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Abstract. Lattice-based cryptanalysis is an important field in cryptog-
raphy since lattice problems are among the most robust assumptions,
and have been used to construct most cryptographic primitives. In this
research, we focus on the Gauss Sieve algorithm, a heuristic lattice siev-
ing algorithm proposed by Micciancio and Voulgaris. We propose the
technique of lifting computations in prime-cyclotomic ideals into that in
cyclic ideals. Lifting makes rotations easier to compute and reduces the
complexity of inner products from O(n3) to O(n2). We implemented our
Gauss Sieve on GPUs by adapting the framework of Ishiguro et al. in a
single GPU, and the one of Bos et al. among multiple GPUs. We found
a short vector at dimension 130 in the Darmstadt Ideal SVP Challenge
(currently in first place in the Hall of Fame) using 8 GPUs in 824 h using
our implementation.
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1 Introduction

Over the past two decades, lattice-based cryptosystems have attracted wide-
spread interest. Not only are they among the group of PKCs that will potentially
defend against the quantum threats, but they also provide the first constructions
of many new cryptographic functionalities, e.g. fully-homomorphic encryption
and multilinear maps [Gen09,GGH13]. Furthermore, in 1997 Ajtai and Dwork
proved that some lattice problems possess worst-case to average-case reductions
[AD97], which gives a strong guarantee on the security of lattice-based cryptosys-
tems, and inspired the construction of many cryptographic primitives. Although
many such constructions are in practice infeasible, ideal lattices have made both
the keys shorter and algorithms faster, which brings many more new ideas closer
to practicality.

Many lattice- and ideal-lattice-based schemes claim to base their security on
the shortest vector problem (SVP): if the shortest vector in a lattice could be
found, the lattice-based cryptosystems would be broken. However, it is unclear
how to choose secure yet practical parameters for these schemes, and an accurate
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assessment of their security levels would be indispensable if we are to select
suitable parameters for them.

Several exact or approximate algorithms have been proposed for the SVP
problem. Exact algorithms include enumeration, sieving, and ones based on
Vonoroi cells [MV10]. The Vonoroi cell method, though single exponential both
in time and space, proved to be impractical for dimensions higher than 10. On
the other hand, lattice enumeration is an exhaustive search algorithm. The time
complexity of lattice enumeration is 2O(n2) or 2O(n log n) and space complexity
is polynomial [GNR10,KSD+11]. Lastly, sieving algorithms have 2O(0.52n) time
complexity and 2O(n) space complexity [MV10]. In general, lattice enumeration
has remained the fastest approach to solve SVP so far since almost all the data
could be store in the CPU cache. However, the general approach is ill-suited
for parallelizing on GPUs or similar wide vector architectures. For example, the
speed-up in [KSD+11] is less than a factor of ten. It is also unclear how to make
use of the special structure of ideal lattices when using enumeration.

In contrast, approximate algorithms run in polynomial time but output an
approximate solution. Even though the output short vectors have length expo-
nential in dimension, such vectors are in fact good enough for some applications
or cryptanalysis. For example, the famous LLL algorithm can find, with high
probability, the shortest vector for Goldstein-Mayer random lattices in the SVP
challenge [Lat] for dimensions less than 30. For higher dimensions, however, the
quality of vectors it outputs is insufficient. On the other hand, in the BKZ algo-
rithm, which uses enumeration in sub-lattices as a subroutine, we can trade off
execution time against the approximate factor. Whether sieving algorithms could
be used as a sub-routine in the BKZ algorithm is still an open problem. Another
open problem is whether there exists a poly-time algorithm which outputs a
short vector with a polynomial approximation factor.

Although enumeration seems fastest so far in practice, sieving has a better
complexity upper bound and may yet outperform enumeration in higher dimen-
sions. Moreover, as far as we know sieving is currently the only way to use the
ideal lattice structures. There are several papers on how to parallelize sieving
and how to use the cyclic lattice structure, but how to do this on GPUs and
use other ideal lattice structures is not clear yet. Previous works by Ishiguro et
al. [IKMT14,MDB14] also seem to be limited to cyclic, anti-cyclic and trinomial
ideal lattices. In this paper, we broaden the scope to include prime cyclotomic
ideal lattices, and make the following contributions:

– We propose and implement the first lattice sieving algorithm for a single
machine with multiple GPUs. Our variant includes two carefully designed
layers of parallelism, both inter-GPU and intra-GPU (Sect. 5).

– We show that by lifting lattice vectors generated by the polynomial xn+· · ·+1
into ones generated by xn+1−1, not only do inner products (the critical path of
Gauss Sieve) speed up, some register rotation problems on GPUs are mitigated
(Sect. 4). Moreover, by heuristically applying lazy rotation, the complexity of
reduction between two vectors with all their rotations goes down from O(n3)
to O(n2) (only a constant times slower than the anticyclic lattice, cf. Sect. 4.3).
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– We carefully crafted the reduction kernel to exploit both thread- and
instruction-level parallelism (Sect. 6). Special care is taken with the layout
of vectors in the register file, and some kernel-level heuristics are introduced
that use the ideal lattice property.

– Incorporating these improvement into our implementation on GPUs, we were
able to solve challenges of dimension 130 within 6583 GPU-hours. Our GPU
implementation is 21.5 (resp. 55.8) times faster than a single-core CPU for
general (resp. ideal) lattices (Sect. 7.2).

– We provide a lower bound complexity estimation for the SVP compared to
the previous work (Sect. 7.4).

2 Preliminary

2.1 Definition and Notation

A lattice is a discrete additive group of all integer combinations of a basis
v1, v2, ..., vm ∈ R

n, where m ≤ n. In cryptography, integer lattices are often
used, namely, the basis vectors are defined over Z

n. The bases corresponding to
a lattice are not unique, since multiplying a uni-modular matrix to a basis would
not change the lattice spanned by the basis. We use L(B) to denote the lattice
spanned by the basis B.

The first successive minimum λ1(L) is the length of the shortest nonzero
vector of the lattice L. The shortest vector problem (SVP) asks for the short-
est nonzero vector in a given lattice. The SVP is NP-hard under randomized
reduction [Ajt97]. The approximation shortest vector problem (SVPα) asks for
a short vector of length shorter than αλ1(L).

Extending the idea into rings, we have ideal lattices, a special class of lattices.
Consider an ideal of a ring I = 〈g〉 ⊆ Z[x]/f(x), where f is a monic irreducible
polynomial of degree n, an ideal lattice is L(B) ∈ Z

n such that B = {g mod f :
g ∈ I}. The polynomial of a ring affects its structure and computation cost.
Thus, cryptographers are concerned with four type of ideal lattices defined by
the polynomial f(x):

– Cyclic ideal lattice, with fcyclic(x) = xn − 1, are the simplest ones and easy
to compute. However, since the polynomials are always divided by x − 1, this
kind of ideal lattice does not guarantee the worst-case collision resistance.

– Anti-cyclic ideal lattice, with fanti-cyclic(x) = xn + 1, are also eligible for easy
multiplication and convolution. Such polynomials are irreducible over Z if n
is a power of 2. This kind of ideal lattice is commonly used in cryptography.

– Prime-cyclotomic ideal lattices, with fprime-cyclotomic(x) = xn + xn−1 + · · · +
1, are the main type we focus on. If n + 1 is prime, fprime-cyclotomic(x) is
irreducible.

– Trinomial ideal lattices, with ftrinomial(x) = xn + xn/2 + 1 where n/2 is a
power of three, are the ones considered in [IKMT14].
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By the definition of an ideal lattice, the vector u = (u0, u1, · · · , un−1) ∈ Z
n

also indicates a polynomial u(x) = u0 + u1x + · · · + un−1x
n−1 ∈ Z[x]/f(x), the

polynomial x · u(x) is still in the ideal. Thus, the vector corresponding to such
polynomial is called the (first) rotation of u, denoted as rot(u). For example,
consider f(x) = xn − 1, the rotation of u = (u0, u1, · · · , un−1) is rot(u) =
(un−1, u0, u1, · · · , un−2).

The central notation of the Gauss Sieve is Gauss reduction. Two vectors
u, v ∈ L(B) satisfying ‖u ± v‖ ≥ max(‖u‖, ‖v‖) are called Gauss-reduced.
Given two arbitrary vectors u and v, we can reduce u with respect to v by
u ← u − 
 〈u,v〉

〈v,v〉 �v. Thus, given two arbitrary vectors u and v, we can convert
them into Gauss-reduced ones by repetitively applying the reduction procedure
alternatingly, in a Euclidean algorithm-like manner, until the vectors no longer
change. If any two vectors in a set are Gauss-reduced, it is pairwise-reduced.

Algorithm 1 shows the pseudo-code for reducing the list U with the list V .
Algorithm 2 is the ideal lattice counterpart. In Algorithm2, times represents the
number of possible rotations in the input lattice. In other words, xtimes = ±1.
As concrete examples, for anti-cyclic lattices, times = n; for prime cyclotomic
lattices, times = n + 1.

Algorithm 1. Gauss reduction between two lists for general lattices
Input : Lists U and V
Output: Reduced list U

1 foreach u ∈ U do
2 foreach v ∈ V do
3 if 2 · |〈u, v〉| > 〈v, v〉 then
4 u ← u − 
 〈u,v〉

〈v,v〉 �v
5 Mark u as reduced.

Algorithm 2. Gauss reduction between two lists for ideal lattices
Input : Lists U and V

Number of rotations: times
Output: Reduced list U , with all possible rotations

1 foreach u ∈ U do
2 foreach v ∈ V do
3 for i ← 0 to times − 1 do
4 w ← xiv
5 for j ← 0 to times − 1 do
6 (s, t) ← (xju, xjw)
7 m ← 
〈s, t〉/〈t, t〉�
8 if m �= 0 then
9 u ← s − mt

10 Mark u as reduced.
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2.2 CUDA Programming

Here we provide a minimalist CUDA programming introduction, including only
relevant information that our implementation takes into consideration. For more
details, please refer to the CUDA C Programming Guide [CUD15].

Graphics processing units (GPUs) are high throughput, many-core archi-
tectures. Currently, the most widely used GPU development toolchain is
CUDA by NVIDIA. CUDA supports writing fine-tuned programs for NVIDIA
graphic cards. In this paper, we will especially focus on GPUs of the Maxwell
architecture.

The CUDA programming model requires programmers to think in the single
instruction, multiple thread (SIMT) programming model. The model exposes
three key abstractions to programmers: a hierarchy of thread groups, shared
memories, and barrier synchronization. Threads are first organized in blocks,
and blocks are then organized in grids. A grid of GPU threads must run the
same program (the kernel).

At the system level, blocks are independently dispatched to different proces-
sors. Since each block has a dedicated on-chip cache called the shared memory,
threads within a block can only exchange data through the shared memory. How-
ever, this requires an explicit synchronization barrier that halts all the threads in
a block, and thus can be a huge performance overhead for critical applications.

Fortunately, starting from the Kepler architecture, data exchange within a
warp can be done using the warp shuffle instructions without any explicit syn-
chronization barrier. A warp, consisting of 32 consecutive threads, is the smallest
batch that can be scheduled and issued at once by a processor. For example,
using the warp shuffle instructions, summing different values from threads with
in a warp can be done relatively fast through the parallel reduction paradigm. If
the threads in a warp are executing different instructions – most likely because
of different branch conditions – severe warp divergence can occur, drastically
lowering the warp utilization.

3 Background

3.1 Sieving Algorithms

The first sieving algorithm was proposed by Ajtai et al. in 2001 [AKS01].
They proved that the time/space complexity is 2O(n), which is the first single-
exponential time algorithm solving SVP. Following works either provided tighter
theoretical bounds on the complexity [NV08,MV10,Sch11,Sch13], or improved
the algorithm [MS11,MDB14,MBL15].

3.2 Gauss Sieve

The Gauss Sieve algorithm was proposed by Micciancio and Voulgrais in [MV10]
and is the most practical version of sieving algorithms. The main idea of the
algorithm is to mutually reduce samples with a list of vectors by Gauss reduction.
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After Gauss reduction, the angle between any pair of two vectors is larger than
60◦. By the Kabatiansky-Levenshtein theorem, one can bound the number of
such vectors, and thus obtain the time complexity of the algorithm.
The Gauss Sieve algorithm has been implemented on CPU in [IKMT14] and
some improvements have been proposed by Bos et al. in [BNvdP14]. The work
of Ishiquro et al. improved and implemented the parallel version of the Gauss
Sieve algorithm proposed by Schneider [Sch13], and they also adapt to a spe-
cific ideal lattice called negacyclic ideal lattices. However, we promote this into
more general polynomial ring and improve the performance. Later, Bos et al.
proposed a different variant of the parallel Gauss Sieve algorithm which is more
suited for high dimension lattice [BNvdP14]. We will expound on their ideas
in Sect. 5. Moreover, Laarhoven incorporated locality-sensitive hashing into the
algorithm [Laa15,BDGL16,BL16]. Instead of searching all the vector in the list,
they group together near vectors using hash functions. Therefore, vectors are
only reduced with more geometrically possible ones.

Prime Cyclotomic Rotation. First we state a nice property of anti-cyclic
lattices.

Lemma 1 [BNvdP14]. Let a, b ∈ R = Z[x]/(xn + 1) with coefficient vector a, b.
If 2‖〈a, xl · b〉‖ ≤ min{〈a, a〉, 〈b, b〉} for all 0 ≤ l < n, then xi · a and xj · b are
Gauss-reduced for all i, j ∈ Z.

In contrast to the anti-cyclic case described in Lemma 1, prime cyclotomic
lattices do not possess this property. Therefore, all the rotations of two vectors
can contribute to the global status. Thus, the list size might be even smaller.

However, prime cyclotomic lattices may have some disadvantages. To illus-
trate the computational overhead to find the norms of (all the) rotations of a
vector, consider the vector v = (5, 4, 3, 2, 1) in an ideal lattice generated by the
polynomial f(x) = x5 + x4 + x3 + x2 + x + 1. The first rotation of v is

rot(v) = (−1, 5 − 1, 4 − 1, 3 − 1, 2 − 1) = (−1, 4, 3, 2, 1).

Squaring and summing, we have the squared norm for x · v:

‖rot(v)‖2 = (−1)2 + 42 + 32 + 22 + 12 = 31.

Calculating norms like this can be slow, because only when the vector rot(v)
is ready can we calculate the sum of squares. However, the value that is required
in Gauss reduction is just ‖rot(v)‖2, but not rot(v) per se. For processors with
ADD, MUL and FMAD (fused multiply-add) instructions, it takes 2n operations
to calculate the norm of an n-dimensional vector.

In this paper, we will see how to circumvent this by lifting a vector. By doing
this, not only is the computation easier, but it also enables optimizations that
are not possible without lifting.
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4 Lifting Ideal Lattices

We now develop the properties for prime cyclic lattices and see how they can
facilitate computation.

4.1 Lifting Prime Cyclotomic Polynomials

The idea behind lifting lattices is to supplement vectors with a bit of redundant
information to ease computation. Specifically, we will express an n-dimensional
vector with an (n + 1)-dimensional one. Let L be a lattice generated by xn +
xn−1 + · · · + 1, and L by xn+1 − 1. We wish to seek a way to connect the two
lattices according to the following criteria:

– The conversion of vectors between the two lattices is simple.
– The rotation of vectors must be preserving, so that the complicated rotation

in L can be done instead cyclically in L.

Technically speaking, we are looking for simple ring homomorphisms between
F[x]/(xn + xn−1 + · · · + 1) and F[x]/(xn+1 − 1).

An intuitive clue to accomplish this comes from the observation that the
polynomial xn+1 − 1 factorizes as

xn+1 − 1 = (x − 1)(xn + xn−1 + · · · + 1).

This suggests we connect u and its lift u by thinking of u as reduced modulo
xn + xn−1 + · · · + 1:

u ≡ u (mod xn + xn−1 + · · · + 1).

Note that this choice also preserves rotation.
As an example, lifting directly u = (1, 2, 3, 4, 5) in a lattice generated by

x4 + x3 + x2 + x + 1 gives u = (1, 2, 3, 4, 5, 0) in a lattice generated by x5 − 1.
This is not the only way to lift u. Another possibility is u′ = (2, 3, 4, 5, 6, 1), since
(2 − 1, 3 − 1, 4 − 1, 5 − 1, 6 − 1) = (1, 2, 3, 4, 5). In general, to lift any u, we can
choose p arbitrarily and lift u as u = (u0 + p, u1 + p, · · · , un + p, p).

From now on, we will write a bar on top of a symbol to indicate that it is
lifted from its underlying form. For example, u is a lift of the vector u and L is
a lift of the lattice L. Whenever we see a lifted vector u, we should keep in mind
that it is merely a surface form representing its underlying original vector.

4.2 Norms and Inner Products

During the Gauss reduction, we are especially interested in the norms and inner
products of rotations of vectors. Let us see how to derive these quantities for the
underlying lattice directly, without converting from the lifted lattice.
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Suppose u = (u0, u1, · · · , un−1, un) in L. We first reduce u modulo the poly-
nomial xn + xn−1 + · · · + 1 to get its underlying form:

u = (u0 − un, u1 − un, · · · , un−1 − un)
= (u0 − p, u1 − p, · · · , un−1 − p).

Here, we rewrite un as p interchangeably, since un acts as a pivot for the vector.
We can now calculate the norm of u:

〈u, u〉2 =
n−1∑

i=0

(ui − un)2

=
n∑

i=0

(ui − un)2 since un − un = 0.

=
n∑

i=0

u2
i − 2un

n∑

i=0

ui + (n + 1)u2
n

= 〈u, u〉2 − 2p

n∑

i=0

ui + (n + 1)p2,

where the boxed terms remain constant throughout all cyclic rotations of u, and
thus can be saved beforehand. Note that we do not need to know what u is at
all.

Similarly, the inner product of two vectors u and v is

〈u, v〉2 = 〈u, v〉2 − p

n∑

i=0

vi − q

n∑

i=0

ui + (n + 1)pq,

where q is the pivot of v.

Simplifying Formulae. Although these formulae may look intimidating, we
can always simplify them by choosing the “right” pivot. If we set

∑n
i=0 ui = 0,

and solve for p:

0 = u0 + u1 + · · · + un−1 + p rewrite un as p.

= (u0 + p) + (u1 + p) + · · · + (un−1 + p) + p

= (u0 + u1 + · · · + un−1) + (n + 1)p,

we can choose the pivot as

p = −
∑n−1

i=0 ui

n + 1
.

This is our standard way to lift a vector.
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Carrying out the same procedure for v, we can now write the inner product
succinctly:

〈u, v〉2 = 〈u, v〉2 + (n + 1)pq.

Lifting in this manner, we amend Algorithm2 into Algorithm 3. Note that
the underlying vectors s and t are no longer needed on line 12. Since we do not
have to track and update

∑
ui anymore, simplifying in this manner eases some

computational burden and memory overhead in the innermost loop for GPUs.
However, integer vectors are now represented by floating points, which may lead
to error accumulation after several rounds. We choose to rectify these vectors by
unlifting and rounding the numbers when they are taken out from the stack for
later rounds.

We could also eliminate the n + 1 by “normalizing” and dividing vectors by√
n + 1, but this is less intuitive.

Algorithm 3. Gauss reduction between two lists for prime cyclotomic
lattices (lifted)

Input : Lifted lists U and V
Output : Reduced, lifted list U

1 foreach u ∈ U do

2 foreach v ∈ V do
3 for i ← 0 to n do
4 w ← xiv
5 〈w,w〉 ← 〈v, v〉 + (n + 1)v2n−i

6 for j ← 0 to n do
7 Calculate 〈u,w〉.
8 〈s, t〉 ← 〈u,w〉 + (n + 1)un−jwn−j

9 〈t, t〉 ← 〈w,w〉 + (n + 1)w2
n−j

10 m ← �〈s, t〉/〈t, t〉�
11 if m �= 0 then
12 (s, t) ← (xju, xjw)
13 u ← s − mt
14 Mark u as reduced.

4.3 Lazy Rotation

We now address two GPU performance bottlenecks in Algorithm3, and provide
two kernel-level heuristics to solve these problems.

First, on lines 12–14, whenever u is reduced, it is assigned as the difference of
two rotated vectors s and mt. However, such register indexing, unlike on CPUs,
can cause spills on GPUs. Since s − mt = xj(u − mw), we can instead write
u ← u − mw and choose to rotate u back lazily after the kernel finishes. Now
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Algorithm 4. Gauss reduction between two lists for prime cyclotomic
lattices (lifted, with lazy rotation)

Input : Lifted lists U and V
Output : Reduced, lifted list U

1 foreach u ∈ U do
2 norm ← 〈u, u〉 + (n + 1)u2

n

3 foreach v ∈ V do
4 for i ← 0 to n do
5 w ← xiv
6 〈w,w〉 ← 〈v, v〉 + (n + 1)v2n−i

7 Calculate 〈u,w〉.
8 for j ← 0 to n do
9 〈s, s〉 ← 〈u, u〉 + (n + 1)u2

n−j

10 〈s, t〉 ← 〈u,w〉 + (n + 1)un−jwn−j

11 〈t, t〉 ← 〈w,w〉 + (n + 1)w2
n−j

12 m ← �〈s, t〉/〈t, t〉�
13 normnew ← 〈s, s〉 − 2m〈s, t〉 + m2〈t, t〉
14 if normnew < norm then
15 mbest ← m
16 norm ← normnew

17 if mbest �= 0 then
18 u ← u − mbestw
19 〈u, u〉 ← 〈u, u〉 − 2mbest〈u,w〉 + m2

best〈w,w〉
20 Mark u as reduced.

the lazy version of u, however, may be representing a vector much longer than it
should. To prevent reducing with a lazy u in later rounds, we need to keep track
of the current correct norm of u. This is done on lines 14–16 in Algorithm 4.

Second, because u may have changed in the previous round, 〈u, w〉 must be
recalculated on line 7. To avoid recalculating 〈u, w〉 repeatedly, observe that the
probability of reducing u more than once is not high in the innermost loop. We
can keep track of the best m so far, moving the entire if statement on lines 11–14
out and after the for loop.

Applying these two heuristics, we now reach Algorithm4. This amended algo-
rithm is more efficient because (1) the body of the most inner loop runs in
constant time, thus reducing the complexity to calculate all inner products of
two vectors from O(n3) to O(n2), and (2) the need to rotate u is completely
eliminated.

4.4 Generalizing Lifting

The regularity of terms in the quotient polynomial f(x) plays a role in the com-
putation of rotations. Consider a cyclotomic polynomial p(x). There might exist
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another low degree polynomial r(x) such that p(x)r(x) = xn±1. This suggests we
promote a vector with dimension deg(p(x)) into dimension deg(p(x))+deg(r(x)),
thus lowering the computation cost. The same technique of choosing the right
pivots can be applied as well.

For example, the next unsolved ideal lattice challenge is dimension 132. One
of the ideal lattices in the challenge is generated by the polynomial f(x) =
x132 − x130 + x128 − · · · + x4 − x2 + 1. Since (x2 + 1)f(x) = x134 + 1, we can
convert this lattice into a 134-dimensional anti-cyclic lattice with two pivots, one
for the +1 terms and the other for −1 terms.

5 Parallelization

Let us now look at our parallel variant of Gauss Sieve for a single machine with
multiple GPUs. Two layers of parallelization naturally arise in this setting: the
workload should first be split (1) across different GPUs, then (2) to different
processors within a GPU. These two layers of architectures differ in communica-
tion cost. Broadcasting data from the host memory across all the GPUs through
PCIe is much more expensive than broadcasting data from the on-chip memory
to different processors within a single GPU.

We carefully design these two layers in hope to mitigate communication over-
head. Specifically, we view each GPU as an independent sieve (inner layer), and
all the GPUs cooperate as a complete parallel sieve (outer layer). In the fol-
lowing subsections, we will see (1) how the problem is divided into independent
sub-sieves on different GPUs, so that each sub-sieve acts as a blackbox, ordinary
Gauss Sieve, and (2) how the sub-sieve is designed to maximize GPU power.

5.1 Outer Layer

To distribute the work among the GPUs on a single machine, we first recall the
work by Bos et al. [BNvdP14], which was originally designed for computer clus-
ters. In their work, each node acts as an independent Gauss Sieve, maintaining
its own local list while reducing the same batch of samples broadcast over all
the nodes. These nodes communicate only at the end of each iteration, putting
any sample that is ever reduced in any of the nodes to the stack. The advantage
of this approach is that the long, local lists are never completely moved out of
the nodes; only a limited amount of reduced vectors and samples are involved
in communication. Communication cost is thus small.

Here, we adapt their method to a machine with multiple GPUs using the
following analogy: A cluster is to the machine what a node is to the GPU. As
a result, a GPU now works as if it were a node, having its own local list, and
communication is done on the host. At each iteration, all the GPUs are given
the same batch of samples, either newly generated or from the stack. Each GPU
then first reduces its samples mutually with its local list, using the method
described in Subsect. 5.2. Next, for each sample, if ever reduced in one GPU, the
host compares and chooses the shortest “representative”, putting it to the stack.
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Reduced vectors from local lists are also put on the stack. Last, the “surviving”
samples are appended to the shortest local list. The vectors on the stack become
the input for later rounds.

5.2 Inner Layer

The inner layer is a modified version of Ishiguro et al.’s idea. As mentioned in
the previous subsection, each GPU can be thought of as an independent sieve,
reducing its local list with a batch of samples. First, the local list is reduced with
the samples. Then, such samples are mutually reduced with each other. Finally,
the samples are reduced with the local list. If any vector is ever reduced during
any step, it is marked and later collected on the stack. As showed by Ishiguro
et al., any pair of surviving vectors in the local list remains reduced during the
process.

Since these three steps share the same pattern — they all reduce one list with
another, the same GPU kernel can be used. See Algorithm 1 for general lattices
and Algorithm 2 for ideal lattices. To reduce list A with list B, the kernel takes
as inputs list A and list B, and in-place outputs the reduced list A. In the kernel,
list A is sliced into adequate chunks and distributed to different processors, while
list B is broadcast to all processors. The kernel is crafted with care to ensure
high throughput, as will be described in the next section.

6 Implementation Details

In this section, we will first see how common performance tuning techniques can
be applied to our algorithm. This includes thread- and instruction-level paral-
lelism. Next, we point out more kernel optimization tricks. Finally, we describe
two more heuristics that can significantly improve the execution time.

6.1 Vector Layout

On GPUs, each thread has a physical register number limit; depending on how
many resources each thread requires, each processor also has a runtime limit for
thread numbers. For example, consider the kernel for n = 100. On a Maxwell
GPU, each thread can use up to 255 registers. If we put both u and w in one
thread, we need 2 × (100 + 1) = 202 registers. Although fewer than 255, this
is still so much that the processors can only schedule a few threads, limiting
thread-level parallelism. At the other extreme, if we spread a vector across too
many threads, the overhead of parallel reduction to calculate inner products
collectively will take over.

Empirically, we choose to spread a vector across 4 threads. For our target
dimension 130, this means each thread takes �130/4� = 33 elements, with the
extra two elements padded with 0. This choice not only reduces register pressure,
but also makes the vector length a multiple of 4, which is essential for cache
line alignment. To this end, parallel reductions are needed both on line 7 to
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collectively sum inner products, and before line 17 (after the for loop) to agree
on the best m. To make the code more readable, we use the CUB library [Mer]
for block load and store in the kernel.

6.2 Instruction-Level Parallelism

Yet another commonly applied trick to increase GPU utilization is to exploit
instruction-level parallelism. The idea is to issue independent instructions at
once to increase the pipeline usage. However, since the algorithm is very much
inherently dependent from line to line, the direct implementation will run very
slowly. We do not overlap two independent copies of kernel at the same time,
because the register usage is immediately multiplied by two. Instead, we unroll
the loop on line 4 with an empirical factor of 8 to facilitate register reuse on
line 7. This technique is possible only if the lattice is lifted, since a lattice point
is represented in its cyclic form.

Next, we identify two new heuristics due to loop unrolling. First, at the end of
each 8th iteration, we choose the best mbest from eight possible mbest’s. Second,
since the prime n is never a multiple of 8, empirically we just omit the remainder
of the unrolled loop.

6.3 More Kernel Optimizations

– The rotation on line 5 is tricky because vectors are padded with zero. There-
fore, the last thread that contains a vector would have to deal with these zeros.
In fact, the padded vector v is first stored in the shared memory, then rotated
one by one at each iteration. More specifically, at the end of one iteration, the
first padded zero is replaced with the next “right” element, and at the start
of the next iteration, the vector w is read at the “right” offset.

– The vectors in the lists U and V are loaded in bulks and put in a shared-
memory buffer to increase global memory throughput.

– In practice, we choose the first element of a lifted vector as its pivot and rotate
reversely. This transforms the index n − j on lines 9–10 to an easier j.

– To ensure high kernel throughput, we empirically tune all the parameters
mentioned in the above sections as well as kernel launch parameters, although
it is not feasible to try all possible combinations.

6.4 On Faster Convolution

The question naturally arises: why not use FFT or the Karatsuba algorithm to
calculate inner products? The reasons are:

– The Karatsuba algorithm reduces the number of multiplications, while adding
a lot more additions. On GPUs, however, FMAD is fastest.

– If on line 5, we use them to produce results for all i’s simultaneously, there
will not be enough register to hold both the results and all the intermediate
values during computation.
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– The dimension is not a power of 2, which makes the convolution more difficult
to be designed efficiently.

There are several techniques to convert non-power-of-2 DFT’s into convolu-
tions or FFTs of the same or larger dimensions. The best approach we are aware
of is Devil’s convolution [Cra96], but this is not easily applicable on GPUs.

6.5 Heuristics

Besides the heuristics for kernel optimization, we also applied two heuristics to
speed up in conjunction with the techniques above.

First, as already mentioned in Voulgaris’s implementation [Gau], the lists
in step 1 are sorted so that only longer vectors (before rotation) are reduced
with shorter ones. We also tried to see if this can be applied to steps 2 and 3.
Empirically we found that it is not as effective, probably because vectors are
shorter during steps 2 and 3; they are less likely to be reduced. We also use the
CUB library to sort data on GPUs.

Second, empirically we choose to iterate the innermost loop over only the
first 16 values of j (line 8). This is because the rotations of prime cyclotomic
vectors have larger norms. The expansion factor for prime cyclotomic lattices is
discussed in [Sch13].

7 Experiments

For our experiments, we use a total of eight NVIDIA GeForce GTX TITAN X
graphics cards. Four of these cards are installed on the main machine, while the
other four are installed on a PCIe extension box.

We use the bases from the Ideal Lattice Challenge [Ide]. Since for dimension
n, the prime cyclotomic polynomial has index n+1, as an example, we choose the
basis for dimension 126 from the file ideallatticedim126index127seed0.txt.
The input bases for Gauss Sieve are first reduced by BKZ with block size 30 and
δ = 0.99.

7.1 Parallel Efficiency

Here we show the parallel efficiency of the outer layer of our parallel frame-
work in Fig. 1. The (parallel) efficiency for N GPUs is defined in [BNvdP14] as

E =
runtime forN GPUs

N · runtime for 1 GPU
.

For the dimension 108, the efficiency is 74%, 72%, 55% and 45% for 2, 4, 6 and 8
GPUs, respectively. However, the dimension is so low that the efficiency is quite
low as the number of GPUs exceeds 6.

On the other hand, for dimension 112, the efficiency scales better with the
number of GPUs. However, we do not yet have the running time for one GPU. If
we base the efficiency on 2 GPUs, then the efficiency is the 86%, 81% and 74%
for 4, 6 and 8 GPUs, respectively. We believe that in high enough dimensions,
the efficiency of 8 GPUs will be more than 70%.
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Fig. 1. Parallel efficiency: the numbers of GPUs versus running time and the exact
running time is labelled below the node

7.2 Ideal Lattices Versus General Lattices

For general lattices, we use the bases from the SVP Challenge [Lat]. Our single-
GPU implementation takes 9.3 h to solve the challenge of dimension 96. In con-
trast, the implementation from [IKMT14] requires 200 CPU-hour. That is, our
single-GPU implementation on general lattices is 21.5 times faster than the CPU
version.

For ideal lattices, our 4-GPU implementation requires 5 min to solve the
challenge of dimension 96 and our single-GPU implementation requires 8.6 min.
In contrast, the implementation from [IKMT14] requires 8 CPU-hours. That is,
our 4-GPU (resp. single-GPU) implementation on general lattices is 96 (resp.
55.8) times faster than the CPU version. Note that the polynomial we use is
prime-cyclotomic (x96 + x95 + · · · + 1), which is more complicated than the
trinomial polynomial (x96 + x48 + 1) used by [IKMT14].

Combining these two cases, the speed-up from using the property of prime-

cyclotomic ideal lattices is
9.3 hrs

8.6 mins
= 64.9 in dimension 96. Applying the com-

plexity estimation from [MV10], we estimate the ratio to be
9.3 hrs · 20.52·30

2734 hrs
=

169 in dimension 126 and
9.3 hrs · 20.52·34

6583 hrs
= 297 in dimension 130.

In contrast, [IKMT14] shows that the speed-up ratio of using the property of
anti-cyclic ideal lattices is around 600 in dimension 128. This gives an evidence
that the SVP over prime-cyclotomic ideal lattices is harder than over anti-cyclic
ideal lattices by a factor of around 2.

7.3 Chronological Behavior

The chronological behavior of the sieving algorithms is studied intensively in
[MV10,Sch11]. We can observe the same behavior in Fig. 2. (a) shows that the
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Fig. 2. Behavior of Gauss Sieve for dimension 126 with 8 GPUs: (a) the list size versus
iteration; (b) the number of collisions versus iteration; (c) the squared norm of current
shortest vector versus iteration

size of the list grows very fast in the beginning, later on it reaches a plateau, and
finally when the shortest vector is found, it grows rapidly again. (b) shows the
number of collision grows almost linearly but goes up very fast after the shortest
vector is found. (c) shows the squared norm of the current shortest vector. The
norm starts to drop half-way, and keeps descending until the shortest vector is
found. One possible improvement is to reduce the basis by the current founded
short vector, as in the work [FK15]. However, since the very first “shorter” vector
only shows up half-way, the speed-up ratio by this method is limited by 2.

Our result in Table 1 is the fastest implementation of the Gauss Sieve algo-
rithm so far. A rough space usage estimation is 2 × 4 × ListSize × Dimension.
The factor 4 is due to the data type, 4-byte float, and the 2 is due to an extra
buffer for sorting on the device. Therefore, it requires around 0.37, 2.59 and
4.35 GB of memory for dimension 112, 126 and 130, respectively.

Table 1. Results of ideal lattice challenge

Dimension 112 126 130

Number of vectors 444,341 2,759,903 4,490,083

Running time (GPU-hours) 32 2,734 6,583

7.4 Hardness Estimation

Finally, Fig. 3 compares our results with previous works. Obviously, our results
are below the estimation of [LP11]. Even more, the slope of ours is flatter than
theirs, which means that there is an exponential speed-up. Some of the data from
the SVP and Ideal SVP Challenge is computed using an accelerated random
sampling algorithm [FK15], but in higher dimensions (say, higher than 136), our
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Fig. 3. Comparison of time: the dimension of SVP Challenge versus the running time

fitting curve is also below their results. This might imply that the running time
of the Gauss Sieve algorithm grows quite slowly.

Fitting our data using least-square regression, we have y = 20.435x−31.8, as
depicted in Fig. 3. To resist attacks using super powerful special-purpose hard-
ware, our conservative model of SVP hardness in ideal lattices, with approxima-
tion factor 1.05, is

time(SV P Ideal
α=1.05) = 20.43n−50(seconds)

However, we emphasize that the space complexity of the sieve algorithm is
exponential, but estimation models of [LP11,CN11] are based on BKZ or BKZ
2.0, which requires only polynomial space. More precisely, our implementation
requires 20.19n+7.3 bytes of memory.

8 Conclusion

In this work, we propose the lifting technique for prime-cyclotomic ideal lattices,
which accelerates the Gauss Sieve algorithm. Moreover, by applying a sequence
of transformations described in Sect. 4, the cost to reduce two vectors with all
of their rotations decreases from O(n3) to O(n2). We also designed and imple-
mented a Gauss Sieve that includes these technique both on a single GPU and
on several GPUs. Our implementation is more than 21.5 (resp. 55.8) times faster
than the best prior known result on a single CPU core for general (resp. ideal)
lattice. Finally, we give a reasonable model to estimate the running time of solv-
ing SVP in ideal lattices. Although our model requires an exponential space
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usage due to the natural property of sieving algorithms, it suggests a bound
much lower than the previous model [LP11].

We will release the code to the public domain after we finish up with all the
details such as providing a less hostile interface, doing a clean up, and so on.
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