Efficient Threshold Encryption from Lossy Trapdoor Functions

Xiang Xie, Rui Xue and <u>Rui Zhang</u> SKLOIS

Chinese Academy of Sciences

Background
 Our Results
 Our Constructions
 Conclusions

Threshold Public Key Encryption (ThPKE)

Threshold Public Key Encryption (ThPKE)

Threshold Public Key Encryption (ThPKE)

Formal definition

ThPKE=(ThGen, ThEnc, ThDec ThCom) ThGen: $(pk, \vec{sk}) \leftarrow$ ThGen(Λ , n, \dagger_p) ThEnc: $C \leftarrow$ ThEnc(pk,m) ThDec: $m_i \leftarrow$ ThDec(sk_i, C) ThCom: $m \leftarrow$ ThCom($m_1, m_2, ..., m_n$)

Security

Related work

- Introduced by Desmedt'87 and Desmedt-Frankel'90
- □ Shoup-Gennaro'98 (ROM)
- Canetti-Goldwasser'99 (interactive or storage of secrets)
- Zhang-Hanaoka-Shikata-Imai'04, Dodis-Katz'05 (generic constructions from ME)
- Boneh-Boyen-Halevi'05, Arita-Tsurudome'09 (pairing)
- Bendlin-Damgard'10 (lattice, not generic)

Overview of our results

- 1. Generic threshold public encryption
 - Inspired from Dodis-Katz'05
 - Weaker components than those in DK'05
 sTag-CCA instead of Tag-CCA
- 2. sTag-CCA PKE from lossy trapdoor functions
 - □ ThPKE from lattices (against quantum attackers)
- 3. Comparisons with other schemes from Lattice
 - slightly efficient than the known lattice based scheme (BD'10)

Basic Ideas

Towards our goal...

Ingredients

□ Tag-based PKE (TPKE)

Informally, the encryption and the decryption algorithms take an additional input: a "tag" (denoted as τ).

□ TPKE=(TGen, TEnc, TDec)

□ (pk,sk)←TGen(k)

 $\Box (C, \tau) \leftarrow TEnc(pk, \tau, m)$

 $\square m \leftarrow TDec(sk, C, T)$

Security of TPKE

□ Full Tag-CCA (used in DK'05)

 \Box (C, T) \neq (C^{*}, T^{*}) in 2nd CCA-query stage

 \Box (C, τ^*) is a legal query as long as $C \neq C^*$

sTag-CCA

□ $\tau \neq \tau^*$ for a query (C, τ) in 2nd CCA-query stage □ Any (C*, τ) with $\tau \neq \tau^*$ is a legal query

sTag-CCA is a weaker security defnition than full Tag-CCA !

Other ingredients

- Secret Share scheme SS = (Share, Rec) with privacy threshold t_p
 - □ $(m_1, m_2, ..., m_n) \leftarrow Share(m, n)$

 $\square m \leftarrow \text{Rec}(m_1, m_2, ..., m_n)$

- \Box t_p legal shares do not reveal any information of m
- **Given Signature Scheme** Σ =(Gen, Sign, Ver)
 - Strongly unforgeable one-time signature
 - An attacker is able to make at most one query to the sign oracle on a message m, and obtain σ .
 - The attacker wins if he outputs (m*, σ*) ≠ (m, σ) and Ver(m*, σ*) =1

Construction: step 1

Security of TPKE

Intuition of the design of DK'05

Our construction

Given TPKE=(TGen, TEnc, TDec), SS = (Share, Rec) Σ = (Gen, Sign, Ver), we construct
 ThPKE=(ThGen, ThEnc, ThDec, ThCom) as follows.
 ThGen(n, t_p)
 (pk₁,sk₁)←TGen, ..., (pk_n,sk_n)←TGen,

 \Box Set PK=(pk₁,..., pk_n), Sk_i=sk_i

□ ThEnc(PK, m)

□ (m₁,...,m_n)=Share(m); (svk,ssk)←Gen

 \Box c₁ = TEnc(pk₁, svk, m₁),..., c_n = TEnc(pk_n, svk, m_n)

 $\Box \sigma = Sign(ssk, (c_1, ..., c_n))$

• Output $C=(svk, c_1,...,c_n, \sigma)$

Our construction

$\Box \quad ThDec(Sk_i, C)$

- $\square \quad \text{Parse } C = (\text{svk}, c_1, \dots, c_n, \sigma)$
- Check Ver(svk, ($c_1,...,c_n$)) =1; if not, abort
- Output $m_i = TDec(sk_i, c_i, svk)$

□ ThCom $(m_1,...,m_n)$ □ Output m=Rec $(m_1,...,m_n)$

Security of our scheme

Theorem 1. ThPKE constructed above is a CCA secure threshold encryption scheme, if TPKE is sTag-CCA secure, SS is t_p secure and Σ is one-time strongly unforgeable.

Proof sketch: We define a sequence of games to prove this theorem.

W.l.o.g we assume $\{n-t_p+1,...n\}$ are corrupted.

1, If decryption query C is of the form (svk^* , $c_1,...,c_n \sigma$), abort. This can be done via the one-time strongly unforgeable signature.

Security of our scheme

2. For $1 \le i \le n - t_p - 1$, the challenger change the challenge ciphertext as:

Game i: $(\text{TEnc}(pk_{1},0), ..., \text{TEnc}(pk_{i}, 0), \text{TEnc}(pk_{i+1},m_{i+1}), ..., \text{TEnc}(pk_{n},m_{n})$ Game i+1: $(\text{TEnc}(pk_{1},0), ..., \text{TEnc}(pk_{i}, 0), \text{TEnc}(pk_{i+1},0), ..., \text{TEnc}(pk_{n},m_{n})$

View(Game i) ≈ View(Game i+1)

according to the sTag-CCA of TPKE scheme !

Up to now...

Construction: step 2

How to sTag-CCA PKE

We obtain sTag-CCA PKE from lossy trapdoor functions and All-But-One (ABO) trapdoor functions [PK'08].

Lossy trapdoor functions

All-But-One trapdoor functions

"LF + Additional Branch Set"

 $\begin{array}{ll} (s,td) \leftarrow S_{abo}(b^{\star}) \\ G(s,b,x) & \text{ an injective trapdoor function (with b \ne b^{\star})} \\ G(s,b^{\star},x) & \text{ a lossy function} \end{array}$

 $S_0 \approx S_1$

$$(s_0,td_0) \leftarrow S_{abo}(b_0), (s_1,td_1) \leftarrow S_{abo}(b_1)$$

For any b_0,b_1

Our sTag-CCA PKE

PKE = (Gen, Enc, Dec)

🖵 Gen(k)

□ (F, F⁻¹) ← S(inj,k), (s, td) ← S_{abo}(0,k),

Sample a pairwise independent hash h

 \square pk=(F,G, h), sk=(F⁻¹) (td' for proof)

🖵 Enc (m)

□ Choose b (tag) from the branch set.

□ Randomly choose x (compactible with F and G)

 \Box C=< F(x), G(s, b, x), h(x) XOR m >

Output (C, b)

Our sTag-CCA PKE

🖵 Dec (C, b)

 $\Box Parse C as (c_1, c_2, c_3)$

□ x= F⁻¹(c₁)

 $\Box Check F(x) = c_1, G(s, x, b) = c_2; If not, abort$

 $\Box \text{ Output } x \text{ XOR } c_3$

It is exactly the Peikert-Waters "basic PKE" from LTFs !

In [PW08], it was proved that this construction is CCA1 secure.

Our sTag-CCA PKE

Theorem 2. The encryption scheme PKE=(Gen, Enc, Dec) described above is sTag-CCA secure.

Proof sketch

Game 1: (s, td) $\leftarrow S_{abo}(b^*)$ instead of (s, td) $\leftarrow S_{abo}(0)$

Game 2: use td to answer decryption queries.

Game 3: (s, *)←S(lossy) instead of (s, td)←S(inj)

Game 4: use randomly chosen r instead of c_3^*

Wrapping up the whole story...

Comparisons of ThPKE

Table 1. Comparisons among schemes

Schemes	PK Size	SK Size	Ciphertext	Assumption	RO	Quantum
		of Each	Size		Free	Attack
		Sever				Resistance
SG98	$(n+2) \mathbb{G} $	$ \mathbb{Z}_q $	$5 \mathbb{G} +2 \mathbb{Z}_q $	CDH	×	×
CG99	$5 \mathbb{G} $	$(L+5) \mathbb{Z}_q $	4 G	DDH	\checkmark	×
BBH06	$(n+4) \mathbb{G} $	G	$2 \mathbb{G} + \mathbb{G}_T + SIGN $	DBDH	\checkmark	×
AT09	$(n+4) \mathbb{G} $	\mathbb{Z}_q	$2 \mathbb{G} + \mathbb{G}_T + SIGN $	DBDH	\checkmark	×
BD10	γ^5	$(2n-1)\gamma$	γ^2	$SIVP_{\gamma^4}$	\checkmark	\checkmark
Ours	$2n\gamma^3 \log \gamma$	$\gamma^2 \log \gamma$	$2n\gamma^2\log\gamma$	$\mathrm{SIVP}_{\delta\gamma}$	\checkmark	\checkmark

- □ ThPKE from LTFs
 - 1. ThPKE from sTag-CCA PKE
 - 2. sTag-CCA PKE from LTFs
- Concrete implementation from Lattices
 - (Slightly) better than the previous one from lattice [BD'10]