical phase transitions is a systematic 
understanding of these exponents and the relations between them, mainly by employing 
the apparatus of the renormalization group (see [13]).

However, this kind of divergence only occurs for systems that are much larger than 
the size of atoms. For equilibrium systems such as the Ising model, this is reflected in 
the partition function Z(L, β) of the system, where L is the system size and β is the 
inverse temperature. For any finite L, the partition function is a smooth function of β, 
and there are no singularities, hence no phase transitions. In practice, if the system has 
a large but finite size L, the singularities are “rounded off’ by an amount that decreases 
as L becomes larger, as illustrated on the left side of Fig. 10.

Remarkably, it is found that these curves for χ(L, T ) for different L near the critical 
point can be made to collapse on each other, by scaling both x and y-axes by factors 
depending on L, so that one has
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Fig. 10. Left: χ(L, ε) for different system sizes L1 > L2 > L3. Right: upon a suitable scaling of the coordi-
nates, χ becomes nearly identical for any L.

χ(L, T ) ∼ Laf((ε− εcrit)Lb),

for some function f and constants a, b — see Fig. 10. This scaling collapse is called the 
finite size scaling. In addition, for each ε away from εcrit, χ converges to a finite value as 
L → ∞; from this it must be that

f(x) ∼ 1
xa/b

for x near ∞.

Hence, for each ε = εcrit, χ ∼ (ε − εcrit)−a/b as L → ∞. On the other hand, by making T
approach the critical temperature at a rate such that (ε − εcrit)Lb is large but constant, 
we obtain χ(L, εcrit) ∼ La for L � 0. These relations can be used to study χ(∞, T ) by 
looking at χ(L, T ) for finite values of L, for example.

In non-equilibrium systems such as sandpile models, the temperature is no longer a 
parameter that an external observer controls; rather, as the dynamics unfolds, the system 
approaches the critical temperature on its own (hence the term self-organized criticality
(SOC) systems, as they are sometimes called). Therefore, the above story needs some 
tweaking, but similar statements hold. For sandpile models, one interprets ε = zL and 
εcrit = zc, where zL = E(z(r)) is the average of z(r) := (1/L) 

∑
r(i) taken over the 

steady state of size L system, and zc = limL→∞ zL is the critical “temperature.” Then 
one has the relation

zc = zL + C

Lσ
+ (smaller errors) (8)

for some constants C and σ, akin to what one would obtain by putting together the two 
relations χ ∼ (ε − εcrit)−a/b and χ ∼ La discussed earlier. Moreover, FSS also predicts 
that

Var(z(r)) ∼ L−2σ (9)

with the same σ. In the literature, for each system, the letter σ is reserved to denote the 
constant such that (8) or (9) holds.
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There also exist the FSS theory of boundary behavior — see e.g. Diehl [11]. In the 
case of the Ising model, write m(T ) for the bulk magnetization at temperature T , and 
m(i, T ) for the mean magnetization at distance i from the surface. Then, for the system 
size L � 0, there is a relation

m(T ) −m(i, T ) ∼ i−af((ε− εcrit)bi)

for some exponents a and b, where f(x) ∼ exp(−cx) for a constant c > 0 and x large. 
Similarly, for sandpile models, the average of the i-th pile r(i) satisfies

zc − E(r(i)) ∼ i−a1 or (L + 1 − i)−a2 , (10)

for some a1 and a2, depending on whether i is closer to 1 or L. For Abelian models, thanks 
to its inherent left-right symmetry, it can be argued theoretically and experimentally that 
a1 = a2 = σ. For non-Abelian models, it is possible that a1 = a2.

Recall that the root Hermite factor (RHF) of a configuration r is defined as

log RHF(r) = 1
(L + 1)2

L∑
i=1

(L + 1 − i)r(i). (11)

Write yL for the (empirical) average of the RHF of LLL in dimension n = L + 1, and 
yc = limL→∞ yL. The analogous statements to (8) and (9) for RHF then become

yc = yL + D

Lσ
+ (smaller errors) (8’)

Var(yL) ∼ L−2σ. (9’)

5.2. Design

We ran extensive experiments on dimensions 100, 150, 200, 250, 300, with at least 
50,000 iterations for each dimension, to test the formulas (8), (8’), (9), (9’), (10) on 
the LLL algorithm. It was quite a sizable experiment, involving more than 300 cores for 
over four months. Unlike in the previous sections, we use the original LLL here, with 
δ = 0.999.

We tried a couple of different methods to generate random bases: the same method 
as in Section 2 above, with determinant 210n and also with determinant 25n, and the 
knapsack-type bases. We found that they all yield the same results in the lower dimen-
sions, so for dimensions ≥ 200 we only used the knapsack-type bases with parameter 
20n, which are n × (n + 1) matrices of form⎛

⎜⎜⎝
x1 1
x2 0 1
...

...
...

. . .
xn 0 · · · 0 1

⎞
⎟⎟⎠

where x1, . . . , xn are integers sampled from [0, 220n) uniformly.
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Table 2
Results on zL and yL = E(log RHF), with σ = 3/4, C = −0.194 and 
D = −0.09.

dim(= L + 1) 100 150 200 250 300
zL 0.03866 0.04028 0.04115 0.04172 0.04211
zL − CL−σ 0.04479 0.04480 0.04480 0.04480 0.04480
yL 0.01957 0.02032 0.02072 0.02098 0.02116
yL − DL−σ 0.02242 0.02242 0.02241 0.02241 0.02240

Fig. 11. Left: dimension versus zL − 0.194L−3/4. Right: dimension versus yL − 0.09L−3/4.

Table 3
Results on the variances of zL and yL, with σ = 3/4.

dim(= L + 1) 100 150 200 250 300

V (zL) 2.24 × 10−6 1.21 × 10−6 7.84 × 10−7 5.62 × 10−7 4.21 × 10−7

V (zL)/L−2σ 0.00224 0.00222 0.00222 0.00222 0.00219
V (yL) 1.05 × 10−6 5.44 × 10−7 3.49 × 10−7 2.45 × 10−7 1.84 × 10−7

V (yL)/L−2σ 0.00105 0.00100 0.00099 0.00097 0.00096

5.3. Average and variance of RHF

Table 2 (graphically depicted in Fig. 11) summarizes our data on the averages of zL
and yL. It demonstrates that our data fits very well with (8) and (8’), with σ = 0.75. 
Accordingly, we obtain the numerical estimates

zL ≈ 0.0448 − 0.194L−3/4, yL ≈ 0.0224 − 0.09L−3/4, (12)

and thus

RHFL ≈ exp(0.0224 − 0.09L−3/4) → 1.02265 . . . as L → ∞, (13)

which is close but slightly higher than the “1.02.”
Table 3 and Fig. 12 show our data on the variances of zL and yL. They also fit (9)

and (9’) quite well, with the same σ = 0.75, though to a slightly lesser extent.
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Fig. 12. Left: dimension versus V (zL)/L−1.5. Right: dimension versus V (yL)/L−1.5.

Fig. 13. i versus log(zc − E(r(i))).

5.4. Boundary statistics

Figs. 13 and 14 present comparisons of our data with (10), with Fig. 13 examining 
the left boundary (i.e. i near 1) and Fig. 14 the right boundary (i.e. i near L). Here we 
used zc = 0.448, obtained in Section 3.1 above.
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Fig. 14. i versus log(zc − E(r(L − i))).

From Fig. 14, on the right boundary we do find that zc −E(r(L − i)) ∼ i−0.75 on the 
first 10 points or so. However, Fig. 13, and also the rest of the points on Fig. 14, makes 
matters more subtle: it appears that, on the left end, and for many points on the right 
end, zc − E(r(i)) ∼ i−1.05 appears to be the correct observation.

5.5. Summary and discussions

Typically in physics, experiments of this kind are carried out up to L close to a 
million, if not more. An experiment of such magnitude is clearly infeasible for lattice 
reduction, and hence we have been severely constrained in our experiments from the 
physical perspective. In addition, our estimates of the critical exponent σ and other 
constants very likely leave much room for improvement, by employing more extensive 
and elaborate numerical techniques. Despite these limitations, our experiments reveal 
some clear patterns in the empirical output statistics of LLL, robustly described by 
formulas from statistical mechanics.
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We obtain two particularly notable implications. First, the folklore number “1.02” 
is not too far from the LLL behavior in the limit. One could reasonably suspect that 
the average-worst case RHF gap is only a peculiarity in the low dimensions, and that 
it would disappear in the dimension limit, citing the result of [18] for instance. But 
we found evidence that the gap is actually a real phenomenon. Second, Figs. 13 and 
14 provide neat formulas for the average output statistics of LLL, via an appropriate 
normalization of graphs such as Fig. 3. This is a vast refinement of GSA, at least for 
the LLL algorithm. Of course, the same set of experiments can be carried out for BKZ, 
and our pilot experiments with BKZ-20 look promising. This result will appear in a 
forthcoming paper.

It remains a mystery as to how to explain the boundary phenomenon that we observed 
here. It is not entirely surprising for non-Abelian models to behave differently on the 
left and right ends, but the particular shape of Fig. 14 is not seen often even in physics, 
to the best of our knowledge. It is probable that the more familiar pattern may emerge 
with more data.

Data availability

Data will be made available on request.
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