
Efficient Threshold Encryption
from Lossy Trapdoor Functions

Xiang Xie, Rui Xue and Rui Zhang
SKLOIS

Chinese Academy of Sciences

2

Outline

 Background

 Our Results

 Our Constructions

 Conclusions

3

pk
sk ...

n parties

sk2

sk1

skn

Threshold Public Key Encryption (ThPKE)

4

pk
sk

C=ThEnc(pk,m)

...
n parties

pk

Threshold Public Key Encryption (ThPKE)

5

pk
sk ...

n parties

pk
m1 = ThDec(C,sk1)

m2 = ThDec(C,sk2)

mn = ThDec(C,skn)

If more than tp parties are honest
m = Combine(m1,m2, …, mn)

Threshold Public Key Encryption (ThPKE)

6

ThPKE=(ThGen, ThEnc, ThDec ThCom)

 ThGen: (pk, sk) ThGen(λ, n, tp)

 ThEnc: C ThEnc(pk,m)

 ThDec: mi ThDec(ski, C)

ThCom: m ThCom(m1,m2,…,mn)

Formal definition

7

Static Attacker Challenger

Announce threshold tp to be corrupted

pk sk1, sk2 ,…, sktp

(i , C)

mi=ThDec(C, ski)…

m0, m1

C*=ThEnc(pk, mb), b {0,1}

(i , C ≠ C*)

…
Output b’ (guess b)

mi=ThDec(C, ski)

Security

8

Related work

 Introduced by Desmedt’87 and Desmedt-
Frankel’90

 Shoup-Gennaro’98 (ROM)

 Canetti-Goldwasser’99 (interactive or storage of
secrets)

 Zhang-Hanaoka-Shikata-Imai’04,Dodis-Katz’05
(generic constructions from ME)

 Boneh-Boyen-Halevi’05, Arita–Tsurudome’09
(pairing)

 Bendlin-Damgard’10 (lattice, not generic)

9

Overview of our results

1. Generic threshold public encryption
 Inspired from Dodis-Katz’05

 Weaker components than those in DK’05
 sTag-CCA instead of Tag-CCA

2. sTag-CCA PKE from lossy trapdoor functions
 ThPKE from lattices (against quantum attackers)

3. Comparisons with other schemes from Lattice
 slightly efficient than the known lattice based scheme

(BD’10)

Basic Ideas

10

Threshold PKE

Full Tag-CCA PKE

Lossy Trapdoor Functions

Multiple Encryption Technique
([ZHSI04,DK05])

?Efficient Solutions

Towards our goal…

11

Threshold PKE

sTag-CCA PKE

Lossy Trapdoor Functions

1. ThPKE from sTag-CCA PKE
(Improving [ZHSI04,DK05])

2. sTag-CCA PKE from Lossy
Trapdoor Functions

12

 Tag-based PKE (TPKE)

Informally, the encryption and the decryption
algorithms take an additional input: a “tag” (denoted
as τ).

TPKE=(TGen, TEnc, TDec)
 (pk,sk)TGen(k)

 (C, τ)TEnc(pk, τ, m)

 mTDec(sk, C, τ)

Ingredients

13

 Full Tag-CCA (used in DK’05)
 (C, τ) ≠ (C*, τ*) in 2nd CCA-query stage

 (C, τ*) is a legal query as long as C ≠ C*

 sTag-CCA
 τ ≠τ* for a query (C, τ) in 2nd CCA-query stage

 Any (C*, τ) with τ ≠ τ* is a legal query

sTag-CCA is a weaker security
defnition than full Tag-CCA !

Security of TPKE

14

Other ingredients

 Secret Share scheme SS = (Share, Rec) with privacy
threshold tp

 (m1,m2,…,mn)Share(m, n)

 mRec(m1,m2,…,mn)

 tp legal shares do not reveal any information of m

 Signature scheme ∑=(Gen, Sign, Ver)

 Strongly unforgeable one-time signature
 An attacker is able to make at most one query to the

sign oracle on a message m, and obtain σ.

 The attacker wins if he outputs (m*, σ*) ≠ (m, σ) and
Ver(m*, σ*) =1

15

Construction: step 1

“SS + TPKE + Sig = ThPKE”

Step 1

16

Security of TPKE

Selective Attacker Challenger

Select τ* to the challenger

pk

(C, τ ≠ τ*)

m=TDec(sk, C, τ)

…

m0, m1

(C*, τ*) =TEnc(pk, τ* mb) b {0,1}

(C, τ ≠ τ*)

m=TDec(sk, C, τ)
…

Output b’ (guess b)

Intuition of the design of DK’05

17

c1 = TEnc(pk1, svk, m1)

c2 = TEnc(pk2, svk, m2)

cn = TEnc(pkn, svk, mn)

σ = Sign(ssk, (c1,…cn))…

The adversary can no longer modify the ciphertext!

c=<svk,c1,c2,…,cn,σ>

18

Our construction
 Given TPKE=(TGen, TEnc, TDec), SS = (Share, Rec)

∑ = (Gen, Sign, Ver), we construct

ThPKE=(ThGen,ThEnc, ThDec, ThCom) as follows.

 ThGen(n, tp)

 (pk1,sk1) TGen, …, (pkn,skn) TGen,

 Set PK=(pk1,…, pkn), Ski=ski

 ThEnc(PK, m)

 (m1,…,mn)=Share(m); (svk,ssk) Gen

 c1 = TEnc(pk1, svk, m1),…, cn = TEnc(pkn, svk, mn)

 σ = Sign(ssk, (c1,…cn))

 Output C=(svk, c1,…cn, σ)

19

Our construction

 ThDec(Ski, C)
 Parse C = (svk, c1,…cn, σ)

 Check Ver(svk, (c1,…cn)) =1; if not, abort

 Output mi = TDec(ski, ci ,svk)

 ThCom(m1,…,mn)
 Output m=Rec(m1,…,mn)

20

Theorem 1. ThPKE constructed above is a CCA secure
threshold encryption scheme, if TPKE is sTag-CCA secure, SS
is tp secure and ∑ is one-time strongly unforgeable.

Proof sketch: We define a sequence of games to prove this theorem.

W.l.o.g we assume {n-tp+1,…n} are corrupted.

1, If decryption query C is of the form (svk*, c1,…cn σ), abort.
This can be done via the one-time strongly unforgeable signature.

Security of our scheme

21

2. For 1 ≤ i ≤ n – tp-1, the challenger change the challenge ciphertext as:

Game i: (TEnc(pk1,0), …,TEnc(pki, 0), TEnc(pki+1,mi+1),…,TEnc(pkn,mn)

Game i+1: (TEnc(pk1,0), …,TEnc(pki, 0), TEnc(pki+1,0),…, TEnc(pkn,mn)

View(Game i) ≈ View(Game i+1)

according to the sTag-CCA of TPKE scheme !

Security of our scheme

Up to now…

22

Threshold PKE

sTag-CCA PKE

Lossy Trapdoor Functions

1. ThPKE from sTag-CCA PKE
(Improving [ZHSI04,DK05])

?Efficient Solutions

23

We obtain sTag-CCA PKE from lossy
trapdoor functions and All-But-One (ABO)
trapdoor functions [PK’08].

Construction: step 2

How to sTag-CCA PKE

24

Lossy trapdoor functions

25

(s,td) Sabo(b*)

G(s,b,x): an injective trapdoor function (with b ≠ b*)

G(s,b*,x): a lossy function

s0 ≈ s1
(s0,td0) Sabo(b0), (s1,td1) Sabo(b1)

For any b0,b1

All-But-One trapdoor functions

“LF + Additional Branch Set”

26

Our sTag-CCA PKE
PKE = (Gen, Enc, Dec)

 Gen(k)

 (F, F-1) S(inj,k), (s, td) Sabo(0,k),

 Sample a pairwise independent hash h

 pk=(F,G, h), sk=(F-1) (td’ for proof)

 Enc (m)

 Choose b (tag) from the branch set.

 Randomly choose x (compactible with F and G)

 C=< F(x), G(s, b, x), h(x) XOR m >

 Output (C, b)

27

Our sTag-CCA PKE

 Dec (C, b)

 Parse C as (c1, c2, c3)

 x= F-1(c1)

 Check F(x) = c1, G(s, x, b)= c2; If not, abort

 Output x XOR c3

It is exactly the Peikert-Waters
“basic PKE” from LTFs !

In [PW08], it was proved that this
construction is CCA1 secure.

28

Theorem 2. The encryption scheme
PKE=(Gen, Enc, Dec) described above is
sTag-CCA secure.

Our sTag-CCA PKE

29

Game 1: (s, td) Sabo(b*) instead of (s, td) Sabo(0)

Game 2: use td to answer decryption queries.

Game 3: (s, *) S(lossy) instead of (s, td) S(inj)

Game 4: use randomly chosen r instead of c3*

Proof sketch

Wrapping up the whole story…

30

Threshold PKE

sTag-CCA PKE

Lossy Trapdoor Functions

1. ThPKE from sTag-CCA PKE
(Improving [ZHSI04,DK05])

2. sTag-CCA PKE from Lossy
Trapdoor Functions

31

Comparisons of ThPKE

32

Conclusions

 ThPKE from LTFs
1. ThPKE from sTag-CCA PKE

2. sTag-CCA PKE from LTFs

 Concrete implementation from Lattices
 (Slightly) better than the previous one

from lattice [BD’10]

